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ABSTRACT

In this work, we discover a phenomenon of community bias amplification in graph
representation learning, which refers to the exacerbation of performance bias be-
tween different classes by graph representation learning. We conduct an in-depth
theoretical study of this phenomenon from a novel spectral perspective. Our anal-
ysis suggests that structural bias between communities results in varying local
convergence speeds for node embeddings. This phenomenon leads to bias am-
plification in the classification results of downstream tasks. Based on the the-
oretical insights, we propose random graph coarsening, which is proved to be
effective in dealing with the above issue. Finally, we propose a novel graph con-
trastive learning model called Random Graph Coarsening Contrastive Learning
(RGCCL), which utilizes random coarsening as data augmentation and mitigates
community bias by contrasting the coarsened graph with the original graph. Ex-
tensive experiments on various datasets demonstrate the advantage of our method
when dealing with community bias amplification.

1 INTRODUCTION

Graph representation learning (GRL) aims to generate embedding vectors capturing both the struc-
ture and feature information. Graph neural networks (GNNs) are the primary encoder architecture
for deep GRL (Bojchevski & Günnemann, 2018; Zhu et al., 2020; 2021; Zhang et al., 2021; Zheng
et al., 2022), which are often trained with unsupervised graph contrastive objectives. Such meth-
ods are called graph contrastive learning (GCL) and exhibit outstanding performance in various
downstream tasks. Compared to other unsupervised methods, the distinctiveness of GCL lies in
the encoder’s simultaneous use of structural and feature information. Due to the encoder’s use of
structural information, the final embeddings are likely to inherit the structural bias in the graph,
which may cause undesirable performance unfairness in downstream tasks. This phenomenon is
demonstrated in Figure 1, where we compare the node classification performance of MLP (utilizing
feature information only) and the state-of-the-art GCL model GGD (Zheng et al., 2022). Although
GGD has a much better overall accuracy than MLP, GGD exhibits greater performance differences
between different classes of nodes. In other words, GCL exacerbates the performance bias between
different classes.

We refer to the phenomenon exhibited in Figure 1 as community bias amplification. This exacer-
bated bias arises from local structural disparities among classes of nodes and is unrelated to labels
and other information. Graph structural bias problems have been studied in previous works (Tang
et al., 2020; Kang et al., 2022; Liu et al., 2023b; Wang et al., 2022). However, they focused on
the structure of individual nodes such as degrees and the distance to class boundaries. On the other
hand, we study community bias, which is a collective structural bias issue of the entire commu-
nity. Community bias studied in this work should also be distinguished from the class imbalance
problem (Song et al., 2022). Although both consider the collective bias of communities, works on
class-imbalanced classification focus on (semi-)supervised learning and aim to reduce prediction
bias caused by imbalanced label distributions.

This paper investigates the following two questions: 1. Why community bias amplification exists in
existing GCL methods? 2. Can we design new GCL models to alleviate this issue? To answer the
first question, we analyze the structural bias problem from a spectral perspective, which provides
a theoretical explanation on the causes of community bias amplification in existing GCL models.
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(a) MLP on Cora
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(b) GGD on Cora
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(c) MLP on Citeseer
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(d) GGD on Citeseer
Figure 1: The classification performance of MLP and GGD in different classes on Cora and Citeseer,
where each class has 20 labeled nodes in the training set. ∆ represents the maximum performance
difference observed between classes.

There have been numerous works conducting spectral analysis of GNNs, e.g., (Kipf & Welling,
2017; Wu et al., 2019; Oono & Suzuki, 2020; Rong et al., 2020).However, existing analyses mainly
focus on the global behavior: They try to characterize the distribution of node representations using
the spectrum of the message passing operator. We point out that this is not suitable when structural
bias exists across different regions of the graph. If the number of layers in a GNN is not too large as
prevalent in real applications, the embedding distributions of different communities are better char-
acterized by their local spectrum. In particular, if the structures of two communities differ a lot, then
the second largest eigenvalues of their normalized adjacency matrices can be quite different, which
leads to very different convergence speeds to the stationary subspace. As a result, the embedding
distributions of the two communities exhibit different levels of concentration. We then show that
such an imbalance in the embedding densities can cause unfairness in downstream tasks through a
natural statistical model.

Based on the theoretical analysis, we then focus on how to alleviate the community bias. We propose
a simple data augmentation technique, namely random graph coarsening, and provide theoretical jus-
tifications on the effectiveness. We finally propose a novel graph contrastive learning model, called
RGCCL, which utilizes random graph coarsening as data augmentation and uses a contrastive loss
that compares the coarsened graph with the original graph. Empirical results on real datasets show
our model effectively reduce performance disparities between different classes and also achieves
better overall accuracy than baselines, confirming our theoretical analyses.

Our contributions are summarized as follows:

1. We uncover the community bias in the graph and analyze the causes of this problem from
a spectral perspective. We show that local structural bias leads to embedding density im-
balance, which is harmful on downstream tasks in terms of fairness.

2. We show that an appropriately designed random graph coarsening algorithm can be used
as an effective data augmentation tool for alleviating the issue of embedding density imbal-
ance.

3. Based on our theoretical analysis, we propose a novel GCL model, called RGCCL. Our
model mitigates community bias by comparing the coarsened graph with the original graph.

4. We empirically compare RGCCL with other graph contrastive learning models in various
datasets. Experimental results demonstrate the advantage of RGCCL, which confirms the
effectiveness of using random coarsening to mitigate community bias.

2 PRELIMINARIES

Notation. Consider an undirected graph G = (V,E,X), where V represents the vertex set, E
denotes the edge set, and X ∈ Rn×D is the feature matrix. Let n = |V | and m = |E| represent the
number of vertices and edges, respectively. We use A ∈ {0, 1}n×n to denote the adjacency matrix
of G and {vi, vj} to denote the undirected edge between node vi and node vj . The degree of node
vi denoted as di is the number of edges incident on vi. The degree matrix D is a diagonal matrix
and its i-th diagonal entry is di.

Graph neural network.In each layer of a GNN, the representation of a node is computed by re-
cursively aggregating and transforming representation vectors of its neighboring nodes from the last
layer. One special case is the Graph Convolutional Network (GCN) (Kipf & Welling, 2017). The
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layer-wise propagation rule of GCN is:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (1)

where Ã = A+ I , D̃ = D+ I and W (l) is a learnable parameter matrix. GCNs consist of multiple
convolution layers of the above form, with each layer followed by an activation σ such as Relu.

Graph coarsening. The coarse graph is a smaller graph G′ = (A′, X ′). G′ is obtained from the
original graph by computing a partition P of V . The partition can be represented by a binary matrix
P ∈ {0, 1}n×n′

, with Pij = 1 if and only if vertex i belongs to cluster j. We define S as the set of
super-node and for each super-node i ∈ S, Si as the set of nodes that make up the super-node i. Iu
is the index of which supernode node u belongs to.

3 EXPLORING COMMUNITY BIAS

There has been lots of work investigating the asymptotic behavior of GNNs as the number of layers
L goes to infinity, e.g., (Oono & Suzuki, 2020; Rong et al., 2020). The general conclusion is that
as L → ∞, the representations of all nodes converge to a 1-dimensional subspace, assuming the
graph G is connected. The convergence speed is determined by the second largest eigenvalue of the
message passing operator Â. Following the notation from Oono & Suzuki (2020), we denote the
maximum singular value of W (l) by ωl and set ω := maxl∈[L] ωl and assume that W (l) of all layers
are initialized so that ω ≤ 1. Given a subspace M, we use dM := infY ∈M||X − Y ||F to measure
the closeness between X and M, where || · ||F denote the Frobenius norm. Oono & Suzuki (2020)
shows that if G is connected, there is a 1-d subspace M such that for all l

dM(H(l+1)) ≤ ωλdM(H(l)), (2)

which means the embeddings of all nodes collapse to M exponentially fast. However, in real appli-
cations, L is typically small. In these cases, such asymptotic results are not accurate predictions of
the model behavior. In particular, they ignore structural differences between different regions of the
graph. Here, we illustrate the problem through a simple example.

3.1 ILLUSTRATION OF EMBEDDING DENSITY IMBALANCE

We consider the following example. There are two communities C1, C2 in the graph, and C1 is more
densely connected than C2. C1 and C2 are loosely connected (see the left of Figure 2). Then, the
expression of the symmetric normalized adjacency matrix Â can be succinctly represented using a

block matrix as follows:
[
Â1 B̂1

B̂2 Â2

]
, where the matrix is partitioned according to C1 and C2. By

the assumption, ||B̂1||F and ||B̂2||F are close to 0, and since C1 has a better connectivity than C2,
the second largest eigenvalue of Â1, denoted by λ(Â1) is smaller than λ(Â2) (Chung & Graham,
1997). According to (2), the representations of all nodes converges to M with speed exponential in
λ(Â). A more detailed analysis presented below shows that, the two communities exhibit different
convergence speed in the first few layers, due to different local connectivities.

The representations of the nodes in the two communities can be separately expressed as H(l+1)
1 =

σ(Â1H
(l)
1 W (l)+B̂1H

(l)
2 W (l)) and H

(l+1)
2 = σ(Â2H

(l)
2 W (l)+B̂2H

(l)
1 W (l)). Since operator norms

of B̂1 and B̂2 are very close to 0, based on the result of Oono & Suzuki (2020), we have:{
dM(H

(l+1)
1 ) ≈ dM(σ(Â1H

(l)
1 W (l))) ≤ ωλ(Â1)dM(H

(l)
1 ),

dM(H
(l+1)
2 ) ≈ dM(σ(Â2H

(l)
2 W (l))) ≤ ωλ(Â2)dM(H

(l)
2 ),

(3)

For large l, the effect of B̂1 and B̂2 cannot be ignored, and eventually the convergence follows
(2). However, when the number of iterations is relatively small as in many real applications, the
embedding distributions of different regions are much better characterized by local connectivity (3).

If the structure of communities differs dramatically, for example, λ(Â1) ≪ λ(Â2), the embeddings
of nodes in C1 will be much more concentrated than those in C2. Figure 2 provides an example of
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this phenomenon. Although the node features for C1 and C2 are sampled with the same variance,
the variance of their embeddings differs due to the convergence bias resulting from the distinct struc-
tures. We provide a more quantitative analysis on the contextual stochastic block model (CSBM)
(Deshpande et al., 2018), a widely used statistical model for analyzing expressive power of GNNs
(Baranwal et al., 2021; Wu et al., 2022); please refer to Appendix A for more details.

Community 𝑪𝟏 Community 𝑪𝟐

GCN

Community 𝑪𝟏
Community 𝑪2

Embedding Space

𝝀(𝑨𝟏) = 0.50 𝝀(𝑨𝟐) = 0. 𝟕𝟑

Original Graph 𝝀(𝑨) = 0. 𝟗𝟒

Figure 2: A simple example of convergence bias. We sample feature vectors for nodes in C1 and C2

from normal distributions, N (

[
−1
−1

]
,

[
1 0
0 1

]
) and N (

[
1
1

]
,

[
1 0
0 1

]
), respectively. We then apply a

2-layer graph convolutional network, and the resulting embeddings of the nodes are visualized.

3.2 FROM EMBEDDING DENSITY IMBALANCE TO COMMUNITY BIAS

We have discussed how different local convergence speeds lead to varying degrees of dispersion in
local embedding distributions, and next we provide a theoretical justification on why this can lead
to community bias in downstream tasks.

To illustrate the issue, we consider a binary classification problem and assume the node embeddings
from each class follows a Gaussian distribution. We consider the optimal Bayes classifier for the
above model, which is known to be the quadratic discriminant rule.

Definition 1 (Quadratic Discriminant Analysis). For a binary classification problem, where class 1
has mean µ1 and variance Σ1 and class 2 has mean µ2 and variance Σ2. Each sample is drawn
from either one with equal probability. Given a new sample x, the QDA rule is

arg max
c=1,2

−1

2
log detΣc −

1

2
(x− µc)

TΣ−1
c (x− µc). (4)

To simplify the discussion, we focus on the one-dimensional case, while the results for higher di-
mensions are similar. More specifically, each sample x is drawn from N (µ1, σ

2
1) or N (µ2, σ

2
2) with

equal probability, and let y be the label of x. Assume σ1 ̸= σ2, meaning the data distribution of one
class is more concentrated than the other, which models the embedding density imbalance. For this
simple case, the optimal classification error can be represented as a closed form.

Proposition 1. For the above QDA classifier, the error probability of samples from class 1 is:

p1 = P(Y 2 >
(σ2

1 + σ2
2)

2

σ2
2 − σ2

1

− (σ2
2 − σ2

1) + 2σ2
1σ

2
2 log(

σ2

σ1
)), (5)

where Y ∼ N (
√

|σ2
2 − σ2

1 |+ (2I(σ1 > σ2)− 1)
σ2
1+σ2

2√
|σ2

2−σ2
1 |
, |σ2

1 − σ2
2 |σ2

1).
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Figure 3: Fairness κ vs. ratio
between variances.

The classification error probability of class 2 is symmetric and thus
omitted. The above expression is quite complicated. To demon-
strate the community bias issue, we define the classification fair-
ness as κ = max{p1,p2}

min{p1,p2} (larger κ means more severe fairness is-
sue), and investigate how the imbalance in data distribution affects
κ. To this end, we fix the value of σ2

1+σ2
2 , and vary the ratio σ1/σ2.

The value of κ corresponding to different ratios is plotted in Fig-
ure 3. It is clear that the unfairness of the classifier is more severe
when the variances of different classes are more imbalanced.
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4 MITIGATING COMMUNITY BIAS VIA RANDOM COARSENING

In this section, we present the main idea and theoretical justifications of our method to alleviate
the community bias problem discussed in the last section. Our goal is to make the embedding
distribution of sparse classes more concentrated. For this to happen, we first randomly partition the
graph into clusters S = {S1, · · · , St} according to some random process. Let f be a GNN encoder,
and f(u) be the embedding of node u. We define the embedding for a cluster Si as f(Si) =
1

|Si|
∑

v∈Si
f(v). We use the loss ∑

Si∈S

∑
u∈Si

∥f(u)− f(Si)∥2 (6)

to regularize the GNN encoder, which encourages nodes in each cluster in the random partition to
be more concentrated. In the following, we first show that if the distribution of the random partition,
denoted by P , satisfies certain requirements, the above loss has the implicit effect of pushing the
embeddings of sparse classes more heavily. Then, we provide a specific random partition algorithm,
namely random graph coarsening, which meets the requirements.

Following the setting in Section 3.2, we consider a binary classification problem. Assume that for a
random partition drawn from P , the probability that two nodes from class 1 (class 2) lie in the same
cluster is q1 (q2), and the probability that two nodes from different classes are clustered together is
q12. We have the following lemma, the proof of which is provided in the appendix B.
Lemma 4.1. Let C1 and C2 be the two classes of nodes. Suppose each cluster has the same size s,
then

EP∼P
∑
Si∈S

∑
u∈Si

s∥f(u)− f(Si)∥2

=q1
∑

u,v∈C1,u ̸=v

∥f(u)− f(v)∥2 + q2
∑

u,v∈C2,u̸=v

∥f(u)− f(v)∥2 + q12
∑

u∈C1,v∈C2

∥f(u)− f(v)∥2.

Now suppose C1 is denser than C2, and by the analysis in Section 3.1, the embeddings in C1 are
likely to be more concentrated. To make the embedding densities of C1 and C2 more balanced, from
Lemma 4.1, a preferred random partitioning algorithm should satisfy

q2 > q1 > q12. (7)

Here, we design a random graph coarsening strategy to obtain such a reasonable partition, which
can satisfy (7). Due to the homophily principle that similar nodes may be more likely to attach
to each other than dissimilar ones, if we always merge nodes that are connected by an edge, q12
should be less than q1 and q2. Therefore, our random graph coarsening strategy iteratively merging
two (super) nodes through edge contraction to form more super nodes. Eventually, we can obtain
a coarsened graph, where each supernode represents a cluster, and the nodes that constitute this
supernode belong to the same partition. By utilizing the original graph and the coarsened graph, we
can optimize loss (6) to mitigate community bias.

In our random graph coarsening, we contract each edge (u, v) with probability proportional to some
weight ω(u, v). Since on average, the degrees of nodes in C1 are higher than C2, to realize q2 > q1,
we adopted a simple weight function ω(u, v) = 1

du+dv
for random edge selection during coarsening,

ensuring a higher probability for low-degree edges to participate in the random coarsening process.
Moreover, to prevent the formation of large supernodes, we use a threshold limiting the size of su-
pernodes during the coarsening process. A detailed description of our random coarsening algorithm
is provided in the appendix C.

5 RANDOM GRAPH COARSENING CONTRASTIVE LEARNING

Based on the theoretical insights from Section 4, we present a novel multi-view graph contrastive
learning method RGCCL, which can effectively alleviate the issue of community bias. Compared to
existing GCL models, the key difference in our approach is to use random graph coarsening as the
graph augmentation method and a specially designed loss function for this framework.

5



Under review as a conference paper at ICLR 2024

Input Graph

Community 𝑪𝟏 Community 𝑪𝟐

GNN Encoder GNN Encoder
Shared 
Weight

Coarsened Graph

Community 𝑪𝟏 Community 𝑪𝟐

Random

Embedding Space

Community 𝑪𝟏 Community 𝑪𝟐

Embedding Space

Community 𝑪𝟏 Community 𝑪𝟐

Positive 

Loss

Negative 

Loss

Contrastive 

Loss

Coarsening

Figure 4: The architecture of the proposed RGCCL.

5.1 FRAMEWORK OF RGCCL

The GCL method generates different views through graph augmentation, and then trains the model
parameters by comparing the node embeddings from different views. The architecture of RGCCLis
presented in Figure 4. In our RGCCL, we regard the original graph as one view and the coarsened
graph as another view, and then compare the corresponding nodes in these two views. In order
to alleviate community bias, we need to push the node embedding f(u) towards its corresponding
cluster center embedding f(Su) according to the analysis in Section 4. Specifically, the super-
node embedding computed in the coarsened view is used as the cluster center, and then each node
embedding in the original graph and its corresponding super-node embedding in the coarsened graph
is defined as a positive pair. By conducting contrastive learning on such positive pairs, we make the
embedding distribution of sparse classes more concentrated, thereby reducing community bias.

In this work, we use a method different from the previous graph coarsening algorithms (Huang et al.,
2021) to construct the coarsened feature matrix. A difference is that they construct the new feature
matrix simply by summing i.e., given a partition matrix P , X ′ = PTX . Here, a normalization
based on degrees is applied: X ′ = D̃

′−1PT D̃X , where D̃′ and D̃ are the degree matrices of the
two views. The purpose is to ensure, as the number of graph propagations goes to infinity, the
embedding of a node and its corresponding supernode in the coarsened view converge to the same
point. More discussions are included in the appendix D. On the other hand, graph coarsening is a
method of data reduction, so using random graph coarsening as data augmentation can also reduce
the resource consumption of GNN training.

Specifically, we apply the random graph coarsening algorithm to generate one graph augmentation
G′ = (A′, X ′) in each epoch during training. Then, we compute the coarsened graph and original
graph embeddings by a GNN encoder with shared parameters: H = GNN(A′, X ′, θ) and Z =
GNN(A,X, θ).

Recall that positive pairs are of the form (u, Su), where Su denotes the corresponding supernode
of u. So we penalize ∥Zu − HSu

∥2F . The loss function of positive pairs can be described more
concisely in the matrix form. Let Z ′ = PH , then Z ′

u = HSu . Therefore, the positive pair loss
function is

Lpos = ∥Z − Z ′∥2F = ∥Z∥2F + ∥Z ′∥2F − 2Tr(ZTZ ′). (8)

If Z and Z ′ are normalized appropriately, we only need to minimize −2Tr(ZTZ ′).

On the other hand, nodes embedded from the original graph G into Z may encounter imbalance
issues. Since we prioritize low-degree edges in the coarsening algorithm, the coarsened graph will
typically have a more balanced embedding distribution. Therefore, we do not pick negative pairs
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from the original graph and only compute a negative pair loss with the coarsened graph. There are
various methods for selecting negative pairs and computing the loss; here we use the loss from Zhang
et al. (2020), which is derived from the graph partition problem. More specifically, we randomly
sample a small set of supernode pairs N ′ ⊂ V ′ × V ′, and the negative pair loss function is:

Lneg =
α∑

(i,j)∈N ′ ninj∥hi − hj∥2
. (9)

where hi and hj are the embeddings of supernodes i and j, and ni and nj are the number of original
nodes contained in supernodes i and j.

Optimizing Lneg + Lpos will be difficult due to the huge difference of the scale of Lpos and Lneg .
Therefore, we transform Lpos into the following form

Lpos =
β

Tr(ZTZ ′)
. (10)

Finally, the loss function of our model is

L =
α∑

(i,j)∈N ′ ninj∥hi − hj∥2
+

β

Tr(ZTZ ′)
. (11)

5.2 GENERALIZABILITY OF RGCCL

The generalizability of self-supervised learning methods has recently been theoretically analyzed
in (Huang et al., 2023; Wang et al., 2022). They characterize it with three properties, namely the
concentration of augmented data, the alignment of positive samples and the divergence of class
centers. Huang et al. (2023) also shows that the divergence of class centers is controlled by classic
contrastive losses such as InfoNCE and the cross-correlation loss.

Following the proof of Huang et al. (2023), we show that our self-supervised loss Lneg can also
upper bounds the divergence of class centers, thus classes will be more separable if our objective is
optimized. We also investigate the concentration properties of our random coarsening data augmen-
tation. The details are provided in the appendix E due to the space constraints.

6 RELATED WORK

Contrastive learning on graphs. Contrastive learning is a type of unsupervised learning technique
that learns a representation of data by differentiating similar and dissimilar samples. It has been
used in a variety of applications within the domain of graph data. DGI (Veličković et al., 2018)
and MVGRL (Hassani & Ahmadi, 2020) contrast node embeddings with graph embeddings using
a loss function based on mutual information estimation (Belghazi et al., 2018; Hjelm et al., 2019).
GRACE (Zhu et al., 2020) and its variants (Zhu et al., 2021; You et al., 2020) aim to maximize the
similarity of positive pairs and minimize the similarity of negative pairs in augmented graphs in order
to learn node embeddings. To counter the performance degradation induced by false negative pairs,
CCA-SSG (Zhang et al., 2021) simplifies the loss function by eliminating negative pairs. In order
to reduce the computational complexity of contrastive loss, GGD (Zheng et al., 2022) discriminates
between two groups of node samples using binary cross-entropy loss. For a broader understanding,
we recommend that readers refer to the latest surveys (Liu et al., 2023a; Xie et al., 2023).

See the Appendix F for a discussion of the related work on structural bias and graph coarsening.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Datasets. The results are evaluated on six real-world datasets (Kipf & Welling, 2017; Veličković
et al., 2018; Zhu et al., 2021; Hu et al., 2020), Cora, Citeseer, Pubmed, Amazon Computer, Amazon
Photo, and Ogbn-Arixv. Graph representation learning shows different degrees of community bias
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Table 1: Summary of results in terms of mean node classification accuarcy and standard deviation
over 50 runs on five datasets. The training set contains 20 labeled nodes per class. The highest
accuracy in each column is highlighted in bold and the runner ups are underlined.

Method Cora Citeseer Pubmed Photo Computers

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Deepwalk 67.2±1.7 66.5±1.5 40.0±2.1 38.3±2.0 66.9±2.8 65.6±2.7 85.1±1.2 83.9±1.2 77.3±1.6 77.2±1.5
DGI 78.5±0.9 77.2±0.9 70.4±1.0 63.6±1.4 72.5±3.3 72.5±3.3 87.9±1.3 86.2±1.3 79.7±1.6 78.4±1.3
GraphCL 78.3±1.5 76.7±1.7 70.6±1.2 64.1±1.4 71.7±3.5 71.7±3.6 88.3±1.3 86.7±1.2 79.7±1.4 78.5±1.1
GRACE 74.4±2.0 72.5±2.0 68.9±1.0 61.2±1.1 76.1±2.8 75.9±2.7 85.1±1.6 83.5±1.4 76.2±1.9 75.2±1.5
GCA 78.6±1.2 77.2±1.2 68.8±1.5 65.3±1.4 75.4±3.0 75.5±2.9 87.8±1.2 86.2±1.3 79.1±2.4 77.9±2.0
CCA-SSG 79.2±1.4 78.0±1.4 71.8±1.0 66.3±1.1 76.0±2.8 75.8±2.7 88.7±1.1 86.9±3.2 82.7±1.0 76.9±3.7
gCooL 78.5±1.3 77.1±1.1 68.6±1.4 64.9±1.3 75.5±3.0 75.3±2.9 87.9±1.3 85.9±1.4 79.8±1.7 78.1±1.3
GRADE 81.5±1.0 80.2±1.0 67.6±1.5 64.2±1.3 74.5±2.7 74.5±2.6 87.1±1.2 80.4±3.0 75.8±1.2 64.7±3.1
GGD 81.9±0.9 80.5±0.8 70.1±1.3 66.2±1.1 74.7±3.2 74.4±3.1 87.2±1.5 85.4±1.4 80.4±1.8 80.0±1.2

RGCCL 83.1±0.8 82.0±0.8 72.4±0.9 67.7±0.8 77.3±2.9 77.1±2.7 89.6±1.2 88.2±1.2 81.2±1.8 80.2±1.2

in these datasets. More detailed statistics of the seven datasets are summarized in the appendix G.
On small-scale datasets Cora, Citeseer, Pubmed, Photo and Computers, performance is evaluated on
random splits. We select 20 labeled nodes per class for training, while the remaining nodes are used
for testing. All results on small-scale datasets are averaged over 50 runs, and standard deviations are
reported. For Ogbn-Arixv, we use fixed data splits as in previous studies Hu et al. (2020).

Baselines. We compare our approach against nine representative graph embedding models: Deep-
walk (Perozzi et al., 2014), DGI (Veličković et al., 2018), GraphCL (You et al., 2020), GRACE
(Zhu et al., 2020), GCA (Zhu et al., 2021), CCA-SSG (Zhang et al., 2021), gCool (Li et al., 2022),
GRADE(Wang et al., 2022) and GGD(Zheng et al., 2022). For all the baselines, we use the public
code released in their previous papers. All models evaluate the learned representations by training
and testing classifiers with the same settings.

Implementation details. For our model, we use the Adam optimizer and all embedding di-
mensions are set to 512. For the graph coarsening operation, the coarsening rates are set to
[0.3, 0.5, 0.5, 0.7, 0.7, 0.7] respectively and the threshold for the supernode size is set to 10 across
all datasets. More experimental details are listed in the appendix G.

7.2 RESULTS AND ANALYSIS

Table 1 reports the node classification accuracy and standard deviation on small datasets. In these
data splits, we employ Acc and Macro-F1 as metrics to assess the overall performance of models.
If Macro-F1 significantly drops compared to Acc, it indicates that the model’s performance is not
balanced across different communities. It is evident that the performance of RGCCL outperforms
other GCL models within the given experimental framework. Mostly, RGCCL surpasses the runner-
up by an advantage of 1%-2%. Notably, although RGCCL’s Acc score on the Computers dataset
is slightly lower than that of CCA-SSG, our Macro-F1 score is significantly higher than that of
CCA-SSG. This suggests that CCA-SSG has generated significant community bias on Computers.
Clearly, our specially designed model can improve the overall classification performance effectively
while resolving the issue of community bias.

GRACE CCA-SSG GRADE GGD RGCCL

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) Cora
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Figure 5: Box plots of the average accuracy w.r.t. community for four baselines and RGCCL on the
Cora, Citeseer and Pubmed dataset.

Visualization. To further illustrate that RGCCL effectively mitigates the issue of community bias,
we have visualized the performance of each model across different communities. For each commu-
nity, we calculate the average performance of the model in this community and then draw a box plot
based on these accuracies. This figure (Figure 5) provides a visualization of the node classification
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accuracy in different communities on the Cora, Citeseer and PubMed. It is clear that our model has
the smallest performance difference across different communities, while also having the best overall
performance.

Table 2: The average and standard deviation of
community density. A smaller average indicates
higher embedding quality, while a smaller stan-
dard deviation suggests less community bias.

Method Cora Citeseer
Ave Std Ave Std

DGI 0.3782 0.0294 0.3402 0.0255
GRACE 0.2114 0.0252 0.1715 0.0163
CCA-SSG 0.2817 0.1031 0.1672 0.0109
GRADE 0.1983 0.0352 0.2141 0.0243
GGD 0.3183 0.0541 0.3297 0.0329

RGCCL 0.0942 0.0084 0.1401 0.0097

Density. To further illustrate the high em-
bedding quality of RGCCL, we present statis-
tics of the learned representations and compare
them with other popular GCL methods. Firstly,
we measure the concentration of the embed-
ding for each community by calculating their
mean distances from the centroid (i.e., VC =
1
|C|

∑
i∈C ||zi − 1

|C|
∑

i∈C zi|| for community
C). Next, we compute the average and stan-
dard deviation of VC across all communities. A
smaller average value indicates that the repre-
sentations for each community are more con-
centrated, which in turn makes the classification boundary easier to learn. A smaller standard devi-
ation suggests a more balanced embedding density, which has been shown to be beneficial for clas-
sification fairness (as discussed in Section 3.2). In Table 2, we present the results of four baseline
methods as well as RGCCL on Cora and Citeseer. RGCCL demonstrates not only more concen-
trated embeddings for each community but also the most balanced embedding density. These results
strongly support our theory.

Table 3: Summary of results in
terms of accuracy on Ogbn-Arxiv.

Method Ogbn-Arxiv

Acc Macro-F1

DGI 68.8±0.2 46.8±0.4
GRACE 68.4±0.1 46.1±0.3
CCA-SSG 69.8±0.2 46.5±0.6
GRADE 67.7±0.2 45.0±0.4
GGD 70.7±0.3 48.5±0.4

RGCCL 71.7±0.1 50.6±0.2

Scalability. Another benefit of RGCCL is its small memory
usage. This efficiency is primarily because the random graph
coarsening is preprocessed on the CPU, resulting in a coars-
ened graph notably smaller than the original. Experiments
were also conducted on the Arxiv dataset, which is a large-
scale dataset for most GRL models. Larger size makes sub-
sampling necessary for training on some baselines, but our
RGCCL can be trained directly on the full graph. As shown in
Table 3, the Acc and Macro-F1 of RGCCL both exceed those
of other baselines. For reports on memory usage, please refer
to the Appendix G.

Effectiveness of different coarsening ratios. We studied the effect of random coarsening ratio on
model performance. The random coarsening ratio refers to the proportion of the number of nodes
reduced relative to the total number of nodes. Table 4 shows the results of different coarsening
ratios. According to our observations, the changes in the coarsening rate have a more significant
impact on the Macro-F1. The model performs better when the coarsening rate is between 30% and
50%. This is consistent with the conclusions of our theoretical analysis.

Table 4: The performance of different coarsening ratio.

Ratio Cora Citeseer Pubmed

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

r = 0.3 83.1±0.8 82.0±0.8 72.4±0.9 67.6±0.8 77.1±2.9 76.9±2.7
r = 0.5 82.8±0.8 81.8±0.8 72.4±0.9 67.7±0.8 77.3±2.9 77.1±2.7
r = 0.7 82.5±0.9 81.4±0.9 72.1±0.7 67.0±0.7 77.1±2.8 76.8±2.6
r = 0.9 82.4±0.9 81.1±1.0 72.0±0.7 66.9±0.7 77.0±2.8 76.9±2.6

8 CONCLUSION

In this paper, we study the community bias amplification in unsupervised graph representation learn-
ing. We presents a novel perspective on this problem through the lens of convergence bias and
embedding density imbalance, and a comprehensive theoretical analysis is provided. Based on our
theoretical insights, we propose to use random graph coarsening to mitigate this issue, and give
theoretical guidance on how to design effective random coarsening algorithms. Finally, a graph con-
trastive learning model is proposed which utilize random graph coarsening as graph augmentation
and a loss function is designed for this new form of graph augmentation.
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Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
2018.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950, 2018.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. American Mathematical Soc., 1997.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sampling
with provable guarantees for fast training of graph neural networks. In ACM SIGKDD interna-
tional conference on Knowledge Discovery and Data Mining, pp. 1393–1403, 2020.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in learning
graph convolutional networks. arXiv preprint arXiv:2103.02696, 2021.

Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A multi-
level spectral approach for accurate and scalable graph embedding. In International Conference
on Learning Representations, 2019.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. volume 31, pp. 8590–8602, 2018.

Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. EDITS: modeling and mitigating data
bias for graph neural networks. In The Web Conference, 2022.

Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. Fairness in graph mining: A survey. TKDE,
2023.

Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, and Chi Wang. Faster graph
embeddings via coarsening. In International Conference on Machine Learning, 2020.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430, 2020.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126, 2020.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, pp. 22118–22133, 2020.

Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of contrastive self-
supervised learning. In International Conference on Learning Representations, 2023.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neu-
ral networks via graph coarsening. In ACM SIGKDD international conference on Knowledge
Discovery and Data Mining, pp. 675–684, 2021.

10



Under review as a conference paper at ICLR 2024

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph con-
densation for graph neural networks. In International Conference on Learning Representations,
2022.

Yu Jin, Andreas Loukas, and Joseph JaJa. Graph coarsening with preserved spectral properties. In
International Conference on Artificial Intelligence and Statistics, 2020.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Conference on modern analysis and probability, volume 26, pp. 189–206. 1984.

Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, and Hanghang Tong. Rawlsgcn: Towards rawlsian
difference principle on graph convolutional network. In The Web Conference, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Bolian Li, Baoyu Jing, and Hanghang Tong. Graph communal contrastive learning. In The Web
Conference, 2022.

Huan Li and Aaron Schild. Spectral subspace sparsification. In IEEE Annual Symposium on Foun-
dations of Computer Science, 2018.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S. Yu. Graph self-
supervised learning: A survey. IEEE TKDE, 35(6):5879–5900, 2023a.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
networks. In Association for the Advancement of Artificial Intelligence, 2023b.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social represen-
tations. In ACM SIGKDD international conference on Knowledge Discovery and Data Mining,
2014.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020.

Jaeyun Song, Joonhyung Park, and Eunho Yang. Tam: topology-aware margin loss for class-
imbalanced node classification. In International Conference on Machine Learning, pp. 20369–
20383. PMLR, 2022.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu C. Aggarwal, Prasenjit Mi-
tra, and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In International Conference on Information and Knowledge Management, 2020.
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A VARIANCE ANALYSIS ON CSBM

We consider a two-block CSBM denoted as G(n, p1, p2, q, µ1, µ2, σ
2). Here, A ∈ Rn×n represents

the adjacency matrix of the graph, and X ∈ Rn×d represents the feature matrix. In this model, for
any two nodes in the graph, the intra-class probability is denoted as pi (i = 1, 2), and the inter-class
probability is denoted as q. Additionally, each node’s initial feature is independently sampled from
a Gaussian distribution N (µi, σ

2).

Our objective is to estimate the variance of node embeddings within each class. Formally, we aim
to compute:

E
[∥∥D−1AX − E(D−1AX)

∥∥2
F

]
. (12)

Assumption A.1 (Structural Information). p1, p2, q = Ω( logn
n ) and p1 > p2 > q.

Lemma A.1. Assume that d > C
ϵ2 log n, we have (1 − ϵ)∥A − EA∥2F ≤ ∥AX − EAX∥2F ≤

(1 + ϵ)∥A− EA∥2F with probability at least 1− 2 exp(−cϵ2d).

Proof. Let X ∈ Rn×d be the projection matrix which maps each vector Ai ∈ Rn to a d-dimensional
vector AiX ∈ Rd. Then according to the Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss,
1984), given some tolerance ϵ, it holds with probability at least 1− 2 exp(−cϵ2d).

Lemma A.2. For a given Erdős-Rényi (ER) graph G(n, p), there exists a constant C such that
∥A− EA∥ ≲ C

√
np with probability at least 1− n−r for any r > 0.

Proof. By using corollary 3.12 from (Bandeira & van Handel, 2016), we obtain sharper bounds.

Lemma A.3 (Sharp concentration, Lemma A.2 and Theorem 3 from (Wu et al., 2022)). There exists
a constant C such that for sufficiently large n , with probability at least 1−O(n−r),∥∥D−1A− E(D−1A)

∥∥
F
≲

C
√
np

. (13)

Theorem A.4. Given an CSBM G(n, p1, p2, q, µ1, µ2, σ
2), it holds that for the variance of class I

with intra-class probability p1 is smaller than the the variance of class II with intra-class probability
p2.

Proof. According to Lemma A.1, to measure the variance of node embedding, we just need to

consider structure influence
∥∥D−1A− E(D−1A)

∥∥2
F

. By expressing A =

[
A1 B
B A2

]
, this allows

us to focus on ER graph G(n2 , pi) for each class separately. Denote R1 = D−1A1−E(D−1A1) and
R2 = D−1A2 − E(D−1A2). We have

∥R1∥2F ≤ (1 + ϵ1)
C

np1
≤ (1− ϵ2)

C

np2
≤ ∥R2∥2F (14)

for appropriate ϵ1, ϵ2. It follows that variance of node embedding decreases more rapidly for the
denser class. Furthermore, the convergence speed is inversely proportional to the intra-probability
pi, which verifies our observation about community bias amplification.

B THE PROOF OF LEMMA 4.1

Lemma B.1. Let C1 and C2 be the two classes of nodes. Suppose each cluster has the same size s,
then

EP∼P
∑
Si∈S

∑
u∈Si

s∥f(u)− f(Si)∥2

=q1
∑

u,v∈C1,u ̸=v

∥f(u)− f(v)∥2 + q2
∑

u,v∈C2,u̸=v

∥f(u)− f(v)∥2 + q12
∑

u∈C1,v∈C2

∥f(u)− f(v)∥2.

13
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Proof. Let Iu be the index such that u ∈ SIu . We have

EP∼P
∑
Si∈S

∑
u∈Si

s∥f(u)− f(Si)∥2 =EP∼P
∑
Si∈S

1

2

∑
u∈Si

∑
v∈Si

∥f(u)− f(v)∥2 (15)

For fixed Si ∈ S, without loss of generality we assume f(Si) = 0 (if not, redefine f(u) = f(u) −
f(Si)), then we have

1

2

∑
u∈Si

∑
v∈Si

∥f(u)− f(v)∥2 =
1

2

∑
u∈Si

∑
v∈Si

(∥f(u)∥2 + ∥f(v)∥2 − 2f(u)T f(v)) (16)

=
∑
u∈Si

s∥f(u)− f(Si)∥2. (17)

The equation 17 is due to the assumption that f(Si) = 0. Therefore,

EP∼P
∑
Si∈S

∑
u∈Si

s∥f(u)− f(Si)∥2 =EP∼P
∑
u ̸=v

I[Iu=Iv]∥f(u)− f(v)∥2. (18)

We next divide pairs in (18) into three categories and get

EP∼P
∑
u ̸=v

I[Iu=Iv]∥f(u)− f(v)∥2

=EP∼P
∑

u,v∈C1,u ̸=v

I[Iu=Iv]∥f(u)− f(v)∥2 + EP∼P
∑

u,v∈C2,u̸=v

I[Iu=Iv]∥f(u)− f(v)∥2

+ EP∼P
∑

u∈C1,v∈C2

I[Iu=Iv]∥f(u)− f(v)∥2

=
∑

u,v∈C1,u̸=v

q1∥f(u)− f(v)∥2 +
∑

u,v∈C2,u̸=v

q2∥f(u)− f(v)∥2 +
∑

u∈C1,v∈C2

q12∥f(u)− f(v)∥2,

which finishes the proof.

C RANDOM GRAPH COARSENING ALGORITHM

Algorithm 1 is a detailed description of our random graph coarsening algorithm.

Algorithm 1 Random Graph Coarsening
Input: G = (A,X), threshold δ, the coarsening ratio r
Output: Output G′ = (A′, X ′)

1: Compute the weight set I of all edges
2: Construct an edge set E of length rn by randomly selecting the edges according to the weight

set I.
3: Initialize the cluster list T
4: for i = 0 to rn do
5: Obtain (u, v) = Ei
6: Retrieve the clusters Tu and Tv from T , where Tu contains u and Tv contains v
7: if |Tu|+ |Tv| < δ and Tu ̸= Tv then
8: Merge cluster Tu and cluster Tv to a new cluster
9: end if

10: end for
11: Construct the assignment matrix P by T
12: Compute the coarsened adjacency matrix A′ = PTAP

13: Compute the coarsened feature matrix X ′ = D̃
′−1PT D̃X

14: return G′ = (A′, X ′)

14
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D COMPARISON OF NODE EMBEDDINGS OF THE ORIGINAL GRAPH AND
THE COARSENED GRAPH

In this section, we assume the graph is connected. When there are multiple connected components,
each component can be analyzed separately, and thus the conclusion holds for general graphs.

The feature matrix of the coarsened graph is computed using the formula in line 13 of Algorithm 1,
which is different from prior work. Here we provide a justification on this. We consider a GNN
encoder Z = σ(ÂkXW ) with Â = D̃−1Ã. Assume the corresponding supernode of u in the
coarsened graph is v. We use Zu and Z ′

v to represent the node embeddings learned from the original
graph G and the coarsened graph G′ respectively. We show next that using our coarsened feature
matrix, the difference between Zu and Z ′

v converges to zero as k → ∞.

We assume the activation function σ(·) and the linear transformation function W to be Lipschitz
continuous. These assumptions are commonly used in previous analyses of GNNs (Chen et al.,
2018; Garg et al., 2020; Cong et al., 2020; 2021). Then, the coarsening error can be expressed as:

∥Zu − Z ′
v∥ = ∥σ(ÂkXW )u − σ(Â′kX ′W )v∥ ≤ κ∥(ÂkX)u − (Â′kX ′)v∥, (19)

where κ represents the Lipschitz constant. For notational convenience, let π(k)
u = (ÂkX)u and

π
′(k)
v = (Â′kX ′)v . We need the following Lemma, the proof of which can be found in Chung &

Graham (1997).

Lemma D.1.

Â∞
i,j =

d̃j∑
u∈G d̃u

=
d̃j

2m+ n
, |Âk

i,j − Â∞
i,j | ≤ λk

2 d̃i
− 1

2 d̃j
1
2 , (20)

where λ2 is the second largest eigenvalue of Â and d̃i denotes the degree of node i with self-loop.

Theorem D.2. Let the coarsened feature X ′ = D̃
′−1PT D̃X , then for any node u, we have

∥π(k)
u − π′

v
(k)∥ ≤

√
dmax

dmin
(nλk

2 + n′λ
′k
2 ), (21)

where λ2 and λ′
2 are the second largest eigenvalues in G and G′ respectively. dmax and dmin are

the maximum degree and minimum degree in G and G′, respectively.

Proof. Given the coarsened adjacency matrix Ã′ = PT ÃP , the sum of the weighted edges in Ã′ is

still 2m+ n. If node j in G′ is not a supernode, we have Â′∞
i,j =

d̃′
j∑

v∈G′ d̃′
v

=
d̃j

2m+n = Â∞
i,j . Let S

be the set of supernodes in G′, i.e., those nodes in G′ containing at least two nodes from the original
graph, and define Q as the set of nodes participating in the coarsening process: Q =

⋃
Si∈S

Si. Then

we have:

∥π(k)
u − π′

v
(k)∥

=∥
∑
Si∈S

(Â′k
v,Si

·X ′
Si

−
∑
j∈Si

Âk
u,j ·Xj) +

∑
j∈V \Q

(Âk
u,j ·Xj − Â′k

v,j ·X ′
j)∥

≤∥
∑
Si∈S

(Â′k
v,Si

·X ′
Si

−
∑
j∈Si

Âk
u,j ·Xj))∥+ ∥

∑
j∈V \Q

(Âk
u,j ·Xj − Â′k

v,j ·X ′
j)∥.

(22)
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First,

∥
∑
Si∈S

(Â′k
v,Si

·X ′
Si

−
∑
j∈Si

Âk
u,j ·Xj)∥

=∥
∑
Si∈S

(Â′k
v,Si

·X ′
Si

− Â′∞
v,Si

·X ′
Si

+ Â′∞
v,Si

·X ′
Si

−
∑
j∈Si

(Âk
u,j ·Xj − Â∞
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(23)

For the sake of simplicity, we assume the feature Xj is non-negative and normalize the Xj so that

∥Xj∥ = 1. Let the supernode feature X ′
Si

=
∑

j∈Si
Â∞

u,jXj

Â′∞
v,Si

=
∑

j∈Si
d̃jXj∑

j∈Si
d̃j

. In other words, the

coarsened feature matrix X ′ is defined as D̃
′−1PT D̃X , which implies ∥X ′

j∥ ≤ 1. Then, we have

∥
∑
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(Â′k
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−
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Âk
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≤
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v,Si
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Si
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∑
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∑
Si∈S

(Â′∞
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Si
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∑
j∈Si

Â∞
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∑
Si∈S
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∑
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∑
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∥Âk
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≤
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Si∈S

λ
′k
2 d̃′u

− 1
2 d̃′Si

1
2 +

∑
Si∈S

∑
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1
2 . (by Lemma D.1)

(24)

For each uncoarsened node u ∈ V \Q, we have Â∞
u,j = Â′∞

v,j and Xj = X ′
j . Therefore,

∥
∑

j∈V \Q

(Âk
u,j ·Xj − Â′k
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j)∥

=∥
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1
2 ). (by Lemma D.1)

(25)

We define dmax and dmin as the maximum degree and minimum degree in G and G′, respectively.
Thus, we have the following conclusion

∥π(k)
u − π′

v
(k)∥

≤
√

dmax

dmin
|S|λ

′k
2 +

√
dmax

dmin
|Q|λk

2 +

√
dmax

dmin
(n− |Q|)(λk

2 + λ
′k
2 )

=

√
dmax

dmin
(nλk

2 + (n+ |S| − |Q|)λ
′k
2 )

=

√
dmax

dmin
(nλk

2 + n′λ
′k
2 ).

(26)
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According to Theorem D.2 and inequality (19), we have the following upper bound:

∥Zu − Z ′
v∥ ≤ κ

√
dmax

dmin
(nλk

2 + n′λ
′k
2 ). (27)

On the account of 0 < λ2 < 1 and 0 < λ′
2 < 1, when k → ∞, the error ∥Zu − Z ′

v∥ → 0.

E GENERALIZABILITY OF RGCCL

Following (Huang et al., 2023; Wang et al., 2022), we investigate the generalizability of our self-
supervised model. Denote Gvi as the ego network of node vi and the corresponding adjacency
matrix as ÂGvi

, Wang et al. (2022) characterizes the concentration of a graph augmentation set with
the following definition.

Definition 2 ((α, γ, d̂)-Augmentation). The data augmentation set A, which includes the original
graph, is a (α, γ, d̂)-augmentation, if for each class Ck, there exists a main part C0

k ⊆ Ck (i.e.,
P[v ∈ C0

k ] ≥ σP[v ∈ Ck]), where supv1,v2∈C0
k
dA(v1, v2) ≤ γ( D

d̂k
min

)1/2 hold with dA(vi, vj) =

minG′
i∈A(Gvi

),G′
j∈A(Gvj

)∥(
ÂG′

i

d̂G′
i

−
ÂG′

j

d̂G′
j

)X∥, and d̂kmin is the minimum degree in class Ck.

Given a (α, γ, d̂)-Augmentation, one can establish inequalities between contrastive losses and the
dot product of class center pairs. This means classes will be more separable while the objectives
are being optimized. For example, Huang et al. (2023) gives the proofs for InfoNCE and the cross-
correlation loss. Since our objective differs from both of them, we prove a similar theorem as Huang
et al. (2023). Denote µk := Ev∈Ck

EG′∈A(Gv)[f(G′)], pk := P[v ∈ Ck], Sϵ := {v ∈
⋃K

k=1 Ck :
∀G1,G2 ∈ A(Gv), ∥f(G1)− f(G2)∥ ≤ ϵ} and Rϵ := 1− P[Sϵ].

Theorem E.1. Assume that encoder f with norm 1 is M -Lipschitz continuous. For a given (α, γ, d̂)
augmentation set A, any ϵ > 0 and k ̸= l,

µT
k µl ≤

1

pkpl
(− 1

2n2Lneg
+ τ(ϵ, α, γ, d̂)), (28)

where τ(ϵ, α, γ, d̂) = 2Rϵ + 16(1 − α(1 − 1
2ϵ −

1
4Mmaxk(γ

√
D

d̂k
min

)) + KRϵ)
2 + 8(1 − α(1 −

1
2ϵ−

1
4Mmaxk(γ

√
D

d̂k
min

)) +KRϵ +
K−1
K ).

Proof. Our negative pair loss is

Lneg = EP∼P [
1∑n

i=1

∑n
j=1[∥hi∥2 + ∥hj∥2 − 2hT

i hj ]
]

=
1

2
EP∼P [

1

n2 −
∑n

i=1

∑n
j=1 h

T
i hj

].

Since
∑n

i=1

∑n
j=1 h

T
i hj ≤ n2, and 1

n2−x is convex for x ≤ n2. Using Jensen’s inequality, we have:

2Lneg ≥ 1

n2 − EP∼P [
∑n

i=1

∑n
j=1 h

T
i hj ]

=
1

n2(1− Exi,xjEP∼P [hT
i hj ])

.
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Next, we focus on Exi,xj
EP∼Ph

T
i hj :

Exi,xj
EP∼P [h

T
i hj ] ≥

K∑
k=1

K∑
l=1
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K
−Rϵ +∆1,

where ∆1 is defined as
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T
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T
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T
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Then,

|∆1| ≤Rϵ +

K∑
k=1

K∑
l=1

Exi,xj

[
I(xi ∈ Ck)I(xj ∈ Cl)EP∼P |hT

i hj − µT
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≤Rϵ + 16(1− α(1− 1

2
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4
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√
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2
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4
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√
D
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)) +KRϵ).

Thus, if we define

τ(ϵ, α, γ, d̂) =2Rϵ + 16(1− α(1− 1

2
ϵ− 1

4
Mmaxk(γ

√
D

d̂kmin

)) +KRϵ)
2

+ 8(1− α(1− 1

2
ϵ− 1

4
Mmaxk(γ

√
D
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)) +KRϵ +
K − 1

K
),

we have

µT
k µl ≤

1

pkpl
(1− 1

2n2Lneg
− 1

K
+Rϵ + |∆1|)

≤ 1

pkpl
(− 1

2n2Lneg
+ τ(ϵ, α, γ, d̂)).

This finishes the proof.

Next we discuss the concentration property of the random coarsening augmentation. First notice
that for any two nodes vi and vj , the probability that they are coarsened together is equal to the
probability that they are connected by randomly selected edges in the algorithm. Suppose the edges
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are selected independent and identically with probability p, then the connection probability is lower
bounded by pdia(G), where dia(G) is the diameter of G. Once u and v are coarsened together in at
least one coarsened graph, d(u, v) = 0, which means our random coarsening augmentation can be
very well-concentrated.

F MORE RELATED WORK

Structural bias on graphs. Fair graph mining has attracted much more research attention since
recent studies reveal that there are unfairness in a large number of graph mining models. Several
notions of fairness have been proposed in recent survey (Dong et al., 2023), and structural bias is
mainly manifested as degree bias. Prior studies (Tang et al., 2020; Kang et al., 2022; Dong et al.,
2022; Liu et al., 2023b) have primarily concentrated on degree bias in supervised graph learning.
GRADE (Wang et al., 2022) proposes a graph data augmentation method to mitigate the degree bias
issue in unsupervised scenarios.

Graph coarsening. Recently, graph coarsening techniques have been used to address issues in graph
neural networks (Fahrbach et al., 2020; Deng et al., 2019; Huang et al., 2021; Jin et al., 2022). Graph
coarsening with spectral approximation guarantees are studied in (Li & Schild, 2018; Loukas, 2019;
Jin et al., 2020). Graph coarsening can reduce the size of graph by combining the similar nodes,
then the coarsened graph can be used for downstream tasks related to the graph. Existing graph
coarsening techniques primarily strive to maintain the overall graph structure, resulting in a static
and downsized coarsened graph. These methods overlooks the local structural bias, and typically
involves massive computational costs.

G EXPERIMENTAL DETAILS

For all unsupervised models, the learned representations are evaluated by training and testing a
logistic regression classifier except for Ogbn-Arxiv. Since Ogbn-arxiv exhibits more complex char-
acteristics, we use a more powerful MLP classifier. The detailed statistics of the six datasets are
summarized in Table 5.

Table 5: Summary of the datasets used in our experiments

.

Dataset Nodes Features Classes Avg. Degree

Cora 2,708 1,433 7 3.907
Citeseer 3,327 3,703 6 2.74
Pubmed 19,717 500 3 4.50
Amazon-Photo 7,650 745 8 31.13
Amazon-Computers 13,752 767 10 35.76
Ogbn-Arxiv 169,343 128 40 13.67

Details of our model. In our model, we use SGC as the encoder for Cora, Citeseer, Pubmed, while
we use GCN as the encoder for Photo and Computers. The detailed hyperparameter settings are
listed in Table 6. Our source code is available at: https://anonymous.4open.science/
r/RGCCL

Table 6: Summary of the hyper-parameters.
Dataset Epoch Learning rate α β

Cora 25 0.01 15000 500
Citeseer 200 0.0002 15000 500
Pubmed 25 0.02 20000 200
Amazon-Photo 20 0.001 100000 100000
Amazon-Computers 20 0.0002 20000 20000
Ogbn-Arxiv 10 0.0001 2000000 200000
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Details of Baselines. We compare RGCCL with state-of-the-art GCL models DGI1, GRACE2,
GraphCL3, GCA4, CCA-SSG5, gCooL6, GGD7, GRADE8 and classic graph embedding model
Deepwalk. For all the baseline models, we use the source code from corresponding repositories.
Due to the large scale of Ogbn-Arixv, some GCL models are unable to process the full-graph on
GPU because of memory limitations. As a result, we apply graph sampling techniques to train these
models.

Configuration. All the algorithms and models are implemented in Python and PyTorch Geometric.
Experiments are conducted on a server with an NVIDIA 3090 GPU (24 GB memory) and an Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40GHz.

Memory usage. Figure 6 shows the memory usage of our model and 6 mainstream GCL models
on Citeseer and Pubmed. RGCCL exhibits the same level of memory usage as GGD, which is
specifically designed to save computation costs; our model benefits from the effective reduction of
graph size via random coarsening.
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Figure 6: The memory usage of baselines and RGCCL on Citeseer and Pubmed.
More quantitative analysis about community bias amplification. To further demonstrate that
RGCCL effectively alleviates the amplification of community bias, we use the Matthew’s coeffi-
cient to measure community bias. Table 7 presents the results of Matthew’s coefficient for represen-
tative GCL models and our RGCCL. The results indicate that the bias in the embeddings learned by
RGCCL is significantly less than that of other GCL models.

Table 7: Matthew’s coefficient for RGCCL and four baselines.
Cora CiteSeer PubMed

DGI 73.0±1.5 64.5±1.2 57.8±4.3
GRACE 67.9±1.6 60.0±2.0 62.3±3.8
CCA-SSG 74.5±1.6 64.6±1.4 64.0±4.1
GGD 77.0±1.6 64.9±1.2 63.7±4.1
GRADE 75.7±1.5 62.1±1.3 58.1±3.4
RGCCL 78.9±0.9 66.3±0.8 65.6±4.2

1DGI (MIT License): https://github.com/pyg-team/pytorch_geometric/blob/maste
r/examples/infomax_transductive.py

2GRACE (Apache License 2.0): https://github.com/CRIPAC-DIG/GRACE
3GraphCL (MIT License): https://github.com/Shen-Lab/GraphCL
4GCA (MIT License): https://github.com/CRIPAC-DIG/GCA
5CCA-SSG (Apache License 2.0): https://github.com/hengruizhang98/CCA-SSG
6gCooL (MIT License): https://github.com/lblaoke/gCooL
7GGD (MIT License): https://github.com/zyzisastudyreallyhardguy/Graph-Group

-Discrimination
8GRADE (MIT License): https://github.com/BUPT-GAMMA/Uncovering-the-Structu

ral-Fairness-in-Graph-Contrastive-Learning
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