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ABSTRACT

Evolving relations in real-world networks are often modelled by temporal graphs.
Temporal Graph Neural Networks (TGNNs) emerged to model evolutionary be-
haviour of such graphs by leveraging the message passing primitive at the core of
Graph Neural Networks (GNNs). It is well-known that GNNs are vulnerable to
several issues directly related to the input graph topology, such as under-reaching
and over-squashing—we argue that these issues can often get exacerbated in tem-
poral graphs, particularly as the result of stale nodes and edges. While graph
rewiring techniques have seen frequent usage in GNNs to make the graph topol-
ogy more favourable for message passing, they have not seen any mainstream
usage on TGNNs. In this work, we propose Temporal Graph Rewiring (TGR), the
first approach for graph rewiring on temporal graphs, to the best of our knowl-
edge. TGR constructs message passing highways between temporally distant
nodes in a continuous-time dynamic graph by utilizing expander graph propa-
gation, a prominent framework used for graph rewiring on static graphs which
makes minimal assumptions on the underlying graph structure. On the chal-
lenging TGB benchmark, TGR achieves state-of-the-art results on tgbl-review,
tgbl-coin, tghl-comment and tgbl-flight datasets at the time of writing. For
tgbl-review, TGR has 50.5% improvement in MRR over the base TGN model
and 22.2% improvement over the base TNCN model. The significant improve-
ment over base models demonstrates clear benefits of temporal graph rewiring.

1 INTRODUCTION

Graph representation learning (Hamilton, 2020) aims to learn node representations on graph struc-
tured data to solve tasks such as node property prediction (Hamilton et al., 2017; Kipf & Welling,
2016), link prediction (Ying et al., 2018; Zitnik et al., 2018) and graph property prediction (Gilmer
et al., 2017). Graph neural networks (GNNs) (Kipf & Welling, 2016; Veli¢kovi¢ et al., 2017; Xu
et al., 2018) capture relationships between nodes following the message passing paradigm (Gilmer
et al., 2017). GNNs have been successfully applied to model many real-world networks such as
biological networks (Johnson et al., 2023; Zitnik et al., 2018) and social networks (Ying et al., 2018).

Graph rewiring. GNNs operate through a message passing mechanism which aggregates informa-
tion over a node’s direct neighbourhood at each GNN layer. It is by now well known that such an ap-
proach exposes GNNSs to several vulnerabilities that are inherently tied to the input graph’s topology,
such as under-reaching (Barcel6 et al., 2020) and over-squashing (Alon & Yahav, 2021; Di Gio-
vanni et al., 2024). In static GNNSs, such issues are frequently addressed using graph rewiring,
where the input graph is altered such that it connects distant nodes. There are several methods
applied to rewire static GNNs such as diffusion-based graph rewiring models (Gasteiger et al.,
2019) or reducing negative Ricci curvature (Topping et al., 2021), leading to a boost in performance.

Temporal graph learning (TGL). Temporal graph learning is an emerging field which aims to
study evolving relations in dynamic real world networks (Kazemi et al., 2020). These evolving
relations are modelled by temporal graphs, wherein nodes and edges can be inserted or deleted over
time. Accordingly, a more generic class of temporal graph neural networks (TGNNs) (Longa et al.,
2023) are designed to capture the evolution of such graphs by introducing novel model components
such as temporal memory (Kazemi et al., 2020) and time-encoding (Xu et al., 2020).
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TGNNSs are underpinned by a static GNN message passing mechanism, and this makes them vulner-
able to the same kinds of under-reaching and over-squashing effects faced by static GNNs. In this
work we will show that the addition of a temporal dimension introduces an additional hierarchical
flow of information along the axis of time, which provably exacerbates these vulnerabilities and
makes it even harder for nodes to meaningfully communicate. A natural question arises: Can we
alleviate these issues and improve TGNN performance by introducing temporal graph rewiring?

Benefits of temporal graph rewiring. Graph rewiring fundamentally embraces the dynamic nature
of real-world data. It is quite rare that any particular input graph perfectly elucidates the required
information exchange for a given task, and this might be even more relevant in a temporal graph,
where observable links are constantly subject to change. Additionally, temporal graph rewiring
can be seen as a way to resolve memory staleness problems in temporal GNNs (Kazemi et al.,
2020). By memory staleness we refer to a process occurring in the temporal memory of TGNNs:
The temporal memory is only
updated if a node of interest
is observed to interact with
another node in a graph, and this
causes inactive nodes’ states
to become stale. This poses TGNN
significant issues in many real

world dynamic graphs; e.g.,
in social networks, if a user is
inactive for a period of time,
they lose connections to their e
active friends, even if they still Expander

interact with them outside of Graph

the social network. We posit

that the additional connections

created by temporal graph [ Node H S(t)

rewiring will alleviate this effect Features

by allowing information to ) . o
consistently flow between users Figure 1: Expander graph emeddings are mixed with input node

that might otherwise be inactive ~features to rewire the base TGNN model in TGR.

for a longer period of time.

In this work, we propose the TGR framework for Temporal Graph Rewiring with expander graphs.
We leverage recent work by Deac et al. (2022) on expander graph propagation in combination with a
TGNN base model to ensure global message passing between temporally distant nodes. It is shown
that expander graphs satisfy four desirable criteria for graph rewiring: 1) the ability to efficiently
propagate information globally within the input graph, 2) relieving bottlenecks and over-squashing,
3) subquadratic space and time complexity, and 4) no additional pre-processing of the input graph.
As shown in Figure 1, TGR operates by utilizing expander graphs to form message passing highways
between temporally distant nodes, alleviating issues such as under-reaching and memory staleness.

Our main contributions can be summarised as follows:

* The theoretical motivation for temporal graph rewiring. We shed light on the fact that
important challenges in static graphs, such as under-reaching (Barcel6 et al., 2020), are made
more challenging when graphs gain a temporal axis. This directly motivates the need for rewiring
over temporal graphs.

* The first rewiring method for temporal graphs. To respond to this need, we propose Temporal
Graph Rewiring or TGR. To the best of our knowledge, TGR is the first approach which applies
graph rewiring techniques on temporal graphs. TGR leverages expander graph propagation (Deac
et al., 2022) to rewire a base temporal graph neural network such as TGN (Rossi et al., 2020),
while operating with minimal additional overhead. Further, TGR is agnostic to the choice of base
temporal graph learning model; we demonstrate this by evaluating TGR over two widely used
TGNNSs (Rossi et al., 2020; Zhang et al., 2024).

 The state-of-the-art in temporal graph representation learning. We test TGR on temporal link
prediction tasks within the Temporal Graph Benchmark (Huang et al., 2023, TGB). In Section
5, we show that TGR consistently outperforms other baseline TGNNs, while setting the new
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state-of-the art performance on four datasets (tgbl-review, tgbl-coin, tgbl-comment and
tgbl-flight), often by a significantly wide margin. This result indicates that temporal graph
rewiring indeed unlocks communication between node pairs that were relevant and critical for
diverse real-world temporal graph tasks.

Reproducibility. Our code is available on 4open.science and will be made public.

2 RELATED WORK

Temporal graph neural networks. Graph-based TGNNs (Yu et al., 2023; Cong et al., 2023; Xu
et al., 2020; Wang et al., 2022) leverage structural features of the input graph for learning temporal
graph representations. Although these architectures achieve state-of-the-art performance on smaller
TGB datasets (Huang et al., 2023), they rely on heavy processing of structural features, resulting
in limited opportunities for scaling. Memory-based TGNNs (Rossi et al., 2020; Trivedi et al.,
2019; Johnson et al., 2023) use temporal memory to retain historical node information by utilizing
additional model components such as recurrent networks (Rossi et al., 2020) or two-time scale deep
temporal point processes (Trivedi et al., 2019) to dynamically keep track of node interactions as
they occur. Recently, Zhang et al. (2024) extend Neural Common Neighbor (NCN) to the temporal
domain, leveraging pairwise representations and link-specific features. Memory-based architectures
are successful in processing larger datasets, however they lack the ability to observe long-range de-
pendencies between nodes in dynamic graphs. In contrast, our method demonstrates ability to both
scale well with increase of dataset size and observe long-range dependencies between temporal data
points, due to its usage of expander graphs, which require no additional dynamic pre-processing.

Static graph rewiring. Graph rewiring has been employed to address bottlenecks and over-
squashing in static GNNs, leading to an impressive boost in performance. For instance, diffusion-
based graph rewiring (Gasteiger et al., 2019) diffuses additional edges in the graph with use of ker-
nels such as PageRank (Page et al., 1999). However, as stated by Topping et al. (2021), such models
generally fail to reduce bottlenecks in the input graph. In contrast, Topping et al. (2021) propose to
modify a portion of edges guided by their Ricci curvature. However, this method incurs high pre-
processing cost and it is sub-optimal for analyzing large graphs, such as continuous-time dynamic
graphs, which are the focus of our paper. Deac et al. (2022) introduce expander graph propagation
(EGP), which, unlike prior rewiring methods, requires no dedicated preprocessing: EGP propa-
gates information over an expander graph which is independent from the input graph. EGP thus
minimises computational overhead while exhibiting favourable topological properties for message
passing. This makes EGP our preferred method of choice for TGR, as its rewiring side-steps the
added temporal complexity of dynamic graphs.

3 THEORETICAL BACKGROUND AND MOTIVATION

This section will provide a brief formal treatment of temporal graphs, describe the TGNN class of
models over them, and motivate temporal graph rewiring by analysing how TGNNs are exposed to
vulnerabilities in the input graph topology, especially in comparison to static graphs.

3.1 TEMPORAL GRAPHS

Temporal graphs are characterised by a topology that evolves through time, thus making them a
suitable abstraction for modelling complex dynamic networks. We provide a formal definition next.

Continuous-time dynamic graphs. In this work, we focus on continuous-time dynamic graphs
(CTDGs), that are used to model events occurring at any point in time, thus offering a versatile
framework for representing real-world networks.

Definition 1 (Continuous-time dynamic graph). Let T € RY denote the current time. A
continuous-time dynamic graph (CTDG) is a multi-graph Gr = (V(T), E(T),X(T)) com-
prising a set of all nodes that appeared in this time V (T'), and a stream of chronologically
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sorted edges (u,v,t) € E(T) between nodes u,v € V(T') that occurred at time t € [0,T).
X(T) € RVIDIXE represents the k-dimensional input features of all observed nodes.

Definition 1 can be specialised to specify a snapshot of a CTDG at time 7 € [0,T), denoted by
G<; = (V<r, E<;,X(7)), which contains a collection of nodes and edges that were observed
during the time interval [0, 7]. Over this period of time, nodes need not all be active simultaneously,
and the sequence of timesteps at which nodes are observed significantly influences the dynamics in
CTDGs. We denote t,, € [0, 7] as the last activation time of a node u € V<,,i.e., the time at which
node u last appears in the CTDG’s snapshot up to 7.

For a pair of nodes u,v € Vz,, we use E”) C E<, to represent the set of all historical interac-

tions betweeen u and v during the observed time period [0, 7]. We also denote their associated node
features as xq(f), XE,T) € R*. Lastly, we may also consider the open snapshot of all events prior to

time 7, G, considering all events that were observed within [0, 7).

Temporal link prediction tasks. We will be particularly interested in tasks requiring the prediction
of existence or absence of links in continuous-time dynamic graphs. Such tasks have significant
implications for real-world recommendation systems, especially in social networks. To formalise
this, we will assume that predicting links in a CTDG consists of computing temporal embeddings of
its nodes, and then predicting a probability of an edge’s existence between a pair of nodes given those
two nodes’ embeddings. Note this is a simplified framework—many TGNNs may also compute
explicit temporal edge embeddings, for example.

Formally, we assume that a temporal link prediction task at time 7 focuses on predicting existence
of an edge between a pair of nodes u,v € V<, in a CTDG snapshot G<,. Hence, a temporal link

prediction task can be formulated as deciding whether (u,v,7) € E (<uT’U), as a function of G .

3.2 TEMPORAL GRAPH NEURAL NETWORKS

In order to better understand the vulnerabilities of temporal graph neural networks (TGNNs) with
respect to the temporal graph topology, we need to briefly formulate how they aggregate information
along the input CTDG. For the purposes of making our analysis more elegant, we will make two
simplifying assumptions:

* Incoming edges are processed one at a time, and no two edges occur at the same time, i.e.
for any u, v, w, z € V<, suchthatu # wVv # z, (u,v,7) € E<, = (w,2,7) ¢ E<,.
We also assume that there are no additional edge features provided.

* All nodes in the CTDG are observed from the beginning (V<; = V<o) and their input
features are never updated (X (7) = X(0)).

Our exposition follows a more abstractified variant of the TGN model (Rossi et al., 2020), which
maintains a temporal memory S(7) € RIV<~X% which summarises all the knowledge about a node

u € V<, up to time 7 within a memory vector sff) e R™.
Initially, the memory vectors are set as s&o) = X(xSf’)) for a learnable function ¥ : RF — R™, Upon
encountering a new event (u, v, 7), a TGN updates the memory vectors of « and v accordingly:

0= (5080) s = o (s, s )

where ¢ > 0 is a suitably chosen constant such that no edges are observed in the time interval
[T —€,7), and @5, Pq : R™ x R™ — R™ are learnable update functions.

The memory vectors S(7) can then be freely leveraged to answer temporal link prediction queries at
time 7 + € on demand. TGNs perform this by computing temporal node embeddings Z(7) € R! as a

function of each node’s temporal neighbourhood, Ng:) ={v|(u,v,7") € E<:V(v,u,7") € E<;}.

Abstractly:
A0 = @ (s X x0)

vEN. 2:_)
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where ¢ : R™ x R™ x R*¥ x R* — Rl is a learnable message function, and @ : bag(R!) — Rl is
a permutation-invariant aggregation function, such as sum, average or max.

Finally, the computed embeddings are used to compute the relevant probabilities for link prediction:
P((u,0,7 +€) € Berye) o (2,207

where £ : R! x R — R is a learnable logit function. These logits can be then optimised towards
correct values using gradient descent, as the architecture is fully differentiable.

3.3 TEMPORAL UNDER-REACHING

The design of TGN, particularly its local memory updates, represents an elegant tradeoff between
expressive power and favourable computational complexity. However, as we will show, this design
leaves TGNs vulnerable to more severe forms of the under-reaching effect (Barcel6 et al., 2020).
Under-reaching concerns itself with the questions of the form: is node u able to make any local
decisions in a way that depends on features of another node v? Or, equivalently, will features of
node v mix into the embeddings of node u?

For k-layer GNNs over static graphs G = (V, E), under-reaching is simple to define: it occurs
between any two nodes u, v € V for which k < dg(u, v), where dg(u, v) is the shortest path length
between v and v in G. Clearly, it will not be possible for the information from node v to mix into
node u’s embeddings in this case, as each GNN layer mixes information that is one hop further.
What happens in temporal graphs G <, for our previously studied TGNN framework?

First, note that, since the computed temporal node embeddings zq(f) are used only for answering link
prediction queries and they are not committed back into memory, we can focus on studying mixing

over temporal memory vectors sgf) only, and handle the embedding mixing as a follow-up case.

For now, we will assume that the input features of node u are temporally mixed into node v’s
memor i if s{) inf i O si ’ i

y at time 7 if s, * depends on information from x,, . Since a node’s memory vector is only
updated when that node is observed within an edge, we can formally define temporal mixing and

under-reaching by tracking paths by which this information travels:

Definition 2 (Temporal under-reaching). Let G<, be a continuous-time dynamic graph snap-

shot, and let a < b mean that either (a,b,t) € E<, or (b,a,t) € E<;. Then, the features of

node u are said to be temporally mixed into node v’s memory at time T by a TGNN, if there

. t t - tn,
exists a sequence of nodes u +> wy > ... <~ ! Wy, < v such that to < t1 < --- < ty.

If no such sequence exists, temporal under-reaching occurs from node u to node v at time T,

, ’ e 0
and node v’s memory vector, s,(f), cannot depend on node u’s input features, XQ(L ).

While temporal under-reaching at time 7 may appear related to static under-reaching of G<, it
occurs substantially more frequently, as we can show by the following proposition:

Proposition 1 (Temporal under-reaching is more severe than static under-reaching). There ex-
ists a continuous-time dynamic graph snapshot G < which exhibits temporal under-reaching
Sfrom node u to node v at time T, while running a static GNN over all edges in G<, at once for
the same number of layers would not exhibit under-reaching.

To show this proposition is true, we can consider a simple “path temporal graph” where the only
edges are (u, w1, tg), (w1, wa,t1), ..., (wn,v,t,). Clearly, a static GNN over this temporal graph,
ran over n + 1 layers, does not exhibit under-reaching between u and v. However, u temporally
under-reaches v in almost all configurations—the only exception is if tp < 1 < -+ < tp.

We can use this same graph to illustrate another relevant result, which holds in temporal under-
reaching but not when the graph is static:
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Proposition 2 (Temporal under-reaching is asymmetric). There exists a continuous-time dy-
namic graph snapshot G <, which exhibits temporal under-reaching from node u to node v at
time T, while not exhibiting temporal under-reaching from node v to node u at time T.

In the path temporal graph, if node u does not temporally under-reach into node v, it must hold that
node v temporally under-reaches into u, settling the proposition.

3.4 FURTHER COMPLICATIONS

Note that we demonstrated temporal under-reaching in the “most optimistic possible” case, wherein
we’re starting with a static initial set of features (X(0)) and merely aiming to spread it using the
temporal edges. In practice, there are several aspects of TGNNs’ implementation that further ex-
acerbate the under-reaching effect. In all of the below examples, we track a possible mixing path

to ty tn—1 tn,

U Wy S . wy, 0.

Temporal batching. In practice, temporal edges are seldom processed one-at-a-time; for efficiency
reasons, they are divided into temporal batches, where groups of edges happening in the same time
interval are processed together. Concretely, we break up our interval into pieces by = [0,79), b1 =
[70,71), - .., and we denote by b(¢t) € N the batch identifier in which an edge at time ¢ would be
processed. Since all edges in a batch propagate simultaneously, this means they cannot feature on the
same mixing path. Hence the constraint on our tracked path becomes b(tg) < b(t1) < -+ < b(ty,)
for temporal mixing to occur, and this is a stricter condition than ¢y < t; < --- < t,.

Dynamic node/edge updates. It is quite common that new information may enter the temporal
graph beyond edge addition, either simply as novel node or edge features to be taken into account,
or even entirely new nodes entering the network. In this case, we are attempting to analyse a more
generic form of temporal mixing: “If a node/edge is updated at time ¢, does this information reach
another node in time for link prediction at time 7?”. This translates to a condition ¢t < ty < t; <

- < t,, as any edges happening before the information came in cannot be used to propagate it
through the memory. Once again, this is a stricter condition than the one we started from, and has
particular potential to create nodes with stale memory.

3.5 WHAT ABOUT THE TEMPORAL NODE EMBEDDINGS?

Our discussion of temporal under-reaching so far focused exclusively on the temporal memory S(7).
This has been done for good reason: the computation of temporal node embeddings Z(7) is effec-

tively done over a static version of G<,, and if we allow the temporal neighbourhood N, S;) to be
wide enough, this module could eliminate any under-reaching issues.

However, recall that the embedding model needs to be executed every time a new temporal link
prediction query is raised. Hence, there is an inherent tradeoff: making the embedding module
too deep may easily lead to untenable computational complexity as the dynamic graphs get larger.
Indeed, in most practical implementations the diameter of the embedding neighbourhood is no more
than two hops—which only reduces our path constraint for temporal mixing by two steps.

There is another important issue which may make it challenging to use the embedding module—that
is node/edge deletion. Deleting a node or edge before time 7 also deletes it from the static graph of
G <., and may lead to full discontinuities in it. In such cases, the embedding module will be provably
unable to mix certain nodes together. Rather than overinflating the embedding module, in TGR we
seek a lightweight manner to propagate information more widely across the graph, without relying
too much on the provided temporal edges, while also making sure that the propagated information
is committed back to memory.

4 TEMPORAL GRAPH REWIRING (TGR)

This section presents the Temporal Graph Rewiring (TGR) framework. The main components of
TGR include memory mixing that uses expander graphs to induce mixing between under-reaching
nodes and expander embeddings that translate this information to the base TGNN model. TGR
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builds upon the expander graph propagation framework (Deac et al., 2022), known for alleviating
over-squashing and under-reaching in static graphs, and adapt it for temporal graph learning.
As illustrated in Figure 2, TGR enhances input node features of observed nodes with expander
embeddings that are computed through memory mixing. Memory mixing facilitates information
exchange between disconnected and distant nodes which are vulnerable to issues such as under-
reaching and memory staleness. By utilizing the expander embeddings to enhance input node
features for TGNNs, TGR provides additional information about potentially unreachable nodes to
the base TGNN model. As CTDGs are parsed as chronologically ordered batches of edges, TGR
computes expander embeddings at the prior batch and includes them for the current batch, naturally
integrating into the workflow of a TGNN model.

h; f
i TGNN Z(t)
()

Memory Mixing

. (©)
Batch at ¢ Temporal E d
> Merf\ory () xg;?Ner 150(0)

Figure 2: Green nodes are observed nodes and blue nodes are new nodes. Input node features X ()
are constructed by concatenating expander embeddings H(¢ ™) (for observed nodes), and node states
S(t~) (for new nodes). After computing temporal embeddings Z(t), temporal memory is updated
and mixed with other node states in temporal memory to compute expander embeddings.

4.1 EXPANDER GRAPH PROPERTIES

Expander graphs are a fundamentally sparse family of graphs (| E| = O(n)) that exhibit favourable
properties beneficial for relieving over-squashing and under-reaching. This section provides insight
into their topological properties: easy construction, no bottlenecks, and optimized commute time.

Efficiently Precomputable. Expander graphs are constructed through use of group operators and
act as an independent graph topology over which input graph is rewired. Our method considers
Cayley graph expander family, which are constructed through a use of the special linear group
SL(2,Z,,) as a generating set. Further details on constructing Cayley graphs can be found in work
by Kowalski (2019); Selberg (1965); Davidoff et al. (2003).

No Bottlenecks. The spectral gap of a graphis closely relate to its connectivity and the existence of
bottlenecks within its structure. It is known that the first non-zero eigenvalue of the graph Laplacian
matrix is lower-bounded by a positive constant € > 0 in expander graphs (Alon, 1986) and € = %
for Cayley graph (Selberg, 1965). Given their tree-like structure (Deac et al., 2022), this concludes
that expander graphs and particularly Cayley graphs have high connectivity and no bottlenecks,

following Cheeger inequality.

Optimized Commute Time. Recent work by Di Giovanni et al. (2024), formally validates that such
approach is effective in relieving over-squashing by decreasing overall effective resistance or com-
mute time (Chandra et al., 1989). In fact, commute time is shown to be closely aligned with over-
squashing, stating that commute time in expander graphs grows linearly with the number of edges.

4.2 EXPANDER GRAPH PROPAGATION FOR GRAPH REWIRING

We briefly discuss key details behind expander graph propagation framework in static setting.
Given a set of input node features X"*¢, where n denotes the number of nodes and d represents the
feature vector size, expander graph propagation operates by alternating GNN layers and propagating
information stored in nodes over the adjacency matrices of both the input graph A and a Cayley
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graph A®® to compute expander node embeddings H as follows:
H = GNN(GNN(X, A), A®),

Given this construction, GNN(+,-) can be any classical GNN layer, such as graph attentional
network (GAT) (Velickovi¢ et al., 2017):

K
h, =

k ark
o g ozijW X;

k=1 JEN;

In the multi-head attention layer equation above, i denotes a node of interest and N; is its 1-hop
direct neighbourhood. The attention weights afj correspond to the k-th attention head and W*
represents the input linear transformation’s weight matrix.

4.3 EXPANDER GRAPH PROPAGATION ON TEMPORAL GRAPHS

This set-up utilizes underlying expander graph by virtually creating temporal paths that connect
under-reaching nodes, independently of their prior interactions in a CTDG. Observed nodes are
stored in a node bank module, which dynamically updates its content at every temporal batch. Re-
sulting expander embeddings are used to enhance input node features of observed nodes in the node
bank and feed exchanged information into the base TGNN model as dynamic input node features.

By providing dynamic node features, TGR remains agnostic to the underlying TGNN architecture,
allowing easy integration with various TGNN models without altering their layer construction. This
set-up differs from static graph rewiring methods that modify individual GNN layers within the
model architecture by adding a rewiring mask to alter input graph topology.

In this construction, a large expander graph is pre-computed at the beginning of training to match
the size of temporal memory. We construct input features S’(¢) for memory mixing by extracting
node states from TGNN temporal memory for nodes stored in the node bank. Expander embeddings
H'(t) are computed over expander graph with adjacency matrix A% as:

H'(t) = GNN(S'(t), A°™).

The input feature vector X (¢) for TGNN forward pass is constructed through a concatenation (||)
of expander embeddings H(¢~) (for previously observed nodes) and TGNN node states S(t~) (for
new nodes) from temporal memory, where ¢~ denotes time stamp just before ¢:

X(t) =H()[S(™).

5 EXPERIMENTS

We evaluate TGR framework on the dynamic link property prediction task leveraging publicly avail-
able data on Temporal Graph Benchmark (Huang et al., 2023, TGB). We demonstrate TGR improves
performance of existing TGNN architectures by implementing TGR on top of state-of-the-art mod-
els (Rossi et al., 2020; Zhang et al., 2024) featured on TGB benchmark. We further highlight that
TGR-TGN achieves state-of-the-art on tghl-review and TGR-TNCN achieves state-of-the-art on
tgbl-coin, tgbl-comment and tgbl-flight datasets as of the time of writing.

Datasets. We leverage availability of temporal graph datasets made open-source through TGB
Benchmark to validate TGR performance. TGB Benchmark collects a variety of real-world
temporal networks to provide large-scale datasets spanning across a variety of domains such as
flights, transactions and beyond. We provide description of each dataset in Appendix B.1.

Baselines. We demonstrate TGR performance by implementing TGR on top of the TGN (Rossi
et al., 2020) and TNCN (Zhang et al., 2024) base models and study their performance on TGB
temporal link prediction task (Huang et al., 2023). TGN (Rossi et al., 2020) is characterised by use
of TGN temporal memory to store and update node states with use of recurrent neural networks such
as LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho et al., 2014). TNCN (Zhang et al., 2024)
achieves state-of-the-art results on TGB link prediction task on a majority of datasets, by encoding
link embeddings using neural common neighbour (Wang et al., 2024) in temporal setting.
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Table 1: MRR for dynamic link property prediction on TGB Benchmark with baseline results im-
ported directly from the leaderboard. First, second and third best performance are marked in red,
blue and bold respectively. ‘—” means the method was omitted due to OOM (Huang et al., 2023).

tgbl-wiki tgbl-review tgbl-coin tgbl-comment tgbl-flight

Model

Val Test Val Test Val Test Val Test Val Test
TGR-TNCN 751 724 511 599 769 78.3 89.9 89.1 854 85.1
TNCN 74.1 718 325 377 740 76.2 64.3 69.7 83.1 82.0
Improvement (%) 1.0 06 186 222 29 2.1 256 194 2.3 3.1
TGR-TGN 642 589 834 854 734 755 728 72.9 77.0 76.2
TGN 435 396 31.3 349 60.7 58.6 356 37.9 73.1 70.5
Improvement (%) 20.7 19.3 52.1 50.5 127 169 372 35.0 3.9 5.7
DyRep 7.2 50 216 220 512 452 29.1 28.9 573 55.6
EdgeBank,, 60.0 571 24 2.5 492 580 124 14.9 36.3 38.7
EdgeBank 5277 495 23 2.3 31.5 359 109 12.9 16.6 16.7
DyGFormer 81.6 798 219 224 730 752 613 67.0 - -
GraphMixer 113 11.8 428 521 - - - - - -
TGAT 13.1 141 324 355 - - - - - -
NAT 773 749 302 34.1 - - — - - -
CAWN 743 71.1 20.0 19.3 - - - - - -
TCL 19.8 20.7 199 19.3 - - - - - -

TGR Implementation. TGR is implemented on top of TGNN by adding node bank to store ob-
served node IDs and memory mixing module to compute expander embeddings. Empirically, ex-
pander embeddings can enhance input node feature for observed nodes in the batch or additionally
with their 1-hop neighbourhood. For experiments, we set this choice as a hyperparameter and select
the best performing one based on validation set for each dataset. The experiements were conducted
using either V100 or A100 GPUs. In all experiments we set learning rate /7 = 10~* and run models
with a tolerance that varies based on the size of dataset and computational time. We observe that
added computational cost of rewiring in TGR is in most cases lower than the computational cost of
base TGNN model. We maintain same batch size as in TGB and additionally provide a full list of
hyperparameters in Appendix D.

Results and Discussions. We show that TGR significantly outperforms the base TGNN on the
temporal link prediction task with largest improvement achieved across tgbl-review (50.5%),
tgbl-comment (35.0%) and tgbl-wiki (19.3%) datasets. Full table of results is given in Table 1.
We observe that TGR shows higher improvement across datasets with high surprise indices such are
tgbl-review and tgbl-comment. Moreover, we identify that TGR achieves significant improve-
ment over bipartite datasets such are tgbl-wiki and tgbl-review. Both bipartite and high surprise
index temporal graphs posses a layer of information that is inaccessible to traditional TGNN ar-
chitectures. Due to a nature of their structure, bipartite graphs lack connections between nodes of
the same class. High surprise index datasets contain edges between nodes that do not have obvious
connections in the training data, thus making it challenging for traditional TGNNs to distinguish.
Both situations link to temporal under-reaching, previously discussed in Section 3.3, showing that
TGR is best used to optimize input graphs that have high presence of temporal under-reaching. Con-
sistent improvement across all datasets signals that TGR uncovers structural information which was
previously inaccessible to TGNN base model.

6 CONCLUSION

In this work, we propose Temporal Graph Rewiring (TGR), a first approach for graph rewiring on
temporal graphs to address limitations in TGNNs namely temporal under-reaching, over-squashing
and memory staleness. We show that using expander graphs to rewire temporal graphs is an optimal
method to address identified issues. This paper provides a promising first step towards applying tem-
poral graph rewiring to optimize performance of TGNN models, paving the way for future temporal
graph rewiring methods. In future work, we hope to further address identified issues by investigating
other graph rewiring methods and compare their performance to TGR.
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A  OVERVIEW OF TGNN BASELINES

TGN. Temporal Graph Network (TGN) (Rossi et al., 2020) proposes a combination of temporal
memory to store node states and graph-based operators for learning on continuous-time dynamic
graphs. Following interaction in a CTDG, node states of the nodes involved in the event are updated
in the memory through a recurrent neural network such as LSTM (Hochreiter & Schmidhuber, 1997)
or GRU (Cho et al., 2014).

TNCN. TNCN builds up on memory-based TGNNs (Rossi et al., 2020; Trivedi et al., 2019) by
introducing temporal version of a neural-common-neighbour (NCN) and reaching state-of-the-art
results on three out of five datasets at TGB Benchmark.

B TGB BENCHMARK

This section provides overview and statistics of TGB Benchmark datasets (Huang et al., 2023).

B.1 DATASET DESCRIPTION

tgbl-wiki. tgbl-wiki dataset stores dynamic information about a co-editing network on Wikipedia
pages over a span of one month. The data is stored in a bipartite temporal graph where nodes rep-
resent editors or wiki-pages they interact with. An edge represents an action user takes when editing
a Wikipedia page and edge features contain textual information about a page of interest. The goal is
to predict existence and nature of links between editors and Wikipedia pages at a future timestamp.

tgbl-review. tgbl-review dataset stores dynamic information about Amazon electronics product
review network covering the years 1997 to 2018. This dataset forms a bipartite weighted network,
where nodes represent users and products, and edges signify individual reviews—rated on a scale
from one to five—submitted by users to products at specific times. The goal is to predict which user
will interact in the reviewing process at a given time.

tgbl-coin. tgbl-coin dataset stores cryptocurrency transactions extracted from the Stablecoin
ERC20 transactions dataset. Nodes represent addresses, while edges indicate the transfer of funds
between these addresses over a period of time. Covering the period from April 1 to November 1,
2022, the network includes transaction data for five stablecoins and one wrapped token. The goal
of the task is to predict with which destination a given address will interact at a given time.

tgbl-comment. tgbl-comment dataset captures a directed network of Reddit user replies spanning
from 2005 to 2010. Nodes represent individual users, and directed edges correspond to replies from
one user to another within discussion threads. The goal of the task is to predict whether a pair of
users will interact at a given time.

tgbl-flight. tgbl-flight dataset represents an international flight network from 2019 to 2022.
Airports are modeled as nodes, and flights occurring between them on specific days form the edges.
Node features include the airport type, the continent of location, ISO region codes, and geographic
coordinates (longitude and latitude). Edge attributes consist of the associated flight numbers. The
task is to predict if a given flight will exist between a source and destination airport at a given day.

B.2 DATASET STATISTICS

Table 2: TGB Dataset characteristics studied in this work.

Scale Name #Nodes  #Edges* #Steps Surprise Metric
small tgbl-wiki 9,227 157,474 152,757 0.108 MRR
small tgbl-review 352,637 4,873,540 6,865 0.987 MRR

medium tgbl-coin 638,486 22,809,486 1,295,720 0.120 MRR
large tgbl-comment 994,790 44,314,507 30,998,030 0.823 MRR
large tgbl-flight 18,143 67,169,570 1,385 0.024 MRR
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Table 2 shows the statistics of datasets used in this work from TGB. As shown, a wide range of
datasets across multiple domains and scales are tested.

C ABLATION STUDY

Choice of expander layer. We compare TGR performance using three different baselines for ex-
pander layer: TGR-GCN (Kipf & Welling, 2016), TGR-GAT (Velickovic et al., 2017) and TGR-GIN
(Xu et al., 2018). Results of the study show that the effect of expander layer choice varies but that
performance is largely independent of the choice of layer. For experiments, we use the GAT layer
which has the highest empirical performance on tgbl-review.

Table 3: Performance comparison of expander layers on tghl-wiki and tgbl-review datasets.

Model tgbl-wiki \ tgbl-review

Val MRR Test MRR ‘ Val MRR  Test MRR
TGR-TGN-GAT 64.2 58.9 834 85.6
TGR-TGN-GCN 64.0 59.6 82.9 85.2
TGR-TGN-GIN 64.8 60.1 78.3 81.7

D MODEL PARAMETERS

We report TGR hyperparameters in Table 4.

Table 4: Model Hyperparameters.

Value

Temporal Memory Dimension 100
Node Embedding Dimension 100
Time Embedding Dimension 100
Expander Memory Dimension 100
Expander Embedding Dimension 100
# Attention Heads 2

Dropout 0.1
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