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Abstract001

Integrating multimodal Electronic Health002
Records (EHR) data—such as numerical time003
series and free-text clinical reports—has great004
potential in predicting clinical outcomes. How-005
ever, prior work has primarily focused on cap-006
turing temporal interactions within individual007
samples and fusing multimodal information,008
overlooking critical temporal patterns across009
patients. These patterns, such as trends in vital010
signs like abnormal heart rate or blood pres-011
sure, can indicate deteriorating health or an012
impending critical event. Similarly, clinical013
notes often contain textual descriptions that re-014
flect these patterns. Identifying corresponding015
temporal patterns across different modalities is016
crucial for improving the accuracy of clinical017
outcome predictions, yet it remains a challeng-018
ing task. To address this gap, we introduce019
a Cross-Modal Temporal Pattern Discovery020
(CTPD) framework, designed to efficiently ex-021
tract meaningful cross-modal temporal patterns022
from multimodal EHR data. Our approach in-023
troduces shared initial temporal pattern rep-024
resentations which are refined using slot at-025
tention to generate temporal semantic embed-026
dings. To ensure rich cross-modal temporal027
semantics in the learned patterns, we introduce028
a Temporal Pattern Noise Contrastive Estima-029
tion (TP-NCE) loss for cross-modal alignment,030
along with two reconstruction losses to retain031
core information of each modality. Evalua-032
tions on two clinically critical tasks—48-hour033
in-hospital mortality and 24-hour phenotype034
classification—using the MIMIC-III database035
demonstrate the superiority of our method036
over existing approaches. The code is anony-037
mously available at https://anonymous.038
4open.science/r/MMMSPG-014C.039

1 Introduction040

The increasing availability of Electronic Health041

Records (EHR) presents significant opportuni-042

ties for advancing predictive modeling in health-043

care (Acosta et al., 2022; Wang et al., 2024). EHR044

data is inherently multimodal and time-aware, en- 045

compassing structured data like vital signs, labo- 046

ratory results, and medications, as well as unstruc- 047

tured data such as free-text clinical reports (Kim 048

et al., 2023). Integrating these diverse data types is 049

crucial for comprehensive patient monitoring and 050

accurate prediction of clinical outcomes (Hayat 051

et al., 2022; Wang et al., 2023; Zhang et al., 2023b). 052

However, the irregularity and heterogeneity of mul- 053

timodal data present significant challenges for pre- 054

cise outcome prediction. 055

Existing approaches primarily address either the 056

irregularity of data (Shukla and Marlin, 2019; Horn 057

et al., 2020; Zhang et al., 2021, 2023b) or the fusion 058

of multiple modalities (Huang et al., 2020; Zhang 059

et al., 2020b; Xu et al., 2021; Kline et al., 2022), 060

but they often neglect broader temporal trends that 061

span across patient cases. These cross-modal tem- 062

poral patterns, present in both structured and un- 063

structured data, can provide high-level semantic in- 064

sights into a patient’s health trajectory and potential 065

risks (Conrad et al., 2018). As illustrated in Fig. 1, 066

high-level semantic patterns related to medical con- 067

ditions can emerge across multiple modalities. Cap- 068

turing these patterns in a cross-modal, temporal 069

manner is essential for improving predictive per- 070

formance. Furthermore, critical temporal patterns 071

in EHR data unfold at different time scales (Zhang 072

et al., 2023a; Luo et al., 2020; Ma et al., 2020; 073

Ye et al., 2020), yet existing methods struggle to 074

capture variations across these granularities. For 075

instance, sudden changes in vital signs—such as 076

a sharp drop in oxygen saturation or a rapid heart 077

rate increase—may indicate an acute health crisis. 078

In contrast, longer-term trends, such as persistently 079

high blood pressure or a gradual decline in respi- 080

ratory function, may signal deteriorating health or 081

an impending critical event. Effectively analyzing 082

patient states across multiple time scales is crucial 083

for comprehensive EHR modeling, yet remains an 084

open challenge in current methodologies. 085
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“while in the ew pt needed to be put on a nrm 
when sats dropped into the low 80 ‘s .”, “pt 

finds it difficult to take a deep breath .”, 
“when pt removes the nrb mask she desats into 
the low 80 ’s .”, “resp manager placed a nasal 

canula at 8lpm under a humidified mask at 90 
% and sats have remained in the upper 90 ‘s to 
100 ’s .", "pt tolerating the high o2 but will 

begin to wean down as possible .", "pt has a 
sputum ordered and has not been collected as 
of this writing”.

“pt c/o cough , non-productive , dry .", 
"tesselon and robitussin w/o effect .", 

"robitussin and codeine ordered snd 
given w/ good effect .", "r mid-to 
lower base very diminished , md 

aware .", "4l nc , tol well .", "doe 
relieved w/ rest .", "o2 weaned to 2l nc 
, tolerating well .", "pt verbalzied 

feeling better , breathing better .", "pt 
w/ gram + cocci .", "bld cx x2 drawn 
this am .

“pt remains alert and oriented times three .", "pt 
has had increased ough noted and requested 

cough medicine .", "given dextro-guifenison 10cc 
's .", "pt was requesting cough med with codeine 
which still needs to be ordered by the team .", 

"she received vancomycin as ordered .", "dose 
decreased to 750mg iv bid after she was given 
her first dose .", "pt c/o sob and still becomes doe 

.", "she requested for me to increase the nc flow 
so she is now on 4l n/c with good sat .", "lungs 
are deminished throughout ."

Figure 1: Motivation of our proposed CTPD: we visualized the time-series EHR with corresponding clinical
notes in one ICU stay of the MIMIC-III dataset, and observed the temporal patterns across two modalities: Blue
text highlights respiratory status. Oxygen requirements gradually decreased from 8L to 4L, and then to 2L nasal
cannula, indicating steady respiratory improvement. Note that this pattern is also reflected from the time series.
Green text captures cough progression and medication effects. Symptom relief was observed after administering
Robitussin with codeine, demonstrating a delayed but positive response to treatment. Yellow text represents
infection monitoring. The detection of Gram-positive cocci prompted blood culture collection (bld cx) for further
evaluation, indicating active infection surveillance.

To address these limitations, we propose the086

Cross-modal Temporal Pattern Discovery (CTPD)087

framework, designed to extract meaningful tem-088

poral patterns from multimodal EHR data to im-089

prove the accuracy of clinical outcome predictions.090

The core innovation of our approach is a novel091

temporal pattern discovery module, which identi-092

fies corresponding temporal patterns (i.e., temporal093

prototypes) with meaningful semantics across both094

modalities throughout the dataset. This approach095

ensures that the model captures essential tempo-096

ral semantics relevant to patient outcomes, provid-097

ing a more comprehensive understanding of the098

data. To further enhance the quality of the learned099

temporal patterns, we introduce a Temporal Pat-100

tern Noise Contrastive Estimation (TP-NCE) loss101

for aligning pattern embeddings across modalities,102

along with auxiliary reconstruction losses to en-103

sure that the patterns retain core information of104

the data. Moreover, our framework incorporates105

a transformer (Vaswani et al., 2017)-based fusion106

mechanism to effectively fuse the discovered tem-107

poral patterns with timestamp-level representations108

from both modalities, leading to more accurate pre-109

dictions. We evaluate CTPD on two critical clinical110

prediction tasks: 48-hour in-hospital mortality pre- 111

diction and 24-hour phenotype classification, using 112

the MIMIC-III database. The results demonstrate 113

the effectiveness of our approach, which signifi- 114

cantly outperforms existing methods, and suggest 115

a promising direction for improving multimodal 116

EHR analysis for clinical prediction. 117

2 Related Works 118

2.1 EHR Time-Series Data Analysis 119

EHR data is critical for clinical tasks such as dis- 120

ease diagnosis, mortality prediction, and treatment 121

planning (Harutyunyan et al., 2019; Zhang et al., 122

2023b). However, its high dimensionality and irreg- 123

ular nature pose challenges for traditional predic- 124

tive models (Rani and Sikka, 2012; Lee et al., 2017). 125

Deep learning models, such as RNNs and LSTMs, 126

are often used to capture temporal dependencies in 127

EHR data (Hayat et al., 2022; Deldari et al., 2023), 128

but they struggle with irregular time intervals due 129

to their reliance on fixed-length sequences (Xie 130

et al., 2021). To address this, some methods up- 131

date patient representations at each time step using 132

graph neural networks (Zhang et al., 2021), while 133

others employ time-aware embeddings to incorpo- 134
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rate temporal information (Qian et al., 2023; Zhang135

et al., 2023b). Despite these advancements, exist-136

ing approaches still struggle to model high-level137

temporal patterns essential for accurate clinical out-138

come prediction.139

2.2 Prototype-based Pattern Learning140

Prototype-based learning identifies representative141

instances (prototypes) and optimizes their distance142

from input data in latent space for tasks like clas-143

sification (Li et al., 2023a; Ye et al., 2024). This144

approach has been widely applied in tasks such145

as anomaly detection, unsupervised learning, and146

few-shot learning (Tanwisuth et al., 2021; Li et al.,147

2023b). Recently, it has been extended to time-148

series data (Ghosal and Abbasi-Asl, 2021; Li et al.,149

2023a; Yu et al., 2024), demonstrating its potential150

for detecting complex temporal patterns. Addition-151

ally, prototype-based learning offers interpretable152

predictions, which is essential for healthcare ap-153

plications (Zhang et al., 2024). However, learning154

efficient cross-modal temporal prototypes for mul-155

timodal EHR data remains an unexplored problem,156

as irregular time series and multi-scale patterns157

present significant challenges for existing methods.158

2.3 Multi-modal Learning in Healthcare159

In healthcare, patient data is typically collected in160

various forms—such as vital signs, laboratory re-161

sults, medications, medical images, and clinical162

notes—to provide a comprehensive view of a pa-163

tient’s health. Integrating these diverse modalities164

significantly enhances the performance of clini-165

cal tasks (Hayat et al., 2022; Zhang et al., 2023b;166

Yao et al., 2024). However, fusing multimodal167

data remains challenging due to the heterogeneity168

and complexity of the sources. Earlier research169

on multimodal learning (Trong et al., 2020; Ding170

et al., 2022; Hayat et al., 2022) often rely on late fu-171

sion strategies, where unimodal representations are172

combined via concatenation or Kronecker products.173

While straightforward, these approaches often fail174

to capture complex inter-modal interactions, lead-175

ing to suboptimal representations. Recent works176

have introduced transformer-based models that fo-177

cus on cross-modal token interactions (Zhang et al.,178

2023b; Theodorou et al., 2024; Yao et al., 2024).179

While these models are effective at capturing inter-180

modal relationships, they often struggle to extract181

high-level temporal semantics from multimodal182

data, limiting the ability to achieve a comprehen-183

sive understanding of a patient’s health conditions.184

3 Methodology 185

3.1 Problem Formulation 186

In practice, multimodal EHR datasets contain mul- 187

tiple data types, specifically Multivariate Irregular 188

Time Series (MITS) and free-text clinical notes. 189

We represent the multimodal EHR data for the i- 190

th admission as {(x(i), t
TS
(i) ), (n(i), t

Text
(i) ),y(i)}Ni=1. 191

Here x(i) represents the multivariate time series 192

observations, with tTS
(i) indicating their correspond- 193

ing time points. The sequence of clinical notes 194

is represented by n(i), and tText(i) denotes the time 195

points of these notes. The variable yi denotes the 196

clinical outcomes to predict. For simplicity, we 197

omit the admission index i in subsequent sections. 198

The MITS x comprises dm variables, where each 199

variable j = 1, ..., dm has lTS
(j) observations, with 200

the rest missing. Similarly, each clinical note se- 201

quence n includes lText notes. Early-stage medical 202

prediction tasks aim to forecast an outcome y for 203

the admission i using their multimodal EHR data 204

{(x, tTS), (n, tText)}, specifically before a certain 205

time point (e.g., 48 hours) after admission. 206

3.2 Encoding MITS and Clinical Notes 207

Here, we introduce our time series encoder ETS 208

and text encoder EText, which separately encode 209

MITS (x, tTS) and clinical notes (n, tText) into 210

their respective embeddings zTS and zText ∈ 211

RT×D. Here T denotes the number of regular time 212

points, and D denotes the embedding dimension. 213

For MITS, we utilize a gating mechanism that 214

dynamically integrates both irregular time series 215

embeddings eTS
imp and imputed regular time se- 216

ries embeddings eTS
mTAND, following the approach 217

in (Zhang et al., 2023b). Formally, the MITS em- 218

bedding zTS is computed as: 219

zTS = g ⊙ eTS
imp + (1− g)⊙ eTS

mTAND (1) 220

where g = f(eTS
imp ⊕ eTS

mTAND), f(·) is a gating 221

function implemented via an MLP, ⊕ denotes the 222

concatenation, and ⊙ denotes point-wise multipli- 223

cation. 224

The regular time series eTS
imp embedding is de- 225

rived by applying a 1D convolution layer to the 226

imputed time series. At each reference time point 227

α = 1, ..., T , the imputed values are sourced from 228

the nearest preceding values or replaced with a 229

standard normal value if no prior data is avail- 230

able. Concurrently, mTAND (multi-time atten- 231

tion) (Shukla and Marlin, 2021) generates an al- 232

ternative set of time series representations eTS
mTAND 233
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Figure 2: CTPD overview: the input Multivariate Irregular Time Series (MITS) and clinical note sequences are
first encoded into regular embeddings. We then introduce the Cross-Modal Temporal Pattern Discovery (CTPD)
module to extract meaningful temporal semantics. The extracted temporal patterns, along with the timestamp-level
embeddings from both modalities, are fused to generate the final predictions.

with the same reference time points r with irregular234

time representations. Specifically, we leverage V235

different Time2Vec (Kazemi et al., 2019) functions236

{θv(·)}Vv=1 to produce interpolation embeddings at237

each time point α, which are then concatenated and238

linearly projected to form eTS
mTAND(α) ∈ RD.239

For clinical notes, embeddings are first extracted240

using Bert-tiny (Turc et al., 2019; Bhargava et al.,241

2021)1, and another mTAND module is employed242

to generate embeddings zText ∈ RT×D. Note243

that our choice of BERT-Tiny is based on prior244

work (Park et al., 2022) in multimodal EHR analy-245

sis, where its lightweight architecture has proven246

effective. Nonetheless, our framework can be seam-247

lessly integrated with other text encoders.248

3.3 Discover Cross-modal Temporal Patterns249

from Multimodal EHR250

High-level temporal patterns in multimodal EHR251

data often encode rich medical condition-related252

semantics that are crucial for predicting clinical253

outcomes. However, previous works primarily254

focus on timestamp-level embeddings, frequently255

overlooking these important temporal patterns (Ba-256

hadori and Lipton, 2019; Xiao et al., 2023; Sun257

et al., 2024). Drawing inspiration from object-258

centric learning in the computer vision domain (Lo-259

catello et al., 2020; Li et al., 2021), we propose a260

novel temporal pattern discovery module to capture261

complex patterns within longitudinal data.262

Considering the hierarchical nature (Yue et al.,263

2022; Cai et al., 2024) of time series data, the criti-264

cal temporal patterns for EHR may manifest across265

1https://huggingface.co/prajjwal1/bert-tiny

multiple time scales. Consequently, our approach 266

performs temporal pattern discovery on multi-scale 267

time series embeddings. 268

Extracting Cross-modal Temporal Patterns. 269

Owing to the correspondence within multi-modal 270

data, our cross-modal temporal pattern discovery 271

module focuses on extracting corresponding tem- 272

poral patterns across both modalities for a better 273

understanding of multimodal EHR. Starting with 274

the time series embeddings zTS in Eq. 1, we gen- 275

erate multi-scale embeddings {zTS
(1), z

TS
(2), z

TS
(3)} us- 276

ing three convolutional blocks followed by mean 277

pooling along the time dimension. The concate- 278

nated embedding zTS
MS ∈ R1.75T×D serves as the 279

diverse temporal representation. We then enhance 280

these embeddings by applying position encod- 281

ing: ẑTS
MS = zTS

MS + PE(zTS
MS), ẑ

TS
MS ∈ R1.75T×D, 282

where PE(·) denotes the position embeddings 283

in (Vaswani et al., 2017). Furthermore, to cap- 284

ture potential temporal patterns, we define a group 285

of K learnable vectors as temporal prototypes, 286

PShared ∈ RK×D, initially sampled from a normal 287

distribution N (µ,diag(σ)) ∈ RK×D and refined 288

during training. The shared prototype embeddings 289

are designed to capture semantic-corresponding 290

temporal patterns across modalities, respectively, 291

with µ and σ randomly initialized and subsequently 292

optimized. 293

To extract temporal patterns, we first calculate 294

the assignment weights W between prototype em- 295

beddings and modality embeddings using a dot- 296

product attention mechanism: 297

WTS = Attention(PShared, ẑTS
MS),

WText = Attention(PShared, zText)
(2) 298
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The Attention mechanism is defined as:299

Attention(q,k)i,j =
eMi,j∑
l e

Mi,l
, (3)300

where M = 1√
D
gq(q) · gk(k)T and gq(·) and gk(·)301

are two learnable matrices. Next, we aggregate302

the input values to their assigned prototypes using303

a weighted mean to obtain updated embeddings304

zTS
updated and zTextupdated:305

zTS
updated = WTS · v(ẑTS

MS) ∈ RK×D,

zTextupdated = WText · v(ẑText) ∈ RK×D,
(4)306

where v(·) is a learnable matrix.307

Finally, the prototype embeddings PTS and308

PText are refined using the corresponding updated309

embeddings via a learned recurrent function:310

PTS = f(GRU(PTS
(0))) ∈ RK×D

PText = f(GRU(PText
(0) )) ∈ RK×D

(5)311

where PTS
(0) and PText

(0) are the prototype embed-312

dings from the previous step , GRU(·) is Gated313

Recurrent Unit (Cho et al., 2014), and f(·) denotes314

MLP. The above process is repeated for 3 itera-315

tions per step. Those refined embeddings denote316

the discovered temporal patterns for each modal-317

ity. Note that our design of attention and GRU is318

inspired by Slot Attention (Locatello et al., 2020),319

which has been shown to be effective in learning320

object-centric representations from images.321

TP-NCE Contraint. To ensure consistent seman-322

tics across modalities, we introduce a Temporal323

Pattern Noise Contrastive Estimation (TP-NCE)324

loss, inspired by InfoNCE (Oord et al., 2018), to325

enforce the similarity of multimodal prototype em-326

beddings for the same ICU stay while increasing327

the distance between prototype embeddings from328

different ICU stays. For a minibatch of B samples,329

the TP-NCE loss from MITS to notes is defined as:330

LTS→Text
TPNCE = −

B∑
i=1

(
log

exp(sim(i, i)/τ)∑B
j=1 exp(sim(i, j)/τ)

)
(6)331

where τ is a temperature parameter, and i, j (1 ≤332

i, j ≤ B) denote sample indices within the mini-333

batch. The similarity function sim(i, j) measures334

the similarity between the i-th PTS and j-th PText,335

and is defined as (for convenience, we omit the336

indices i and j in the equation below):337

sim(·) =
K∑
k=1

(βk < PTS(k),PText(k) >) (7)338

where ⟨·⟩ denotes cosine similarity, and k is 339

the prototype index. The bidirectional TP- 340

NCE loss is then given by: LTPNCE = 341
1
2(L

TS→Text
TPNCE + LText→TS

TPNCE ). To account for 342

varying prototype importance, an attention mech- 343

anism is used to generate weights β for the 344

slots, based on global MITS and text embeddings: 345

β = MLP(concat[gTS
MS,g

Text]), where gTS
MS and 346

gText ∈ RD are global embeddings obtained by av- 347

eraging ẑTS
MS and zText along the time dimension. 348

Auxiliary Reconstruction. To ensure that the 349

learned prototype representations capture core in- 350

formation from multimodal EHR data, we intro- 351

duce two reconstruction objectives aimed at recon- 352

structing imputed regular time series and text em- 353

beddings from the learned prototypes. Specifically, 354

we implement a time series decoder to reconstruct 355

the imputed regular time series from PTS, and a 356

text embedding decoder to reconstruct text embed- 357

dings from PText. Both decoders are based on a 358

transformer decoder architecture (Vaswani et al., 359

2017), and two mean squared error (MSE) losses 360

denoted by LTS−Recon and LText−Recon are used 361

as the objective function. Here, we define the over- 362

all reconstruction loss LRecon = 1
2(LTS−Recon + 363

LText−Recon). 364

3.4 Multimodal Fusion 365

Since information from both modalities is crucial 366

for predicting medical conditions, we propose a 367

multimodal fusion mechanism to integrate these 368

inputs. First, we apply a 2-layer transformer en- 369

coder (Vaswani et al., 2017) to capture interac- 370

tions between timestamp-level and prototype em- 371

beddings across both modalities for each sample. 372

We continue to use PTS and PText to represent the 373

resulted prototype embeddings for time-series data 374

and clinical notes, respectively. Similarly, ẑTS
MS and 375

zTextText denote the corresponding timestamp-level 376

embeddings. Then, we aggregate K prototype em- 377

beddings and T timestamp-level embeddings of 378

each modality using an attention-based pooling 379

mechanism: 380

FTS =

K∑
k=1

γTS
k PTS(k) +

T∑
t=1

ϕTS
t ẑTS

MS(t)

FText =

K∑
k=1

γTextk PText(k) +
T∑
t=1

ϕText
t zTextText(t)

(8) 381

Here k and t refer to the indices of prototype em- 382

beddings and timestamp-level embeddings, respec- 383
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tively. Here γTS, ϕTS, γText, ϕText are learned384

attention weights by passing the corresponding em-385

beddings through a shared MLP. The resulting386

global embeddings from both modalities are con-387

catenated along the feature dimension to form the388

final global representation.389

3.5 Overall Learning Objectives390

To optimize our framework, we employ four391

loss functions jointly. The overall objective is a392

weighted sum of these loss functions:393

L =Lpred + λ1 ∗ LTPNCE + λ2 ∗ LRecon

(10)394

where λ1, λ2 are hyperparameters that control the395

weights of respective losses. Here Lpred, is a cross-396

entropy loss used for classification.397

4 Experiment398

4.1 Experimental Setup399

Dataset. We assess our model’s efficacy using400

MIMIC-III v1.42, a comprehensive open-source401

multimodal clinical database (Johnson et al., 2016).402

We focus our evaluation on two critical tasks, 48-403

hour in-hospital mortality prediction (48-IHM) and404

24-hour phenotype classification (24-PHE), as es-405

tablished in prior research (Zhang et al., 2023b;406

Hayat et al., 2022). We extracted raw, irregu-407

lar time-series data (containing 17 clinical vari-408

ables) from the MIMIC-III database and selected409

time series within the first 48-hour and 24-hour410

windows within each ICU stay for each respec-411

tive task, as done in (Zhang et al., 2023b; Hayat412

et al., 2022; Harutyunyan et al., 2019). ICU stays413

shorter than 48 or 24 hours were excluded from414

our dataset, which explains the different sample415

size between these two tasks. Unlike (Harutyunyan416

et al., 2019), we did not apply imputation during417

preprocessing but instead retained the original irreg-418

ular time-series structure, following (Zhang et al.,419

2023b). Following the dataset splitting by (Haru-420

tyunyan et al., 2019), we ensure that the model421

evaluation is robust by partitioning the data into422

70% training, 10% validation, and 20% testing sets,423

based on unique subject IDs to prevent information424

leakage. For multimodal analysis, we paired nu-425

merical time-series data with corresponding clini-426

cal notes from each patient’s ICU stay, consistent427

with (Zhang et al., 2023b). Note that the pipeline428

of processing clinical notes we used follows the429

2https://physionet.org/content/mimiciii/1.4/

Table 1: Number of samples for EHR and fully paired
EHR-clinical notes across the training, validation, and
test sets.

Training Validation Test

Number of EHR.

48-IHM 16,093 1,810 3,236
24-PHE 26,891 2,955 5,282

Number of Paired EHR and Clinical Notes.

48-IHM 15,425 1,727 3,107
24-PHE 25,435 2,807 5,013

practice in (Khadanga et al., 2019). The dataset 430

statistics, including sample counts before and af- 431

ter multimodal paring, are presented in Table 1. 432

The additional details of experimental setup can be 433

found in Appendix A. 434

Evaluation Metrics. The 48-hour In-Hospital Mor- 435

tality (48-IHM) prediction is a binary classifica- 436

tion with a marked label imbalance, indicated by a 437

death-to-discharge ratio of approximately 1:6. Fol- 438

lowing previous work (Harutyunyan et al., 2019; 439

Zhang et al., 2023b), we use AUROC, AUPR, and 440

F1 score, for a comprehensive evaluation. The 24- 441

hour Phenotype Classification (24-PHE) involves 442

predicting the presence of 25 different medical con- 443

ditions during an ICU stay, making it a multi-label 444

classification task. For this task, we employ the 445

AUROC, AUPR, and F1 score (Macro) for a thor- 446

ough assessment of model efficacy. The F1 score 447

threshold is determined by selecting the value that 448

maximizes the F1 score on the validation set. 449

Implementation Details. We train the model 450

with batch size of 128, learning rate of 4e-5, and 451

Adam (Kingma and Ba, 2014) optimizer. We use 452

a cosine annealing learning rate scheduler with a 453

0.2 warm-up proportion. To prevent overfitting, we 454

implement early stopping when there is no increase 455

in the AUROC on the validation set for 48-IHM or 456

24-PHENO over 5 consecutive epochs. All exper- 457

iments are conducted on 1 RTX-3090 GPU card 458

using about 1 hour per run. We clip the norm of 459

gradient values with 0.5 for stable training. By de- 460

fault, we use Bert-tiny (Turc et al., 2019; Bhargava 461

et al., 2021) as our text encoder. 462

Compared Methods. To ensure a comprehensive 463

comparison, we compare our CTPD with three types 464

baselines: MITS-only approaches, note-only ap- 465

proaches and multimodal approaches. For MITS- 466

only setting, we compare CTPD with 4 baselines for 467

imputed regular time series: RNN (Elman, 1990), 468

LSTM (Hochreiter, 1997), CNN (LeCun et al., 469
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Table 2: Comparison of our method with baselines on 48-IHM and 24-PHE tasks using the MIMIC-III dataset. We
report average performance on three random seeds, with standard deviation as the subscript. The Best and 2nd best
methods under each setup are bold and underlined.

Model
48-IHM 24-PHE

AUROC (↑) AUPR (↑) F1 (↑) AUROC (↑) AUPR (↑) F1 (↑)

Methods on MITS.

CNN (LeCun et al., 1998) 85.800.32 49.730.65 46.373.01 75.360.18 38.100.26 40.800.37

RNN (Elman, 1990) 84.750.74 46.571.18 45.602.06 73.780.10 36.760.27 33.990.48

LSTM (Hochreiter, 1997) 85.220.67 46.931.28 45.721.41 74.460.23 36.800.28 39.450.49

Transformer (Vaswani et al., 2017) 83.450.97 43.031.65 39.313.83 74.980.14 39.370.26 36.131.42

IP-Net (Shukla and Marlin, 2019) 81.760.38 39.500.83 43.891.07 73.980.13 35.310.29 39.380.15

GRU-D (Che et al., 2018) 49.215.26 12.852.24 19.630.01 52.110.42 17.990.55 26.170.23

DGM-O (Wu et al., 2021) 71.997.30 28.677.34 31.7211.02 60.700.82 22.560.77 28.870.64

mTAND (Shukla and Marlin, 2021) 85.270.20 49.820.97 48.021.93 72.790.09 35.950.14 32.420.72

SeFT (Horn et al., 2020) 65.000.84 22.931.27 19.7015.59 60.500.09 23.570.07 21.260.21

UTDE (Zhang et al., 2023b) 86.140.45 50.600.28 49.290.62 73.620.57 36.800.87 40.580.64

Methods on Clinical Notes.

Flat (Deznabi et al., 2021) 85.710.49 50.960.19 45.806.61 81.770.09 53.790.21 52.130.79

HierTrans (Pappagari et al., 2019) 84.320.34 47.920.57 42.010.58 80.790.06 51.970.08 50.850.71

T-LSTM (Baytas et al., 2017) 85.700.21 45.290.86 42.845.53 81.150.04 50.230.07 49.770.24

FT-LSTM (Zhang et al., 2020a) 84.280.95 43.931.03 36.876.54 81.660.12 51.710.24 50.210.85

GRU-D (Che et al., 2018) 72.580.42 26.381.06 31.640.79 49.520.65 16.900.12 27.800.08

mTAND (Shukla and Marlin, 2021) 85.400.60 49.681.26 35.7611.57 82.140.07 54.570.15 52.010.93

Methods on Multimodal EHR.

MMTM (Joze et al., 2020) 87.880.07 53.580.24 51.541.58 81.460.25 51.880.12 51.590.19

DAFT (Pölsterl et al., 2021) 87.530.22 52.400.21 51.950.64 81.180.08 50.910.31 50.720.39

MedFuse (Hayat et al., 2022) 86.020.29 51.000.22 49.290.75 78.880.14 45.990.21 47.470.23

DrFuse (Yao et al., 2024) 85.971.02 49.941.91 49.751.52 80.880.18 49.620.40 50.180.31

CTPD (Ours) 88.150.28 53.860.65 53.850.16 83.340.05 56.390.17 53.830.43

Table 3: Statistics analysis of CTPD on MIMIC-III dataset. p-values are computed from paired t-tests.

Model 48-IHM 24-PHE
AUROC (↑) AUPR (↑) F1 (↑) AUROC (↑) AUPR (↑) F1 (↑)

SOTA 87.880.07 53.580.24 51.950.64 82.140.07 54.570.15 52.130.79

CTPD (Ours) 88.150.28 53.860.65 53.850.16 83.340.05 56.390.17 53.830.43

Gains +0.27 +0.28 +1.9 +1.2 +1.82 +1.7
p values 0.016 0.233 7.74e−6 7.89e−12 1.10e−10 2.08e−4

1998) and Transformer (Vaswani et al., 2017), and470

5 baselines for irregular time series, including IP-471

Net (Shukla and Marlin, 2019), GRU-D (Che et al.,472

2018), DGM-O (Wu et al., 2021), mTAND (Shukla473

and Marlin, 2021), SeFT (Horn et al., 2020), and474

UTDE (Zhang et al., 2023b). The imputation ap-475

proach follows the MIMIC-III benchmark (Haru-476

tyunyan et al., 2019). For the note-only setting, we477

compare our model with 6 baselines: Flat (Deznabi478

et al., 2021), HierTrans (Pappagari et al., 2019),479

T-LSTM (Baytas et al., 2017), FT-LSTM (Zhang480

et al., 2020a), GRU-D (Che et al., 2018), and481

mTAND (Shukla and Marlin, 2021). In the multi-482

modal setting, we compare our model with 4 base-483

lines: MMTM (Joze et al., 2020), DAFT (Pölsterl484

et al., 2021), MedFuse (Hayat et al., 2022), and485

DrFuse (Yao et al., 2024). To ensure a fair com-486

parison, we implement Bert-tiny (Bhargava et al.,487

2021; Turc et al., 2019) as the text encoder across 488

all baselines. Details of baselines can be found in 489

the Appendix B. 490

4.2 Comparison with SOTA Baselines 491

Results on MIMIC-III. Table 2 presents a com- 492

parison of our proposed CTPD against 3 types of 493

baselines: MITS-based methods, clinical notes- 494

based methods, and multimodal EHR-based meth- 495

ods. Our CTPD, which incorporates cross-modal 496

temporal pattern embeddings, consistently achieves 497

the best performance across all 6 metrics. Specif- 498

ically, CTPD shows a 1.89% improvement in F1 499

score on the 48-IHM task, and a 1.2% improvement 500

in AUROC and 1.92% in AUPR on the more chal- 501

lenging 24-PHE task, compared to the second-best 502

results. Additionally, we have conducted statistical 503
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Table 4: Ablation results show the impact of removing
different types of input embeddings.

48-IHM 24-PHE

AUROC AUPR F1 AUROC AUPR F1

Ours 88.150.28 53.860.65 53.850.16 83.340.05 56.390.17 53.830.43

:w/o prototype 86.890.97 53.670.65 48.476.13 82.240.07 54.060.07 52.880.11

:w/o timestamp embeddings 87.180.94 54.321.66 45.854.91 82.410.15 54.300.21 53.340.41

:w/o multi-scale embedding 87.590.49 53.381.79 49.743.50 83.110.09 55.950.05 53.810.46

Table 5: Ablation study of loss functions LTPNCE and
LRecon. The Best results are highlighted in bold.

48-IHM 24-PHE

Cont Recon AUROC AUPR F1 AUROC AUPR F1

87.490.47 53.311.46 43.594.63 82.490.10 55.250.30 53.710.43

✓ 87.150.38 53.451.09 44.764.48 82.940.05 55.620.22 53.990.19

✓ 86.930.69 52.701.97 41.520.90 82.860.03 55.430.05 54.080.29
✓ ✓ 88.150.28 53.860.65 53.850.16 83.340.05 56.390.17 53.830.43

analysis in Table 3 to assess statistical significance.504

CTPD demonstarted significant gains over SOTAs505

(p value < 0.05) in 5 out of 6 settings, indicating506

its effectiveness in analyzing multimodal EHR.507

Evaluation on More Tasks and Datasets. To508

further evaluate the generalizability of our CTPD509

framework, we have extended it to another impor-510

tant admission-level task: 30-day readmission pre-511

diction on MIMIC-III. Additionally, we also con-512

ducted experiments on the additional MIMIC-IV513

dataset to assess our framework’s adaptability to514

different data sources. These results can be found515

in Appendix C.1 and Appendix C.2.516

Discussion on Missing Modalities and Noisy517

Data Scenarios. Currently, CTPD framework is518

built on paired time-series and clinical notes. In519

practice, the dataset might have missing modalities,520

such as partial clinical notes or time-series data521

are missed. We acknowledge this is an interesting522

research direction. However, the study of missing523

modalities falls outside the scope of our work and524

will be explored in future research. Additionally,525

our evaluation is conducted on MIMIC-III (John-526

son et al., 2016), a large-scale, de-identified real-527

world dataset containing patient records from crit-528

ical care units at Beth Israel Deaconess Medical529

Center between 2001 and 2012. Our approach is530

designed to be adaptable and can be seamlessly531

applied to other real-world databases.532

4.3 Model Analysis533

Ablation Results on Different Components. We534

conduct ablation studies by removing the proto-535

type embeddings, timestamp-level embeddings,536

and multi-scale feature extractor respectively, and537

analyze their impacts on two clinical prediction538

tasks, as shown in Table 4. Notably, prototype em-539

Figure 3: Ablation study on the number of prototypes.
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beddings play the most significant role among the 540

three components, with their removal resulting in 541

a 1.96% AUROC decrease in 48-IHM and a 1.1% 542

decrease in 24-PHE. The results also show that 543

all three embeddings are important for capturing 544

effective information for prediction. 545

Ablation Results on Learning Objectives. Ta- 546

ble 5 presents the ablation results of the learning 547

objectives. Combining both LTPNCE and LRecon 548

leads to the best performance across 5 out of 6 549

settings. Our model is also relatively robust to 550

different loss function configurations, with only a 551

0.66% AUROC drop in the model’s performance 552

in 48-IHM and a 0.85% drop in 24-PHE. 553

Ablation Results on Hyperparameters. We an- 554

alyze the effects of the number of prototypes in 555

Fig. 3. According to the results, we find that using 556

16 prototypes achieves the best results, though our 557

model remains robust, with 8 prototypes yielding 558

similar outcomes. Additional experimental results 559

of hyperparameters and visualization are in Ap- 560

pendix C.3 and Appendix C.4. 561

5 Conclusion 562

In this paper, we present the Cross-Modal Tem- 563

poral Pattern Discovery (CTPD) framework, which 564

captures cross-modal temporal patterns and incor- 565

porates them with timestamp-level embeddings for 566

more accurate clinical outcome predictions based 567

on multimodal EHR data. To efficiently optimize 568

the framework, we introduce a Temporal Pattern 569

Noise Contrastive Estimation (TP-NCE) loss to 570

enhance cross-modal alignment, along with two 571

reconstruction objectives to retain core information 572

from each modality. Our experiments on two clin- 573

ical prediction tasks using the MIMIC-III dataset 574

demonstrate the effectiveness of CTPD in multi- 575

modal EHR analysis. 576
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6 Limitations577

A key limitation of our approach is its primary578

focus on extracting temporal semantics in the em-579

bedding space, which affects model interpretability.580

We recognize that improving interpretability in this581

context is both important and challenging. As a po-582

tential solution, we plan to explore retrieval-based583

methods (Patel et al., 2024) or pretrained gener-584

ative models (Zhao et al., 2023) to enhance the585

interpretability of learned temporal pattern embed-586

dings in future work. Additionally, our framework587

is currently designed for specific clinical prediction588

tasks. In practice, there are various prediction tasks589

related to multimodal EHR analysis. Extending590

the proposed method into a more generalized or591

foundational model capable of handling multiple592

downstream tasks with minimal training annota-593

tions could be more practical and effective. Our594

future work will focus on resolving those aspects.595

Potential Risks. The medical dataset used in our596

framework must be carefully reviewed to mitigate597

any potential identification risk. Additionally, our598

framework is developed solely for research pur-599

poses and is not intended for commercial use. Note600

that AI assistant was used only for polishing the601

writing of this paper.602
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Appendix930

Table 6: Dataset description of 48-IHM and 24-PHE.

Training Validation Test

24-PHE 5046 573 1369

48-IHM 4301 466 1183
Positive 644 73 184
Negative 3657 393 999

A Experimental Setup Details931

A.1 More details of Tasks.932

We presented the class distributions for 48-IHM933

and 24-PHE in Table 6 and Table 7, respectively.934

48-IHM is a binary classification task, whereas 24-935

PHE is a multi-label classification problem with 25936

labels. Notably, our 24-PHE task differs from the937

phenotype classification problem in the MIMIC-III938

benchmark but follows the setup in (Zhang et al.,939

2023b). This setup focuses on acute care conditions940

that arise during ICU stays, where early prediction941

is critical for timely intervention. To enhance clini-942

cal relevance, we use only the first 24 hours of data943

for phenotype classification rather than the entire944

admission record. As highlighted in (Yang et al.,945

2021), early-stage diagnosis holds greater clinical946

significance.947

The selection of 25 phenotype labels for the948

24-PHE task follows established practices in the949

MIMIC-III benchmark (Harutyunyan et al., 2019),950

as also utilized in prior studies like UTDE (Zhang951

et al., 2023b) and MedFuse (Hayat et al., 2022).952

These labels cover conditions commonly observed953

in adult ICUs, including 12 critical and life-954

threatening conditions (e.g., respiratory failure, sep-955

sis), 8 chronic conditions that are often consid-956

ered comorbidities or risk factors (e.g., diabetes,957

metabolic disorders), and 5 ‘mixed’ conditions that958

exhibit characteristics of both chronic and acute959

conditions. Phenotype labels were determined us-960

ing the MIMIC-III ICD-9 diagnosis table. To fa-961

cilitate the translation and conversion of the above-962

mentioned conditions, we use the Health Cost and963

Utilization (HCUP) Clinical Classification Soft-964

ware (CCS)3. We first mapped each ICD-9 code to965

its corresponding HCUP CCS category, retaining966

only 25 categories. Diagnoses were then linked to967

ICU stays using the hospital admission identifier,968

3https://hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

as ICD-9 codes in MIMIC-III are associated with 969

hospital visits rather than specific ICU stays. To 970

reduce label ambiguity, we excluded hospital ad- 971

missions involving multiple ICU stays, ensuring 972

each diagnosis could be associated with a single 973

ICU stay. Please find the class distribution of 25 974

phenotypes in Table 7. 975

A.2 Additional Information on Datasets 976

The 17 variables from the MIMIC-III dataset that 977

we use include 5 categorical variables (capillary re- 978

fill rate, Glasgow coma scale eye opening, Glasgow 979

coma scale motor response, Glasgow coma scale 980

total, and Glasgow coma scale verbal response) and 981

12 continuous measures (diastolic blood pressure, 982

fraction of inspired oxygen, glucose, heart rate, 983

height, mean blood pressure, oxygen saturation, 984

respiratory rate, systolic blood pressure, tempera- 985

ture, weight, and pH). 986

B More Details on Baselines 987

B.1 Baselines only using MITS 988

• CNN (LeCun et al., 1998): CNN (Convolu- 989

tional Neural Network) uses backpropagation 990

to synthesize a complex decision surface that 991

facilitates learning. 992

• RNN (Elman, 1990): RNN (Residual Neural 993

Network) is trained to process data sequen- 994

tially so as to model the time dimension of 995

data. 996

• LSTM (Hochreiter, 1997): LSTM (Long 997

short-term memory) is a variant of recurrent 998

neural network. It excels at dealing with the 999

vanishing gradient problem and is relatively 1000

insensitive to time gap length. 1001

• Transformer (Vaswani et al., 2017): Trans- 1002

former is a powerful deep learning architec- 1003

ture based on attention mechanism. It has 1004

great generalisability and has been adopted 1005

as foundation model in multiple research do- 1006

mains. 1007

• IP-Net (Shukla and Marlin, 2019): IP-Net 1008

(Interpolation-Prediction Network) is a deep 1009

learning architecture for supervised learning 1010

focusing on processing sparse multivariate 1011

time series data that are sampled irregularly. 1012

• GRU-D (Che et al., 2018): GRU-D is based 1013

on GRU (Gated Recurrent Unit). It incorpo- 1014

rates features of missing data in EHR into 1015
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Table 7: Distribution of 25 phenotypes in 24-PHE task.

Phenotype Type Training Validation Test

Positive Negative Positive Negative Positive Negative

Acute and unspecified renal failure acute 6066 20825 2284 2284 1176 4106
Acute cerebrovascular disease acute 2069 24822 2736 2736 363 4919
Acute myocardial infarction acute 2870 24021 2632 2632 588 4694

Cardiac dysrhythmias mixed 9011 17880 1975 1975 1785 3497
Chronic kidney disease chronic 3663 23228 2564 2564 711 4571

Chronic obstructive pulmonary disease and bronchiectasis chronic 3616 23275 2542 2542 685 4597
Complications of surgical procedures or medical care acute 5880 21011 2293 2293 1202 4080

Conduction disorders mixed 1971 24920 2744 2744 382 4900
Congestive heart failure; nonhypertensive mixed 7623 19268 2150 2150 1486 3796

Coronary atherosclerosis and other heart disease chronic 8840 18051 1964 1964 1787 3495
Diabetes mellitus with complications mixed 2612 24279 2675 2675 503 4779

Diabetes mellitus without complication chronic 5305 21586 2401 2401 1032 4250
Disorders of lipid metabolism chronic 7841 19050 2081 2081 1541 3741

Essential hypertension chronic 11340 15551 1689 1689 2238 3044
Fluid and electrolyte disorders acute 7480 19411 2107 2107 1429 3853
Gastrointestinal hemorrhage acute 2001 24890 2746 2746 427 4855

Hypertension with complications and secondary hypertension chronic 3646 23245 2583 2583 706 4576
Other liver diseases mixed 2485 24406 2688 2688 492 4790

Other lower respiratory disease acute 1414 25477 2810 2810 305 4977
Other upper respiratory disease acute 1130 25761 2814 2814 238 5044

Pleurisy; pneumothorax; pulmonary collapse acute 2516 24375 2671 2671 518 4764
Pneumonia (except that caused by tuberculosis or sexually transmitted disease) acute 4121 22770 2502 2502 769 4513

Respiratory failure; insufficiency; arrest (adult) acute 5382 21509 2365 2365 1025 4257
Septicemia (except in labor) acute 4136 22755 2494 2494 793 4489

Shock acute 2263 24628 2700 2700 456 4826

the model architecture to improve prediction1016

results.1017

• DGM-O (Wu et al., 2021): DGM-O (Dy-1018

namic Gaussian Mixture based Deep Gener-1019

ative Model) is a generative model derived1020

from a dynamic Gaussian mixture distribution.1021

It makes predictions based on incomplete in-1022

puts. DGM-O is instantiated with multilayer1023

perceptron (MLP).1024

• mTAND (Shukla and Marlin, 2021): mTAND1025

(Multi-Time Attention network) is a deep1026

learning model that learns representations of1027

continuous time values and uses an attention1028

mechanism to generate a consistent represen-1029

tation of a time series based on a varying1030

amount of observations.1031

• SeFT (Horn et al., 2020): SeFT (Set Func-1032

tions for Time Series) addresses irregularly-1033

sampled time series. It is based on differen-1034

tiable set function learning.1035

• UTDE (Zhang et al., 2023b): UTDE (Unified1036

TDE module) is built upon TDE (Temporal1037

discretization-based embedding). It models1038

asynchronous time series data by combining1039

imputation embeddings and learned interpola-1040

tion embeddings through a gating mechanism.1041

It also uses a time attention mechanism.1042

B.2 Baselines only using clinical notes 1043

• Flat (Deznabi et al., 2021): Flat encodes clini- 1044

cal notes using a fine-tuned BERT model. It 1045

also utilizes an LSTM model that takes in 1046

patients’ vital signals so as to jointly model 1047

the two modalities. Furthermore, it addresses 1048

the temporal irregularity issue of modeling 1049

patients’ vital signals. 1050

• HierTrans (Pappagari et al., 2019): Hier- 1051

Trans (Hierarchical Transformers) is built 1052

upon BERT model. It achieves an enhanced 1053

ability to take in long inputs by first partition- 1054

ing the inputs into shorter sequences and pro- 1055

cessing them separately. Then, it propagates 1056

each output via a recurrent layer. 1057

• T-LSTM (Baytas et al., 2017): T-LSTM 1058

(Time-Aware LSTM) deals with irregular time 1059

intervals in EHRs by learning decomposed 1060

cell memory which models elapsed time. The 1061

final patient subtyping model uses T-LSTM in 1062

an auto-encoder module before doing patient 1063

subtyping. 1064

• FT-LSTM (Zhang et al., 2020a): FT-LSTM 1065

(Flexible Time-aware LSTM Transformer) 1066

models the multi-level structure in clinical 1067

notes. At the base level, it uses a pre-trained 1068

ClinicalBERT model. Then, it merges sequen- 1069

tial information and content embedding into a 1070

new position-enhanced representation. Then, 1071
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Table 8: Comparison between our method with other baselines on 30-day Readmission task on MIMIC-III. We
report average performance on three random seeds, with standard deviation as the subscript.

Model AUROC (↑) AUPR (↑) F1 (↑)

Methods on EHR.

CNN (LeCun et al., 1998) 0.7570.003 0.4470.006 0.4490.006

RNN (Elman, 1990) 0.7500.001 0.4490.008 0.4330.003

LSTM (Hochreiter, 1997) 0.7570.002 0.4430.003 0.4300.015

Transformer (Vaswani et al., 2017) 0.7490.006 0.4090.012 0.4330.016

DGM-O (Wu et al., 2021) 0.6710.017 0.3250.032 0.3820.020

mTAND (Shukla and Marlin, 2019) 0.7430.002 0.4370.001 0.4410.007

UTDE (Zhang et al., 2023b) 0.7580.002 0.4530.004 0.4450.008

Methods on Clinical Notes.

Flat (Deznabi et al., 2021) 0.7550.005 0.4470.018 0.4370.015

HierTrans (Pappagari et al., 2019) 0.7540.001 0.4250.005 0.4340.005

mTAND (Shukla and Marlin, 2019) 0.7570.001 0.4350.001 0.4400.014

Methods on Multiple modalities.

MMTM (Joze et al., 2020) 0.7690.005 0.4690.006 0.4590.007

DAFT (Pölsterl et al., 2021) 0.7650.006 0.4520.018 0.4580.005

MedFuse (Hayat et al., 2022) 0.7630.009 0.4610.012 0.4540.013

DrFuse (Yao et al., 2024) 0.7480.002 0.4430.014 0.4420.017

CTPD (Ours) 0.7770.006 0.4740.009 0.4610.019

it uses a time-aware layer that considers the1072

irregularity of time intervals.1073

• GRU-D (Che et al., 2018): Please refer to the1074

above subsection.1075

• mTAND (Shukla and Marlin, 2021): Please1076

refer to the above subsection.1077

B.3 Baselines using multimodal EHR1078

• MMTM (Joze et al., 2020): MMTM (Multi-1079

modal Transfer Module) is a neural network1080

module that leverages knowledge from vari-1081

ous modalities in CNN. It can recalibrate fea-1082

tures in each CNN stream via excitation and1083

squeeze operations.1084

• DAFT (Pölsterl et al., 2021): DAFT (Dynamic1085

Affine Feature Map Transform) is a general-1086

purpose CNN module that alters the feature1087

maps of a convolutional layer with respect to1088

a patient’s clinical data.1089

• MedFuse (Hayat et al., 2022): MedFuse is an1090

LSTM-based fusion module capable of pro-1091

cessing both uni-modal and multi-modal input.1092

It treats multi-modal representations of data1093

as a sequence of uni-modal representations.1094

It handles inputs of various lengths via the1095

recurrent inductive bias of LSTM.1096

• DrFuse (Yao et al., 2024): DrFuse is a fusion1097

module that addresses the issue of missing1098

modality by separating the unique features 1099

within each modality and the common ones 1100

across modalities. It also adds a disease-wise 1101

attention layer for each modality. 1102

C More on Experimental Results 1103

C.1 Results on 30-day Readmission 1104

We further evaluated CTPD on the 30-day readmis- 1105

sion prediction task (Assaf and Jayousi, 2020) us- 1106

ing the MIMIC-III dataset. The results are pre- 1107

sented in Table 8. This task involves predicting 1108

whether a patient will be readmitted based on data 1109

from their current ICU stay. Our results show that 1110

CTPD consistently outperforms baseline methods 1111

across all three evaluation metrics, further demon- 1112

strating its effectiveness. 1113

C.2 Results on MIMIC-IV 1114

To assess the adaptability of our framework to dif- 1115

ferent data sources, we also conducted experiments 1116

on the MIMIC-IV dataset. Since MIMIC-IV lacks 1117

temporal clinical text, we evaluated our approach 1118

using tabular time-series data and chest radiographs 1119

as the two input modalities. The results are sum- 1120

marized in Table 9. CTPD achieved the best perfor- 1121

mance across all six evaluation settings. Given the 1122

relatively small standard deviations, our approach 1123

demonstrates statistically significant improvements 1124

over previous methods, further validating its gener- 1125

alizability. 1126
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Table 9: Comparison between our method with other baselines on 48-IHM and 24-PHE on MIMIC-IV. We report
average performance on three random seeds, with standard deviation as the subscript. The Best and 2nd best
methods under each setup are bold and underlined. “-" denotes the results are close to 0.

48-IHM 24-PHE
Model AUROC (↑) AUPR (↑) F1 (↑) AUROC (↑) AUPR (↑) F1 (↑)

Methods on MITS.

CNN (LeCun et al., 1998) 74.160.79 36.320.15 27.348.89 67.500.14 37.000.02 20.900.81

RNN (Elman, 1990) 77.401.10 38.870.80 23.933.92 66.890.49 36.280.70 18.721.97

LSTM (Hochreiter, 1997) 79.400.50 41.951.09 34.171.97 67.590.30 37.210.49 20.871.32

Transformer (Vaswani et al., 2017) 75.732.43 39.762.64 21.4510.75 67.440.21 37.330.11 20.440.40

IP-Net (Shukla and Marlin, 2019) 77.580.59 46.021.73 36.80.93 68.200.21 38.40.27 20.622.58

GRU-D (Che et al., 2018) 53.725.31 17.542.22 8.9915.56 50.530.60 23.140.36 9.427.76

DGM-O (Wu et al., 2021) 70.5010.43 33.797.38 14.1412.42 59.742.34 29.952.05 4.334.12

mTAND (Shukla and Marlin, 2021) 80.630.33 45.170.47 33.014.57 66.870.14 36.380.18 19.071.28

SeFT (Horn et al., 2020) 61.970.96 25.130.42 - 57.100.04 26.980.09 -
UTDE (Zhang et al., 2023b) 80.890.10 45.080.30 37.532.03 67.680.05 37.580.19 17.630.44

Methods on CXR Image.

Flat (Deznabi et al., 2021) 62.372.42 23.972.35 23.384.34 66.100.37 36.040.16 40.400.54

HierTrans (Pappagari et al., 2019) 61.511.43 20.961.62 17.9515.54 58.363.28 27.842.16 33.615.74

T-LSTM (Baytas et al., 2017) 53.620.88 16.820.38 21.404.17 58.561.45 28.121.21 33.066.51

FT-LSTM (Zhang et al., 2020a) 48.634.47 15.350.90 11.8513.75 54.463.15 25.292.42 29.127.55

GRU-D (Che et al., 2018) 56.021.05 18.630.76 23.166.54 57.940.39 27.850.47 27.133.73

mTAND (Shukla and Marlin, 2021) 62.803.42 24.644.22 24.829.43 68.310.68 38.530.93 40.761.14

Methods on Multiple modalities.

MMTM (Joze et al., 2020) 80.650.79 48.960.50 47.401.41 70.280.44 39.610.76 43.320.29

DAFT (Pölsterl et al., 2021) 81.870.12 47.790.88 48.911.98 70.870.24 40.220.22 44.100.26

MedFuse (Hayat et al., 2022) 81.600.28 48.351.35 48.120.75 70.820.37 40.390.51 44.030.52

DrFuse (Yao et al., 2024) 80.940.44 45.640.44 48.581.35 70.270.22 39.900.23 43.430.09

CTPD (Ours) 83.530.44 49.940.23 49.532.39 71.960.40 42.460.60 44.850.61

Table 10: Ablation results on loss weights. The param-
eters λ1 and λ2 control the strength of the LTPNCE and
LRecon losses, respectively.

λ1 λ2
48-IHM 24-PHE

AUROC AUPR F1 AUROC AUPR F1

0.1 0.1 87.210.36 53.800.28 47.419.17 82.930.05 55.620.22 54.000.20
0.1 0.5 88.150.28 53.860.65 53.850.16 83.340.05 56.390.17 53.830.43
0.5 0.5 87.200.47 53.770.47 42.447.45 82.590.09 55.220.04 53.420.04
1.0 0.5 86.592.19 51.935.31 47.933.13 82.440.03 54.840.18 53.290.29
1.0 1.0 86.642.10 52.345.79 50.094.34 82.540.48 55.030.39 53.941.31
1.0 2.0 85.561.19 50.664.17 44.673.88 76.881.84 41.893.05 44.832.31

C.3 Ablation Results on Loss Weights1127

We analyze the effects of loss weights λ1 and λ2,1128

shown in Table 10. For the loss weights, λ1 = 0.11129

and λ2 = 0.5 consistently yield the best perfor-1130

mance across all settings. However, excessively1131

large values for λ1 and λ2 can cause the model to1132

prioritize cross-modal alignment and reconstruc-1133

tion tasks over predictive performance.1134

C.4 Visualization of Assignment Weights of1135

Prototypes.1136

Fig. 4 presents the distribution of assignment1137

weights across different time scales for a 48-IHM1138

example. With time window sizes denoted by T ,1139
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Figure 4: Visualization of the learned prototypes in
our CTPD framework. Here we select 5 representative
clinical variables to visualize the time series. ‘CPR" de-
notes “Capillary Refill Rate", “DBP" denotes “Diastolic
blood pressure", ‘, “HR" denotes “Heart Rate", “MBP"
denotes “Mean blood pressure" and “OS" denotes “Oxy-
gen saturation".

our model utilizes three time scales with 20, 10, 1140

and 5 prototypes respectively. The variation in as- 1141

signment weights across these scales, as showcased 1142

in the figure, underlines our model’s proficiency 1143

in capturing and differentiating temporal patterns 1144

at varying scales. We will try to interpret these 1145

learned temporal pattern embeddings in our future 1146

work. 1147
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