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ABSTRACT

Two-time-scale stochastic approximation is a recursive algorithm for solving a
system of two equations. The method has found broad applications in many ar-
eas including machine learning and reinforcement learning. Recent works have
revealed that single-time-scale stochastic approximation (especially its variant
stochastic gradient descent in optimization) is robust to structured perturbations
such as compression, local updates, and delays, but it is not well-understood in
the two-time-scale case. Almost nothing is known about the analogous question:
Is two-time-scale stochastic approximation also robust to similar structured per-
turbations? In this paper, we study error-feedback-based two-time-scale stochas-
tic approximation. We propose a unified theory of two-time-scale stochastic ap-
proximation based on error-feedback to analyze the impact of different forms of
structured perturbations. We show that two-time-scale stochastic approximation
is robust to structured perturbations. In particular, two-time-scale stochastic ap-
proximation with different forms of structured perturbations exhibits the same
non-asymptotic theoretical guarantees as its single-time-scale counterpart without
structured perturbations. We further show that the convergence rate in all cases
consists of two terms, where only the higher-order term is affected by structured
perturbations. This is especially important for distributed parallel implementa-
tions of two-time-scale stochastic approximation algorithms.

1 INTRODUCTION

Stochastic approximation (SA) is a general class of recursive methods for finding roots of unknown
functions for which only noisy accesses are available |Robbins & Monro| (1951); Borkar| (2009).
Specifically, the SA method seeks to find «* such that h(x*) = 0 with the following update:

Tp1 = i + ag (h(zr) + &), (D

where o is the step size and &, is a random variable. Such method has found broad applications in
many areas such as machine learning (ML), statistics, stochastic control, and signal processing. In
particular, stochastic gradient descent (SGD), a variant of SA, lies at the core of machine learning,
especially deep learning Bottou et al.| (2018)). Notably, the practical success of SA, especially SGD,
can be attributed to its robustness to robust to structured perturbations such as compression, local
updates, and delays|Stich & Karimireddy|(2020). This is especially important for distributed parallel
implementations in the sense that a parallel version of SGD with structured perturbations can effi-
ciently use the computing power of multiple parallel agents. For instance, local SGD |Stich|(2018), a
variant of SGD, allows update (1) to evolve locally on each agent, independently of each other, and
only average the sequence once in a while. The results show that local SGD is as computationally
efficient as parallel mini-batch SGD, but the communication cost can be significantly reduced.

While most SA studies have focused on the single sequence case, two-time-scale SA (TTSA) was
introduced in [Robbins & Monro| (1951)), and it has been widely applied to problems involving two
coupled sequence updates. Specifically, given two nonlinear operators f : R% x R4 — R% and
g : R x RY — R%, the TTSA method aims to solve a system of two equations:

{f(wvy) =0,

g(z,y) =0, @
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by two coupled sequence updates of the form:

Thp1 = Tk + o (f(Tr, yr) + &k) (3)
Yk+1 = Yk + Br (9(@r, yr) + V) )

where ay, Bi are step sizes and &, ¢y, are random variables. The TTSA method has found broad
applications in many areas including machine learning and reinforcement learning. In particu-
lar, the TTSA method has been studied mostly in the context of stochastic bilevel optimization
(SBO) |Ruszczynski| (2021); Balasubramanian et al.[(2022) and stochastic compositional optimiza-
tion (SCO) |Wang et al.| (2017); \Gao & Huang| (2021); Jiang et al.| (2022) where many typical SBO
and SCO algorithms are exactly in the form of (3)-(). It is worthwhile mentioning that the SBO
and SCO problems encompass many contemporary ML problems including adversarial robustness,
hyperparameter tuning, meta-learning, reinforcement learning; see e.g., [Franceschi et al.| (2018));
Zhang et al.|(2022); Hong et al.|(2023). While recent work has begun to study SBO and SCO in dis-
tributed parallel settings [Tarzanagh et al.|(2022); |Yang et al.[(2022), a generic theory for distributed
TTSA is less developed. Almost nothing is known about the question:

Is two-time-scale stochastic approximation robust to structured perturbations such as
compression, local updates, and delays?

To fill this gap, we study error-feedback-based TTSA. Error-feedback is a unified framework for
analyzing the theory of SGD with different forms of structured perturbation [Stich et al.| (2018));
Karimireddy et al.[(2019); |Stich & Karimireddy|(2020). In this work, we extend the error-feedback
framework to TTSA. Indeed, analyzing error-feedback-based TTSA is challenging as it involves two
coupled sequences for a one-step update in TTSA, and there are complicated interactions between
error-feedback and TTSA. Two auxiliary sequences are introduced in the error-feedback framework,
which aggregate the structured perturbation errors. Moreover, existing works on error-feedback only
consider variants of SGD and do not consider SA, let alone TTSA. Notice that SA is a more general
class of algorithms that covers many algorithms in reinforcement learning that cannot be formulated
as SGD and its variants [Kaledin et al.|(2020)); |Chen et al.|(2022).

1.1 MAIN CONTRIBUTIONS

Our main contributions are summarized as follows:

1) Error-feedback meets two-time-scale stochastic approximation. We give an affirmative
answer to the above question and present a framework for error-feedback-based two-time-scale
stochastic approximation (EF-TTSA) that captures a rich class of structured perturbations such as
compression, local updates, and delays. We utilize the framework to analyze the effect of different
forms of structured perturbations on EF-TTSA in a unified manner. To the best of our knowledge,
this is the first work that considers two-time-scale stochastic approximation corrupted by structured
perturbations with theoretical convergence guarantees.

2) Error-compensated TTSA with arbitrary compressors. We propose an instance of EF-TTSA,
error-compensated TTSA with arbitrary compressors (Algorithm([T)), in which compression operators
are used to reduce communication costs. We prove that our Algorithm |1|attains an O (% + ﬁ)
convergence rate, where 7' is the total number of iterations, and ¢ is the compressed parameter. We
see that the compression operator only affects the higher-order term of the convergence rate. Thus,
the effects of the compression become negligible after a few iterations and the algorithm converges
at the same rate as standard TTSA without compression [Shen & Chen|(2022).

3) Local TTSA with periodic global averaging. We propose an instance of EF-TTSA, local TTSA
with periodic global averaging (Algorithm [2)), in which agents perform multiple local iterative up-

2
%) conver-
gence rate, where K is the communication interval. We also observe that the effects of multiple local
updates become negligible after a few iterations, suggesting that our algorithm gains communication

efficiency through infrequent communication, essentially for free.

4) TTSA with delayed updates. We propose an instance of EF-TTSA, TTSA with delayed updates
(Algorithm, where updates are delayed and reflect iterations from 7 rounds ago. We prove that our
3

dates, followed by global averaging. We prove that our Algorithm attains an O (% +

Algorithm attains an O % + %22) convergence rate. Similarly, 7 only appears in the higher-order
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term of the convergence rate, and its effect becomes negligible when 7' is large enough. The results
show that the performance of TTSA with delays is comparable to that of TTSA without delays.

1.2 RELATED WORK
1.2.1 TwO-TIME-SCALE STOCHASTIC APPROXIMATION

TTSA, a generalized variant of SA, has been studied for a long time. Specifically, the asymptotic be-
havior of TTSA has been analyzed in Borkar (1997) using an ODE approach, and in |Tadic & Meyn
(2003) under Markovian noise. Recent work has heavily focused on the finite-time performance of
TTSA for both linear [Konda & Tsitsiklis| (2004); Doan & Romberg| (2019); |Kaledin et al.| (2020);
Doanl (2021b) (when f and g are linear functions with respect to their variables) and nonlinear set-
tings [Dalal et al.|(2018)); |Zeng et al.|(2021)); Doan| (2022)), under both i.i.d. and Markovian samples.
All of these works use the so-called fast and slow time scales: one sequence is updated in the fast-
time scale while the other is in the slow time scale; the time scale difference limy_, o, g /B — 0.
With the proper choice of step sizes, the two sequences with the fast and slow time scales are asymp-
totically decoupled. |Shen & Chen| (2022) established an improved analysis of nonlinear TTSA in
which the two sequences are updated in the same time scale, i.e., limy_, o /B = ¢ for some
constant ¢ > 0.Shen & Chen|(2022)) demonstrated that the sequences generated by nonlinear TTSA
converge to desired solutions at a tight rate (’)(%) for the strongly-monotone case. Distributed vari-
ants of linear and nonlinear TTSA are considered in [Doan & Romberg| (2020) and |Doan| (2021al),
respectively. [Doan| (2021a) studied the convergence rate of distributed local TTSA; however, the
sequences generated by the method only converge linearly to a ball encircled the desired solution.
In summary, it is an open question whether convergence guarantees for TTSA with structured per-
turbations (e.g., compression, local updates, and delays) can be achieved.

1.2.2 ERROR-FEEDBACK FRAMEWORK

Error-feedback relates closely to communication-efficient methods such as quantization and spar-
sification in distributed optimization literature. Roughly speaking, error-feedback is a memory
mechanism that uses accumulated errors from previous iterations for bias correction. The idea of
error-feedback was introduced in [Seide et al.| (2014) to study 1-bit SGD, aiming to counter the
effect of bias introduced by quantization. Since then, several papers |Alistarh et al.| (2018); [Stich
et al. (2018)); |Karimireddy et al.| (2019); [Lin et al.| (2022)) considered compression methods with
error-feedback, i.e., incorporating the error made by the compression operator to correct the current
direction. For instance, [Stich et al.| (2018); |Karimireddy et al.|[(2019) demonstrated that SignSGD
with error-feedback, a very aggressive compression method where each coordinate of the gradient
is replaced by its sign, retains almost the same behavior as SGD without compression.

For further reducing communication costs, various orthogonal techniques have been proposed, such
as asynchrony (delayed updates) Stich| (2018) and periodic averaging (local updates) |Arjevani et al.
(2020) in distributed optimization literature. |Stich & Karimireddy|(2020) presented a framework for
sgd with error-feedback, and analyzed the effect of different forms of structured perturbations. In
particular, SGD with delayed updates and SGD with local updates essentially act like compressed
SGD with error-feedback. [Mitra et al.| (2023)) analyzed compressed temporal difference learning
with error-feedback, and proved that temporal difference learning is robust to structured perturba-
tions; but the author only studied compression. In this work, we use the error-feedback framework
to analyze nonlinear TTSA with different structured perturbations in a unified manner.

2 PRELIMINARIES

We are interested in the two-time-scale SA problem (2)) under the following assumptions.

Assumption 1. For any x € R%, there exists a unique y*(x) € R¥ such that g(x,y*(z)) = 0.
Moreover, there exist Ly o and L, 1 such that for any x1, 22 € R%, the following inequalities hold

lly* (1) =y (22)]] < Lyollz1 — 22l )
[IVy*(21) — Vy* (z2)[| < Ly 1|1 — 22| (6)
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Assumption 2. For any x1, o € R, and Y1, Y2 € R, there exist L, L ¢ and L4 such that

I[f(z1,y"(x1)) — fz2,y™ (x2))|] < L||z1 — 22]|, (7)
I[f(z1,91) — f(z2, y2)l| < Ly ([lz1 — 22l + [|y1 — 92l1), ()
llg(@1,91) — g(z2,92)[| < Ly ([lz1 — 22| + [[y1 — 92ll) - )

Assumption 3. Suppose f(x,y) is one-point strongly monotone on x*; that is, there exists a con-
stant Ay > 0 such that

(x—a*, f(z,y"(2)) < =Afllz — =" (10)

Moreover, suppose g(x,y) is one-point strongly monotone on y*(x) for any given x € R%; that is,
there exists a constant Ay > 0 such that

(y—y"(@),9(x,9)) < =Xglly —y* ()] (11)

Remark 1. Assumptions [I{3| are fairly standard in the analysis of two-time-scale SA; see e.g.,
Mokkadem & Pelletier| (20006)); |Kaledin et al.|(2020); Zeng et al.|(2021); |Shen & Chen|(2022)).

2.1 MOTIVATING APPLICATION EXAMPLES

2.1.1 STOCHASTIC BILEVEL OPTIMIZATION
With mappings F : R% x R% — Rand G : R% x R% — R, the stochastic bilevel optimization
(SBO) problem can be formulated as

min F(z,y) = Eg[F(z,y(x); 0)], st.y(2) := arg min G(z,y) = Ec[G(z,4;¢)].  (12)
zeR%0 yERL

A class of gradient-based methods is a popular approach to solve problem (12)); see e.g.,|Ghadimi &
Wang| (2018); |Chen et al.|(2021b)). In particular, this type of method has updates

Thi1 = T + ap (Vo F (20, yki k) — Vi, G(@r, v Go) Hyy (Tr, s Go) Vi F (ke yii Ok)) » (13)
Yer1 = Yk — BeVyG @k, yr; ¢, (14)

where H,,, (2, yx; C;) is a stochastic approximation of the Hessian inverse [V, G(z, yx)] "', We
observe that the update (I3)-(T4) is a special case of the TTSA update in (3)-@) by defining:

f(l'k7yk) = VmF(l’lwyk) - Vin(Ikayk)[vny<xka yk)]_lva(mkayk)a (15)
& = —f (T Yk) + Vo F (T, Yk Or) — Vo, G, yis Co) Hyy (@, yis GV F (@, yrs 0k), (16)
g(xlmyk) = —VyG($k7yk)7 1/% = _g(xlmyk:) - VyG(xka Yk, C]/c/)7 (17)

Shen & Chen| (2022)) demonstrated that the standard conditions in the SBO literature |(Ghadimi &
Wang| (2018); [Chen et al.] (2021b) lead to Assumptions[T}{3]in this work.

2.1.2 STOCHASTIC COMPOSITIONAL OPTIMIZATION

With outer function F(y;0) : R% — R and inner function G(z;¢) : R% — R, the stochastic
compositional optimization (SCO) problem can be formulated as

min F(G(z)) :==Eg[F(G(z);0)], with G(z) := E¢[G(z; ()] (18)
reRY2
To solve (T8)), a popular method [Yang et al| (2019) takes the following form
Tpy1 = T — ok VEF (yr; O) VG (23 (i) 19)
Yr+1 = Yx + B (F(yr; 0%) — Yi) » (20)

where v, is used to directly track E. [G(z; ¢)]. We observe that the update — is a special case
of the TTSA update in (3)-(@) by defining:

flar,yp) = =VF(yr)VG(xr), & = —f(@ryr) — V(Uk, 0) VG (2r; Cr), (21)
9@k, uk) = Flyk) — ye. Uk = —9(@k, yr) + F(yr; 05) — ys- (22)

Likewise, [Shen & Chen|(2022) demonstrated that the standard conditions in the SCO literature|[Yang
et al] (2019); Chen et al|(2021a) ensure that Assumptions[T}3]in this work hold.
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3 ERROR-FEEDBACK MEETS TWO-TIME-SCALE SA

In this section, we introduce our framework EF-TTSA wherein two sequences {x }, {yx} and two
auxiliary sequences {dy}, {ex} all evolve at the same time, using the following expressions:

Tp41 = Tk + Ui, (23)
dps1 = dp + o fr — b, (24)
Yk+1 = Yk + Vi, (25)
€k+1 = €k + Brgrk — Vk, (26)
with dy = eg = 0. In (23] 1 ), {14 } k>0 and {vy }i>0 are two sequences, representing the updates
applied to {zx }x>0 an k>0 respectively. {dy }r>0 and {ex}r>0 aggregate the structured per-

turbation errors. We denote by fr = f(xk, yr) + &k and g, = g(2p, yr) + Yr, where & and 1), are
two independent random variables. Note that our framework EF-TTSA is generic and covers many
special cases: error-compensated TTSA with arbitrary compressors (cf. Section[d), local TTSA with
periodic global averaging (cf. Section[5), and TTSA with delayed updates (cf. Section [6).

We define the filtration 7, = {xo,v0,21,¥1, " ,%k,yx}. Regarding the random variables
{&k> ¥x } k>0, we impose the following standard assumption |Doan|(2022).

Assumption 4. The random variables &y, ¢, for all k > 0, are independent of each other and
across time. Moreover, there exist two positive constants og, oy, such that

E[&x]Fr] = 0, E [Yp|Fr] =0, |[Ek]] < o¢, |[Wr]| < 0y, VK> 0. (27)

For the convenience of analysis, define Z;, = xi + di, Jx = yi + er, Y5 = y*(2), ¥} = v*(Tx),
and 2, = E[||gx — 7;]|*> + ||Zx — x*||?]. By the definitions of Zj and 7k, we have that Z1 =
Tk + ak fi; Ye+1 = Yk + Brgr. The main result of this section is as follows.

Lemma 1. Let {xy, d, yi, ek} k>0 be the sequence generated by (.) @) Suppose Assumptions
hold and set ay; < min{ 16L s, 6L2(2/11+/\f)} and By, = By, where 8 = 261/\4)” we have

- A -
Ere1 < (1— ?fak):k + Aqar(||de|)? + |lerl|?) + Agai(ag + O'i), (28)

where Al = (1 + 02) (3L2 + 2L2/A ) + c3, AQ (1 + Cg) BZ + Ly, Cc1 = L OL + 4Ly70Lf +

2 2
21,107 + 4L, L2+W, ¢s = LyoLs + LyoL + 2Ly 102 + 1130

Af
8LyoLyLy +4LyL23 + 250 and L, = 12 1 Ly, +1.

,c3 = LyoL +

Note that the above lemma derives an upper bound on the one-step progress of =, which is key
to our analysis and will simplify the presentation of the proofs in the subsequent sections. Observe
that there is an “error” term on the right side of the inequality (28): ||dx||* + ||ex||> measures the
mismatch between the true sequences {z }, {yx } and their noisy estimates {Z }, {¥ }

4 ERROR-COMPENSATED TTSA WITH ARBITRARY COMPRESSORS

In this section, we propose an instance of EF-TTSA, error-compensated TTSA with arbitrary com-
pressors. First, we use the EF-TTSA framework to analyze error-compensated TTSA with arbitrary
compressors, and then extend the results to the SBO and SCO problem:s.
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Algorithm 1 Error-Compensated TTSA with Arbitrary Compressors
1: Initialization: {Oék}kzo, {Bk}kZO’ To € R, Yo € R, doi = €0, =0,Vi € [n]
2: fork=0,1,--- ,T—1do
3:  for each agent i € [n] do

4 Lii = Qld,i + o fri)

5 Aiy1,0 = dii + o froi — Pkyi

6 Vki = Qe + Brgk.i]

7. €kt1,i = €kyi + BrGk,i — Vi

8 end for

9:  on server

10: Th+1 = Tk + % Zie[n] Hkyi>  Ye+1 = Yk + % Zie[n] Vk,i
11: end for

The error-compensated TTSA with arbitrary compressors is illustrated in Algorithm[I] Each agent
i € [n] stores and updates local sequence {u i, dk. i, Vk,i, €k, } and communicates with the cen-
tral server to update global sequence {xy,yx}. Following the MEM-SGD [Stich et al|(2018), the
sequence { i, Ak, Vki, €k, | is updated in the following way:
Pryi = Qldii + anfril, ditii = dii + o fri — f,is (29)
Uk = Qleki + Brril s €rt1,i = €kyi + Brhyi — Vi,is (30

where for any agent i € [n] and k > 0, fi; = f(@k, yr) + &k,i> G,i = 9(Tks Yk) + P05 and Q[ ] is
a compression operator that satisfies the following contraction property.

Assumption 5. The compression operator Q : R4 — R satisfies the following inequality
Eol|Qlz] — 2[|] < (1 - &), 31)

for a parameter § > 0 and Vx € R%. Here Eg[-] denotes the expectation over the randomness of Q.

As for the central server, when it receives { i ; } and {v ;} from all agents [n], it updates the global

sequence {xy, Y} as Tpy1 = T + = Zie[n] [his Y1 = Y + 1 Zie[n] Vk,i» and then sends 241
and y,1 back to all agents, as shown in line 10 of Algorithm 1]

Note that instead of transmitting full-dimensional vectors, Algorithm [I] improves communication
efficiency by using limited bit representation (quantization) or enforcing sparsity. Observe that
Algorithm [T|takes the following form in the EF-TTSA framework:

1 1 1 1

d = — . = — . = — ; = — ;.

B > dri, - > ki ex - > eri w - > vk (32)
i€[n] i€[n] i€[n] i€[n]

In view of (32), applying Lemmal(I] we have

- A -
Zpt1 < (1 — %O{k):k + Alak(I)k =+ AQO{%(U? =+ O'i), (33)

where Z; = E[||gx — y*(T1)|]* + ||Zx — 2*[]?], &, = E [% Dictn dnall® + 5 Y llenl |,
T = T + % Zie[n] di.i, and gx, =y + % Zie[n] ek.i. We then derive an upper bound on ®y,.
Lemma 2. Let {xy, dy i, Yk, €k.i } be the sequence generated by Algorithm Suppose Assumptions

hold and set oy, < ———— and B, = By, we have

20(4L2+3L2p2)
5 4 _
Pry1 < (1= 5) P+ (1+5) (4L +4L7 +3L23%) 0B + (1+ 5°%) o (0 +07,) . (34)

We now obtain the main theorem for error-compensated TTSA with arbitrary compressors.
Theorem 1. Consider the sequeme Tk, Yk } generated by Algorithm l Suppose Assumptions (I

hold. Selecting step sizes o, = k+1/6 ) and By, = (k+1/6) then it holds that
1 = 11
T 2 weElllye =y @) + llax — 2% < O (T + W) ! (35)
k=0
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for some sequence of positive weights wy, = k + k where Kk > m and Wp = Zk oWk As a

consequence, it holds that limy_, ||yx, — y*(zx)||? = 0 a.s. and hmk_,oo ||z — z*||? = 0 a.s.
Remark 2. Theorem|[I|implies that the compression operator only affects the higher order term of
the convergence rate. When T is sufficiently large, the first term is dominating in (33)), and the error-

compensated TTSA with arbitrary compressors converges at a tight rate O(1/T'), which recovers
the convergence rate of nonlinear TTSA with exact communication.

Remark 3. We can extend Theorem([l|to the SBO and SCO problems. Consider the SBO algorithm
with the updates in ({I3)-(I4) and the SCO algorithm with the updates in (@) . Assuming As-
sumptions |IN5| holds and selecting step sizes oy, = @(k+1/6) and By = (k+1/6 ), the resulting

error-compensated SBO and SCO with arbitrary compressors can converge at rate O (% + 52%)

5 LocAL TTSA wWITH PERIODIC GLOBAL AVERAGING

In this section, we propose the second instance of EF-TTSA, namely, local TTSA with periodic
global averaging. First, we use the EF-TTSA framework to analyze local TTSA with periodic global
averaging, and then extend the results to the SBO and SCO problems.

Algorithm 2 Local TTSA with Periodic Global Averaging

1: Initialization: {O&k}kzo, {ﬂk}kzo, xo € Rdo’ Yo € R%
2: fork=0,1,--- ,T—1do
3:  for each agent i € [n] do

4 Thili = Thyi + Ok fri
5 Y+, = Yk, + Brgr,i
6 end for
7:  ifmod(k +1 K) = 0 then
. _ 1
8: Thi1,i = 5 Z]E[n] Thtlg, Yk+14 = 5 Zje[n] Yk+1,j
9 end if
10: end for

The local TTSA with periodic global averaging is illustrated in Algorithm 2] Following the lo-
cal SGD Stich| (2018), the algorithm evolves agents [r] and sequences {x i, Yk,i}ic[n) in parallel.
Specifically, the sequence {zy ;, Yk ; } is updated in the following way:
Thtl,i = Tk + Ok frds (36)
Yk+1,i = Yk,i + Brr.i, 37

where for any agent i € [n] and k > 0, fii = f(Tr,i,Yk,i) + Ek,is and gr i = 9(This Yi) + V-
If mod(k + 1, K') = 0, the central server is responsible to synchronize the sequences:

Thyl = Z Thilj, Y+l = Z Ye+1,5, Vi€ [n]. (38)
]E n] ]E n]
Note that instead of communicating at every iteration, Algorithm [2] achieves communication re-

duction by allowing multiple local updates (i.e., reducing communication frequency). Observe that
Algorithm [2]takes the following form in the EF-TTSA framework:

. g fri if mod (k + 1, K) # 0,
d i = - iy i = 3 = ’ : 3
k, Tk~ Tk, H, {xk — y,; + o fr, otherwise, (39)
) if mod (k+1,K) #0,
ki = Tk — Yhis Vi = | 19 { )# (40)
Uk — Yk + Brgr  otherwise,
where Z), = & 37,11 Thois Uk = 1w Doicn) Yhois [k = 3 2oicpn] Frois a0d Gk = 5 D0 Ghoi
In view of (39)-(0), applying Lemma([I] we have
- A -
Skt1 < (].— ?fak):k—I—Alak@k—i—Aga%(a?—i—ai), 41)
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where &, = E [% Diem 1T — Tl + 2 > iem 10k — yk7i||2} measures the deviation of the
local sequences {z_;} and {y ; }. The next result establishes an upper bound on the deviation ®y.

Lemma 3. Let {xy i, dk.i, Yk.i, €k, } be the sequence generated by Algorlthml 2| and ko = |k/K .
Suppose Assumptlonshold and set oy, < and By, = Bay, we have

\/(4L§+4L2+3L5/52)K

k—1 k—1
O <2(4LF +3L2FNK Y a?E;+ 2014 5%) > ol (0f + 7). 42)
j=ko j=ko

We are now ready to present the main theorem for local TTSA with periodic global averaging.

Theorem 2. Consider the sequence {xy;, yi,;} generated by Algorithm l Suppose Assumptions
hold. Selecting step sizes oy, = O( k+K) and By, = (kJrK) then it holds that

T-1
1
W ;O wiB[||7e — v (@) + (|76 — 27|

1 - 2 (- 2 1 K?
+- > (15k = yeal? + |2k — 2 P)] < O (T t T (43)

i€[n]

for some sequence of positive weights wy, = k + k where kK > 4K and Wp = EZ:O wg. As a
consequence, it holds for any i € [n] thatlimy_, o ||Jx —y* (Zk)||? = 0 a.s., limy_ o0 ||Z4 —2*||> =
0 a.s., limg oo ||Jk — Yk.il|> = 0 a.s., and limg o0 || — 71i||> = 0 a.s.

Remark 4. We see that K only appears in the higher order term of {3)), and the local TTSA with
periodic global averaging converges at a tight rate O(1/T) when T is sufficiently large. That is, the
effects of multiple local updates become negligible after a few iterations, meaning that our algorithm
gains communication efficiency through via infrequent communication, essentially for free.

Remark 5. We can extend Theorem[2|to the SBO and SCO problems. Consider the SBO algorithm
with the updates in ({I3)-(I4) and the SCO algorithm with the updates in (I9)-(20). Assuming As-
sumpttonsholds and selecting step sizes oy, = O( k+K) and P, = O(755 ), the resulting local

SBO and SCO with periodic global averaging can converge at rate O (T + IT%Z)

6 TTSA WITH DELAYED UPDATES

In this section, we propose the third instance of EF-TTSA, namely, TTSA with delayed updates.
First, we use the EF-TTSA framework to analyze TTSA with delayed updates, and then extend the
results to the SBO and SCO problems.

Algorithm 3 TTSA with Delayed Updates

1: Initialization: {a }r>0, {Bk } k>0, To € R%, yo € R:
2: fork=0,1,--- ,T—1do

3: L1 = Tk + Oékfrfkf'r
4
5

Ye+1 = Yk + Bi—r G-
: end for

The TTSA with delayed updates is illustrated in Algorithm[3] For a fixed (integer) delay 7 > 1, the
sequence {xy, Y tr>0 is updated in the following way:

Tpy1 = Tk + Q7 fl—r, (44)
Ykt1 = Yk + Br—rGr—r, (45)

where fr—r = f(Tk—r,Yk—r)+Ek—r, and gx—r = g(Tk—r, Yp—r) +®r—. Throughout this section,
we use the convention that fi,_, = gx_r = 0, if kK < 7. The delay may come from asynchrony in
the development of distributed parallel algorithms; see e.g.,|Agarwal & Duchil (2011)).



Under review as a conference paper at ICLR 2024

Observe that Algorithm [3takes the following form in the EF-TTSA framework:

a ak—Tfk—T if £ > T,
dy = —iJk—1» = . 46
g ;a’“ Ji s {0 if k<, (46)
¢ ﬁk—Tgk—T if k> T,
= —iGk—i> = . 47
ek Zﬂk gk Vk {0 ke (47)
In view of (@6)-(@7), applying Lemma([I] we have
= A =
Eie1 < (1= Fraw)Ee + Arary + Ago} (o + 7)), (48)
where ®;, = E [||dy||> + ||ex||?]. We present an upper bound on @, in the following Lemma.

Lemma 4. Let {z, dk, Yk, €k } be the sequence generated by Algorithm E] Suppose Assumptions
hold and set oy, < and B, = Bayg, we have
\/(4L2 +4L2+3L2/32)

k—1 k—1
O, < 2(4L% +3L23%)T Y a2Ei+201+ 8% Y ol (o +ad). (49)
=k

j=k—7 j=k—1

Noting this fact, we provide the main theorem for TTSA with delayed updates in the next result.
Theorem 3. Consider the sequence {xy, yi} generated by Algorithm l Suppose Assumptions (I

hold. Selecting step sizes o, = ©( kj—r) and By, = (k+r) then it holds that
| Tl 2
* 2 *
77 2 ol =y )|+ 7 < © (7+7%)- 50

for some sequence of positive weights wy, = k + k where Kk > 41 and Wp = Zf:o wg. As a
consequence, it holds that limy_,. ||yx, — y*(zx)||? = 0 a.s. and limy,_, . ||z, — 2*||* = 0 a.s.

Remark 6. In analogy to Theorems|l|and 2} this result shows that the dominating term in the rate is
not affected by the T parameter. Moreover, we notice that the impact of the delay becomes negligible
if T = Q(72). The performance of TTSA with delays is comparable to that of TTSA without delays.
We here focus on the fixed delay . Indeed, our analysis applies to more general settings, see e.g.,
Feyzmahdavian et al.|(2016); arbitrary delays upper bounded by .

Remark 7. We can extend Theorem[3|to the SBO and SCO problems. Consider the SBO algorithm
with the updates in ({I3)-(I4) and the SCO algorithm with the updates in @ -20). Assuming As-
sumptions |Itd| holds and selecting step sizes ay, = ©( and By, = the resulting SBO

and SCO with delayed updates can converge at rate O (T }—22)

k+'r) k+'r

7 CONCLUSION AND FUTURE WORK

In this work, we consider error-feedback-based two-time-scale stochastic approximation, EF-TTSA,
that captures a rich class of structured perturbations such as compression, local updates, and delays.
We present a unified theory of EF-TTSA to analyze the impact of different forms of structured
perturbations. This is (to the best of our knowledge) the first to demonstrate that two-time-scale
stochastic approximation is robust to structured perturbations. In particular, we propose three in-
stances of EF-TTSA, i.e., error-compensated TTSA with arbitrary compressors (Algorithm|[T), local
TTSA with periodic global averaging (Algorithm[2)), and TTSA with delayed updates (Algorithm [3).
We see that structured perturbations only affect the higher-order term of the convergence rate. That
is, the effects of structured perturbations become negligible after a few iterations, and Algorithms
[2] and[3]converge at the same rate as standard TTSA without structured perturbations.

Future directions of this work include studying the EF-TTSA framework in the non-strongly mono-
tone case and exploring multiple-time-scale stochastic approximation algorithms.
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