
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEOMETRIC GRAPH NEURAL DIFFUSION FOR STABLE
MOLECULAR DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Geometric graph neural networks (Geo-GNNs) have revolutionized molecular dy-
namics (MD) simulations by providing accurate and fast energy and force predic-
tions. However, minor prediction errors could still destabilize MD trajectories in
real MD simulations due to the limited coverage of molecular conformations in
training datasets. Existing methods that focus on in-distribution predictions often
fail to address extrapolation to unseen conformations, undermining the simulation
stability. To tackle this, we propose Geometric Graph Neural Diffusion (GGND),
a novel framework that can capture geometrically invariant topological features,
thereby alleviating error accumulation and ensuring stable MD simulations. The
core of our framework is that it iteratively refines atomic representations, enabling
instantaneous information flow between arbitrary atomic pairs while maintaining
equivariance. Our proposed GGND is a plug-and-play module that can seamlessly
integrate with existing local equivariant message-passing frameworks, enhancing
their predictive performance and simulation stability. We conducted sets of exper-
iments on the 3BPA and SAMD23 benchmark datasets, which encompass diverse
molecular conformations across varied temperatures. We also ran real MD simu-
lations to evaluate the stability. GGND outperforms baseline models in both accu-
racy and stability under significant topological shifts, advancing stable molecular
modeling for real-world applications.

1 INTRODUCTION

Molecular dynamics (MD) simulations rely on force fields to approximate the underlying poten-
tial energy surface and generate long-temporal trajectories of molecular systems. Geometric graph
neural networks (Geo-GNNs) have transformed MD simulations by providing a computationally ef-
ficient alternative to quantum mechanical methods, while maintaining high accuracy in predicting
energies and forces (Wang et al., 2024a; Batatia et al., 2022; Wang et al., 2024c). Existing Geo-
GNN evaluations mainly focus on the accuracy of predicting forces and overlook the performance
evaluation in real MD simulations, e.g., whether the real MD could reveal detailed physical mecha-
nisms (Lane et al., 2011). Recent studies have shown that even small errors in predicting forces could
lead to catastrophic failure in real long-time simulations (Fu et al., 2023). This is because through-
out the long-temporal trajectory, it can exhibit molecular conformations that are out of the training
distribution. More specifically, due to the lack of extrapolation capability, most Geo-GNNs cannot
produce accurate force prediction for unseen conformation, introducing pathological behaviors, i.e.,
unphysical chemical bonding, in a real MD simulation. Such a phenomenon can be quantified via
chemical bonding connectivity in a real MD simulation, and is termed stability (Fu et al., 2023).

To examine the influence of conformation shifts on current Geo-GNNs, we use the 3BPA
dataset (Kovács et al., 2021), as the dataset contains molecular geometries sampled at 300 K, 600
K, and 1200 K. Each temperature setting naturally induces a distinct conformation domain. We
quantify conformation variations using edge-frequency distributions of atom pairs and prove that
discrepancies grow systematically with increasing temperature gaps (Figure 1 (a) and (b). We then
trained the representative Geo-GNNs VisNet (Wang et al., 2024c) and SEGNO (Liu et al., 2024) at
300 K and tested them at 300 K, 600 K, and 1200 K. VisNet is the state-of-the-art Geo-GNN for sim-
ulating MD. While VisNet demonstrates strong within-domain performance (300 K), its accuracy
degrades sharply under shifted conformation spaces (Figure 1 (c)). In contrast, SEGNO improves
the generalizability via explicitly embedding physical biases. It indeed improves the extrapolation
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(b)

300 K 600 K 1200 K
Energy ↓ Force ↓ Stability ↑ Energy ↓ Force ↓ Stability ↑ Energy ↓ Force ↓ Stability ↑
0.0022 0.0065 100 1.4053 0.9971 25.358 3.4642 1.4043 0.004
0.5925 0.3592 99.812 0.9082 0.8925 59.892 2.8359 1.2375 0.009

(c) Training Set in 300 K
Metrics
VisNet

SEGNO

(a)

Figure 1: Geometric Topological Shift Analysis of the 3BPA Dataset and Extrapolation Per-
formance Across Conformational Domains in the 3BPA Dataset: (a) Distribution of adjacency
matrix of 3BPA in training data (300 K); (b) distributional difference of Adjacency matrix of 3BPA
in testing set (k=300 K, 600 K, and 1200 K) and training set (300 K); (c) extrapolation performance
evaluation across conformational domains in the 3BPA Dataset.

ability, but suffers from in-domain performance degradation. These findings confirm the urgent need
for a new Geo-GNN that can remain robust and extrapolate effectively across various conformation
domains, leading to stable MD simulations.

To fill the gap, we propose a new framework, dubbed geometric graph neural diffusion (GGND),
inspired by the graph heat equation—a generalization of the diffusion equation rooted in spectral
graph theory (Chung, 1997). Specifically, to facilitate the theoretical analysis, we first conceptual-
ize domain variations in conformational spaces as “geometric topological shifts.” Correspondingly,
we introduce the diffusion process with two novel operators–equivariant gradient and diffusivity
operators–to capture the invariance to conformational changes while maintaining equivariance. In
particular, the gradient operator captures variations in node features across the topology of the ge-
ometric graph by characterizing differences between arbitrary nodes, while the diffusivity operator
regulates the rate and extent of information propagation. Together, these operators drive the evolu-
tion of node representations, capturing all-pair information flows over a complete molecular graph,
thereby remaining invariant to conformational changes. Our main contributions are outlined below:

First, we propose geometric graph neural diffusion (GGND) that can extrapolate effectively across
various conformation domains, leading to stable MD simulations.

Second, we provide a theoretical analysis of GGND, establishing a regret bound under geometric
topological shifts and proving the equivariance of the model. This regret-bound guarantees improved
performance in extrapolating to unseen molecular conformations and enhances the stability of MD
simulations.

Third, GGND functions as a plug-in module, seamlessly integrating with existing EGNNs to en-
hance their extrapolation capabilities. We evaluate GGND’s performance on the 3BPA (Kovács
et al., 2021) and SAMD23 (Kim et al., 2023) datasets, focusing on stability metrics for unseen
molecular conformations. Our results demonstrate robust generalization across diverse conforma-
tional spaces and superior stability in real-world MD simulations compared to all baselines.

2 PRELIMINARIES AND RELATED WORKS

Molecular graph. In this paper, we explore the dynamics simulation of large-scale molecular
systems, represented as a sequence of geometric graphs G indexed by time t. Suppose we have N
atoms in the system, then the molecular system G at each snapshot can be represented as a point
cloud denoted as G = ⟨X,H⟩, where X = [x1; . . . ;xN ] ∈ RN×3 is the atom coordinate matrix
and H = [h1; . . . ;hN ] ∈ RN×h is the node feature matrix. H typically contains atomic types or
charge features, and it is generally time-invariant. Given the molecular structure G, the objective of
the machine learning force field is to predict the energy or forces with the molecular graph input G.
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Figure 2: The Illustration of Geometric Topological Shifts Caused by Environment E and
Model with Predefined Cutoff C: The unobserved measurable function W and environment E
(temperature or pressure), along with the modeling methodM , serve as causes in the graph topology
formation process, influencing unobserved variables and leading to variations in observed graph
variables. This mechanism demonstrates how environmental causes (e.g., temperature changes) and
model causes (predefined cutoff C) result in geometric topological shifts between the training set
(e.g., 3BPA at 300 K) and the testing set (e.g., 3BPA at 600 K).

Topology of 3D graph. In this study, we focus on the geometric topology of 3D molecular graphs.
For geometric topology, nodes are atoms, and edges are established based on a predefined model-
related radius cutoff distance threshold, such that pairs of atoms within this cutoff are considered
neighbors. The term “topology” may also refer to the biochemical topology (or 2D molecular graph);
however, unless specified otherwise, this paper focuses on geometric topology. Under conforma-
tional changes caused by the environment, the biochemical topology generally remains invariant, as
it is defined by the fixed chemical connectivity of the molecule. Conversely, the geometric topology
is dynamic, varying with the predetermined cutoff distance and the spatial coordinates of atoms,
which may shift due to conformational changes.

Geometric topological shift. We propose a causal mechanism for geometric topology formation
within a molecular system, as illustrated in Figure 2, building on prior work (Medvedev, 2014; Sni-
jders & Nowicki, 1997). Unlike a 2D graph, our approach generalizes the data-forming mechanism
to incorporate both geometric topological adjacency and node features. Specifically, a 3D graph
with geometric topology, denoted as G = (X,H,A), is formed by a graphon—a continuous graph
limit defined as a symmetric, measurable function W : [0, 1]2 → [0, 1]—serving as an unobserved
latent variable, alongside a modeling method that specifies a cutoff radius C.

To elucidate the node-level structure of this graph, each node u ∈ V is associated with an inde-
pendent and identically distributed (i.i.d.) latent variable Uu ∼ U [0, 1]. The vector and scalar
features, X = [Xu] and H = [Hu], are random variables derived from each Uu through node-
wise functions Xu = f(Uu;W ) and Hu = h(Uu;W ), respectively. Next, the geometric topo-
logical adjacency matrix A = [A(u, v)] is a random variable determined by a pairwise function
A(u, v) = h(Uu, Uv;W,E,M), which depends on the environment E and the modeling method
M . Changes in E, such as transitions from training to testing, lead to variations in the distribution
of A. Beyond the node features and adjacency structure, the label Y also varies due to conforma-
tional variations. We assume Y is formed by a set function Y = r(Uv ∈ V ,A;W ), with a specific
realization denoted as Y. We denote specific realizations of these random variables as matrices X,
H, A, and Y.

Extrapolation and stability. Extrapolation remains a fundamental challenge in MD simulations,
particularly in the application of data-driven machine learning methods to MD. From an ML per-
spective, extrapolation in MD can be categorized into two types: 1) extrapolation to chemical space,
and 2) extrapolation to conformational space. The former entails predicting properties or dynamics
for molecules absent from the training set, while the latter involves forecasting dynamics for un-
seen molecular geometries, such as samples from different temperatures or non-equilibrium states.
Improving the ability to extrapolate to unseen conformations is critical for a model to ensure stable
MD simulations, a principle supported by numerical MD methods (Barth & Schlick, 1998; Miao &
Ortoleva, 2009). To tackle extrapolation, MatterSim (Yang et al., 2024) employs an active learning
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Figure 3: The Illustration of Geometric Graph Neural Diffusion: (a) Our method serves as a
plug-in module that integrates with local equivariant message passing. (b) The GGND uses equiv-
ariant diffusion operators (gradient and diffusivity) on a fully connected graph to capture domain-
invariant geometric topological features. (c) The local message passing and the equivariant diffusion
operators are combined to address geometric topological shifts, enabling generalizable energy and
force predictions for stable molecular dynamics simulations.
approach to address both categories, though it relies on costly high-quality data collection. Besides,
SEGNO (Liu et al., 2024) integrates second-order motion laws to enhance the generalization of
equivariant graph neural networks, yet it fails to address geometric topological shifts. Despite the
importance of conformational space extrapolation for stable MD, enabling Geo-GNNs to generalize
under geometric topological shifts remains an unresolved challenge.

3 METHOD

Our design enhances robustness to geometric and topological variations while preserving SE(3)-
equivariance, thereby enabling stable MD simulations despite limited coverage of molecular con-
formations in training data. The model integrates two complementary components: (i) a novel
geometric graph neural diffusion module with global attention and (ii) a conventional local equivari-
ant message passing neural network (Satorras et al., 2021; Wang et al., 2024c). The GGND employs
a diffusion process modeled as a partial differential equation (PDE) on the graph, incorporating
global attention to capture long-range dependencies across all nodes. This global perspective miti-
gates challenges posed by geometric and topological shifts by facilitating information propagation
beyond local neighborhoods. In contrast, the EGNN focuses on local interactions, updating node
features and positions through message passing within local neighborhoods. The GGND serves
as a plug-in module, seamlessly integrable with most existing EGNN frameworks to enhance their
performance in stable MD simulations. We provide an overview of our method in Figure 3.

3.1 GEOMETRIC GRAPH NEURAL DIFFUSION

The geometric graph neural diffusion model is designed to learn equivariant features that are robust
to shifts in geometric topology. To enable diffusion on geometric graphs, we incorporate higher-
order equivariant message passing, which facilitates accurate modeling of such graphs. Given a
geometric graph G = (V, E) with n = |V| nodes, where each node i ∈ V has a scalar feature vector
hi ∈ Rd and a position xi ∈ R3, and E is the set of edges determined by the adjacency matrix Ag

assuming full connectivity in the graph.

Each node i has initial features zi(0), which include chemical element features hi (invariant scalars)
and positions xi (for equivariance). The features zi(t) consist of spherical tensors labeled by irre-
ducible representations of O(3), denoted as zi,kLM (t), where k indexes channels (learnable fea-
tures), L is the degree (e.g., L = 0 for invariants, L = 1 for vectors, and higher L for ten-
sors), and M = −L, . . . , L indexes components. Diffusion models on geometric graphs replace
discrete GNN layers with continuous time-evolving node embeddings Z(t) = {zi(t)}ni=1, where
zi(t) : [0,∞) → Rd and evolves according to the diffusion equation:

∂Z(t)

∂t
= div [S(Z(t),X, t)⊙∇Z(t)] , t ≥ 0 (1)

where Z(t) = {zi(t)}ni=1 are equivariant node features, with initial conditions Z(0) = ϕE(X,H),
and ϕE is the embedding layer through by radial basis functions (RBF).
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The term S(Z(t),X, t) denotes the diffusivity over the graph, defined as an n × n matrix-valued
function dependent on Ag , which measures the rate of information flow between node pairs. The
gradient ∇Z maps node fields to edge fields, while the divergence operator div is its adjoint, map-
ping edge fields back to nodes. This diffusion process is modeled as a partial differential equation
(PDE) on the graph, adapted to handle equivariant features via higher-order messages.

The GGND module is designed to learn features invariant to geometric topological shifts, enabling
extrapolation to unseen molecular conformations. To achieve this, we introduce two novel operators:
an equivariant gradient operator and an equivariant diffusivity operator, which facilitate global
information flow while maintaining equivariance.

Equivariant gradient operator. The gradient operator ∇ generalizes scalar differences to higher-
order tensors, incorporating directional information to preserve SE(3)-equivariance. It is defined
as:

(∇z)ij,kl3m3
=
∑
k̃

Wkk̃l2
(zj,k̃l2m2

− zi,k̃l2m2
), (2)

where W are learnable weights for mixing channels. This equivariant gradient operator on the
graph generalizes the scalar gradient to higher L, ensuring equivariance, with the difference zj − zi
modulated by directional information to preserve 3D structure. Notably, j ranges over all nodes in
V , aligning with latent interactions among nodes determined by the underlying data manifold. This
induces all-pair information flows over a complete graph and remains invariant to changes in E due
to conformational variations.

Equivariant diffusivity operator. The diffusivity S(t) is made equivariant by defining it as a
tensor-valued attention matrix. We extend scalar attention to tensors as follows:

S(t)[i, j]kl3m3
=

∑
l1,l2,m1,m2

Cl3m3

l1m1,l2m2
Rkl1l2l3(∥xji∥)Y l1

m1
(x̂ji)ϕ(zi(t), zj(t))l2m2

, (3)

where Cl3m3

l1m1,l2m2
are Clebsch-Gordan coefficients ensuring proper equivariance of S(t). Here,

∥xji∥ = ∥xj−xi∥, x̂ji is the unit vector, Y l
m are spherical harmonics (for directional equivariance),

Rkl1l2l3 is a learnable radial basis function derived from Bessel functions and an MLP (ensuring
invariance to distance), and ϕ is an equivariant pairwise interaction (e.g., a gated tensor product).
This formulation ensures that S(t) transforms correctly under SE(3), serving as an equivariant filter
that captures global dependencies. The attention matrix S = (s(xi,xj)) is right-stochastic, allowing
Equation (1) to be rewritten as:

∂Z(t)

∂t
= (S(Z(t),X, t)− I)Z(t), 0 ≤ t ≤ T. (4)

Equation (4) governs the dynamics of the system from t = 0 to a specified stopping time T , produc-
ing geometric and topological node representations Z(T ). The equation is generally nonlinear due
to the dependence of the diffusivity matrix S on Z. A linear variant emerges when attention weights
are fixed; however, as static attention is impractical, we focus on the nonlinear GGND model.

Output. For energy prediction, we utilize the invariant components of Z(T ), specifically
zi,k00(T ), combined with local equivariant features learned by Equivariant Graph Neural Networks
(EGNNs). This ensures that site-specific energy contributions Ei remain invariant, computed as
E = ϕD(f) =

∑n
i=1

∑
k̃Wk̃fi,k̃, where fi,k̃ represents features fused from local EGNN outputs

li,k and geometric-topological invariant features zi,k00(T ) via concatenation and a linear transfor-
mation: fi,k̃ =W [li,k; zi,k00(T )].

Equivariance. The diffusion process on the geometric graph, as described in Equation (4), enables
the learning of domain-invariant features. With equivariant gradient and diffusivity operators, it also
ensures the equivariance of the learned global features. We provide a proof of the equivariance of
our GGND in Appendix A.

3.2 ALLEVIATING GEOMETRIC TOPOLOGICAL SHIFTS

We analyze the extrapolation capability of our geometric graph neural diffusion model with respect
to geometric topological shifts, as defined in Section 2. Our focus is on the extrapolation error of the
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parametric function Γθ, instantiated as the continuous equivariant diffusion model in Equations (4),
when transferring from training data generated under environment Etr (and modeling method Mtr)
to testing data under Ete (and Mtr). Such shifts may arise from variations in adjacency matrices
due to different cutoff radii or environmental conditions affecting inter-node distances in molecular
systems.

Denote the training dataset of size Ntr as {(X(i),H(i),A(i),Y(i))}Ntr
i=1, drawn from p(X,H,A, Y |

E = Etr,M =Mtr), and let ℓ(·, ·) be a bounded loss function. The training error is

Ltr(Γθ;Etr,Mtr) ≜
1

Ntr

Ntr∑
i=1

ℓ(Γθ(X
(i),H(i),A(i)),Y(i)). (5)

Our objective is to minimize the expected loss on testing data from p(X,H,A, Y | E = Ete,M =
Mtr):

L(Γθ;Ete,Mtr) ≜ E(X′,H′,A′,Y′)∼p(X,H,A,Y |E=Ete,M=Mtr) [ℓ(Γθ(X
′,H′,A′),Y′)] . (6)

When Ete = Etr, this reduces to the standard in-distribution setting, where the extrapolation gap is
bounded by

L(Γθ;Etr,Mtr)− Ltr(Γθ;Etr,Mtr) ≤ Din(Γθ, Etr,Mtr, Ntr) = 2H(Γθ) +O

√ log(1/δ)

Ntr

 ,

(7)
With H(Γθ), the Rademacher complexity of the function class is induced by Γθ, and the upper
bound is determined by dataset size and model complexity.

In the out-of-distribution regime where Ete ̸= Etr, geometric topological shifts complicate the
analysis. Changes in geometric topologies alter node representations Z(T ) in the equivariant graph
diffusion equations (4), expressible as Z(T ;A) = f(Z(0),A). The extrapolation gap could be
decomposed into three terms (Wu et al., 2025). Assume ℓ and ϕD are Lipschitz continuous. For
geometric graph data generated per Section 2, with probability at least 1 − δ, the extrapolation gap
satisfies:

|L(Γθ;Ete,Mtr)− Ltr(Γθ;Etr,Mtr)| ≤ Din(Γθ, Etr,Mtr, Ntr)

+O
(
EA∼p(A|Etr,Mtr),A′∼p(A|Ete,Mtr) [∥Z(T ;A

′)− Z(T ;A)∥2]
)

+O
(
E(A,Y)∼p(A,Y |Etr,Mtr),(A′,Y′)∼p(A,Y |Ete,Mtr) [∥Y

′ −Y∥2]
)
.

(8)

We denote the first O(·) as OOD model error DM(Γθ, Etr,Mtr, Ete) and the second O(·) as OOD
label error DL(Etr,Mtr, Ete). Since Din is independent of testing data under Ete ̸= Etr, the
impact of geometric topological shifts on extrapolation hinges on DM and DL: the former captures
variation in Z(T ;A) due to shifting topologies (e.g., adjacency changes from varying cutoff radii
or conformations), while the latter reflects label differences across environments or methods. DL is
dictated by the data-generating process, whereas DM depends on Γθ, specifically the sensitivity of
representations to shifts. We next examine Γθ as in Equation (4), adapted for equivariance.

Theorem 3.1 For geometric graph data per Section 2, if f and h are injective, the geometric graph
neural diffusion model in Equation (4) reduces the representation variation ∥Z(T ;A′)−Z(T ;A)∥2
to any order O(ψ(∥∆Ã∥2)), where ψ is an arbitrary polynomial, ∆Ã = Ã′ − Ã, and Ã =
D−1/2AD−1/2 (with A incorporating geometric distances via cutoff radius and D is the diagonal
degree matrix of A).

This indicates that the geometric graph neural diffusion model controls representation changes at
arbitrary rates relative to ∥∆Ã∥2, maintaining robust force prediction for conformation variations in
molecular dynamics. The injectivity of f and h are mild assumptions, mapping from compact latent
spaces to high-dimensional vector and scalar features. Applying Equation (8) yields the following.

Corollary 3.2 Under the condition of Theorem 3.1, the model-dependent extrapolation bound in
Equation (8) reduces to arbitrary polynomial orders with respect to geometric topological shifts:
DM(Γθ, Etr, Ete,Mtr) = O

(
EA∼p(A|Etr,Mtr),A′∼p(A|Ete,Mtr)[ψ(∥∆Ã∥2)]

)
.
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This bound ensures controllable extrapolation error at any rate relative to ∥∆Ã∥2. The model
achieves desired extrapolation ability under shifts, such as in machine learning force fields or sim-
ulations with conformational changes or varying cutoffs. In contrast, the change rate of features
produced by the local message passing model has an exponential upper bound. We presented the
proof for the Corollary 3.2 in the Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We used the 3BPA and SAMD23 datasets to evaluate our model’s performance, par-
ticularly in the presence of geometric and topological shifts. The 3BPA dataset consists of 500
training structures of the flexible, drug-like molecule 3-(benzyloxy)pyridin-2-amine at 300 K, with
test data provided at 300 K, 600 K, 1200 K, and different dihedral angles (Kovács et al., 2021). The
SAMD23 dataset comprises simulations of the semiconductor materials SiN and HfO under various
conditions, including variations in initial structures, stoichiometry, temperature, strain, and defects,
with unit cells containing up to 510 atoms (Kim et al., 2023).

Baselines. Our proposed equivariant graph neural diffusion can be integrated with any local equiv-
ariant message-passing-based method. To evaluate performance improvements, we selected four
representative methods—NequIP (Batzner et al., 2022), MACE (Batatia et al., 2022), SEGNO (Liu
et al., 2024), and VisNet (Wang et al., 2024c)—as baselines and compared our approach when com-
bined with them against these baselines alone. Additionally, we conducted a comprehensive com-
parison with several SOTA models on the SAMD23 dataset, including Allegro (Musaelian et al.,
2023), Equiformer V2 (Liao et al., 2024), QuinNet (Wang et al., 2023), Neural P3M (Wang et al.,
2024b), LSRM (Li et al., 2024b), and FreeCG (Shao et al., 2025),

Metrics. Accuracy: we evaluate the predictive performance of our model using the mean abso-
lute error (MAE) for energy and force predictions. For the SAMD23 dataset, which includes SiN
molecules with atom counts ranging from 16 to 510, we report the energy per atom to ensure compa-
rability across molecular sizes. Stability: following the methodology in (Fu et al., 2023), we assess
the stability of flexible molecules by monitoring bond length deviations. A real MD simulation is
classified as unstable at time T if the maximum deviation of any bond length from its equilibrium
value exceeds a threshold, formally defined as: maxi,j∈B ||xi(T )− xj(T )| − bij | > ∆, where B
denotes the set of all bonds, i and j are bond endpoints, bij is the equilibrium bond length, and
∆ is the stability threshold. For systems with periodic boundary conditions, stability is evaluated
using the radial distribution function (RDF). A simulation is deemed unstable at time T when:∫∞
0

∥⟨RDF(r)⟩ − ⟨ ˆRDFt(r)⟩t = TT+τ∥dr > ∆, where ⟨·⟩ represents the time-averaging operator,
τ is a 1 ps time window, and ∆ is set to 1.0. We perform constant-energy (NVE) molecular dynam-
ics simulations at the specified temperature, employing Velocity Verlet integration over 100 ps with
a 1 fs timestep. The stability metric is defined as the first timestep (in ps, ranging from 0 to 100)
at which an unstable molecular configuration occurs. We conduct five independent molecular dy-
namics simulations and report the average stability metric as the final result. Higher stability values
indicate better performance in maintaining long-term stable molecular dynamics simulations.

4.2 RESULTS AND ANALYSIS

Performance on 3BPA datasets. Experimental results on the 3BPA dataset in Table 1 show that
integrating the proposed GGND module with baseline Geo-GNN models (MACE, NequIP, SEGNO,
and VisNet) significantly enhances performance, particularly in extrapolating to conformational do-
mains with improved stability. On the in-domain 300 K test set, GGND improves energy and force
prediction accuracy for most baselines while achieving perfect stability at 100 ps. For instance,
SEGNO’s energy MAE decreases from 0.593 eV to 0.293 eV and force MAE from 0.359 eV/Å to
0.183 eV/Å, with stability rising from 99.812 ps to 100 ps. At 600 K, where domain shifts occur,
GGND’s advantages are more pronounced; it reduces VisNet’s energy MAE from 1.405 eV to 0.022
eV and force MAE from 0.997 eV/Å to 0.041 eV/Å, boosting stability from 25.358 ps to 100 ps.
Comparable improvements are observed for SEGNO, with energy MAE dropping from 0.908 eV
to 0.295 eV and stability from 59.892 ps to 100 ps. These findings indicate that SEGNO addresses
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Table 1: Accuracy and Stability on the 3BPA Dataset. MAE for energy (E, eV), force (F, eV/Å),
and stability (S, ps) of three baseline models and our proposed model (+GGND), trained on config-
urations of the flexible drug-like molecule 3BPA at 300 K and evaluated on 300 K, 600 K, 1200 K,
and varied dihedral angles. Best results are in bold; tied results are underlined.

Conformation Metrics MACE +GGND NequIP +GGND SEGNO +GGND VisNet +GGND

300K
E (↓) 0.113 0.010 0.165 0.094 0.593 0.293 0.002 0.002
F (↓) 0.165 0.022 0.113 0.104 0.359 0.183 0.006 0.006
S (↑) 100 100 100 100 99.812 100 100 100

600K
E (↓) 0.161 0.023 0.335 0.122 0.908 0.295 1.405 0.022
F (↓) 0.335 0.044 0.161 0.153 0.893 0.193 0.997 0.041
S (↑) 100 100 98.271 100 59.892 100 25.358 100

1200K
E (↓) 0.271 0.109 0.770 0.477 2.836 0.503 3.464 0.583
F (↓) 0.770 0.111 0.271 0.269 1.238 0.285 1.404 0.304
S (↑) 1.965 29.218 0.018 17.052 0.009 16.201 0.004 11.209

Dihedral
Slices

E (↓) 0.169 0.012 0.387 0.375 0.923 0.267 0.789 0.050
F (↓) 0.289 0.017 0.242 0.189 0.795 0.192 0.697 0.039
S (↑) 100 100 89.119 100 72.282 100 47.785 100

universal generalization but not geometric topological shifts. Additionally, GGND outperforms all
baselines on dihedral slices.

Under severe geometric topological shifts at 1200 K, baselines suffer catastrophic degradation in
stability (e.g., VisNet at 0.004 ps, MACE at 1.965ps, SEGNO at 0.009 ps), whereas GGND restores
robustness, increasing MACE’s stability to 29.218 ps (15-fold), NequIP to 17.052 ps (947-fold),
SEGNO to 16.201 ps (1800-fold), and VisNet to 11.209 ps (2802-fold). Concurrent accuracy gains
include VisNet’s energy MAE reduction from 3.464 eV to 0.108 eV. These results highlight GGND’s
efficacy in mitigating geometric topological shifts via all-pair information diffusion, facilitating sta-
ble long-term MD simulations in unseen conformations without additional DFT data.

Table 2: Accuracy and Stability on the 3BPA Dataset. MAE for energy per atom (E/A, eV), force
(F, eV/Å), and stability (S, ps) obtained by SOTA models and our proposed model (GGND), trained
on SiN and HfO semiconductor molecular system. Best results are in bold

Molecule Splits Metrics NequIP MACE Allegro Neural P3M QuinNet Equiformer V2 LSRM FreeCG GGND

SiN

Test
E/A (↓) 0.013 0.012 0.015 0.010 0.010 0.010 0.010 0.011 0.009

F (↓) 0.598 0.526 0.673 0.485 0.490 0.451 0.490 0.494 0.443
S (↑) 69.009 78.845 63.583 88.280 83.286 98.284 81.000 84.500 100

OOD
E/A (↓) 0.022 0.018 0.028 0.016 0.017 0.021 0.018 0.018 0.015

F (↓) 1.018 0.912 1.185 0.837 0.836 0.972 0.832 0.844 0.754
S (↑) 63.733 65.710 55.824 85.888 86.512 82.031 74.217 76.631 99.892

HfO

Test
E/A (↓) 0.007 0.006 0.007 0.006 0.006 0.005 0.006 0.006 0.005

F (↓) 0.377 0.335 0.385 0.311 0.304 0.298 0.312 0.315 0.179
S (↑) 65.377 78.054 64.282 90.432 89.034 97.184 87.353 85.040 100

OOD
E/A (↓) 0.011 0.010 0.012 0.009 0.009 0.010 0.010 0.009 0.008

F (↓) 0.430 0.570 0.593 0.459 0.457 0.683 0.544 0.593 0.279
S (↑) 61.621 65.689 60.982 84.209 85.453 79.762 86.373 75.916 97.928

Performance on SAMD23 dataset. The GGND model outperforms baselines across SiN and HfO
datasets in both Test and OOD splits, as shown in Table 2. For SiN, GGND achieves a lower en-
ergy per atom (E/A) error of 0.009 eV and a force MAE of 0.443 eV/Å in the Test split, improving
force predictions by approximately 9% over Neural P3M and LSRM, with a perfect stability score
of 100 ps. In the OOD split, GGND maintains robust performance with a stability score of 99.89
ps, significantly surpassing QuinNet and Neural P3M. For HfO, GGND records an E/A of 0.005 eV
and a force MAE of 0.179 eV/Å in the Test split, reducing force errors by over 40% compared to
Neural P3M and QuinNet, and achieving a perfect stability score of 100 ps. In the OOD split, its
stability score of 97.93 ps notably exceeds baselines. GGND’s equivariant diffusion process effec-
tively captures all-pair interactions, ensuring insensitivity to conformational changes and enhancing
stability in molecular dynamics simulations. The experimental results highlight the remarkable abil-
ity of GGND to address geometric topological shifts, as evidenced by its consistent outperformance
across the SiN and HfO datasets. The model’s outstanding stability scores of 100 ps in both Test
splits and near-perfect scores in OOD splits (99.892 ps for SiN and 97.928 ps for HfO) suggest
that the equivariant diffusion process effectively captures all-pair information flows, making GGND
insensitive to conformational changes.
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Figure 4: Stability of MD Simulations on 3BPA.

Stability Visualization and Analysis. The
stability metric indicates the first time step at
which the MD simulation becomes unstable.
To better characterize the stability throughout
the entire MD process, we visualize the max-
imum bond length deviation in Figure 4. In
100 ps MD simulations on the 3BPA dataset,
GGND outperforms the ML-based baselines by
maintaining stability. Notably, although GGND
exhibits instability around 30 ps, these unsta-
ble states occur randomly, whereas both VisNet
and MACE show persistent instability after a
certain time step.

Ablation Study. To evaluate the impact
of fully-connected diffusion in our proposed
GGND model, we curated two variants:
GGND†, which uses local diffusion on the graph, and GGND‡, which combines the baseline with
fully-connected message passing. The ablation study on the 3BPA dataset (Table 3) demonstrates
the superior generalization of GGND to unseen conformational domains at 600 K and 1200 K, while
matching the baseline’s optimal performance at 300 K (energy MAE: 0.002 eV, force MAE: 0.006
eV/Å, stability: 100 ps). In contrast, GGND†, limited by local diffusion, fails to generalize effec-
tively, with performance close to the baseline (e.g., stability of 0.291 ps at 1200 K), as it cannot
capture all-pair interactions. GGND‡ shows some generalization potential (e.g., stability of 2.892
ps at 1200 K) but underperforms GGND due to training challenges, highlighting the advantage of
fully-connected diffusion in enabling robust, equivariant information flow for stable and accurate
molecular dynamics simulations across diverse conformations.

Table 3: Ablation Analysis on the 3BPA Dataset. MAE for energy (E, eV), force (F, eV/Å), and
stability (S, ps) of baseline model, GGND, and two variants of GGND. Best results are in bold; tied
results are underlined.

Conformation 300 K 600 K 1200 K

Variations E (↓) F (↓) S (↑) E (↓) F (↓) S (↑) E (↓) F (↓) S (↑)

Baseline 0.002 0.006 100 1.405 0.997 25.358 3.464 1.404 0.004
GGND † 0.013 0.058 100 0.982 0.998 39.075 3.049 1.406 0.291
GGND ‡ 0.015 0.072 98.827 0.643 0.661 69.292 1.908 0.882 2.892
GGND 0.002 0.006 100 0.022 0.041 100 0.583 0.304 11.209

†: GGND with local diffusion on graph.
‡: Local message passing baseline plus fully-connected message passing.

5 CONCLUSION

In this study, we investigate the stability of MD simulations and identify extrapolation to unseen con-
formations as a key challenge. To address this, we propose GGND, a novel framework that improves
the stability and generalizability of MD simulations by capturing geometrically invariant topological
features through an equivariant diffusion process. By mitigating geometric topological shifts arising
from conformational variations, GGND reduces error accumulation, ensures robust energy and force
predictions for unseen molecular conformations, leading to stable molecular dynamics simulations.
Our theoretical analysis establishes a regret bound under such shifts, providing formal guarantees
of stability. Designed as a plug-and-play module, GGND integrates seamlessly with existing lo-
cal equivariant message-passing networks, boosting out-of-domain performance while preserving
in-domain accuracy. Comprehensive experiments on the 3BPA and SAMD23 datasets show that
GGND surpasses baseline models in both accuracy and simulation stability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study adheres to the ICLR Code of Ethics, with careful consideration of the ethical implications
of our work, particularly its societal impacts, which are comprehensively addressed in Appendix G.
Our methodology does not involve human participants, sensitive data, or applications with signif-
icant misuse potential. We have prioritized fairness and transparency in the development of our
models and findings, addressing potential biases in the dataset and model design in the referenced
appendix. No conflicts of interest or funding concerns compromise the integrity of this research.
The use of large language models is detailed in Appendix H.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide anonymized source code in the supplementary materials.
Complete proofs for all theoretical claims are included in Appendices C and A. This study uti-
lizes the publicly available datasets 3BPA and SAMD23, accessible at https://pubs.acs.
org/doi/10.1021/acs.jctc.1c00647 and https://github.com/SAITPublic/
MLFF-Framework, respectively. We adhere to the data splits specified in the publications associ-
ated with these datasets, with all relevant parameters documented in Appendix B. These resources
collectively enable full replication of our experiments and results.
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APPENDIX

A DIFFUSION ON GRAPH

B RELATED WORKS

B.1 MACHINE LEARNING MOLECULAR DYNAMICS SIMULATION AND ITS
GENERALIZATION

Machine-learning for molecular dynamics simulation, including ML interatomic potentials and ML
force fields, has emerged as an accurate and computationally efficient surrogate for quantum me-
chanical calculations in MD simulations and related atomistic modeling tasks. However, the gener-
alization of ML methods for MD simulations remains unaddressed.

A major advance in improving the generalization of these models has been the development of “uni-
versal” or pretrained interatomic potentials trained on chemically diverse and large-scale datasets.
Models such as M3GNet (Chen & Ong, 2022) and CHGNet (Deng et al., 2023) show that broad
coverage of elements, bonding motifs, and structures can substantially improve transferability and
reduce retraining costs. Nevertheless, these approaches often falter when faced with distribution
shifts outside the training domain, such as conformations sampled under different thermodynamic
conditions.

Another complementary line of work focuses on architectural inductive biases, especially equivari-
ant geometric graph neural networks that explicitly encode physical symmetries. Equivariant mes-
sage passing architectures, including recent efficient implementations (Batatia et al., 2022; Wang
et al., 2024c), typically deliver higher accuracy and better sample efficiency than non-equivariant
baselines. While these models interpolate well within the training regime, symmetry constraints
alone are insufficient to guarantee robustness under changes in the conformational distribution.

Alongside architectural innovations, there is growing recognition that standard energy and force
test errors can be misleading as proxies for MD stability. Benchmarking studies such as (Fu et al.,
2023) emphasize trajectory-level evaluations, including long-term stability, conservation laws, and
reproduction of thermodynamic observables. These evaluations often reveal substantial degradation
under out-of-distribution (OOD) conditions even when pointwise prediction errors remain low.

To address such failures, some works integrate active learning and on-the-fly adaptation into
MLFF/MLIP workflows. Active learning pipelines and uncertainty-aware simulation controllers
selectively query new data in high-uncertainty regions (Yang et al., 2024), while recent methods
such as TAIP (Cui et al., 2025) perform test-time adaptation to reduce the impact of train–test distri-
bution gaps. These strategies mitigate specific failure modes but can be computationally demanding
and lack systematic mechanisms to detect and react to distribution shifts in a theoretical manner.

Our work builds on these threads by proposing a geometric GNN that detects and responds to distri-
bution shifts in conformational space, aiming to improve stability and accuracy when generalizing
across thermodynamic regimes.

B.2 GENERALIZABLE GRAPH NEURAL NETWORK

Recent advancements in graph neural network (GNN) generalization have progressed along four
complementary dimensions: theoretical foundations, architectural innovations, training methodolo-
gies, and data-centric strategies. Theoretical studies have established sample-complexity and stabil-
ity bounds, elucidating structural factors—such as propagation depth and graph connectivity—that
influence generalization and inform design decisions (Tang & Liu, 2023; Yang et al., 2023). Ar-
chitectural advancements demonstrate that incorporating inductive biases or attention mechanisms
enhances generalization performance (Liu et al., 2024; Wu et al., 2025; Li et al., 2024a). Practical
training and data-centric approaches translate theoretical insights into practice through causal learn-
ing and data augmentation techniques, effectively mitigating empirical generalization gaps (Abba-
haddou et al., 2025; Fan et al., 2024). Collectively, these efforts outline a coherent research agenda:
leverage theoretical insights to identify generalization bottlenecks, design architectures with induc-
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tive biases to reduce sample complexity, and employ training and data strategies, alongside out-of-
distribution (OOD)-aware mechanisms, to ensure robust generalization.

However, existing research on GNN generalization has largely overlooked the challenge of confor-
mational distribution drift in MLFF or MD. Specifically, environmental factors, such as temperature,
can induce drifts in the geometric structure distribution of molecular graphs, which subsequently al-
ter their topological configurations.

C PROOFS OF REGRET BOUND

Proof of Equation (8). Assume that the loss function ℓ and the decoder ϕdec are Lipschitz continu-
ous with constants L1 and L2, respectively. According to the topology formation hypothesis in Sec-
tion 2, we decompose the joint distribution as p(X,H,A, Y | E,M) = p(X,H | E,M)p(A, Y |
X,H,E,M). Since X = f(U ;W ) and H = h(U ;W ) are independent of E and M , it follows that
p(X,H | Etr,Mtr) = p(X,H | Ete,Mtr).

The extrapolation gap is:

(↑)
|L(Γθ;Ete,Mtr)− Ltr(Γθ;Etr,Mtr)| ≤ |L(Γθ;Ete,Mtr)− L(Γθ;Etr,Mtr)|

+ |L(Γθ;Etr,Mtr)− Ltr(Γθ;Etr,Mtr)| .
(9)

The second term is bounded by Din(Γθ, Etr,Mtr, Ntr) with probability at least 1 − δ by standard
extrapolation bounds (Equation (7)).

For the first term:

L(Γθ;Ete,Mtr)− L(Γθ;Etr,Mtr) = EX′,H′,A′,Y ′∼p(·|Ete,Mtr)[ℓ(Γθ(X
′, H ′, A′), Y ′)]

− EX,H,A,Y∼p(·|Etr,Mtr)[ℓ(Γθ(X,H,A), Y )].
(10)

Since the marginals over X,H are identical:

= EX,H

[
EA′,Y ′|X,H [ℓ(Γθ(X,H,A

′), Y ′)]− EA,Y |X,H [ℓ(Γθ(X,H,A), Y )]
]
. (11)

By the triangle inequality and Lipschitz continuity of ℓ:

≤ EX,H,A,A′,Y ′ |ℓ(Γθ(X,H,A
′), Y ′)− ℓ(Γθ(X,H,A), Y

′)|
+ EX,H,A,Y,Y ′ |ℓ(Γθ(X,H,A), Y

′)− ℓ(Γθ(X,H,A), Y )|,
(12)

where A, Y ∼ p(· | Etr,Mtr) and A′, Y ′ ∼ p(· | Ete,Mtr). Applying Lipschitz constants:

≤ L1 · E∥Z(T ;A′)− Z(T ;A)∥2 + L2 · E∥Y′ −Y∥2,

yielding the decomposition after rescaling constants into O(·).

Proof of Theorem 3.1. The equivariant graph neural diffusion model assumes full connectivity,
with diffusivity S(t) defined based on positions X and features Z(t) (Equation (3)), independent
of the adjacency A. Thus, the solution Z(T ) to Equation (4) does not depend on A, implying
∥Z(T ;A′)− Z(T ;A)∥2 = 0.

Since 0 = O(ψ(∥∆Ã∥2)) for any arbitrary polynomial function ψ, the variation magnitude is
reduced to any order. The injectivity of f and h ensures that latent variables U can be recovered
from X and H, enabling the equivariant attention in S(t) to capture latent interactions from the
graphon W , independent of shifts in A.

Proof of Corollary 3.2. The conclusion follows directly by substituting the result of Equation (8)
into the DM.
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A PROOF OF EQUIVARIANCE OF EGND

We prove that the EGND process, as defined by the PDE in Equation ( equation 1) and its rewritten
form in Equation ( equation 4), is SE(3)-equivariant. Specifically, the learned features Z(T ) trans-
form correctly under SE(3) transformations (rotations and translations) applied to the input positions
X and invariant scalar features H.

SE(3)-equivariance means that if we apply a transformation g ∈ SE(3) to the inputs, the output
features transform accordingly:

Z′(T ) = D(g)Z(T ),

where Z′(T ) is the solution of the PDE for the transformed inputs X′ = gX and H′ = H (since
H are invariant scalars), and D(g) denotes the group representation acting on the spherical tensor
features (irreducible representations of O(3), labeled by L and M ).

Translations are handled trivially because the model depends only on relative positions ∥xji∥ (in-
variant) and unit vectors x̂ji (equivariant under rotations but invariant under translations). The
initial embedding ϕE(X,H) uses radial basis functions (RBFs) on distances, which are translation-
invariant. Thus, the dynamics preserve translation invariance.

We focus on rotation equivariance under g ∈ SO(3). The representation DL(g) acts on each irrep
component as:

z′i,kLM =
∑
M ′

DL
MM ′(g)zi,kLM ′ ,

where the action is the same for all nodes i.

Assume the initial condition is equivariant: Z′(0) = D(g)Z(0). We need to show that if Z′(t) =
D(g)Z(t) at time t, then the time derivative preserves this property:

∂Z′(t)

∂t
= D(g)

∂Z(t)

∂t
.

This requires showing that the right-hand side operator f(Z,X) = div [S(Z(t),X, t)⊙∇Z(t)] =
(S− I)Z(t) is equivariant:

f(Z′,X′) = D(g)f(Z,X).

We prove this by showing that each component—the gradient ∇Z, the diffusivity S, and their
combination—is equivariant.

Equivariance of the Gradient Operator. The equivariant gradient is defined as:

(∇z)ij,kl2m2
=
∑
k̃

Wkk̃l2
(zj,k̃l2m2

− zi,k̃l2m2
),

where W are learnable scalar weights (invariant under rotations), and the gradient operates per irrep
L = l2 and channel, without changing L.

For the transformed features and positions:

z′
j,k̃l2m2

− z′
i,k̃l2m2

=
∑
m′

2

Dl2
m2m′

2
(g)(zj,k̃l2m′

2
− zi,k̃l2m′

2
).

Thus,

(∇z′)ij,kl2m2
=
∑
k̃

Wkk̃l2

∑
m′

2

Dl2
m2m′

2
(g)(zj,k̃l2m′

2
− zi,k̃l2m′

2
) =

∑
m′

2

Dl2
m2m′

2
(g)(∇z)ij,kl2m′

2
,

since W is invariant. The gradient transforms as the same irrep, so ∇ is equivariant: ∇Z′ =
D(g)(∇Z).
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Equivariance of the Diffusivity. The diffusivity (attention matrix) is:

S(t)[i, j]kl3m3
=

∑
l1,l2,m1,m2

Cl3m3

l1m1,l2m2
Rkl1l2l3(∥xji∥)Y l1

m1
(x̂ji)ϕ(zi(t), zj(t))l2m2

,

where C are Clebsch-Gordan coefficients (invariant), R is a learnable radial function (depends on
invariant distance ∥xji∥), Y l1

m1
are spherical harmonics, and ϕ is an equivariant pairwise interaction

(e.g., gated tensor product).

Under transformation: - ∥x′
ji∥ = ∥xji∥ (invariant), - x̂′

ji = gx̂ji, and assuming the conven-
tion where Y l1(x̂′

ji) =
∑

p1
Dl1

m1p1
(g)Y l1

p1
(x̂ji) (equivariant filter as in NequIP and e3nn), -

ϕ(z′i, z
′
j)l2m2 =

∑
p2
Dl2

m2p2
(g)ϕ(zi, zj)l2p2 (by assumption that ϕ is equivariant).

Substituting:

S′[i, j]kl3m3
=

∑
l1l2m1m2

Cl3m3

l1m1,l2m2
R(∥xji∥)

(∑
p1

Dl1
m1p1

(g)Y l1
p1
(x̂ji)

)(∑
p2

Dl2
m2p2

(g)ϕl2p2

)
.

This is: ∑
p1p2

∑
l1l2m1m2

Cl3m3

l1m1,l2m2
RY l1

p1
ϕl2p2

Dl1
m1p1

(g)Dl2
m2p2

(g).

Since the tensor product representation is Dl1 ⊗ Dl2 , and the CG decomposition to l3 commutes
with the group action (CG coefficients are invariant and define an equivariant basis change), the
entire expression transforms as the output irrep:

S′[i, j]kl3m3
=
∑
m′

3

Dl3
m3m′

3
(g)S[i, j]kl3m′

3
.

Thus, S(Z′,X′, t) = D(g)S(Z,X, t)D(g)−1 in the sense of the adjoint action on linear maps, but
since we treat S as producing equivariant filters, the composition preserves equivariance.

Equivariance of the PDE Operator. The operator is f(Z) = (S − I)Z, which corresponds to∑
j Sij ⊙ (zj − zi) (assuming ⊙ is an equivariant bilinear operation, such as channel-wise multi-

plication or tensor contraction, consistent with the right-stochastic property).

Since ∇Z′ = D(g)∇Z and S′ = D(g)SD(g)−1 (adjoint for maps), the product S′ ⊙ ∇Z′ =
D(g)(S⊙∇Z), because:

D(g)SD(g)−1 ⊙D(g)(∇Z) = D(g)(S⊙∇Z),

assuming ⊙ commutes with D(g) (as it does for tensor products or contractions in irrep bases).

The divergence div is a sum over j, which is permutation-invariant and commutes with D(g):

div[S′ ⊙∇Z′] =
∑
j

D(g)(Sij ⊙ (zj − zi)) = D(g) div[S⊙∇Z].

Thus, f(Z′,X′) = D(g)f(Z,X).

Since the operator is equivariant, the solution to the PDE (e.g., via numerical integration like Euler
steps) preserves equivariance: Z′(t) = D(g)Z(t) for all t, including t = T .

Finally, the energy prediction uses the invariant components zi,k00(T ) (L = 0, scalar invariants),
which are unchanged under D(g), ensuring the total energy EEGND is SE(3)-invariant.

B PARAMETER

The training details are outlined below, with dataset-specific parameters provided in Table 4.

Training

1. Optimizer: Adam (Kingma & Ba, 2015) optimizer is used with a constant learning rate of
10−4 as our default training configuration.
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Table 4: Dataset Information and Dataset-specific Parameters

Dataset 3BPA SAMD23

Molecule 3BPA SiN HfO

Atoms 27 16-510 96
Batch size 4 1 2

Epochs 1,000 200 200
Training Time (h) 4 30 24

2. GPU: NVIDIA GeForce RTX 3090

3. CPU: Intel(R) Xeon(R) Platinum 8338C CPU

4. Memory: 512 GB

For baselines, we adopt the recommended parameters from their original publications. Specifically,
for the message-passing layer in our implementations with GGND, we include an additional layer
for geometric graph neural diffusion. To ensure a fair comparison with similar model capacity, we
reduce one message-passing layer in the baselines during integration.

C COMPUTATIONAL OVERHEAD ANALYSIS AND COMPARISON

Table 5 summarizes the computational and memory overhead incurred when integrating GGND into
ViSNet on the 3BPA dataset. All models are trained using identical hyperparameters; ViSNet* in-
cludes an additional 500 training epochs to provide a more comprehensive point of comparison. Ex-
periments were conducted on an NVIDIA GeForce RTX 3090 GPU paired with an Intel(R) Xeon(R)
Platinum 8338C CPU.

Overall, incorporating GGND increases training time by 26.54% and MD simulation time by
15.57%. GPU memory consumption increases by 15.28% during training and 14.87% during in-
ference. Considering the substantial gains in energy/force accuracy and stability, these additional
computational and memory costs are acceptable in practice.

Table 5: Computational and Memory Overhead Introduced by GGND

Metrics VisNet VisNet* +GGND

Time
Training Time (h) 6.822 10.326 8.633
Inference Time (s) 13.872 13.672 16.032

MD Time for 100 ps (h) 1.958 1.949 2.282

Memory
Training Memory 20.457 20.455 23.582

Inference Memory (GiB) 14.125 14.248 16.225

∗: ViSNet* includes an additional 500 training epochs.

D DATASETS

The 3BPA dataset consists of configurations of the flexible, drug-like molecule 3-
(benzyloxy)pyridin-2-amine. Initial configurations were generated from short (0.5 ps) molecular
dynamics (MD) simulations using the ANI-1x force field to bias sampling toward lower-energy re-
gions of the potential energy surface. In addition, longer 25 ps MD simulations were performed at
three temperatures—300, 600, and 1200 K—using a Langevin thermostat with a 1 fs time step. A
selection of these configurations is visualized in Figure 5.
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300K 600K 1200K

Figure 5: Representative 3BPA Molecular Configurations Sampled from MD at 300, 600, and 1200
K

E MD SIMULATION UNDER NVE AND NVT ENSEMBLES

We perform constant-energy (NVE) and constant-temperature (NVT) molecular dynamics simula-
tions at 1200 K on the 3BPA dataset. We use Velocity-Verlet integration for 200 ps with a 1 fs
timestep for the NVE ensembles. We perform Langevin dynamics at a temperature of 1200K, a
timestep of 1.0 fs, and a friction coefficient of 0.01 fs-1, for 200,000 steps, corresponding to 200 ps
for NVT ensemble.

In both the NVE and NVT molecular dynamics simulations, GGND demonstrates markedly superior
stability compared to MACE and VisNet (Figures 6 and 7). GGND achieves the lowest Averaged
Max Bond Length Deviation across the full 200 ps trajectories and maintains stable geometries, with
only a few isolated instances where the Max Bond Length Deviation slightly exceeds the threshold.
In contrast, MACE begins to violate the bond-length threshold at approximately 13 ps in the NVE
ensemble and around 27 ps in the NVT ensemble, after which the deviations steadily grow. Vis-
Net performs even worse, showing threshold-breaking behavior almost immediately and displaying
rapidly increasing deviations throughout the simulation. Overall, these results highlight the robust-
ness and stability of GGND in unseen temperature MD settings.

F LIMITATIONS

Although the GGND framework demonstrates strong performance in enhancing stability and accu-
racy for small to medium-sized molecular systems, such as those in the 3BPA and SAMD23 datasets
with up to 510 atoms, its scalability to larger biomolecular systems like proteins comprising millions
of atoms remains a critical limitation. The method’s reliance on a fully-connected graph for the
diffusion process, which facilitates all-pair information flows, introduces quadratic computational
complexity in both time and memory with respect to the number of atoms, rendering it impractical
for real-world applications involving extensive simulations. Future developments could incorpo-
rate sparse approximations or hierarchical diffusion mechanisms to mitigate these issues and extend
GGND’s utility to large-scale protein dynamics.
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Figure 6: Stability of MD Simulations under NVE Ensemble on 3BPA.
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Figure 7: Stability of MD Simulations under NVT Ensemble on 3BPA.
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G IMPACT STATEMENTS

This paper presents research aimed at advancing Artificial Intelligence (AI) applications in scientific
domains, including materials science, chemistry, and biology. The insights and expertise gained will
significantly enhance AI technologies, accelerating the process of scientific discovery.

Machine learning for molecular dynamics enables rapid molecular analysis. However, the potential
for misuse and unintended consequences underscores the need for stringent ethical guidelines, robust
regulations, and responsible deployment to safeguard individuals and society from harm.

H THE USE OF LARGE LANGUAGE MODELS

The core method development and research ideation in this paper were conducted independently of
LLMs, and LLMs did not contribute to any original or non-standard components of the work. The
authors utilized LLMs solely as a general-purpose assist tool for checking grammar and improving
the clarity of the manuscript, as well as for aiding in the comprehension of existing literature. All
content in this submission, including any text refined with LLM assistance, has been thoroughly
reviewed by the authors, who take full responsibility for its accuracy, integrity, and compliance with
ethical standards. No LLMs are considered contributors or eligible for authorship.
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