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Abstract
Robustness with respect to weight perturbations
underpins guarantees for generalization, pruning
and quantization. Existing guarantees rely on
Lipschitz bounds in parameter space, cover only
plain feed-forward MLPs, and break under the
ubiquitous neuron-wise rescaling symmetry of
ReLU networks. We prove a new Lipschitz in-
equality expressed through the ℓ1-path-metric of
the weights. The bound is (i) rescaling-invariant
by construction and (ii) applies to any ReLU-
DAG architecture with any combination of con-
volutions, skip connections, pooling, and frozen
(inference-time) batch-normalization —thus en-
compassing ResNets, U-Nets, VGG-style CNNs,
and more. By respecting the network’s natural
symmetries, the new bound strictly sharpens prior
parameter-space bounds and can be computed in
two forward passes. To illustrate its utility, we
derive from it a symmetry-aware pruning crite-
rion and show—through a proof-of-concept exper-
iment on a ResNet-18 trained on ImageNet—that
its pruning performance matches that of classi-
cal magnitude pruning, while becoming totally
immune to arbitrary neuron-wise rescalings.

1. Introduction
An important challenge about neural networks is to upper
bound as tightly as possible the distances between the so-
called realizations (i.e., the functions implemented by the
considered network) Rθ, Rθ′ with parameters θ, θ′ when
evaluated at an input vector x, in terms of a (pseudo-)-
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distance d(θ, θ′) and a constant Cx:

∥Rθ(x)−Rθ′(x)∥1 ⩽ Cxd(θ, θ
′). (1)

This controls the robustness of the function Rθ with re-
spect to changes in the parameters θ, which can be crucially
leveraged to derive generalization bounds (Neyshabur et al.,
2018) or theoretical guarantees about pruning or quantiza-
tion algorithms (Gonon et al., 2023). Yet, to the best of our
knowledge, such bounds remain relatively little explored
in the literature, and existing ones are expressed with ℓp

metrics on parameters (Gonon et al., 2023; Neyshabur et al.,
2018; Berner et al., 2020). For example, such a bound is
known (Gonon et al., 2023, Theorem III.1 with p = ∞ and
q = 1) with

d(θ, θ′) := ∥θ − θ′∥∞,

Cx := (W∥x∥∞ + 1)WL2RL−1,
(2)

in the case of a layered fully-connected neural network
Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x)) with L lay-
ers, maximal width W , and with weight matrices Mℓ having
some operator norm bounded by R. Moreover, these known
bounds are not satisfying for at least two reasons:

• they are not invariant under neuron-wise rescalings of
the parameters θ that leave unchanged its realization Rθ.
As we will show, this implies that numerical evaluations
of such bounds can be arbitrarily large;

• they only hold for simple fully-connected models orga-
nized in layers, but not for modern networks that include
pooling, skip connections, etc.

To circumvent these issues, we leverage the so-called path-
lifting, a tool that has recently emerged (Stock & Gribonval,
2023; Bona-Pellissier et al., 2022; Marcotte et al., 2023;
Gonon et al., 2024a) in the theoretical analysis of modern
neural networks with positively homogeneous activations.

Main contribution. We introduce a natural (rescaling-
invariant) metric based on the path-lifting, and shows that
it indeed yields a rescaling-invariant upper bound for the
distance of two realizations of a network. Specifically, denot-
ing Φ(θ) the path-lifting (a finite-dimensional vector whose
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Table 1: The path-lifting provides an intermediate space between parameters and function spaces.

θ

parameters space

Φ(θ)

path-lifting space

Rθ

function space

what we end up analyzing what we should analyze? what we want to analyze
dim< ∞?

rescaling-invariant?
relation to Rθ locally polynomial locally linear

definition will be recalled in Section 3) of the network pa-
rameters θ, we establish (Theorem 4.1) that for any input x,
and network parameters θ, θ′ with the same entrywise signs:

∥Rθ(x)−Rθ′(x)∥1
⩽ max (∥x∥∞, 1) ∥Φ(θ)− Φ(θ′)∥1. (3)

We call d(θ, θ′) := ∥Φ(θ)−Φ(θ′)∥1 the ℓ1-path-metric, by
analogy with the so-called ℓ1-path-norm ∥Φ(θ)∥1, see e.g.
(Neyshabur et al., 2015; Barron & Klusowski, 2019; Gonon
et al., 2024a). Of course, since the ℓ1-norm is the largest ℓq-
norm (q ⩾ 1), this also implies the same inequality for any
ℓq-norm on the left-hand side. Besides being intrinsically
rescaling-invariant, Inequality (3) holds for the very same
general neural network model as in Gonon et al. (2024a)
that encompasses pooling, skip connections and so on. This
solves the two problems mentioned above and improves on
Equation (2). Finally, we show that, under conditions that
hold in practical pruning and quantization scenarios, the
path-metric is easy to compute in two forward passes, and
we provide the corresponding pytorch implementation.

Our main theoretical finding, Inequality (3), together with
the known properties of Φ (Gonon et al., 2024a) confirms
that the path-lifting Φ provides an intermediate space be-
tween the parameter space and the function space, that
shares some advantages of both, see Table 1.

Plan. Section 2 places our contribution in context. Section 3
recalls the path-lifting framework of Gonon et al. (2024a)
and the notational tools we will use. Section 4 presents
our central result—a rescaling-invariant Lipschitz bound
expressed through the ℓ1-path-metric (Theorem 4.1)—and
explains how it sharpens existing bounds and can be com-
puted in two forward passes. Finally, Section 5 shows how
the new bound yields a symmetry-aware pruning criterion,
shown to match in a proof-of-concept experiment the accu-
racy of magnitude pruning, while becoming totally immune
to neuron-wise rescalings.

2. Related Work
Understanding how small weight changes affect a network’s
output is crucial, e.g., for pruning, quantization, or general-

ization error control. We review these three different use of
parameter–space Lipschitz bounds in Section 2.1, and then
highlight in Section 2.2 how our new, rescaling-invariant
bound (Theorem 4.1) interfaces with recent notions of scale-
invariant sharpness.

2.1. Parameter-Space Lipschitz Bounds in Practice

Parameter–space Lipschitz (or “perturbation” / “sensitiv-
ity”) bounds already underpin several practical guarantees,
but prior results are restricted to plain MLPs and ignore
rescaling symmetry.

(i) Pruning. Provable pruning schemes quantify how much
the output drifts when weights are set to zero. (Liebenwein
et al., 2020) and (Baykal et al., 2019) derive such guaran-
tees from layer-wise—but rescaling-dependent—Lipschitz
constants, and the same mechanism underlies Theorem
5.4 of (Baykal et al., 2022). Our Theorem 4.1 offers
an architecture-agnostic, symmetry-aware alternative; Sec-
tion 5 illustrates this on a ResNet-18.

(ii) Quantization. Bounding the error induced by weight
rounding likewise depends on how the network reacts to
small parameter perturbations. Gonon et al. (2023) provide
such bounds for fully-connected nets, while Zhang et al.
(2023) and Lybrand & Saab (2021) control the error at the
neuron level. Extending those guarantees to CNNs, ResNets
or U-Nets requires a global, symmetry-invariant Lipschitz
constant—precisely what we provide in Theorem 4.1.

(iii) Generalization via covering numbers. Several
compression-style analyses (e.g., Arora et al., 2018; Bartlett
et al., 2017; Schnoor et al., 2021) follow two steps: (1)
a parameter-space Lipschitz bound shows that the ε-ball
around a weight vector θ maps into an ε′-ball around its
realization Rθ in function space, yielding an upper bound
on that function-space covering number; (2) this covering
bound is plugged into Dudley’s entropy integral to obtain
a Rademacher-complexity (and thus generalization) bound.
Because our Lipschitz constant is rescaling-invariant and
holds for modern DAG networks, the same pipeline runs
without restricting to MLPs and without the looseness intro-
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duced when one first factors out rescaling symmetries.

Across pruning, quantization and generalization, two
limitations of previous parameter-space bounds—lack of
rescaling-invariance and restriction to plain MLPs—are
precisely the issues addressed by Theorem 4.1.

2.2. Relation to Scale-Invariant Sharpness

Sharpness metrics (Tsuzuku et al., 2020; Rangamani et al.,
2021; Kwon et al., 2021; Wen et al., 2023; Andriushchenko
et al., 2023) measure how much the loss increases under
parameter perturbations, often normalizing those perturba-
tions to remove rescaling dependencies. Our perspective
is complementary: we directly bound the output change
∥Rθ(x)−Rθ′(x)∥1, independent of any loss or data distri-
bution. As shown in Section 4.4, whenever the loss L(ŷ, y)
is Lipschitz in its first argument (e.g., cross-entropy or MSE
on a compact domain), Theorem 4.1 yields an immediate
upper bound on several scale-invariant sharpness definitions,
thus providing a loss-agnostic control over the same pertur-
bation neighborhoods.

3. ReLU DAGs, Invariances, and Path-Lifting
The neural network model we consider generalizes and
unifies several models from the literature, including those
from Neyshabur et al. (2015); Kawaguchi et al. (2017);
DeVore et al. (2021); Bona-Pellissier et al. (2022); Stock
& Gribonval (2023), as detailed in Gonon et al. (2024a,
Definition 2.2). This model allows for any Directed
Acyclic Graph (DAG) structure that combines standard
layers—max-pooling, average-pooling, skip connections,
convolution, and (inference-time / frozen form) batch nor-
malization—thereby covering modern networks such as
ResNets, VGGs, AlexNet, and many others. The complete
formal definition appears in Appendix A.1
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Figure 1: A network with the same ingredients as a ResNet.

1This DAG-ReLU framework does not cover (i) attention mech-
anisms and (ii) normalization layers that are not rescaling-invariant
(e.g., layer normalization, group normalization). Batch normal-
ization is covered because at inference time its statistics are fixed,
so it behaves as an affine layer and remains compatible with the
path-lifting framework of (Gonon et al., 2024a).

3.1. Rescaling Symmetries.

All network parameters (weights and biases) are gathered in
a parameter vector θ, and we denote Rθ(x) the output of the
network when evaluated at input x (the function x 7→ Rθ(x)
is the so-called realization of the network with parameters
θ). Due to positive-homogeneity of the ReLU function
t → ReLU(t) := max(0, t), in the simple case of a single
neuron with no bias we have Rθ(x) = vmax(0, ⟨u, x⟩)
with θ = (u, v), and for any λ > 0, the “rescaled” parameter
θ̃ = (λu, v

λ ) implements the same function Rθ̃ = Rθ. A
similar rescaling-invariance property holds for the general
model of (Stock & Gribonval, 2023; Gonon, 2024) leading
to the notion of rescaling-equivalent parameters, denoted
θ̃ ∼ θ, which still satisfy Rθ̃ = Rθ.

Need for rescaling-invariant Lipschitz bounds. Consider
our initial problem of finding a pseudo-metric d(θ, θ′) and
a constant Cx for any input x, for which (1) holds. The left
hand-side of (1) is invariant under rescaling-symmetries: if
θ̃ ∼ θ then ∥Rθ̃(x) − Rθ′(x)∥1 = ∥Rθ(x) − Rθ′(x)∥1.
However, when d(·, ·) is based on a standard ℓp norm,
the right hand-side of (1) is not invariant, and in fact
supθ̃∼θ ∥θ̃ − θ′∥p = +∞, so the bound can in fact be arbi-
trarily pessimistic:

sup
θ̃∼θ

d(θ̃, θ′)

∥Rθ̃(x)−Rθ′(x)∥1
= ∞.

Although in general one could make a bound such as (1)
invariant by considering the infimum

inf
θ̃∼θ,θ̃′∼θ′

d(θ̃, θ̃′),

this infimum may be difficult to compute in practice. There-
fore, a “good” bound should ideally be both invariant under
rescaling symmetries and easy to compute. Invariance to
rescaling symmetries is precisely the motivation for the
introduction of the path-lifting.

3.2. Path-Lifting Φ and Path-Activation Matrix A

Background. The path-lifting map Φ and its associated
ℓ1-path-norm were introduced to equip ReLU networks
with a coordinate system that is invariant under neuron-wise
rescaling. This construction has enabled advances in iden-
tifiability (Stock & Gribonval, 2023; Bona-Pellissier et al.,
2022), analysis of training dynamics (Marcotte et al., 2023),
input-space Lipschitz bounds (Gonon et al., 2024a), and
(PAC–Bayes and Rademacher) generalization guarantees
(Neyshabur et al., 2015; Gonon et al., 2024a).

This paper does not redefine the path-lifting but leverages it
to derive, for the first time, a rescaling-invariant parameter-
space Lipschitz bound that holds for general DAG-ReLU
architectures.
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Definitions (informal). Given network parameters θ and an
input x, we consider two objects from Gonon et al. (2024a,
Definition A.1): the path-lifting vector Φ(θ) and the path-
activation matrix A(θ, x). Below we give a simplified de-
scription sufficient for understanding our main results; full
definitions are deferred to Appendix A.

Figure 2: The path-lifting coordinate Φp(θ) for the path
p = u → v → w is the product of the weights along that
path: Φp(θ) = θu→v θv→w.

The vector Φ(θ) ∈ RP is indexed by the set P of paths in
the network—i.e., sequences of neurons from an input to
an output. For each path, its coordinate in Φ(θ) is simply
the product of the weights along that path (ignoring non-
linearities). For example, if p = u → v → w is a path
starting from an input neuron u and ending at an output
neuron w, and if θa→b denotes the weight on edge a → b,
then Φp(θ) = θu→vθv→w, as illustrated in Figure 2.

The path-activation matrix A(θ, x) ∈ {0, 1}P×din encodes
the information about non-linearities, storing which paths
are active (i.e., all ReLUs along them are on) for a given
input x. Entry Ap,u(θ, x) = 1 if path p starts at input
coordinate u and all neurons along p are activated.

In networks with biases, additional paths starting from hid-
den neurons are included in P , and A(θ, x) is extended to
{0, 1}P×(din+1) to include bias contributions.

Key properties of (Φ, A). These two objects enjoy the
following critical features:

• Φ(θ) is a vector of monomials in the weights.
• A(θ, x) is a binary, piecewise-constant matrix of (θ, x).
• Both Φ(θ) and A(θ, x) are rescaling-invariant: if θ̃ ∼ θ
(i.e., θ and θ̃ only differ by neuron-wise rescaling, leaving
Rθ = Rθ̃ unchanged), then Φ(θ̃) = Φ(θ) and A(θ̃, x) =
A(θ, x) for all x (Gonon, 2024, Theorem 2.4.1).
• The network output can be recovered directly from these
quantities. For scalar-valued outputs Rθ(x):

Rθ(x) =

〈
Φ(θ), A(θ, x)

(
x
1

)〉
, (4)

and a similar form holds for vector-valued networks (Gonon
et al., 2024a, Theorem A.1).

Example (one-hidden-layer network). Consider a one-
hidden-layer ReLU network without bias, with parameters

θ = (u1, . . . , uk, v1, . . . , vk) where ui ∈ Rdin , vi ∈ Rdout ,
and realization

Rθ(x) =

k∑
i=1

max(0, ⟨x, ui⟩)vi ∈ Rdout .

Then, the path-lifting is

Φ(θ) = (uiv
⊤
i )i∈{1,...,k} ∈ Rkdindout .

The path-activation matrix is

A(θ, x) = Idin ⊗ (1⟨x,ui⟩>0)
k
i=1 ⊗ 1dout ,

concatenated with a zero column (no biases here). Here, Id
is the d× d identity matrix, and 1d (resp. 0d) is the vector
of ones (resp. zeros) of size d.

It is straightforward to verify that both Φ(θ) and A(θ, x)
remain unchanged under the neuron-wise rescaling θ 7→ λ ⋄
θ, defined by (vi, ui) 7→ ( 1

λi
vi, λiui) for any λ ∈ (R>0)

k.
This transformation leaves the function Rθ unchanged, i.e.,
Rθ = Rλ⋄θ (Gonon et al., 2024a).

4. A Rescaling Invariant Lipschitz Bound
Our main result, Theorem 4.1, is a Lipschitz bound with
respect to the parameters of the network, as opposed to
widespread Lipschitz bounds with respect to the inputs. It
precisely proves that (1) holds with a rescaling-invariant
pseudo-distance (called the ℓ1-path metric) defined via Φ as
d(θ, θ′) := ∥Φ(θ)− Φ(θ′)∥1 and Cx = max(∥x∥∞, 1).

Theorem 4.1. Consider a ReLU DAG neural network, cor-
responding to an arbitrary DAG network with max-pool etc.
as in Section 3, see Figure 1 for an illustration and Defini-
tion A.2 in the appendix for a precise definition. Consider
parameters vectors θ, θ′. If for every coordinate i, it holds
θiθ

′
i ⩾ 0, then for every input x:

∥Rθ(x)−Rθ′(x)∥1
⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1. (5)

Moreover, for every such neural network architecture, there
are non-negative parameters θ ̸= θ′ and a non-negative
input x such that Inequality (5) is an equality.

Since ∥ · ∥q ⩽ ∥ · ∥1 for any q ⩾ 1, Inequality (5) implies
the same bound with the ℓq-norm on the left hand-side.

We sketch the proof in Section 4.5. The complete proof is in
Appendix B – we actually prove something slightly stronger,
but we stick here to Inequality (5) for simplicity.

As discussed in Section 2.1, the parameter-space Lipschitz
bound (5), like any such bound, can be incorporated into
various pipelines—either to establish theoretical guaran-
tees or to guide practical methods (e.g., algorithms that
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minimize these bounds), with applications to pruning, quan-
tization, or generalization. In Section 5, we will focus on
pruning. Regarding generalization, let us briefly note that
this bound can be used to derive a Rademacher complexity
bound for the class of functions F := {Rθ, ∥Φ(θ)∥1 ⩽
r} =

⋃
signs s{Rθ, ∥Φ(θ)∥1 ⩽ r, sgn(θ) = s}. To bound

this complexity, Dudley’s integral reduces the task to
bounding the covering numbers of each fixed-sign sub-ball
{Rθ, ∥Φ(θ)∥1 ⩽ r, sgn(θ) = s}. The inequality (5) enables
exactly this, by linking the covering numbers of these func-
tion classes to those of the corresponding finite-dimensional
sets {Φ(θ) : sgn(θ) = s, ∥Φ(θ)∥1 ⩽ r}. A full derivation
of this approach can be found in Theorem 4.3.1 of (Gonon,
2024). That said, the resulting (Rademacher) generaliza-
tion bounds are typically looser—by a factor of roughly√

#params—than those of Gonon et al. (2024a), who also
leverage the path-norm but through a more refined analysis.

In the rest of this section, we discuss the assumptions of
the theorem, the practical computation of the bound and the
positioning with respect to previously established Lipschitz
bounds.

4.1. Why the same–sign assumption is necessary

A hard impossibility (new contribution). Let us highlight
that the condition θiθ

′
i⩾ 0 ∀i in Theorem 4.1 is not a tech-

nical convenience. We exhibit in Figure 6 (Appendix B) a
minimalistic ReLU network for which no finite constant Cx

can satisfy (1) once two weights change sign. By prepend-
ing and appending arbitrary sub-networks to that minimal
counter-example, one gets families where all but two edges
keep their sign, yet the same divergence occurs. This impos-
sibility shows that every rescaling-invariant parameter-space
Lipschitz bound based on the path-lifting must, at a min-
imum, control sign changes. We are not aware of a prior
formal statement of this theoretical impossibility.

Practical relevance. Many real-world workflows preserve
the signs: pruning, uniform quantization, and small SGD
steps preserve them; locally, any non-zero θ admits an ℓ∞
ball where signs are fixed. When occasional flips do occur,
Theorem 4.1 remains useful as a local building block: one
may use it on each fixed-sign quadrant individually and
then glue the results established on each quadrant together
—exactly the strategy evoked for covering-number general-
ization proofs (see the discussion after Theorem 4.1).

4.2. Approximation and exact computation of
ℓ1-path-metrics

Since Φ(θ) is a vector of combinatorial dimension (it is
indexed by paths), it would be intractable to compute the
ℓ1-path metric ∥Φ(θ) − Φ(θ′)∥1 by direct computation of
the vector Φ(θ) − Φ(θ′). In this section we investigate
efficient and rescaling-invariant approximations of the ℓ1-

path-metric that turn out to yield exact implementations in
cases of practical interest.

A key fact on which the approach is built is that the ℓ1-path-
norm can be computed in one forward pass (Gonon et al.,
2024a). Since, by the lower triangle inequality, we have∣∣∣∥Φ(θ)∥1 − ∥Φ(θ′)∥1

∣∣∣ ⩽ ∥Φ(θ)− Φ(θ′)∥1, (6)

the left-hand side of (6) serves as an approximation that can
be computed in two forward passes of the network2.

As we now show, this is an exact evaluation of the ℓ1-path-
metric under practical assumptions, and completed by a
rescaling-invariant upper bound (cf. Inequality (8) below).

Lemma 4.2. Inequality (6) is an equality as soon as
|Φ(θ)| ⩾ |Φ(θ′)| coordinatewise: in this case we have

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(θ)∥1 − ∥Φ(θ′)∥1. (7)

Proof. For vectors a, b with |ai| ⩾ |bi| for every i, we have

∥a∥1 − ∥b∥1 =
∑
i

|ai| − |bi| =
∑
i

|ai − bi| = ∥a− b∥1.

An important scenario where |Φ(θ)| ⩾ |Φ(θ′)| indeed holds
is when |θ| ⩾ |θ′| coordinatewise. The latter is true in
at least two significant situations: when θ′ is obtained
from θ by pruning, or through quantization provided that
rounding is done either systematically towards zero or sys-
tematically away from zero.

Note that |θ| ⩾ |θ′| is not the only situation where |Φ(θ)| ⩾
|Φ(θ′)|. For instance, due to the rescaling-invariance of Φ(·),
if θ̃ is rescaling-equivalent to θ the coordinatewise inequality
|Φ(θ̃)| ⩾ |Φ(θ′)| remains valid, even though in general such
a θ̃ non longer satisfies |θ̃| ⩾ |θ′| coordinatewise.

Even out of such practical scenarios, the ℓ1-path-metric also
satisfies an invariant upper bound.

Lemma 4.3 (Informal version of Lemma F.3). Consider
a DAG ReLU network with L layers and width W . For
any parameter θ, denote by N(θ) its normalized version,
deduced from θ by applying rescaling-symmetries such that
each neuron has its vector of incoming weights equal to 1,
except for output neurons. It holds for all parameters θ, θ′:

∥Φ(θ)− Φ(θ′)∥1
⩽ (W 2+min(∥Φ(θ)∥1, ∥Φ(θ′)∥1)·LW )∥N(θ)−N(θ′)∥∞.

(8)
2For a ResNet18, we timed it to 15ms. Specifically,

we timed the function get path norm available at
github.com/agonon/pathnorm_toolkit using
pytorch.utils.benchmark. Experiments were made
on an NVIDIA GPU A100-40GB, with processor AMD EPYC
7742 64-Core.
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The proof is in Appendix F. In all the cases of interest we
consider, the lower bound (6) is exact as a consequence of
Lemma 4.2. We leave it to future work to compare the lower
bound with the upper bound of Lemma 4.3 in specific cases
where the lower bound is inexact.

Figure 3: Illustration of the proof of Theorem 4.1, see Sec-
tion 4.5 for an explanation.

4.3. Improvement over previous Lipschitz bounds

Inequality (5) improves on the Lipschitz bound (1) specified
with Equation (2), as the next result shows.

Lemma 4.4. Consider a simple layered fully-connected neu-
ral network architecture with L ⩾ 1 layers, corresponding
to functions Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x))
with each Mℓ denoting a matrix, and parameters θ =
(M1, . . . ,ML). For a matrix M , denote by ∥M∥1,∞ the
maximum ℓ1-norm of a row of M . Consider R ⩾ 1 and
define the set Θ of parameters θ = (M1, . . . ,ML) such
that ∥Mℓ∥1,∞ ⩽ R for every ℓ ∈ J1, LK. Then, for every
parameters θ, θ′ ∈ Θ

∥Φ(θ)− Φ(θ′)∥1 ⩽ LW 2RL−1∥θ − θ′∥∞. (9)

Moreover the right hand-side can be arbitrarily worse that
the ℓ1-pseudo-metric in the left hand side: over all rescaling-
equivalent parameters θ̃ ∼ θ, it holds

sup
θ̃∼θ

∥θ̃ − θ′∥∞
∥Φ(θ̃)− Φ(θ′)∥1

= ∞.

The proof of Lemma 4.4 is in Inequality (23) in Appendix G.

The invariant Lipschitz bound (5) combined with (9) yields
a (non-invariant) bound on ∥Rθ(x)−Rθ′(x)∥1:

max(∥x∥∞, 1)LW 2RL−1∥θ − θ′∥∞.

In comparison the generic bound (1) specified with (2) reads

(W∥x∥∞ + 1)WL2RL−1∥θ − θ′∥∞.

As soon as ∥x∥∞ ⩾ 1 the latter is a looser bound than the
former.

4.4. Implication for scale-invariant sharpness

Let ℓ : Rdout×Rdout → R+ be κ-Lipschitz in its first argument
with respect to ℓ1-norm, and assume a data distribution D
over (x, y). For any parameter θ and perturbation radius
ρ > 0, consider the scale-adaptative worst-case sharpness
(see Definition 2 in Kwon et al. (2021), or Equation 1 in
Andriushchenko et al. (2023)):

Sharpρ(θ) :=

sup
∥δ⊙|θ|−1∥p⩽ρ

E(x,y)∼D

(
ℓ(Rθ+δ(x), y) − ℓ(Rθ(x), y)

)
Lemma 4.5. For every ρ ∈ (0, 1) and every θ,

Sharpρ(θ) ⩽ κEx∼Dx

[
max(∥x∥∞, 1)

]
sup

∥δ⊙|θ|−1∥p⩽ρ

∥Φ(θ + δ)− Φ(θ)∥1

Proof. Lipschitzness of the loss yields ℓ(Rθ+δ(x), y) −
ℓ(Rθ(x), y) ⩽ κ∥Rθ+δ(x) − Rθ(x)∥1. The condition
∥δ ⊙ |θ|−1∥p ⩽ ρ implies ∥δ ⊙ |θ|−1∥∞ ⩽ ρ. Thus
δi ⩽ |θi|ρ < |θi| for every coordinate i and we get
sgn(θi + δi) = sgn(θi). Therefore Theorem 4.1 applies
and gives ∥Rθ+δ(x) − Rθ(x)∥1 ⩽ max(∥x∥∞, 1)∥Φ(θ +
δ)− Φ(θ)∥1.

Lemma 4.5 shows that our path-metric controls the scale-
adaptative sharpness notions used, e.g., in (Kwon et al.,
2021) and (Andriushchenko et al., 2023).

4.5. Proof sketch of Theorem 4.1 (full proof in
Appendix B)

Given an input x, the proof of Theorem 4.1 consists in
defining a trajectory t ∈ [0, 1] → θ(t) ∈ Θ (red curve
in Figure 3) that starts at θ, ends at θ′, and with finitely
many breakpoints 0 = t0 < t1 < · · · < tm = 1 such
that the path-activations A(θ(t), x) are constant on the open
intervals t ∈ (tk, tk+1). Each breakpoint corresponds to
a value where the activation of at least one path (hence at
least one neuron) changes in the neighborhood of θ(t). For
instance, in the left part of Figure 3, the straight green line
(resp. quadratic green curve) corresponds to a change of
activation of a ReLU neuron (for a given input x to the
network) in the first (resp. second) layer.

With such a trajectory, given the key property (4), each quan-
tity |Rθ(tk)(x)−Rθ(tk+1)(x)| can be controlled in terms of
∥Φ(θ(tk))−Φ(θ(tk+1))∥1, and if the path is “nice enough”,
then this control can be extended globally from t0 to tm.

There are two obstacles: 1) proving that there are finitely
many breakpoints tk as above (think of t 7→ tn+2 sin(1/t)
that is n-times continuously differentiable but still crosses
t = 0 an infinite number of times around zero), and 2)
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proving that the length
∑m

k=1 ∥Φ(θ(tk)) − Φ(θ(tk+1))∥1
of the broken line with vertices Φ(θ(tk)) (dashed line on
the right part of Figure 3) is bounded from above by ∥Φ(θ)−
Φ(θ′)∥1 times a reasonable factor. Trajectories satisfying
these two properties are called “admissible” trajectories.

The first property is true as soon as the trajectory t 7→
θ(t) is smooth enough (analytic, say). For this, we will
notably exploit that the output of a ReLU neuron in the d-th
layer of a layered fully-connected network is a piecewise
polynomial function of the parameters θ of degree at most d
(Gonon et al., 2024a, consequence of Lemma A.1), (Bona-
Pellissier et al., 2022, consequence of Propositions 1 and
2). The property second is true with factor one thanks to a
monotonicity property of the chosen trajectory.

The core of the proof consists in exhibiting a trajectory with
these two properties. To the best of our knowledge, the
proof of Inequality (3) is the first to practically leverage
the idea of “adequately navigating” through the different
regions in θ where the network is polynomial3 by respecting
the geometry induced by Φ, see Figure 3 for an illustration.

5. Rescaling-Invariant Pruning
We exploit Inequality (3) to design a pruning rule that is both
effective and invariant to neuron-wise rescaling. Instead of
ranking weights by their magnitude, we rank them by their
ℓ1-path-metric contribution. We show in a proof-of-concept
on a ResNet-18 trained on ImageNet-1k under the lottery-
ticket “rewind-and-fine-tune” schedule (Frankle et al., 2020)
that this path-magnitude rule achieves the same accuracy as
classical magnitude pruning while becoming totally immune
to arbitrary rescalings.

5.1. Pruning: a quick overview

Pruning typically involves ranking weights by a chosen cri-
terion and removing (setting to zero) those deemed less
important (Han et al., 2016). Early criteria considered either
weight magnitudes (Hanson & Pratt, 1988; Han et al., 2016)
or the loss’s sensitivity to each weight (LeCun et al., 1989;
Hassibi & Stork, 1992). Building on these foundations,
more sophisticated pruning methods have emerged, often
formulated as complex optimization problems solved via
advanced algorithms. For example, consider the entrywise
loss’s sensitivity criterion of (LeCun et al., 1989). In princi-
ple, all the costs should be recomputed after each pruning
decision, since removing one weight affects the costs of
the others. A whole literature focuses on turning the cost
of (LeCun et al., 1989) into an algorithm that would take

3The mapping (θ, x) 7→ Rθ(x) is indeed known to be piece-
wise polynomial in the coordinates of θ (Gonon et al., 2024a,
consequence of Lemma A.1)(Bona-Pellissier et al., 2022, conse-
quence of Propositions 1 and 2).

into account these global dependencies (Singh & Alistarh,
2020; Yu et al., 2022; Benbaki et al., 2023). This line of
work recently culminated in CHITA (Benbaki et al., 2023),
a pruning approach that scales up to millions of parameters
through substantial engineering effort.

Here, we introduce a path-magnitude cost defined for each
individual weight but that depends on the global configura-
tion of the weights. Just as sensitivity-based costs (LeCun
et al., 1989), these costs should in principle be re-computed
after each pruning decision. While taking these global de-
pendencies into account is expected to provide better perfor-
mance, this is also expected to require a huge engineering
effort, similar to what has been done in (Singh & Alistarh,
2020; Yu et al., 2022; Benbaki et al., 2023), which is be-
yond the scope of this paper. Our goal here is more modest:
we aim at providing a simple proof-of-concept to show the
promises of the path-lifting for rescaling-invariant pruning.

Notion of pruned parameter. Considering a neural net-
work architecture given by a graph G, we use the short-
hand RG to denote the corresponding set of parameters
(see Definition A.2 for a precise definition). By definition,
a pruned version θ′ of θ ∈ RG is a ”Hadamard” product
θ′ = s ⊙ θ, where s ∈ {0, 1}G and ∥s∥0 is ”small”. We
denote 1G ∈ RG the vector filled with ones, ei ∈ RG the
i-th canonical vector, si := 1G − ei, and introduce the
specialized notation θ−i := si ⊙ θ for the vector where a
single entry (the weight of an edge or the bias of a hidden
or output neuron) of θ, indexed by i, is set to zero.

5.2. Proposed rescaling-invariant pruning criterion

The starting point of the proposed pruning criterion is that,
given any θ, the pair θ, θ′ with θ′ := s ⊙ θ satisfies the
assumptions of Theorem 4.1, hence for all input x we have
|Rθ(x)−Rθ′(x)| ⩽ ∥Φ(θ)−Φ(θ′)∥1 max(1, ∥x∥∞). Spe-
cializing this observation to the case where a single entry
(the weight of an edge, or the bias of hidden or output neu-
ron indexed by i) of θ is pruned (i.e., θ′ = θ−i) suggests the
following definition, which will serve as a pruning criterion:

Definition 5.1. We denote

Path-Mag(θ, i) := ∥Φ(θ)− Φ(θ−i)∥1. (10)

This measures the contribution to the path-norm of all paths
p containing entry i: when i /∈ p we have Φp(θ−i) = Φp(θ),
while otherwise Φp(θ−i) = 0. Since θ and θ−i satisfy the
assumptions of Lemma 4.2 we have

Path-Mag(θ, i) =
(7)

∥Φ(θ)∥1 − ∥Φ(θ−i)∥1 (11)

=
∑
p∈P

|Φp(θ)| −
∑

p∈P:i/∈p

|Φp(θ)|

=
∑

p∈P:i∈p

|Φp(θ)| (12)
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Table 2: Comparison of pruning criteria across key properties. Being data-specific or loss-specific can be both a
strength (leveraging the training loss and data for more accurate pruning) and a limitation (requiring access to additional
information). Being rescaling-invariant ensures the pruning mask is unaffected by neuron-wise weight rescaling.

Criterion Rescaling-
Invariant

Error bound Data-
Specific

Loss-
Specific

Efficient to
Compute

Versatilea

Magnitude No Yes – (1)-(2) No No Yes Yes
Loss-Sensitivity

(Taylor Expansion)
Yes in theory

Not in practicec
No Yes Yes Dependsb Yes

Path-Magnitude Yes Yes – (13) No No Yes Yes
a Can be used to design greedy approaches (including ℓ0-based methods) and supports both structured and unstructured pruning.
b Depends on how higher-order derivatives of the loss are taken into account. E.g., using only the diagonal of the Hessian can be

relatively quick, but computing the full Hessian is infeasible for large networks. See Table 3 for experiments.
c See Equation (16) in Appendix E for invariance in theory, and end of Appendix E for non-invariance in practice.

In light of (5), to limit the impact of pruning on the pertur-
bation of the initial function Rθ, it is natural to choose a
coordinate i of θ leading to a small value of this criterion.

Lemma 5.2. Path-Mag enjoys the following properties:

• rescaling-invariance: for each θ ∈ RG and index i,
Path-Mag(θ, i) = Path-Mag(θ̃, i) for every rescaling-
equivalent parameters θ̃ ∼ θ;

• error bound: denote s := 1G −
∑

i∈I ei where I
indexes entries of θ ∈ RG to be pruned. We have

|Rθ(x)−Rs⊙θ(x)|

⩽
(∑

i∈I

Path-Mag(θ, i)
)
max(1, ∥x∥∞). (13)

• computation with only two forward passes: using
Equation (11) and the fact that ∥Φ(·)∥1 is computable
in one forward pass (Gonon et al., 2024a).

• efficient joint computation for all entries: we have

(Path-Mag(θ, i))i = θ ⊙∇θ∥Φ(θ)∥1 (14)

that enables computation via auto-differentiation.

The proof is given in Appendix C. We summarize these
properties in Table 2.

5.3. Considered (basic) path-magnitude pruning method

Equipped with Path-Mag, a basic rescaling-invariant prun-
ing approach is to minimize the upper-bound (13). This is
achieved via simple reverse hard thresholding:

1. Score all weights. The entire vector (Path-Mag(θ, i))i
can be produced in one reverse-mode autograd pass
via Eq. (14).

2. Prune. Zero-out the weights with the smallest scores.

To the best of our knowledge, this is the first practical net-
work pruning method that is both invariant under rescaling
symmetries and endowed with guarantees such as (11) on
modern networks.

Table 3: Run-time (in milliseconds) to score all weights.
Time of a forward pass included for reference. Entries in
”OBD” and ”Forward” columns show times for batch-sizes
1 and 128 (e.g., “13–60” means 13 ms at batch size 1 vs. 60
ms at batch size 128). See Appendix E for details.

Network Forward Mag OBD Path-Mag

AlexNet 1.7–133 0.5 13–60 14
VGG16 2.3–198 1.4 31–675 61
ResNet18 3.6–142 3.2 51–155 32

While Table 3 shows that path-magnitude pruning is compu-
tationally feasible, we must also verify that when injected
in usual pruning pipelines, it yields acceptable accuracies.

5.4. Proof-of-concept study

As a simple proof-of-concept, we prune a dense ResNet-18
trained on ImageNet-1k.

Setup. Dense ResNet-18 on ImageNet-1k, standard train-
ing hyper-parameters, lottery-ticket “rewind-and-fine-tune”
schedule (Frankle et al., 2021). We benchmark three prun-
ing criteria: (i) magnitude, (ii) magnitude after a random
neuron-wise rescaling, (iii) our path-magnitude. See Ap-
pendix D for details.

Results. Table 4 reports top-1 accuracy after fine-tuning
when pruning either 40, 60 or 80% of the weights. Path-
magnitude matches4 magnitude pruning on the un-rescaled
network and completely eliminates the 5–50% accuracy drop

4We performed no extra hyper-parameter tuning for path-
magnitude; we reused the lottery-ticket settings published for
magnitude pruning in Frankle et al. (2021).
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Table 4: Top-1 ImageNet accuracy (%) on ResNet-18 after
one-shot pruning, rewind, and 85-epoch fine-tune. Original
accuracy: 67.7%. Three pruning levels shown; more in
Appendix D.

Pruning level 40% 60% 80%

Path-magnitude 68.6 67.9 66.0
Magnitude 68.8 68.2 66.5
Magnitude (rescaled) 63.1 57.5 15.8

incurred when magnitude is applied after rescaling. Figure 4
shows the full training trajectory at 40 % sparsity.

Runtime. Path-magnitude scores for all weights are com-
puted in 32 ms (Table 3), comparable to a single forward
pass (see Appendix E for details).

These results confirm that rescaling invariance is not just
cosmetic: it prevents large accuracy losses under benign
weight re-scalings while keeping the computational cost
low. A broader comparison with structured and iterative
methods such as CHITA is left for future work.

Figure 4: Top-1 accuracy during fine-tuning at 40 % sparsity.
Path-magnitude overlaps exactly with itself after random
neuron-wise rescaling, while magnitude pruning degrades.

5.5. Discussion and possible future extension

The cost Path-Mag(θ, i) is defined per weight, but its value
for a given weight indexed by i also depends on the other
weights. Therefore, one could hope to achieve better
pruning properties if, once a weight is pruned, the path-
magnitude costs of the remaining weights were updated.
This is reminiscent of the loss-sensitivity cost (LeCun et al.,
1989) that associates to each weight i (a surrogate of) the
difference ℓ(θ−i) − ℓ(θ), where ℓ is a given loss function.
The challenge is similar in both cases: how to account for
global dependencies between the pruning costs associated to
each individual weight? In this direction, a whole literature

has developed techniques attempting to globally minimize
(a surrogate of) ℓ(s ⊙ θ) − ℓ(θ) over the (combinatorial)
choice of a support s satisfying an ℓ0-constraint. Such ap-
proaches have been scaled up to million of parameters in
(Benbaki et al., 2023) by combining a handful of clever algo-
rithmic designs. Similar iterative or greedy strategies could
be explored to aim at solving the (seemingly) combinatorial
ℓ0-optimization problem ∥Φ(s⊙ θ)− Φ(θ)∥1.

6. Conclusion
We introduced a new Lipschitz bound on the distance be-
tween two neural network realizations, leveraging the path-
lifting framework of Gonon et al. (2024a). By formulating
this distance in terms of the ℓ1-path-metric, our result ap-
plies to a broad class of modern ReLU networks—including
ones like ResNets or AlphaGo—and crucially overcomes
the arbitrary pessimism arising in non-invariant parameter-
based bounds. Beyond providing a theoretical guarantee,
we also argued that this metric can be computed efficiently
in practical scenarios such as pruning and quantization.

We then demonstrated how to apply path-lifting to pruning:
the path-magnitude criterion defines a rescaling-invariant
measure of the overall contribution of a weight. In a proof-
of-concept on a ResNet-18 trained on ImageNet, path-
magnitude pruning yields an accuracy on par with standard
magnitude pruning. This connects the theoretical notion of
path-lifting to a practical goal: making pruning decisions
that cannot be undermined by mere neuron-wise rescaling.

This work raises several directions for future research. First,
a natural challenge is to establish sharper versions of our
core result (Theorem 4.1), typically with metrics still based
on the path-lifting but using ℓp-norms with p > 1, or by
deriving functional bounds in expectation (over a given
probability distribution of inputs).

Second, more advanced iterative algorithms, akin to second-
order pruning techniques, might benefit from path-lifting
as a fundamental building block, improving upon the sim-
ple one-pass approach used in our proof-of-concept while
retaining invariance properties (see Section 5.5).

Finally, although our main theorem improves existing Lips-
chitz bounds and extends them to a wide range of network
architectures, the potential applications of the path-lifting
perspective–and its invariance under rescaling–are far from
exhausted. Quantization and generalization, in particular,
are two important areas where the present findings might
stimulate further developments on metrics that offer both
theoretical grounding and compelling practical properties.
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Appendices

A. Path-lifting, activations, and a fixed incidence matrix
We recall the construction of Gonon et al. (2024a), but instead of considering the path-activation matrix A(θ, x) as in Gonon
et al. (2024a), we introduce two new objects A and a(θ, x) that lead to mathematically equivalent formulas but to a lighter
proof of Theorem 4.1:

• the path-activation vector a(θ, x), and

• a fixed incidence matrix A that depends only on the DAG architecture, never on θ or x.

A.1. Network architecture

Definition A.1 (ReLU and k-max-pooling activation functions). The ReLU function is defined as ReLU(x) := x1x⩾0 for
x ∈ R. The k-max-pooling function k-pool(x) := x(k) returns the k-th largest coordinate of x ∈ Rd.

Definition A.2 (DAG-ReLU neural network (Gonon et al., 2024a)). Consider a Directed Acyclic Graph (DAG) G = (N,E)
with edges E, and vertices N called neurons. For a neuron v, the sets ant(v), suc(v) of antecedents and successors of v are
ant(v) := {u ∈ N, u → v ∈ E}, suc(v) := {u ∈ N, v → u ∈ E}. Neurons with no antecedents (resp. no successors) are
called input (resp. output) neurons, and their set is denoted Nin (resp. Nout). Neurons in N \ (Nin ∪Nout) are called hidden
neurons. Input and output dimensions are respectively din := |Nin| and dout := |Nout|.

• A ReLU neural network architecture is a tuple (G, (ρv)v∈N\Nin) composed of a DAG G = (N,E) with attributes
ρv ∈ {id,ReLU} ∪ {k-pool, k ∈ N>0} for v ∈ N \ (Nout ∪ Nin) and ρv = id for v ∈ Nout. We will again denote the
tuple (G, (ρv)v∈N\Nin) by G, and it will be clear from context whether the results depend only on G = (N,E) or also on
its attributes. Define Nρ := {v ∈ N, ρv = ρ} for an activation ρ, and N∗-pool := ∪k∈N>0Nk-pool. A neuron in N∗-pool is
called a ∗-max-pooling neuron. For v ∈ N∗-pool, its kernel size is defined as being | ant(v)|.

• Parameters associated with this architecture are vectors5 θ ∈ RG := RE∪N\Nin . We call bias bv := θv the coordinate
associated with a neuron v (input neurons have no bias), and denote θu→v the weight associated with an edge u → v ∈ E.
We will often denote θ→v := (θu→v)u∈ant(v) and θv→ := (θu→v)u∈suc(v).

• The realization of a neural network with parameters θ ∈ RG is the function RG
θ : RNin → RNout (simply denoted Rθ

when G is clear from the context) defined for every input x ∈ RNin as

Rθ(x) := (v(θ, x))v∈Nout ,

where we use the same symbol v to denote a neuron v ∈ N and the associated function v(θ, x), defined as v(θ, x) := xv for
an input neuron v, and defined by induction otherwise

v(θ, x) :=

{
ρv(bv +

∑
u∈ant(v) u(θ, x)θ

u→v) if ρv = ReLU or ρv = id,

k-pool
(
(bv + u(θ, x)θu→v)u∈ant(v)

)
if ρv = k-pool.

A.2. Paths and the path-lifting

Definition A.3 (Paths and depth in a DAG (Gonon et al., 2024a)). Consider a DAG G = (N,E) as in Definition A.2.
A path of G is any sequence of neurons v0, . . . , vd such that each vi → vi+1 is an edge in G. Such a path is denoted
p = v0 → . . . → vd. This includes paths reduced to a single v ∈ N , denoted p = v. The length of a path is length(p) = d
(the number of edges). We will denote pℓ := vℓ the ℓ-th neuron for a general ℓ ∈ {0, . . . , length(p)} and use the
shorthand pend = vlength(p) for the last neuron. The depth of the graph G is the maximum length over all of its paths. If
vd+1 ∈ suc(pend) then p → vd+1 denotes the path v0 → . . . → vd → vd+1. We denote by PG (or simply P) the set of
paths ending at an output neuron of G.

Definition A.4 (Sub-graph ending at a given neuron). Given a neuron v of a DAG G, we denote G→v the graph deduced
from G by keeping only the largest subgraph with the same inputs as G and with v as a single output: every neuron u with
no path to reach v through the edges of G is removed, as well as all its incoming and outcoming edges. We will use the
shorthand P→v := PG→v

to denote the set of paths in G ending at v.
5For an index set I , denote RI = {(θi)i∈I , θi ∈ R}.
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Definition A.5 (Path-lifting Φ(θ)). Consider a DAG-ReLU neural network G as in Definition A.2 and parameters θ ∈ RG

associated with G. For p ∈ P , define

Φp(θ) :=


length(p)∏

ℓ=1

θvℓ−1→vℓ if p0 ∈ Nin,

bp0

length(p)∏
ℓ=1

θvℓ−1→vℓ otherwise,

where an empty product is equal to 1 by convention. The path-lifting ΦG(θ) of θ is

ΦG(θ) := (Φp(θ))p∈PG .

This is often denoted Φ when the graph G is clear from the context. We will use the shorthand Φ→v := ΦG→v

to denote the
path-lifting associated with G→v (Definition A.4).

A.3. Path-activation vector and fixed incidence matrix

Definition A.6 (Activation of edges, neurons, and paths). Given θ, x, the activation of an edge u → v is au→v(θ, x) := 1 if
v is identity, 1v(θ,x)>0 if v is ReLU, and for k-max-pool it is 1 only for the (lexicographically) first antecedent achieving the
k-th maximum. For a neuron v set av(θ, x) := 1 if v is input, identity, or max-pool, and 1v(θ,x)>0 if v is ReLU. For a path
p = v0 → · · · → vd define

ap(θ, x) := av0(θ, x)

d∏
ℓ=1

avℓ−1→vℓ(θ, x) ∈ {0, 1}.

The path-activation vector is a(θ, x) := (ap(θ, x))p∈P ∈ {0, 1}P .

Definition A.7 (Fixed incidence matrix A). Consider a new symbol vbias that is not used to denote neurons. Instead
of considering as in (Gonon et al., 2024a) the path-activations matrix A(θ, x) ∈ RP×(Nin∪{vbias}) whose coordinates are
indexed by paths p ∈ P and neurons u ∈ Nin ∪ {vbias} and are given by

(A(θ, x))p,u :=

{
ap(θ, x)1p0=u if u ∈ Nin,
ap(θ, x)1p0 /∈Nin otherwise when u = vbias.

we define a fixed incidence matrix A, which corresponds to the all-activated case in the definition of A(θ, x) above, and
which maps input neurons to the path they belong to:

Ap,u :=


1 if u ∈ Nin and p0 = u,

1 if u = vbias and p0 /∈ Nin,

0 otherwise,

so A ∈ {0, 1}P×(|Nin|+1) depends only on the graph.

A.4. Key inner-product identity

With our new notations, Equation (4) (corresponding to Theorem A.1 in (Gonon et al., 2024a)) can be rewritten as:

Rθ(x) =
〈
Φ(θ)⊙ a(θ, x)︸ ︷︷ ︸

path weights

, A︸︷︷︸
fixed incidence

(
x
1

)〉
. (4′)

B. Proof of Theorem 4.1
In this section, we prove a slightly stronger version of Theorem 4.1. We do not state this stronger version in the main body
as it requires having in mind the definition of the path-lifting Φ, recalled in Definition A.5, to understand the following
notations. For parameters θ, we will denote ΦI(θ) (resp. ΦH(θ)) the sub-vector of Φ(θ) corresponding to the coordinates
associated with paths starting from an input (resp. hidden) neuron. Thus, Φ(θ) is the concatenation of ΦI(θ) and ΦH(θ).
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A =

0 . . . 0

0 . . . 0 1 0 . . . 0 0

0 . . . 0 0

0
...

0 0 1

0 0
...





p

p′

v1
vbias

PI

PH

Nin

Figure 5: The coordinate of the path-lifting Φ associated with the path p = v1 → v2 → v3 is Φp(θ) = θv1→v2θv2→v3

since it starts from an input neuron (Definition A.5). While the path p′ = w1 → w2 → w3 starts from a hidden neuron
(in N \ (Nin ∪ Nout)), so there is also the bias of w1 to take into account: Φp′(θ) = bw1

θw1→w2θw2→w3 . As specified
in Definition A.6, the columns of the incidence matrix A are indexed by Nin ∪ {vbias} and its rows are indexed by
P = PI ∪ PH , with PI the set of paths in P starting from an input neuron, and PH the set of paths starting from a hidden
neuron.
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Theorem B.1. Consider a ReLU neural network as in Definition A.2, with output dimension equal to one. Consider
associated parameters θ, θ′. If for every coordinate i, θi and θ′i have the same signs or at least one of them is zero (θiθ′i ⩾ 0),
we have for every input x:

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1. (15)

Moreover, for every neural network architecture, there are non-negative parameters θ ̸= θ′ and a non-negative input x such
that Inequality (5) is an equality.

Theorem B.1 is intentionally stated with scalar output to avoid imposing a specific norm on the outputs; readers can naturally
extend it to the vector-valued setting using the norm most relevant to their application. As an example, we derive the next
corollary for ℓq-norms on the outputs, which corresponds to the Theorem 4.1 given in the text body (except for the equality
case, which is also an easy consequence of the equality case of Inequality (15)).

Corollary B.2. Consider an exponent q ∈ [1,∞) and a ReLU neural network as in Definition A.2. Consider associated
parameters θ, θ′. If for every coordinate i, it holds θiθ′i ⩾ 0, then for every input x ∈ Rdin :

∥Rθ(x)−Rθ′(x)∥q ⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1.

Proof of Corollary B.2. By definition of the model, it holds:

∥Rθ(x)−Rθ′(x)∥qq =
∑

v∈Nout

|v(θ, x)− v(θ′, x)|q.

Recall that Φ→v is the path-lifting associated with the sub-graph G→v (Definition A.5). By Theorem B.1, it holds:

|v(θ, x)− v(θ′, x)|q ⩽ max(∥x∥q∞, 1)∥Φ→v(θ)− Φ→v(θ′)∥q1.

Since Φ(θ) = (Φ→v(θ))v∈Nout , this implies:

∥Rθ(x)−Rθ′(x)∥qq ⩽ max(∥x∥q∞, 1)∥Φ(θ)− Φ(θ′)∥q1.

1 1 −1 −1

Figure 6: Counter-example showing that the conclusion of Theorem 4.1 does not hold when the parameters have opposite
signs. If the hidden neurons are ReLU neurons, the left network implements Rθ(x) = ReLU(x) (with θ = (1 1)T ) and
the right network implements Rθ′(x) = −ReLU(−x) (with θ′ = (−1 − 1)T ). Inequality (5) does not hold since there
is a single path and the product of the weights along this path is equal to one in both cases, so that Φ(θ) = Φ(θ′) = 1 (cf
Section 3) while these two functions are nonzero and have disjoint supports.

Proof of Theorem B.1. A geometric illustration of the spirit of the proof is given in Figure 3, as detailed in the figure caption.

Step 1 – Reduction to non-zero coordinates. Since both sides of (15) are continuous in (θ, θ′), without loss of generality it
is enough to prove it for weight vectors θ, θ′ with no zero entries.

Step 2 – Proof for parameters leading to the same activations a(θ, x) = a(θ′, x). If the two parameters activate
exactly the same paths on x, then (4′) yields

|Rθ(x)−Rθ′(x)| =
∣∣⟨(Φ(θ)− Φ(θ′))⊙ a(θ, x), A

(
x
1

)
⟩
∣∣ ⩽ ∥(Φ(θ)− Φ(θ′))⊙ a(θ, x)∥1 ∥A

(
x
1

)
∥∞.

Because A is binary with at most one “1” per row, ∥A
(
x
1

)
∥1 ⩽ ∥

(
x
1

)
∥1. Moreover, a(θ, x) is a binary vector so

∥(Φ(θ) − Φ(θ′)) ⊙ a(θ, x)∥1 ⩽ ∥Φ(θ) − Φ(θ′)∥1. This gives the bound of Theorem 4.1 in the simple case where
a(θ, x) = a(θ′, x):

|Rθ(x)−Rθ′(x)| ⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1.
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To prove the slightly stronger bound appearing in Theorem B.1, first split the paths depending on whether they start at an
input neuron or at a hidden neuron:∣∣⟨(Φ(θ)−Φ(θ′))⊙a(θ, x), A

(
x
1

)
⟩
∣∣ ⩽ ∣∣⟨(ΦI(θ)−ΦI(θ′))⊙aI(θ, x), AIx⟩

∣∣+ ∣∣⟨(ΦH(θ)−ΦH(θ′))⊙aH(θ, x), AH⟩
∣∣

and then apply the same argument on each part to get:

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1.

Step 3 – A bound for a trajectory with finitely many break-points. Let t 7→ θ(t) be any continuous curve from
θ to θ′ such that the activation vector a(θ(t), x) is constant on finitely many intervals (tk, tk+1) with tk < tk+1 and
[0, 1] = ∪m

k=0[tk, tk+1]. Applying Step 2 on every interval6, and summing gives

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞
∑
k

∥ΦI(θ(tk+1))− ΦI(θ(tk))∥1 +
∑
k

∥ΦH(θ(tk+1))− ΦH(θ(tk))∥1. (A.2)

Step 4 – Construction of a monotone path in log-space. For each coordinate index i of the vector θ define

θi(t) = sgn(θi) |θi|1−t |θ′i|t, t ∈ [0, 1]. (A.3)

This trajectory t → θ(t) is well-defined since by Step 1 we assumed without loss of generality that the coordinates of θ and
θ′ are non-zero. Moreover, since sgn(θ) = sgn(θ′), this trajectory goes from θ to θ′ and we can use (A.2) provided that this
path has only finitely many break-points.

For every path p, the scalar function t 7→ Φp(θ(t)) = |Φp(θ)|1−t|Φp(θ
′)|t is monotone, so developing the ℓ1-norms in (A.2)

yields sums that telescope exactly:∑
k

∥ΦI(θk+1)− ΦI(θk)∥1 = ∥ΦI(θ)− ΦI(θ′)∥1, and similarly for ΦH .

Thus Theorem B.1 follows from (A.2) provided the path has only finitely many break-points.

Step 5 – Proving the existence of finitely many break-points (technical). Each coordinate in (A.3) is an analytic function
of t, and the activation of a ReLU or max-pool neuron evaluated on an analytic input can only change at isolated roots. On
the compact interval [0, 1] there can be only finitely many such roots. Lemma B.3 formalizes this argument and completes
the proof of (15).

To prove Theorem B.1, it remains to prove the claim about the equality case: we must find θ ̸= θ′ and an input x such that
the inequality is actually an equality.

Sharpness of the bound (equality cases) in Theorem B.1 Consider an input neuron v0 and a path p = v0 → v1 → · · · → vd.
Define two parameter vectors that differ only on that path:

θvℓ→vℓ+1
= a > 0, θ′vℓ→vℓ+1

= b > 0, ℓ = 0, . . . , d− 1,

and set every other coordinate of θ, θ′ to 0.

Choose the input x with xv0 > 0 and all other coordinates equal to 0. Because the signal propagates solely along p,

Rθ(x) = ad xv0 , Rθ′(x) = bd xv0 .

For the path–lifting, only the coordinate Φp changes, hence

∥ΦI(θ)− ΦI(θ′)∥1 = |ad − bd|, ∥ΦH(θ)− ΦH(θ′)∥1 = 0.

Since ∥x∥∞ = xv0 , inequality (15) is an equality:

|ad − bd|xv0 = ∥x∥∞ ∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1,

Thus the bound of Theorem B.1 cannot be improved in general.
6Formally, apply Step 2 to a pair θ(t), θ(t′), with t, t′ in the open interval (tk, tk+1), let t → tk and t′ → tk+1, and conclude by

continuity of both sides.
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Lemma B.3. Fix n∈N inputs x1, . . . , xn ∈ Rdin and two parameter vectors θ, θ′ with no zero coordinates. Let θ(t) be the
geometric trajectory (A.3). There are finitely many points 0 = t0 < t1 < · · · < tm = 1 such that for every input xi the
path-activation vector a

(
θ(t), xi

)
is constant on each open interval (tk, tk+1).

Proof of Lemma B.3. Step 1 – reduce to a single input. If a finite breakpoint set works for each xi individually, their union
works for all inputs. We therefore fix one arbitrary input x.

Step 2 – property to prove for each neuron. For a neuron v define

P(v) :


there exist finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that

t 7→ v
(
θ(t), x

)
is analytic on every [tk, tk+1],

t 7→ av
(
θ(t), x

)
and t 7→ au→v

(
θ(t), x

)
∀u ∈ ant(v)

are constant on (tk, tk+1).

If P(v) holds for every neuron v, the union of their breakpoints gives finitely many intervals on which all edge and path
activations are frozen, completing the lemma.

Step 3 – prove P(v) by topological induction.

We perform induction on a topological sorting (Cormen et al., 2009, Section 22.4) of the underlying DAG. We start with
input neurons v since by Definition A.2, these are the ones without antecedents so they are the first to appear in a topological
sorting.

Initialization: Input neurons. v(θ, x) = xv does not depend on θ, hence av(·, x) ≡ 1; P(v) holds with m = 1.

Induction: Now consider a neuron v /∈ Nin and assume P(u) to hold for every neuron u coming before v in the topoligical
sorting. There are finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that for every u ∈ ant(v) and every k, the
map t ∈ [tk, tk+1] 7→ u(θ(t), x) is analytic. We distinguish three cases depending on the activation function of the neuron v.

(i) Identity neuron. v(θ(t), x) = bv +
∑

u∈ant(v) u(θ(t), x)θu→v(t) is analytic on the same intervals [tk, tk+1] because each
factor is analytic; av ≡ 1. Thus P(v) inherits the finite breakpoint set of its antecedents.

(ii) ReLU neuron. The pre-activation prev(t) := bv +
∑

u∈ant(v) u(θ(t), x)θu→v(t) is analytic on each [tk, tk+1] by
induction. Either prev is identically zero, in which case av ≡ 0, or its zero set is finite (as an analytic function on a compact
domain), so the sign of prev (and therefore av and each au→v) is constant between consecutive zeros. Hence P(v) holds.

(iii) K-max-pool neuron. The output of v is the K-th largest component of prev :=
(
u(θ(t), x)θu→v(t)

)
u∈ant(v)

. Each
coordinate of prev is analytic on each [tk, tk+1] by induction. Two coordinates can swap order only at isolated t where their
analytic difference becomes zero, so the ranking—and thus the selected K-th value—changes only finitely many times.
Thus P(v) holds.

By topological induction P(v) is true for every neuron. The argument in Step 2 then gives the desired global breakpoint
set.

C. Proof of Lemma 5.2
Rescaling-invariance is a direct consequence of the known properties of the path-lifting Φ (Gonon et al., 2024a).

In the case of a singleton I = {i}, as already evoked, (13) simply follows from (5) and the definition of Path-Mag. When
|I| ⩾ 2, consider any enumeration ij , 1 ⩽ j ⩽ |I| of elements in I , and sj := 1G −

∑j
ℓ=1 eiℓ = 1G − 1∪j

ℓ=1{iℓ}
(as well

as s0 := 1G): since the pair (θ, s⊙ θ) –as well as the pairs (sj−1 ⊙ θ, sj ⊙ θ)– satisfies the assumptions of Lemma 4.2, and
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sj ⊙ sj−1 = sj we have

∥Φ(θ)− Φ(s⊙ θ)∥1 =
(7)

∥Φ(θ)∥1 − ∥Φ(s⊙ θ)∥1

=

|I|∑
j=1

∥Φ(sj−1 ⊙ θ)∥1 − ∥Φ(sj ⊙ θ)∥1

=
(7)

|I|∑
j=1

∥Φ(sj−1 ⊙ θ)− Φ(sj ⊙ (sj−1 ⊙ θ))∥1

=
(10)

|I|∑
j=1

Path-Mag(sj−1 ⊙ θ, ij)

⩽
(12)

|I|∑
j=1

Path-Mag(θ, ij).

Finally, to establish (14), observe that for each path p we have |Φp(θ)| =
∏

j∈p |θj | so, for each i ∈ p (NB: i can index
either an edge in the path or the first neuron of p when p starts from a hidden or output neuron, in which case θi is the
associated bias) it holds

∂

∂θi
|Φp(θ)| = sgn(θi)

∏
j∈p,j ̸=i

|θj |.

Because sgn(θi)θi = |θi| we get that, when i ∈ p,

θi ·
∂

∂θi
|Φp(θ)| = |Φp(θ)|.

Summing over all paths for a given index i shows that

(θ ⊙∇θ∥Φ(θ)∥1)i = θi
∂

∂θi

∑
p∈P

|Φp(θ)|

= θi
∑

p∈P:i∈p

∂

∂θi
|Φp(θ)|

=
∑

p∈P:i∈p

|Φp(θ)|

=
(12)

Path-Mag(θ, i).

D. Proof-of-concept: accuracy of path-magnitude pruning
To provide a proof-of-concept of the utility of the main Lipschitz bound in Theorem 4.1 for pruning, we implement the
following “prune and finetune” procedure:

1. train: we train a dense network,

2. rescale (optional): we apply a random rescale to the trained weights (this includes biases),

3. prune: we prune the resulting network,

4. rewind: we rewind the weights to their value after a few initial epochs (standard in the lottery ticket literature to
enhance performance (Frankle et al., 2020)),

5. finetune: we retrain the pruned network, with the pruned weights frozen to zero and the other ones initialized from
their rewinded values.
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Doing that to prune p = 40% of the weights at once of a ResNet18 trained on ImageNet-1k, we observe that (Figure 4):

• without random rescale (plain lines), the test accuracy obtained at the end is similar for both magnitude pruning and
path-magnitude pruning;

• with random rescale (dotted lines – the one associated with path-magnitude pruning is invisible as it coincides with
the corresponding plain line), magnitude pruning suffers a large drop of top-1 test accuracy, which is not the case of
path-magnitude pruning since it makes the process invariant to potential rescaling.

We observe similar results when pruning between p = 10% and p = 80% of the weights at once, see Table 5.

Table 5: Extended version of Table 4. Top-1 accuracy after pruning, optional rescale, rewind and retrain, as a function of the
pruning level. (∗) = results valid with as well as without rescaling, as path-magnitude pruning is invariant to rescaling.

Pruning level none 10% 20% 40% 60% 80%
Path-Magnitude (∗)

67.7%
68.6 68.8 68.6 67.9 66.0

Magnitude w/o Random Rescale 69.0 69.0 68.8 68.2 66.5
Magnitude w/ Random Rescale 68.8 68.7 63.1 57.5 15.8

We now give details on each stage of the procedure.

1. Train. We train a dense ResNet18 (He et al., 2016) on ImageNet-1k, using 99% of the 1,281,167 images of the training
set for training, the other 1% for validation. We use SGD for 90 epochs, learning rate 0.1, weight-decay 0.0001, batch size
1024, classical ImageNet data normalization, and a multi-step scheduler where the learning rate is divided by 10 at epochs
30, 60 and 80. The epoch out of the 90 ones with maximum validation top-1 accuracy is considered as the final epoch.
Doing 90 epochs took us about 18 hours on a single A100-40GB GPU.

2. Random rescaling. Consider a pair of consecutive convolutional layers in the same basic block of the ResNet18 architec-
ture, for instance the ones of the first basic block: model.layer1[0].conv1 and model.layer1[0].conv2 in
PyTorch, with model being the ResNet18. Denote by C the number of output channels of the first convolutional layer,
which is also the number of input channels of the second one. For each channel c ∈ J1, CK, we choose uniformly at random
a rescaling factor λ ∈ {1, 128, 4096} and multiply the output channel c of the first convolutional layer by λ, and divide the
input channel c of the second convolutional layer by λ. In order to preserve the input-output relationship, we also multiply
by λ the running mean and the bias of the batch normalization layer that is in between (model.layer1[0].bn1 in the
previous example). Here is an illustrative Python code (that should be applied to the correct layer weights as described
above):

1 factors = np.array([1, 128, 4096])
2

3 out_channels1, _, _, _ = weights_conv1.shape
4

5 for out in range(out_channels1):
6 factor = np.random.choice(factors)
7 weights_conv1[out, :, :, :] *= factor
8 weights_conv2[:, out, :, :] /= factor
9 running_mean[out] *= factor

10 bias[out] *= factor

3. Pruning. At the end of the training phase, we globally prune (i.e. set to zero) p% of the remaining weights in all the
convolutional layers plus the final fully connected layer.

4. Rewinding. We save the mask and rewind the weights to their values after the first 5 epochs of the dense network, and
train for 85 remaining epochs. This exactly corresponds to the hyperparameters and pruning algorithm of the lottery ticket
literature (Frankle et al., 2021).

5. Finetune. This is done in the same conditions as the training phase.
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E. Computational cost: comparing pruning criteria
This section details how the results of Table 3 were obtained.

E.1. Hardware and software

All experiments were performed on an NVIDIA A100-PCIE-40GB GPU, with CPU Intel(R) Xeon(R) Silver 4215R CPU
@ 3.20GHz. We used PyTorch (version 2.2, with CUDA 12.1 and cuDNN 8.9 enabled) to implement model loading,
inference, and custom pruning-cost computation. All timings were taken using the torch.utils.benchmark module,
synchronizing the GPU to ensure accurate measurement of wall-clock time.

E.2. Benchmarked code

Single-forward pass. We fed a tensor torch .randn(B, 3, 224, 224) to each model (batch size B = 1 or B = 128,
224× 224 RGB image).

Path-magnitude scores. We followed the recipe given in (14): (Path-Mag(θ, i))i = θ ⊙ ∇θ∥Φ(θ)∥1. To do that, we
computed the path-norm ∥Φ(θ)∥1 using the function get path norm we released online at github.com/agonon/
pathnorm_toolkit (Gonon et al., 2024b). And we simply added one line to auto-differentiate the computations and
multiply the result pointwise with the parameters θ. Thus, our code (see (Gonon et al., 2025) and github.com/agonon/
pathnorm_toolkit for updates) has the following structure:

• it starts by replacing max-pooling neurons by summation neurons, or equivalently max-pooling layers by convolutional
layers (following the recipe given in (Gonon et al., 2024a) to compute correctly the path-norm),

• it replaces each weight by its absolute value,

• it does a forward pass to compute the path-norm,

• here we added auto-differentiation (backwarding the path-norm computations), and pointwise multiplication with
original weights,

• and it finally reverts to the original maxpool layers and the weights’ value to restore the original network.

Table 3 reports the time to do all this.

Magnitude scores. It takes as input a torch model, and does a simple loop over all model’s parameters:

• to check if these are the parameters of a torch.nn.Linear or torch.nn.Conv2d module,

• if this is the case, it adds to a list the absolute values of these weights.

Loss-sensitivity scores (LeCun et al., 1989). In the Optimal Brain Damage (OBD) framework introduced in (LeCun
et al., 1989), each weight θi in the network is assigned a score approximating the expected increase in loss if θi were pruned
(set to zero). The score of θi is defined by:

OBD(θ, i) =
1

2
hiiθ

2
i ,

where hii is the diagonal entry of the Hessian matrix H = ∇2ℓ of the empirical loss

ℓ(θ) =

n∑
k=1

ℓ(Rθ(xk), yk)

with respect to the parameters θ. As we could not locate a proof of the rescaling-invariance of OBD we give below a short
proof, before discussing its numerical computation.

Rescaling-invariance. Denote D = diag(λi) a diagonal rescaling matrix such that for each θ the parameters θ′ := Dθ
are rescaling-equivalent to θ. This implies that Rθ(xk) = RDθ(xk) for each training sample xk and every θ, hence
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ℓ(θ) = ℓ(Dθ) for every θ. Simple calculus then yields equality of the Jacobians ∂ℓ(θ) = ∂ℓ(Dθ)D, i.e., since D is
symmetric, taking the transpose

∇ℓ(θ) = D∇ℓ(Dθ), ∀θ,
that is to say ∇ℓ(·) = D∇ℓ(D·). Differentiating once more yields

H(θ) = ∇2ℓ(θ) = ∂[∇ℓ](θ) = ∂[D∇ℓ(D·)](θ) = D∂[∇ℓ(D·)](θ) = D∂[∇ℓ(·)](Dθ)D = DH(Dθ)D.

Extracting the i-th diagonal entry yields hii(θ) = λ2
ihii(Dθ) (and more generally hij(θ) = λiλjhij(Dθ)), hence

OBD(Dθ, i) =
1

2
hii(Dθ)((Dθ)i)

2 =
1

2
hii(Dθ)(λiθi)

2 =
1

2
[hii(Dθ)λ2

i ]θ
2
i =

1

2
hii(θ)θ

2
i = OBD(θ, i). (16)

Computation. Computing the full Hessian matrix H exactly would be prohibitive for large networks. Instead, a well-known
variant of Hutchinson’s trick (Bekas et al., 2007) is that its diagonal can be computed as

diag(H) = Ev

[
(Hv)⊙ v

]
where the expectation is over Rademacher vectors v (i.i.d. uniform vi ∈ {−1, 1}) and where ⊙ denotes pointwise
multiplication. In practice, we approximate it as follows:

• draw a single vector v as above,

• compute the Hessian-vector product Hv using the “reverse-over-forward” higher-order autodiff in PyTorch’s
torch.func API,

• deduce the estimate diag(H) ≃ (Hv)⊙ v =: u,

• finally estimate OBD ≃ 1
2u⊙ θ ⊙ θ = 1

2 (Hv)⊙ v ⊙ θ ⊙ θ.

The performance to do all this depends on the size of the batch on which is computed the loss, as the cost of the Hessian-
vector product Hv depends on it. Table 3 reports the milliseconds required for this entire procedure on batch sizes of 1 and
128, listing corresponding values as x− y.

This approximation is not rescaling-invariant in general. Indeed, we have

((Hv)⊙ v ⊙ θ ⊙ θ)i = (Hv)i · vi · θ2i =

∑
j

hij(θ)vj

 viθ
2
i

=
(16)

∑
j

λiλjhij(Dθ)vj

 viθ
2
i =

∑
j

λjhij(Dθ)vj

 viλiθ
2
i

which would be the same as the estimate made for Dθ if and only if it were equal to∑
j

hij(Dθ)vj

 viλ
2
i θ

2
i .

There is no reason for this to happen (and it did not happen in any of our experiments). For instance, take vi = θi = 1 for
every i, we would need

∑
j λjhij(Dθ) = λi

∑
j hij(Dθ), which is the same as saying that λ is an eigenvector of H(Dθ)

with eigenvalue 1.

F. Lipschitz property of Φ: proof of Lemma 4.3
We first establish Lipschitz properties of θ 7→ Φ(θ). Combined with the main result of this paper, Theorem 4.1, or with
Corollary B.2, they establish a Lipschitz property of θ 7→ Rθ(x) for each x, and of the functional map θ 7→ Rθ(·) in the
uniform norm on any bounded domain. This is complementary to the Lipschitz property of x 7→ Rθ(x) studied elsewhere in
the literature, see e.g. (Gonon et al., 2024a).
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Lemma F.1. Consider q ∈ [1,∞), parameters θ and θ′, and a neuron v. Then, it holds:

∥Φ→v(θ)− Φ→v(θ′)∥qq

⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥qq

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq max

u∈ant(pℓ)
∥Φ→u(θ′)∥qq

) (17)

with the convention that an empty sum and product are respectively equal to zero and one.

Note that when all the paths in P→v have the same length L, Inequality (17) is homogeneous: multiplying both θ and θ′

coordinate-wise by a scalar λ scales both sides of the equations by λL.

Proof. The proof of Inequality (17) goes by induction on a topological sorting of the graph. The first neurons of the sorting
are the neurons without antecedents, i.e., the input neurons by definition. Consider an input neuron v. There is only a single
path ending at v: the path p = v. By Definition A.5, Φ→v(·) = Φv(·) = 1 so the left hand-side is zero. On the right-hand
side, there is only a single choice for a path ending at v: this is the path p = v that starts and ends at v. Thus D = 0, and the
maximum is zero (empty sum). This proves Inequality (17) for input neurons.

Consider a neuron v /∈ Nin and assume that this is true for every neuron before v in the considered topological sorting.
Recall that, by definition, Φ→v is the path-lifting of G→v (see Definition A.5). The paths in G→v are p = v, and
the paths going through antecedents of v (v has antecedents since it is not an input neuron). So we have Φ→v(θ) =(

(Φ→u × θu→v)u∈ant(v)

bv

)
, where we again recall that Φ→u(·) = 1 for input neurons u, and bu = 0 for ∗-max-pooling

neurons. Thus, we have:

∥Φ→v(θ)− Φ→v(θ′)∥qq
= |bv − b′v|q +

∑
u∈ant(v)

∥Φ→u(θ)× θu→v − Φ→u(θ′)× (θ′)u→v∥qq

⩽ |bv − b′v|q +
∑

u∈ant(v)

(
∥Φ→u(θ)− Φ→u(θ′)∥qq|θu→v|q + ∥Φ→u(θ′)∥qq|θu→v − (θ′)u→v|q

)
⩽ |bv − b′v|q + ∥θ→v∥qq max

u∈ant(v)
∥Φ→u(θ)− Φ→u(θ′)∥qq + ∥θ→v − (θ′)→v∥qq max

u∈ant(v)
∥Φ→u(θ′)∥qq.

Using the induction hypothesis (Inequality (17)) on the antecedents of v and observing that p ∈ P→v if, and only if there
are u ∈ ant(v), r ∈ P→u such that p = r → v gives (we highlight in blue the important changes):

∥Φ→v(θ)− Φ→v(θ)∥qq ⩽ |bv − b′v|q + ∥θ→v − (θ′)→v∥qq max
u∈ant(v)

∥Φ→u(θ′)∥qq

+∥θ→v∥q
q max
u∈ant(v)

max
r∈P→u

length(r)∑
ℓ=1

length(r)∏
k=ℓ+1

∥θ→rk∥qq

(
|brℓ − b′rℓ |

q + ∥θ→rℓ − (θ′)→rℓ∥qq max
w∈ant(rℓ)

∥Φ→w(θ′)∥qq
)
.

= |bv − b′v|q + ∥θ→v − (θ′)→v∥qq max
u∈ant(v)

∥Φ→u(θ′)∥qq

+ max
p∈P→v

length(p)−1∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥qq

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq max

w∈ant(pℓ)
∥Φ→w(θ′)∥qq

)

= max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥qq

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq max

w∈ant(pℓ)
∥Φ→w(θ′)∥qq

)
.

This proves Inequality (17) for v and concludes the induction.

In the sequel it will be useful to restrict the analysis to normalized parameters, defined as parameters θ̃ such that∥∥∥( θ̃→v

b̃v

)∥∥∥
1
∈ {0, 1} for every v ∈ N \ (Nout ∪ Nin). Thanks to the rescaling-invariance of ReLU neural network
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parameterizations, Algorithm 1 in Gonon et al. (2024a) allows to rescale any parameters θ into a normalized version θ̃ such
that Rθ̃ = Rθ and Φ(θ) = Φ(θ̃) (Gonon et al., 2024a, Lemma B.2). This implies the next simpler results for normalized
parameters.

Theorem F.2. Consider q ∈ [1,∞). For every normalized parameters θ, θ′ obtained as the output of Algorithm 1 in Gonon
et al. (2024a), it holds:

∥Φ(θ)− Φ(θ′)∥qq ⩽
∑

v∈Nout\Nin

|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

+min
(
∥Φ(θ)∥qq, ∥Φ(θ′)∥qq

)
max

p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq

)
. (18)

Denote by N(θ) the normalized version of θ, obtained as the output of Algorithm 1 in Gonon et al. (2024a). It can be
checked that if θ = N(θ̃) and θ′ = N(θ̃′), and if all the paths have the same lengths L, then multiplying both θ̃ and θ̃′

coordinate-wise by a scalar λ does not change their normalized versions θ and θ′, except for the biases and the incoming
weights of all output neurons that are scaled by λL. As a consequence, Inequality (18) is homogeneous: both path-liftings on
the left-hand-side and the right-hand-side are multiplied by λL, and so is the sum over v ∈ Nout \Nin in the right-hand-side,
while the maximum over p is unchanged since it only involves normalized coordinates that do not change.

For networks used in practice, it holds Nout ∩Nin = ∅ so that Nout \Nin is just Nout, but the above theorem also covers the
somewhat pathological case of DAG architectures G where one or more input neurons are also output neurons.

Proof of Theorem F.2. Since Φ(θ) = (Φ→v(θ))v∈Nout
, it holds

∥Φ(θ)− Φ(θ′)∥qq =
∑

v∈Nout

∥Φ→v(θ)− Φ→v(θ′)∥qq.

By Definition A.5, it holds for every input neuron v: Φ→v(·) = 1. Thus, the sum can be taken over v ∈ Nout \Nin:

∥Φ(θ)− Φ(θ′)∥qq =
∑

v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥qq.

Besides, observe that many norms appearing in Inequality (17) are at most one for normalized parameters. Indeed, for such
parameters it holds for every u ∈ N \ (Nin ∪Nout): ∥θ→u∥qq ⩽ 1 (Gonon et al., 2024a, Lemma B.2). As a consequence, for
p ∈ P and any ℓ ∈ J0, length(p)− 1K we have:

length(p)∏
k=ℓ+1

∥θ→pk∥qq =

length(p)−1∏
k=ℓ+1

∥θ→pk∥qq︸ ︷︷ ︸
⩽1

 ∥θ→pend∥qq ⩽ ∥θ→pend∥qq.

Moreover, for normalized parameters θ and u /∈ Nout, it also holds ∥Φ→u(θ)∥qq ⩽ 1 (Gonon et al., 2024a, Lemma B.3).
Thus, Inequality (17) implies for any v ∈ Nout, and any normalized parameters θ and θ′:

∥Φ→v(θ)− Φ→v(θ′)∥qq

⩽ |bv − b′v|q + ∥θ→v − (θ′)→v∥qq + ∥θ→v∥qq max
p∈P→v

length(p)−1∑
ℓ=1

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq

)
.
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Thus, we get:

∥Φ(θ)− Φ(θ′)∥qq
=

∑
v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥qq

⩽
∑

v∈Nout\Nin

(
|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

)

+
∑

v∈Nout\Nin

∥θ→v∥qq max
p∈P→v

length(p)−1∑
ℓ=1

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq

)
⩽

∑
v∈Nout\Nin

(
|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

)

+

 ∑
v∈Nout\Nin

∥θ→v∥qq

 max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq

)
.

It remains to use that
∑

v∈Nout\Nin
∥θ→uv∥qq ⩽ ∥Φ(θ)∥qq for normalized parameters θ (Gonon et al., 2024a, Theorem B.1,

case of equality) to conclude that:

∥Φ(θ)− Φ(θ′)∥qq ⩽
∑

v∈Nout\Nin

(
|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

)

+ ∥Φ(θ)∥q
q max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ

− b′pℓ
|q + ∥θ→pℓ − (θ′)→pℓ∥qq

)
.

The term in blue can be replaced by min
(
∥Φ(θ)∥q

q,∥Φ(θ′)∥q
q

)
by repeating the proof with θ and θ′ exchanged (everything

else is invariant under this exchange).

Lemma F.3. Consider a DAG ReLU network with L := D − 1 where the depth D is maxpath p∈P |length(p)| and width
W = max(dout,maxneuron v∈N | ant(v)|) where ant(v) is the set of antecedents of v in the DAG. Denote by θ the normalized
parameters of θ as obtained as the output of Algorithm 1 in (Gonon et al., 2024a) with q = 1, i.e., θ is obtained from θ by
rescaling neurons from the input to output layer, ensuring every neuron has a vector of incoming weights equal to one on all
layers except the last one. It holds for every θ, θ′ and every q ∈ [1,∞)

∥Φ(θ)− Φ(θ′)∥qq ⩽ (W 2 +min(∥Φ(θ)∥qq, ∥Φ(θ′)∥qq) · LW )∥θ − θ′∥q∞

Lemma 4.3 corresponds to Lemma F.3 with q = 1.

Proof of Lemma F.3. Lemma B.1 of (Gonon et al., 2024a) guarantees that Φ(N(θ)) = Φ(θ) for every θ. In particular,

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(N(θ))− Φ(N(θ′))∥1

so it is enough to prove Lemma F.3 for normalized parameters, so we may and will assume θ = N(θ), θ′ = N(θ′). Denote
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θ̄→v := (θ→v, bv). With this notation, (18) implies (for normalized parameters θ, θ′)

∥Φ(θ)− Φ(θ′)∥qq ⩽
∑

v∈Nout\Nin

∥θ̄→v − (θ̄′)→v∥qq +min(∥Φ(θ)∥qq, ∥Φ(θ′)∥qq) · max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥θ̄→pℓ − (θ̄′)→pℓ∥qq

⩽
∑

v∈Nout\Nin

| ant(v)| · ∥θ̄→v − (θ̄′)→v∥q∞

+min(∥Φ(θ)∥qq, ∥Φ(θ′)∥qq) · max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

| ant(pℓ)| · ∥θ̄→pℓ − (θ̄′)→pℓ∥q∞

⩽

 ∑
v∈Nout\Nin

| ant(v)|+min(∥Φ(θ)∥qq, ∥Φ(θ′)∥qq) · max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

| ant(pℓ)|

 ∥θ − θ′∥q∞

The maximum length of a path is D = L+ 1. Moreover W ⩾ dout = |Nout| and W ⩾ | ant(v)| for every neuron, so this
yields

∥Φ(θ)− Φ(θ′)∥qq ⩽ (W 2 +min(∥Φ(θ)∥qq, ∥Φ(θ′)∥qq) · LW )∥θ − θ′∥∞.

G. Recovering a known bound with Theorem 4.1
It is already known in the literature that for every input x and every parameters θ, θ′ (even with different signs) of a
layered fully-connected neural network with L affine layers and L+ 1 layers of neurons, N0 = Nin, . . . , NL = Nout, width
W := max0⩽ℓ⩽L |Nℓ|, and each matrix having some operator norm bounded by R ⩾ 1, it holds (Gonon et al., 2023,
Theorem III.1 with p = q = ∞ and D = ∥x∥∞)(Neyshabur et al., 2018; Berner et al., 2020):

∥Rθ(x)−Rθ′(x)∥1 ⩽ (W∥x∥∞ + 1)WL2RL−1∥θ − θ′∥∞.

Can it be retrieved from Theorem 4.1? Next corollary almost recovers it: with W max(∥x∥∞, 1) instead of W∥x∥∞ + 1,
and 2L instead of L2. This is better as soon as there are at least L ⩾ 2 layers and as soon as the input satisfies ∥x∥∞ ⩾ 1.
Corollary G.1. (Gonon et al., 2023, Theorem III.1) Consider a simple layered fully-connected neural network architecture
with L ⩾ 1 layers, corresponding to functions Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x)) with each Mℓ denoting a
matrix, and parameters θ = (M1, . . . ,ML). For a matrix M , denote by ∥M∥1,∞ the maximum ℓ1-norm of a row of M .
Consider R ⩾ 1 and define the set Θ of parameters θ = (M1, . . . ,ML) such that ∥Mℓ∥1,∞ ⩽ R for every ℓ ∈ J1, LK. Then,
for every parameters θ, θ′ ∈ Θ, and every input x:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)2LW 2RL−1∥θ − θ′∥∞.

Proof. For every neuron v, define f(v) := ℓ such that neuron v belongs to the output neurons of matrix Mℓ (i.e., of layer ℓ).
By Lemma F.1 with q = 1, we have for every neuron v

∥Φ→v(θ)− Φ→v(θ′)∥1

⩽ max
p∈P→v

length(p)∑
ℓ=1


length(p)∏
k=ℓ+1

∥θ→pk∥1︸ ︷︷ ︸
⩽∥Mf(pk)∥1,∞

⩽R


|bpℓ

− b′pℓ
|︸ ︷︷ ︸

=0 (no biases)

+ ∥θ→pℓ − (θ′)→pℓ∥1︸ ︷︷ ︸
⩽| ant(pℓ)|∥θ−θ′∥∞⩽W∥θ−θ′∥∞

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1

 (19)

⩽ W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−ℓ max
u∈ant(pℓ)

∥Φ→u(θ′)∥1 (20)
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with the convention that an empty sum and product are respectively equal to zero and one. Consider θ′ = 0. It holds
∥Φ→u(θ′)∥1 = 0 for every u /∈ Nin, and ∥Φ→u(θ′)∥1 = 1 for input neurons u (Definition A.5). Therefore, we have:

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1 = 1ant(pℓ)∩Nin ̸=∅ = 1ℓ=1 and p0∈Nin . (21)

Specializing Inequality (19) to θ′ = 0 and using Equation (21) yields

∥Φ→v(θ)∥1 ⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

R

 ∥θ→pℓ∥1︸ ︷︷ ︸
⩽∥Mf(pℓ)

∥1,∞
⩽R

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1︸ ︷︷ ︸
=1ℓ=1 and p0∈Nin

= max
p∈P→v:p0∈Nin

Rlength(p). (22)

Since the network is layered, every neuron u ∈ ant(pℓ) is on the ℓ − 1-th layer, and every p′ ∈ P→u is of length ℓ − 1,
hence we deduce using Inequality (20), Equation (22) for θ′ and u:

∥Φ→v(θ)− Φ→v(θ′)∥1 ⩽ W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−ℓ max
u∈ant(pℓ)

max
p′∈P→u:p′

0∈Nin

Rlength(p′)︸ ︷︷ ︸
=Rℓ−1

= W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−1

︸ ︷︷ ︸
⩽LRL−1

⩽ LWRL−1∥θ − θ′∥∞.

We get:

∥Φ(θ)− Φ(θ′)∥1 =
∑

v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥1

⩽ |Nout \Nin| · LWRL−1∥θ − θ′∥∞
⩽ LW 2RL−1∥θ − θ′∥∞. (23)

Using Corollary B.2 with q = 1, we deduce that as soon as θ, θ′ satisfy θiθ
′
i ⩾ 0 for every parameter coordinate i, then for

every input x:
∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)LW 2RL−1∥θ − θ′∥∞. (24)

Now, consider general parameters θ and θ′. Define θinter to be such that for every parameter coordinate i:

θinter
i =

{
θ′i if θiθ′i ⩾ 0,
0 otherwise.

By definition, it holds for every parameter coordinate i: θinter
i θi ⩾ 0 and θinter

i θ′i ⩾ 0 so we can apply Inequality (24) to the
pairs (θ, θinter) and (θinter, θ′) to get:

∥Rθ(x)−Rθ′(x)∥1 ⩽ ∥Rθ(x)−Rθinter(x)∥1 + ∥Rθinter(x)−Rθ′(x)∥1
⩽ max(∥x∥∞, 1)LW 2RL−1

(
∥θ − θinter∥∞ + ∥θinter − θ′∥∞

)
.

It remains to see that ∥θ − θinter∥∞ + ∥θinter − θ′∥∞ = 2∥θ − θ′∥∞. Consider a parameter coordinate i.

If θiθ′i ⩾ 0 then θinter
i = θ′i and:

|θi − θ′i| = |θi − θinter
i |+ |θinter

i − θ′i|.
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Otherwise, θinter
i = 0 and:

|θi − θ′i| = |θi|+ |θ′i|
= |θi − θinter

i |+ |θinter
i − θ′i|.

This implies ∥θ−θinter∥∞ = maxi |θi−θinter
i | ⩽ maxi |θi−θinter

i |+ |θinter
i −θ′i| = ∥θ−θ′∥∞ and similarly ∥θinter−θ′∥∞ ⩽

∥θ − θ′∥∞. This yields the desired result:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)2LW 2RL−1∥θ − θ′∥∞.
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