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Abstract

Advances in Large Language Models (LLMs)001
have improved multi-step reasoning by gen-002
erating free-text rationales, but these models003
tend to lose focus over the middle of long con-004
texts. This raises concerns that as reasoning005
progresses, LLMs may overlook information in006
earlier steps when decoding subsequent steps,007
leading to unreliable and redundant rationales.008
To address this, we propose guiding LLMs to009
generate more accurate and concise rationales010
by (1) proactively referencing information from011
underutilized prior steps, and (2) minimizing012
redundant information between new and ex-013
isting steps. We introduce stepwise informa-014
tiveness search, an inference-time tree search015
framework incorporating two selection heuris-016
tics: grounding-guided selection which prior-017
itizes steps paying higher attention over un-018
derutilized steps; and novelty-guided selection019
which encourages steps with novel conclusions.020
We further utilize a self-grounding strategy that021
prompts LLMs to explicitly reference relevant022
prior steps as premises before deduction at each023
step, mitigating distraction from irrelevant con-024
tent. Experiments on five reasoning datasets025
across five LLMs show the effectiveness and026
efficiency of our approach to improve reason-027
ing with reduced errors and redundancy 1.028

1 Introduction029

Large Language Models (LLMs) (OpenAI, 2023;030

Team et al., 2023) have shown remarkable per-031

formance in reasoning tasks through Chain-of-032

Thought (CoT) (Wei et al., 2022) prompting, which033

elicits step-by-step rationales to derive answers.034

However, complex multi-step reasoning remains035

challenging, particularly for smaller-scale mod-036

els (Dziri et al., 2024). Recent advances in tree-037

search algorithms (Wang et al., 2024b; Yao et al.,038

2024; Zhang et al., 2024b) improve this by gen-039

1Code is uploaded and will be released upon acceptance.

Generated reasoning steps:

[Step-2] … Nadia is James's aunt.

[Step-3] … Cesar is Nadia's father or uncle.

[Step-5] … Beatrice is Dan's cousin.

[Step-6] … Don is Beatrice's brother.

Query:  Orville got his son, James …; Charles was thrilled his brother, Orville …; 
Charles …with his sister Nadia; Steven …with his granddaughter, Nadia. Cesar 
took his dad Steven to …; Cesar‘s son Dan …; Dan has a aunt named
Constance …; Constance wanted … for her daughter, Beatrice; Don and his 
brother Sidney ...; Sidney asked his sister, Beatrice, …. So Don is James's what?

Underutilized Step: 
Providing valuable 
information but are 
overlooked

Redundant Step:
[Step-5][Step-7]
Beatrice is Dan's cousin.

[Step-4] … Dan is Nadia’s sibling.

[Step-1] … Charles is James's uncle.

[Step-8] James is Orville's son, and Orville 
is Don's father, so Don is James's father.

🧩

🔁

[Step-7] … Beatrice is Dan's cousin. 🔁

🧩

🧩

❌

❌ Incorrect Answer:
Hallucinated reference
Orville is Don's father
[Step-2,4,5,6] are useful but 
not utilized

🔁

Figure 1: An example illustrating LLMs’ difficulty in
referencing early-step information (e.g., underutiliza-
tion of [Step-2,4,5,6]), and the inclusion of redundant
steps (e.g., repeated conclusions in [Step-5, 7]). The
rightward red arrow indicates the focus is on generating
[Step-8] with [Step 1-7] have been generated.

erating step-level candidates 2 and using scoring 040

mechanisms to select the most promising ones it- 041

eratively, thereby improving overall generated ra- 042

tionales. However, they typically rely on domain- 043

specific reward models or more powerful LLMs to 044

assess candidate validity (Luo et al., 2024). 045

Moreover, LLMs tend to focus on leading and 046

recent contexts while losing attention in the mid- 047

dle (Hsieh et al., 2024). As reasoning progresses, 048

this causes difficulty in referencing useful inter- 049

mediate conclusions from earlier steps when de- 050

coding subsequent ones, leading to unreliable and 051

redundant rationales. For example, in Fig. 1, [Step 052

2,4,5,6] provide useful information for deriving 053

the final answer but are not effectively utilized. 054

This results in redundant steps (e.g., [Step-7] and 055

[Step-5] have repeated conclusions) and incorrect 056

answer (e.g., [Step-8]). Consequently, LLMs risk 057

getting trapped in repetitive reasoning loops (Chen 058

2A reasoning step in this paper refers to a sentence in
generated rationales, delimited by the end-of-line token “/n”.
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et al., 2024) and generating unnecessarily lengthy059

rationales, increasing the likelihood of cumulative060

errors (Furuta et al., 2024).061

To address this, we propose to guide LLMs in062

generating more accurate and concise step-by-step063

rationales by (1) proactively referencing intermedi-064

ate conclusions generated from underutilized steps,065

and (2) minimizing redundancy between new and066

existing steps. With higher-quality rationales gen-067

erated, we can improve answer accuracy and re-068

duce decoding costs. Underutilized steps are those069

whose intermediate conclusions have been less fre-070

quently referenced before the current step, suggest-071

ing untapped potential to offer useful information072

for subsequence reasoning. Meanwhile, reducing073

redundancy across steps can contribute novel infor-074

mation, enabling more efficient exploration of the075

reasoning space toward final answers.076

We introduce stepwise informativeness search,077

an inference-time tree search framework that pri-078

oritizes steps based on informativeness, either by079

leveraging underutilized steps or generating novel080

content. The framework follows a stepwise beam081

search paradigm (Xie et al., 2024), generating mul-082

tiple candidate steps at each iteration. Based on083

standard cumulative step-level likelihood, it incor-084

porates two heuristics to guide candidate selection.085

(1) Grounding-guided selection identifies under-086

utilized steps by computing each step’s reference087

degree so far to estimate its information gain for088

subsequent reasoning. As LLMs naturally assign089

higher attention to grounding context (Zhang et al.,090

2023), we prioritize candidate steps with higher at-091

tention scores over underutilized steps. (2) Novelty-092

guided selection ranks candidates based on the nov-093

elty of their intermediate conclusions relative to094

prior steps. A trigram-based similarity measure095

filters out highly similar candidates for simplicity.096

We empirically validate that encouraging the097

grounding of underutilized steps improves reason-098

ing, though LLMs inevitably generate unnecessary099

steps during reasoning. Specifically, for LLaMA-3-100

8B self-generated rationales on CLUTRR (Sinha101

et al., 2019) problems requiring 8 steps, the model102

exhibits significantly higher accuracy 57.89% when103

all steps build upon at least one underutilized step,104

compared to only 22.39% when they do not. To105

further prevent grounding on underutilized yet irrel-106

evant steps, we introduce a self-grounding strategy107

that elicits LLMs’ ability to identify relevant prior108

steps to provide premises before each deduction.109

This process enables connecting with distant under-110

utilized steps by first specifying their step numbers, 111

and reinforcing the generation of well-supported 112

new steps through explicit grounding. We imple- 113

ment our informativeness search framework both 114

with and without self-grounding strategy. 115

Experiments on four multi-step reasoning and 116

one commonsense reasoning datasets validate the 117

effectiveness of the informativeness search frame- 118

work and self-grounding strategy across five LLMs 119

of varying families and scales. Overall, our frame- 120

work can generate more effective solutions with 121

improved accuracy and reduced tokens. Moreover, 122

the two heuristics leverage the model’s internal out- 123

puts and attention to guide step search, making the 124

approach domain-agnostic and efficient by elim- 125

inating the need for exhaustive interactions with 126

external scorers or self-evaluation during decoding. 127

2 Stepwise Beam Search for Reasoning 128

In this work, we formulate multi-step reasoning 129

as a stepwise beam search process considering its 130

generation parallelizability can accelerates search 131

process (Xie et al., 2024). This contrasts with an- 132

other common tree-search practice, Monte Carlo 133

Tree Search (MCTS) methods (Feng et al., 2023; 134

Zhang et al., 2024a), which involve extensive roll- 135

out simulations and are computationally expensive. 136

Specifically, at each iteration, the model gen- 137

erates a set of reasoning steps in parallel, each 138

delimited by a special end-of-line token “/n”. A 139

beam of the top N steps are selected according to 140

various criteria, where N is the beam size. Un- 141

like step-level evaluation, stepwise beam search 142

ranks candidates by their cumulative rewards (e.g., 143

likelihood) across the sequence generated so far. 144

Formally, the generation of a reasoning sequence
R = [s1, s2, . . . , sT ] with T steps is formulated as

P (R = s1:T |x) =
∏
t

P (st|s1:t−1, x),

where st is the t-th step and x is the input query. 145

Stepwise generation and selection are performed 146

with beam size N and sample size k as follows: 147

starting with N sequences at step t − 1, it gener- 148

ates k continuations from P (st|s1:t−1, x) for each 149

sequence s1:t−1, forming a candidate set Ct con- 150

taining Nk reasoning chains of length t. The top 151

N sequences are then selected based on a scoring 152

criteria ϕ(Ct, γ(·)) = {s1, s2, . . . , sN}. ϕ is the 153

selection function (e.g., topk(·)) and γ(s1:t) eval- 154

uates the sequence so far s1:t. Initially, given only 155

an input x, we generate Nk candidates. 156
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Wrong Deduction

Orville got his son, James…; 
Charles was thrilled his 
brother, Orville…; 
Charles …with his sister 
Nadia; Steven …with his 
granddaughter Nadia. Cesar 
took his dad Steven …; 
Cesar‘s son Dan …; Dan has a 
aunt named Constance …;
Constance wanted … for her 
daughter, Beatrice; Don and 
his brother Sidney ...; Sidney 
asked his sister, Beatrice…. 
So Don is James's what?

[Step-1] From Query, 
Orville is James's father, 
and Charles is Orville's 
brother, so Charles is 
James's uncle.

[Step-2] From Step-
1 and Query, 
Charles is James's 
uncle, and Nadia is 
Charles's sister, so 
Nadia is James's aunt.

[Step-3] 
… Cesar is Nadia's father.
[Step-4] 
… Dan is Nadia’s brother.
[Step-5] 
…Beatrice is Dan's cousin.
[Step-6] 
… Don is Beatrice's brother.

… Beatrice is James's 
aunt, Don is 
Beatrice’s brother, so
Don is James’s uncle.

Wrong Deduction
Query

[Step-7] From Step-4 
and Step-5, Dan is 
Nadia’s brother, Beatrice 
is Dan's cousin, so 
Beatrice is Nadia's cousin

[Step-7] From Query, 
Constance is Cesar’s 
sister (since she is Dan’s 
aunt), and Nadia is 
Cesar’s daughter, so 
Beatrice is Dan’s cousins.

Wrong Deduction

……

Logically correctness of [Step-7]?

Self-Evaluator

Logically correctness of
Query + [Step-1, … , 6] ⇒ [Step-7] ?

Deductive Verifier

🧩

🧩

[Step-7] From Query, 
Constance is Cesar’s 
sister …, so Beatrice is
Dan’s cousins.

❌

❌❌

Low Novelty:

Uninformative Grounding: 
[Step-2] [Step-4] [Step-5] [Step-5]

Grounding & Novelty based Evaluator
Evaluation at [Step-7] 

…… ……

…… ……

✅

✅

“Beatrice is Dan’s cousins” 🔁

🧩

❌

……

❌

Figure 2: Upper: Overview of our informativeness search framework illustrated with beam size of 1. Green blocks
indicate selected steps, red-crossed blocks denote discarded steps, and gray blocks contain incorrect deductions. The
orange block ([Step-7]) highlights a low-quality step that only can be filter by our method. Bottom: Evaluation
comparison of [Step-7]. Previous methods accept [Step-7] as logically correct at both step and sequence levels,
whereas our framework filters it out based on its low novelty and poor grounding on underutilized steps.

A standard scoring criteria is the cumulative157

likelihood of a sequence, defined as: γL(s1:t) =158

log
∏

t P (st|s1:t−1, x). Alternative scoring func-159

tions γ(s1:t) are employed in self-evaluation (Xie160

et al., 2024) and deductive beam search (Zhu161

et al., 2024). The former prompts the backend162

LLM to provide a correctness score γc(st) to as-163

sess whether st is correct given s1:t−1, which164

is then combined with likelihood: γE(s1:t) =165

log
∏

t P (st|s1:t−1, x) γc(st). The latter trains an166

external deductive verifier f to assess whether167

each step st is logically entailed by previous168

contexts, and replaces the sequence likelihood169

with a cumulative deductive score: γD(s1:t) =170 ∏
t f(entails|st, s1:t−1, x).171

While these methods improve performance, they172

require additional annotations or prompts to obtain173

domain-specific scoring models. They also incur174

interaction overhead by waiting for scorer response175

at each decoding step, yet failing to address afore-176

mentioned grounding and redundancy challenges.177

3 Informativeness Search Framework178

Unlike iteration-based scoring functions described179

above, we introduce stepwise informativeness180

search framework with two scoring heuristics181

that utilize model’s intrinsic outputs and attention182

scores. This reduces reliance on off-the-shelf scor-183

ers and iterative interactions during decoding. It184

prioritizes steps based on informativeness, assessed185

by grounding-guided and novelty-guided heuristics186

that determine whether new decoded steps ground187

on underutilized steps and generate novel content. 188

3.1 Grounding-Guided Selection 189

To ground each deduction upon underutilized steps 190

to maximally leverage useful information, we de- 191

sign an algorithm to identify underutilized ones 192

among all prior steps. The candidate sequences, de- 193

noted as Ct = {s11:t, s21:t, . . . , sNk
1:t }, are then eval- 194

uated and selected based on whether each current 195

step sit is well derived from corresponding under- 196

utilized steps. Further empirical analysis on the 197

correlation between underutilized steps grounding 198

and improved reasoning is provided in Appendix C. 199

Identifying Underutilized Steps At each reason- 200

ing step, underutilized steps are those referenced 201

less frequently up to that point, offering higher 202

untapped potential for contributing information to 203

subsequent reasoning. At the current step st, the 204

immediately preceding step st−1 is by default con- 205

sidered underutilized since it represents the most 206

recent addition to the reasoning path. For addi- 207

tional underutilized steps, we perform a backward 208

traversal from step st−2 to s1, calculating the refer- 209

ence degree of each step to assess its information 210

gain to subsequent reasoning. 211

Specifically, for each prior step sj ∈ 212

{st−2, ..., s2, s1}, we first extract its intermedi- 213

ate conclusion cj by segmenting it using special 214

clause delimiters (e.g., “so”, “thus” and commas). 215

We then compare cj with each subsequent step 216

sm ∈ {sj+1, . . . , st−1} before the current step us- 217

ing a trigram-based similarity measure. The infor- 218
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mation gain of sj is computed as follows:219

InfoGain(sj) = 1− max
m∈j+1,...,t−1

Simtri(cj , sm)220

We classify a prior step as underutilized if its infor-221

mation gain exceeds a predefined threshold τ . The222

set of underutilized steps at step t is:223

It = {st−1} ∪ {sj | InfoGain(sj) > τ},224

j ∈ {1, . . . , t− 2}225

Grounding on Underutilized Steps After iden-226

tifying the set of underutilized steps Ii
t for each227

candidate sequence si1:t in the candidate set Ct =228

{s1, s2, . . . , sNk} (with subscripts omitted for sim-229

plicity), we prioritize candidates that more effec-230

tively ground their reasoning in sit upon their re-231

spective underutilized steps.232

LLMs typically assign higher attention scores to233

their grounding context (Zhang et al., 2023). We234

leverage attention to assess how well each candi-235

date focuses on its identified underutilized steps Ii
t236

when constructing step sit. Given that there may237

be multiple underutilized steps (|Ii
t | > 2), we do238

not enforce grounding on all of them. Instead, we239

apply a soft attention mechanism that prioritizes240

candidates assigning higher weights to a subset of241

these steps. Specifically, we compute the ground-242

ing score of sit over Ii
t as γa(sit) by applying mean243

pooling across all tokens in sit and only highly at-244

tended tokens within Ii
t . Detailed calculations are245

provided in Appendix D. This approach maintains246

robustness to irrelevant or noisy steps while captur-247

ing valuable signals from underutilized steps.248

We then integrate this attention-based measure249

into the original cumulative likelihood scoring func-250

tion to obtain an grounding-enhanced score:251

γG(s1:t) = γL(s1:t) + α · γa(st)252

where γL(s1:t) = log
∏

t P (st|s1:t−1, x) and α is253

a weighted hyperparameter. Then N candidates254

are selected from Ct = {s1, s2, . . . , sNk} with255

the highest γG(s1:t). We validate this attention-256

based operation in Sec. 5.3 by analyzing the consis-257

tency between highly attended content and actual258

grounded information.259

3.2 Novelty-Guided Selection260

To reduce redundancy across multiple intermedi-261

ate steps, we assess the conclusion novelty of each262

newly generated step sit in a candidate sequence263

si1:t, and select candidates with higher novelty. We264

extract intermediate conclusions from sit and all 265

its prior steps {si1, . . . , sit−1} by segmenting the 266

corresponding sentences using special clause de- 267

limiters (e.g., “so”, “thus” and commas), forming 268

a set of conclusions {ci1, . . . , cit−1, c
i
t}. We then 269

calculate the trigram-based similarity between the 270

newly generated conclusion cit and all preceding 271

conclusions {ci1, . . . , cit−1}. The novelty score of 272

sit is then obtained as follows: 273

N(sit) = 1− max
j∈1,...,t−1

Simtri(c
i
t, c

i
j) 274

where Simtri(·, ·) measures trigram-based similar- 275

ity with justification discussed in Appendix E. To 276

incorporate novelty into candidate selection, we 277

calibrate the grounding-enhanced scoring function 278

with novelty score. At step t, candidates with low- 279

novelty conclusions (i.e., N(st) ≤ θ) are filtered 280

out, retaining only diverse and meaningful candi- 281

dates. The adjusted scoring function is defined as 282

below, where θ is a predefined threshold. 283

γN (s1:t) =

{
γG(s1:t), ifN(st) > θ,

−100, otherwise.
284

285

3.3 Self-Grounding Strategy 286

To handle irrelevant steps that may arise during 287

reasoning and prevent grounding-guided selection 288

from focusing on irrelevant prior steps, especially 289

when contexts contain distracting information, we 290

introduce a self-grounding strategy. This approach 291

leverages LLMs’ inherent ability to anchor reason- 292

ing in relevant prior information, either from prior 293

steps or the input query, that serve as necessary 294

premises for each new deduction. The strategy ex- 295

plicitly prompts LLMs to reason step by step, struc- 296

turing each step in the format: “[Step-i] From 297

<source>, <deduction>.” where “<source>” 298

refers to either relevant prior steps or the input 299

query that provide premises for deducing new con- 300

clusions in “<deduction>”. For example, “[Step-1] 301

From Query, we know ...”, “[Step-2] From Step- 302

1 and Query, we know ...” and “[Step-3] From 303

Step-1 and Step-2, because ...”. This explicit step- 304

grounding process ensures that each new step di- 305

rectly builds upon established information, main- 306

taining logical coherence while minimizing irrel- 307

evant or unsupported conclusions. Moreover, ex- 308

plicitly referencing step numbers facilitates con- 309

nections with distant underutilized steps. Further 310

details on the prompts and few-shot demonstrations 311

are provided in Appendix B. 312
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Models Methods FOLIO ProofWriter MMLU-Pro GPQA-Diamond Avg.

Llama3.2-3B-Instruct

Few-shot CoT 38.73% 40.00% 28.57% 21.72% 32.25%
Self-Grounding CoT 45.59% 43.33% 28.57% 22.73% 35.06%

Best-of-N 45.59% 37.00% 30.00% 22.73% 33.83%
Self-Consistency 46.57% 47.67% 29.64% 22.73% 36.65%
Tree-of-Thought 44.12% 44.17% 26.43% 22.73% 34.36%

Self-Eval Beam Search 45.10% 47.00% 30.71% 19.19% 35.50%
Deductive Beam Search 48.04% 38.17% 25.71% 24.75% 34.17%

MCTS + Math-PRM / / 26.07% 22.22% /
Informativeness Search 46.57% 50.33% 33.57% 27.27% 39.44%

Informativeness Search (w/ SG) 51.96% 53.67% 33.93% 24.24% 40.95%

Llama3-8B-Instruct

Few-shot CoT 54.90% 55.33% 37.50% 29.29% 44.25%
Self-Grounding CoT 55.39% 57.00% 38.57% 30.30% 45.32%

Best-of-N 56.86% 50.00% 39.29% 30.30% 44.11%
Self-Consistency 57.84% 60.17% 39.29% 31.31% 47.15%
Tree-of-Thought 55.88% 53.33% 39.29% 27.78% 44.07%

Self-Eval Beam Search 59.31% 56.17% 35.00% 29.80% 45.07%
Deductive Beam Search 54.90% 48.83% 37.50% 27.78% 42.25%

MCTS + Math-PRM / / 27.14% 28.28% /
Informativeness Search 58.33% 61.33% 40.00% 33.33% 48.25%

Informativeness Search (w/ SG) 59.80% 62.00% 40.71% 35.35% 49.46%

Table 1: Experimental results (accuracy %) of different methods on Llama3.2-3B-Instruct and LLaMA3-8B-Instruct.
SG denotes the Self-Grounding strategy. Shaded rows present results from our proposed method.

4 Experiments313

4.1 Setup314

Baselines We evaluate against both sequence-315

level CoT methods and step-level search meth-316

ods. Sequence-level methods include: (1) Few-shot317

CoT (Wei et al., 2022) performs step-by-step rea-318

soning. (2) Self-Grounding CoT is our proposed319

self-grounding strategy without search. (3) Best-of-320

N (Lightman et al., 2023) samples Nk rationales321

and selects the best via LLM self-evaluation as we322

lack general reward models for diverse tasks. (4)323

Self-Consistency (Wang et al., 2022) samples Nk324

rationales and uses majority voting for the final325

answer. Step-level methods include: (5) Tree-of-326

thought (Yao et al., 2024) performs breadth-first327

tree search with self-evaluation at each step. (6)328

Self-Eval Beam Search (Xie et al., 2024) and (7)329

Deductive Beam Search (Zhu et al., 2024) both330

use stepwise beam search, with the former re-331

lying on self-evaluation and the latter on deduc-332

tive scoring trained on synthesized datasets. (8)333

MCTS (Zhang et al., 2024a) where we use the min-334

imum score across all steps from Qwen2.5-Math-335

PRM-7B (Zhang et al., 2025) to evaluate simulated336

solutions. As this is a mathematical PRM, we re-337

port MCTS results only on MMLU-Pro and GPQA-338

Diamond. We evaluate our informativeness search339

with and without the self-grounding (SG) strategy.340

Implementation Details We evaluate our frame-341

work on four multi-step reasoning datasets: FO-342

LIO (Han et al., 2022), ProofWriter (Tafjord 343

et al., 2020), MMLU-Pro (Wang et al., 2024c) and 344

GPQA (Rein et al., 2023). We mainly evaluate 345

our method and baselines on Llama3.2-3B-Instruct 346

and Llama3-8B-Instruct, using a two-shot prompt- 347

ing strategy with a 1024-token generation limit. 348

We set N = 3 and k = 2 for all stepwise beam 349

search methods. The parameter α is set to 2 and 350

the threshold τ to 0.7. θ is set to 0.5 for FOLIO 351

and ProofWriter, 0.4 for MMLU-Pro and GPQA- 352

Diamond. Further details and search configurations 353

are provided in Appendix A. 354

4.2 Main Results 355

Table 1 presents the overall performance com- 356

parison across four benchmark datasets. Our 357

method consistently outperforms all baseline meth- 358

ods across both deductive and diverse reasoning 359

datasets when implemented with either Llama3.2- 360

3B-Instruct or Llama3-8B-Instruct. This demon- 361

strates the general superiority of our informative- 362

ness search framework and self-grounding strat- 363

egy. Notably, our method yields more substantial 364

improvements on Llama3.2-3B-Instruct, suggest- 365

ing its particular effectiveness in enhancing rea- 366

soning for lower-performing models. Additionally, 367

self-grounding further enhances informativeness 368

search, except when using Llama3.2-3B-Instruct 369

on GPQA-Diamond. We attribute this to Llama3.2- 370

3B-Instruct’s inability to perform self-grounding ef- 371

fectively for the challenging GPQA-Diamond task. 372
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Figure 3: Accuracy and average token count (Avg. # Tokens) of final predicted rationales using different methods
on Llama3.2-3B-Instruct.

Step-level methods like tree-of-thought, deductive373

beam search and MCTS show moderate perfor-374

mance due to their reliance on specialized reward375

model or verifiers, limiting their generalizability. In376

contrast, informativeness search is broadly applica-377

ble without requiring task-specific customization.378

4.3 Efficiency Analysis379

Average Rationale Length We analyze the aver-380

age token count of final predicted rationales using381

different methods on Llama3.2-3B-Instruct to ex-382

amine the relationship between rationale length and383

accuracy. As shown in Figure 3, our method gener-384

ates shorter rationales with fewer tokens than few-385

shot CoT and stepwise beam search while achiev-386

ing higher accuracy, both with and without the387

self-grounding strategy. Notably, our approach ex-388

hibits greater token reduction in deductive reason-389

ing, correlating with more significant performance390

improvements. We attribute this to our informa-391

tiveness search framework can effectively reduce392

redundancy by combining grounding-guided and393

novelty-guided selection. This minimizes cumula-394

tive errors and prevents circular reasoning loops,395

ultimately leading to better performance.396

Total Inference Cost We further analyze the to-397

tal inference cost, including candidate step genera-398

tion and evaluation throughout the search process399

for all methods involving stepwise beam search. As400

shown in Table 2, we compare token consumption,401

inference time and memory usage across all meth-402

ods, evaluated consistently on the same NVIDIA403

RTX A6000 GPU with batch size 1. Our method404

effectively reduces token usage and inference time405

compared to the baseline and other beam search406

methods while maintaining comparable memory407

usage, exhibiting superior efficiency. The high cost 408

of Self-Eval and deductive beam search stems from 409

additional interactions to obtain evaluation feed- 410

back after each step. Moreover, deductive beam 411

search requires additional computational resources 412

for training a domain-specific deductive verifier.

Search Method Token Num. Inference Time Memory

Self-Eval 75.0×K 589 min 7348 MiB
Deductive 46.3×K 346 min 9789 MiB
Baseline 16.7×K 123 min 10918 MiB

Informativeness 9.7×K 103 min 10895 MiB
Informativeness w/ SG 8.4×K 112 min 11256 MiB

Table 2: Efficiency comparison of different stepwise
beam search methods on FOLIO. Baseline is stepwise
beam search using only cumulative likelihood scoring.

413

4.4 Results on Additional LLMs 414

To further validate the broad effectiveness of our 415

method, we implement it on Phi-4 (Abdin et al., 416

2024), Qwen2.5-7B-Instruct (Qwen et al., 2025) 417

(14B and 7B-parameter models from different fam- 418

ilies), and DeepSeek-R1-Distill-Llama-8B (Guo 419

et al., 2025), a slow-thinking Llama3-8B variant 420

distilled from DeepSeek-R1. We evaluate perfor- 421

mance on FOLIO, ProofWriter, and MMLU-Pro, 422

comparing against few-shot CoT, self-grounding, 423

and self-consistency baselines using correspond- 424

ing backbones. A one-shot prompting strategy is 425

used with N = 3 and k = 1, and we extend the 426

generation limit to 2048 tokens to accommodate 427

long CoT from R1-Distill-Llama-8B. As shown 428

in Table 3, our framework consistently improves 429

performance on more powerful LLMs, though self- 430

grounding fails on R1-Distill-Llama-8B, as it learns 431

to generate free-form CoT and struggles to follow a 432

structured response format. Despite this, our infor- 433
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mativeness search still yields significant improve-434

ments, notably reducing redundant tokens in final435

rationales (Table 4). This aligns with DeepSeek-436

R1’s over-thinking problems as pointed by (Chen437

et al., 2024; Cuadron et al., 2025). These results,438

along with Table 1 demonstrate our method’s ro-439

bustness across models.

Method FOLIO ProofWriter MMLU-Pro

Phi-4
Few-shot CoT 73.67% 72.55% 71.79%

Self-Grounding CoT 73.50% 72.06% 72.14%
Self-Consistency 71.17% 72.55% 72.50%

Informativeness Search w/ SG 76.67% 77.94% 72.86%

Qwen2.5-7B-Instruct
Few-shot CoT 65.20% 54.17% 53.21%

Self-Grounding CoT 67.16% 54.83% 53.57%
Self-Consistency 69.12% 56.33% 54.29%

Informativeness Search w/ SG 70.59% 58.00% 55.36%

DeepSeek-R1-Distill-Llama-8B
Few-shot CoT 61.76% 48.67% 38.57%

Self-Grounding CoT 53.92% 38.17% 35.36%
Self-Consistency 62.25% 63.50% 46.07%

Informativeness Search 70.10% 66.50% 47.50%

Table 3: Additional results on Phi-4, Qwen2.5-7B-
Instruct and R1-Distill-Llama-8B.

Method FOLIO ProofWriter MMLU-Pro

Few-shot CoT 1105 1861 1636
Informativeness Search 588 1023 1001

Table 4: Average token count of the final predicted
reasoning paths from R1-Distill-Llama-8B.

440

4.5 Applicability to General Reasoning Task441

To validate the generalization ability of our method442

on general reasoning tasks beyond multi-step443

reasoning datasets, we further evaluate it on a444

randomly sampled subset (100 instances) from445

the ARC Challenge dataset, a benchmark for446

commonsense reasoning. We report the results447

for Llama3.2-3B-Instruct, DeepSeek-R1-Distill-448

Llama-8B and Phi-4, as shown in Table 5. The con-449

sistent performance gains across all models demon-450

strate the applicability of our method beyond the451

original four multi-step reasoning datasets.

Methods Llama3.2-3B R1-Llama-8B Phi-4

Few-shot CoT 71% 68% 94%
Self-Grounding CoT 73% 74% 94%

Self-Consistency 70% 75% 95%
Stepwise Beam Search 75% 76% 94%

Informativeness Search w/ SG 78% 83% 97%

Table 5: Performance on ARC Challenge Dataset.
452

5 Further Analysis 453

5.1 Ablation Study 454

To investigate the contribution of our proposed 455

novelty-guided and grounding-guided selection, 456

we conduct an ablation study using LLama3.2- 457

3B-Instruct on FOLIO and MMLU-Pro datasets. 458

Starting with stepwise beam search as our base- 459

line, we separately incorporate each component 460

individually, and compare them with our final In- 461

formative Search). Table 6 reveals that each se- 462

lection heuristic contributes substantially to perfor- 463

mance improvements, with their integration produc- 464

ing our best-performing search framework overall. 465

Notably, novelty-based selection proves especially 466

effective on FOLIO, addressing the challenge of 467

redundant step generation in deductive reasoning 468

tasks, while grounding-guided selection shows par- 469

ticular strength on MMLU-Pro. These findings 470

validate the standalone effectiveness of each heuris- 471

tic and their complementary nature when integrated 472

into our complete framework.

Methods FOLIO MMLU-Pro

Stepwise Beam Search 41.18% 30.36%
w/ only Novelty-Guided Heuristic 45.10% 32.14%
w/ only Grounding-Guided Heuristic 42.65% 32.50%

Informativeness Search 46.57% 33.57%

Table 6: Ablation study using LLaMA3.2-3B-Instruct.

473

5.2 Redundant Step Analysis 474

In complex multi-step reasoning tasks, LLMs tend 475

to generate repeated intermediate conclusions, ei- 476

ther from same or different premises, which can 477

trap reasoning in circular loops. For detailed in- 478

vestigation, we measure the average number of re- 479

peated conclusions across steps per rationale gener- 480

ated by our method compared to few-shot CoT and 481

self-grounding CoT baselines using LLama3.2-3B- 482

Instruct. Specifically, we split rationales into steps 483

using end-of-line token “/n” and extract intermedi- 484

ate conclusions based on special clause delimiters 485

as operated in Sec. 3.2. A step is considered re- 486

dundant if its conclusion shares over 70% tri-word 487

overlap with any previous conclusions in the same 488

rationale. As shown in Figure 4, LLMs exhibit a 489

pronounced tendency to produce redundant steps, 490

particularly in deductive reasoning tasks. This oc- 491

curs because deductive contexts often contain ver- 492

bally similar information, causing LLMs to lose 493

track of logical progression and become stuck in 494

7



circular reasoning. In contrast, our self-grounding495

strategy and informativeness search substantially496

reduce redundant steps, enabling more effective497

and efficient multi-step reasoning.

FOLIO ProofWriter MMLU-Pro GPQA-Diamond0

2

4

6

Av
g. 

#R
ep

ea
tit

ion

Few-shot CoT
Self-grounding CoT
Informativeness Search w/ SG

Figure 4: Average count of redundant steps whose con-
clusions have over 70% tri-word overlap with any previ-
ous conclusions in the same rationale.498

5.3 Validity of Attention-Based Selection499

To validate our attention-based implementation in500

grounding-guided selection, we examine whether501

LLMs naturally assign higher attention to grounded502

steps than other steps. Using the CLUTRR dataset,503

which provides well-annotated reasoning paths, we504

conduct a teacher-forcing analysis where all pre-505

vious ground-truth steps are fed into the model to506

prompt the next step. We then compute the aver-507

age attention score over both grounded and non-508

grounded steps. This analysis is performed both509

with and without self-grounding, using Llama3.2-510

3B-Instruct and Llama3-8B-Instruct. As shown511

in Fig. 5, LLMs exhibit significantly higher atten-512

tion over grounded steps. This demonstrates the513

consistency of LLMs’ attention patterns and their514

grounding behavior, and confirms the validity of515

our attention-based implementation.

w/ SG w/o SG

Av
er

ag
e A

tte
nt

ion
 S
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LLama-3B
LLama-8B
Grounded steps
Other steps

Figure 5: Average attention on grounded and other steps.
516

6 Related Work517

LLMs (OpenAI, 2023; Abdin et al., 2024; Guo518

et al., 2025) and Chain-of-Thought (CoT) prompt-519

ing (Wei et al., 2022; Zhou et al., 2022) have520

demonstrated remarkable performance in reasoning521

tasks by generating step-by-step rationales. How- 522

ever, for complex multi-step reasoning problems, 523

LLMs often underutilize earlier critic information 524

as rationale getting longer due to tendency to lose 525

focus on middle-context content (Peysakhovich 526

and Lerer, 2023; Junqing et al., 2023; Hsieh et al., 527

2024). They also frequently generate repeated sub- 528

conclusions, leading to redundant reasoning and 529

error accumulation (Dziri et al., 2024; Furuta et al., 530

2024). These difficulties are pronounced in smaller 531

LLMs with limited reasoning capacity (Fu et al., 532

2023). An intuitive method is to simply prompt 533

for concise outputs. However, LLMs often strug- 534

gle to maintain output quality under length con- 535

straints, leaving grounding and redundancy issues 536

unresolved (Nayab et al., 2024; Han et al., 2024). 537

This inspires generating multiple rationales and 538

selecting the most likely solution via majority vot- 539

ing (Wang et al., 2022) or best-of-N (Wang et al., 540

2024b). However, they are computationally costly 541

due to exponentially growing search space. To re- 542

duce search space, tree search techniques use scor- 543

ing mechanisms to prioritize promising candidates 544

at each step, such as stepwise beam search (Xie 545

et al., 2024), Tree-of-Thought (Yao et al., 2024), 546

and Monte Carlo Tree Search (Jiang et al., 2024; 547

Feng et al., 2023; Zhang et al., 2024a). While 548

effective, they face practical limitations, relying 549

on extensive rollouts (Wang et al., 2024b,a) and 550

annotations (Lightman et al., 2023) for training 551

specialized reward models. Besides, they intro- 552

duce latency due to interactions with external or 553

self-evaluators during autoregressive decoding (Xie 554

et al., 2024; Yao et al., 2024), and ignore the 555

grounding and redundancy issues in this work. 556

7 Conclusion 557

In this work, we address the challenge of LLMs 558

losing focus on intermediate steps during multi- 559

step reasoning, which can lead to unreliable and 560

redundant rationales. To mitigate this, we pro- 561

pose an inference-time tree search framework in- 562

corporating grounding-guided and novelty-guided 563

heuristics, enhancing rationale generation by proac- 564

tively grounding underutilized steps and minimiz- 565

ing redundancy between reasoning steps. Our self- 566

grounding strategy further prompts LLMs to ex- 567

plicitly reference relevant prior steps before each 568

deduction. Experiments show that our method 569

improves reasoning accuracy and efficiency with 570

fewer errors and reduced redundancy. 571
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Limitations572

Our work has several limitations to address in fu-573

ture research. First, due to computational con-574

straints, our main experiments operate within a lim-575

ited search space with beam size 3 and sample size576

2, and use LLM backbones of at most 14B parame-577

ters. Future work can explore larger search spaces578

and more powerful LLMs to further unlock the po-579

tential of our framework. Second, we currently580

use trigram-based similarity to measure novelty581

and information gain for simplicity. Incorporating582

a lightweight embedding-based measures warrant583

future exploration. Finally, while our method cur-584

rently relies solely on stepwise beam search with585

standard cumulative likelihood, incorporating our586

selection heuristics with other scoring mechanism,587

such as self-evaluation and process reward models,588

as well as other tree-search algorithms like MCTS589

could be potential future work.590
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A Implementation Details783

A.1 Baseline Details784

For Best-of-N and Self-Consistency, we adopt a785

sampling configuration with temperature T = 1.0786

and top-40 token truncation. For tree-of-thought787

(ToT) and self-eval beam search (Self-Eval BS),788

we prompt LLMs to conduct self-evaluation. For789

deductive beam search that provide a general ver-790

ifier checkpoint and two data subsets for training791

a commonsense and a mathematical verifier, we792

select the best-performing verifier for each dataset.793

Specifically, we use the general or commonsense794

verifier for FOLIO, ProofWriter, and MMLU-Pro,795

and the general or mathematical verifier for GPQA.796

For MCTS which operates in a iterative four-stage797

manner: selection, expansion, simulation and back-798

progation, we use the minimum score across all799

steps from Qwen2.5-Math-PRM-7B (Zhang et al.,800

2025) to evaluate simulated rollout.801

Comparison among ToT, MCTS, and Self-802

evaluation Beam Search ToT and Self-803

evaluation beam search both perform stepwise804

tree search using a scorer function at each step.805

The key difference lies in granularity: Self-eval806

scores and accumulates at the individual step807

level, while ToT evaluates each thought generated808

so far as a unit. In contrast, MCTS follows a809

fundamentally different approach. It performs810

simulation-based search, where each node is811

evaluated through multiple rollouts, and scores are812

provided by a reward model. While this enables813

deeper exploration, it also introduces significantly814

higher computational cost.815

A.2 Dataset Details816

We evaluate our framework on four multi-step817

reasoning datasets: FOLIO (Han et al., 2022),818

ProofWriter (Tafjord et al., 2020), MMLU-819

Pro (Wang et al., 2024c) and GPQA (Rein et al.,820

2023), and and one commonsense dataset ARC821

Challenge (Clark et al., 2018). FOLIO and822

ProofWriter focus on deductive reasoning, requir-823

ing 1-8 and 1-6 reasoning steps respectively, with824

test sets of 204 and 600 cases. MMLU-Pro covers825

14 domains, including math, physics, chemistry,826

engineering, law, and psychology, from which we827

uniformly sample 280 cases. GPQA specializes828

in biology, physics, and chemistry, and we use its829

Diamond subset containing 198 expert-answered830

but non-expert-failed questions.831

A.3 Implementation Details 832

We apply grounding-guided and novelty-guided se- 833

lection primarily after the third step, as the initial 834

steps typically ground on the given context and 835

contain minimal redundant steps. Additionally, our 836

prompt requires summarizing the final answer af- 837

ter the reasoning process, separated by the special 838

token “[END]”. We restrict grounding-guided and 839

novelty-guided selection to the reasoning phase 840

only, ensuring that the final answer output, which 841

often overlaps with the last reasoning step, remains 842

unaffected. 843

A.4 Varying Search Configurations 844

For step-level candidate generation in stepwise 845

beam search, we explore both temperature sam- 846

pling and tokenwise beam search. As shown in 847

Table 7, our method with grounding and novelty- 848

guided selection consistently outperforms stepwise 849

beam search baseline (with cumulative likelihood 850

scoring), regardless of whether self-grounding is 851

applied. Additionally, tokenwise beam search for 852

candidate generation yields slightly better perfor- 853

mance than temperature sampling.

Methods FOLIO MMLU-Pro

Beam Search
Stepwise Beam Search 41.18% 30.36%
Informativeness Search 46.57% 33.57%
Stepwise Beam Search (w/ SG) 50.49% 32.86%
Informativeness Search (w/ SG) 51.96% 33.93%

Temperature Sampling
Stepwise Beam Search 41.67% 29.64%
Informativeness Search 44.12% 31.43%
Stepwise Beam Search (w/ SG) 47.55% 29.64%
Informativeness Search (w/ SG) 48.53% 32.50%

Table 7: Different candidate step generation methods.

854
We further evaluate the impact of varying beam 855

sizes in our informativeness search, using both to- 856

kenwise beam search and temperature sampling 857

for candidate step generation. Specifically, we set 858

the sample size to 2 and vary the beam size from 859

1 to 4. As shown in Fig. 6, both alternatives con- 860

sistently outperform the few-shot CoT baseline. 861

Additionally, our informativeness search continues 862

to improve as beam size increases. Notably, when 863

the search space is constrained (i.e., with a smaller 864

beam size), tokenwise beam search performs better. 865

Based on these findings, we adopt tokenwise beam 866

search for all stepwise beam search methods in our 867
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Figure 6: The impact of beam size on our utility-based
search for the FOLIO dataset on Llama3.2-3B-Instruct.

reported results (Table 1∼ 4) considering its better868

performance and accelerated computational speed.869

A.5 Comparison to Tokenwise Beam Search870

We further compare our informativeness search871

(beam size N = 3, sample size k = 2) with naive872

tokenwise beam search for whole rationale genera-873

tion using beam size 3 and 6. Table 8 demonstrate874

the effectiveness of our method.

Method FOLIO ProofWriter MMLU-Pro GPQA-D

Few-shot CoT 38.73% 40.00% 28.57% 21.72%
Tokenwise BS (3) 43.63% 45.00% 28.93% 21.72%
Tokenwise BS (6) 46.08% 42.17% 31.07% 19.19%

Informativeness Search 46.57% 50.33% 33.93% 27.27%

Table 8: Comparison with tokenwise beam search using
Llama3.2-3B-Instruct for whole rationale generation.
Numbers in parentheses denote the beam size.

875

B Framework Prompts876

Table 9, 10, 11 and 12 present the prompts used in877

our informativeness search framework without self-878

grounding strategy for the FOLIO, ProofWriter,879

MMLU-Pro and GPQA-Diamond datasets. For880

illustration, Table 13 provides the prompt used in881

our informativeness search framework with self-882

grounding strategy on GPQA-Diamond 3.883

C Correlation between of Grounding884

Challenge and Reasoning Performance885

We provide a detailed illustration of the ground-886

ing challenge that LLMs face when referencing887

3We use GPT-4o and Claude to adjust prompts manually.

prior reasoning steps. Specifically, we analyze 888

all instances involving 8-9 reasoning steps from 889

CLUTRR (Sinha et al., 2019), a dataset with well- 890

annotated rationales. We evaluate the performance 891

of Llama3-8B-Instruct across instances grouped 892

by the maximum distances between referencing 893

and referenced steps. As shown in Fig. 7, perfor- 894

mance degrades as the distance to the referenced 895

prior steps grows. This demonstrates the inher- 896

ent difficulty of grounding distant prior step, with 897

longer distances (steps accumulating) progressively 898

degrade reasoning performance.

dist  5 dist = 5 dist = 6 dist  7

20
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A
cc
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Acc v.s. Max Distance to Referenced Steps

Figure 7: Accuracy versus maximum distance between
referencing and referenced steps on CLUTRR.

899

D Attention Calculation 900

To compute the grounding score γa(s
i
t) that mea- 901

sures how effectively step sit attends to the underuti- 902

lized steps Ii
t , we use a selective attention mecha- 903

nism that emphasizes the most relevant connections 904

while remaining robust to noisy information. Our 905

approach proceeds in three stages. First, we collect 906

attention weights from all L layers and H heads of 907

the model. For each generated step, we extract the 908

attention scores from the N tokens in the current 909

step sit to the M tokens in the underutilized prior 910

steps Ii
t , yielding L×H×M×N attention values. 911

Next, we take the mean over the N tokens in the 912

current step sit, reducing it to L×H×M scores to 913

measure how much the step sit as a whole attends 914

to each token in underutilized steps. Finally, we se- 915

lect the top-K scores (we experiment and conclude 916

that K = 50 ∼ 100 yield similar results) and com- 917

pute their mean to obtain the final attention score 918

γa(s
i
t). This selective averaging maintains robust- 919

ness to irrelevant or noisy steps while capturing 920

most valuable signals from underutilized steps. 921
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E Justification of Using Trigram-based922

Similarity923

We simply adopt trigram-based similarity to mea-924

sure novelty and information gain for each step925

for the following reasons. (1) Similarity computa-926

tion includes both semantics-based similarity and927

N -gram-based similarity. However, the former of-928

ten requires additional model inference, introduc-929

ing substantial computational overhead. To reduce930

costs, we opted for N -gram-based similarity, which931

can be computed efficiently without model calls.932

(2) Among N -gram-based metrics, uni-gram sim-933

ilarity performs poorly, as it only captures word934

overlap and lacks sentence-level representation.935

In contrast, higher-order N-grams (e.g., 4-gram)936

are overly strict and fail to recognize semantically937

similar sentences with slightly different wording.938

Through empirical comparisons on bi-gram and tri-939

gram similarity, we found that trigram-based sim-940

ilarity provides the best trade-off between robust-941

ness and flexibility, making it the preferred choice942

in our implementation. Alternatively, lightweight943

embedding-based measures can further enhance944

semantic fidelity and merit further exploration.945

F Further Discussion on Handling946

Intermediate Noise or Repetition947

LLMs inevitably generate irrelevant or incorrect948

steps during reasoning, making not all underuti-949

lized steps useful. However, we argue that our950

method encouraging the grounding of underuti-951

lized steps still improve reasoning. As discussed952

in Sec. 1, empirical evidence shows that when953

LLaMA-3-8B is prompted to self-generate multi-954

step rationales on CLUTRR instances requiring955

eight ground-truth steps, accuracy is significantly956

higher (57.89%) in cases where each step grounds957

on at least one underutilized prior step, compared958

to 22.39% when they do not. Besides, our proposed959

self-grounding strategy further mitigate the impact960

of irrelevant steps by prompting the model to iden-961

tify and state relevant prior steps before each de-962

duction, leveraging its internal reasoning to surface963

useful content. Finally, we adopt a soft attention964

mechanism prioritizes grounding on a selective sub-965

set of underutilized steps, maintaining robustness966

against noise while capturing valuable signals.967

Additionally, our framework can extend to long-968

thinking models that generate intermediate conclu-969

sions similar to their final answers. Unlike short-970

thinking models that terminate reasoning upon971

reaching likely answer, long-thinking models usu- 972

ally explore multiple alternative solutions or per- 973

form verification. However, valuable alternative 974

solutions and verifications often appear in varied 975

expressions. For instance, the conclusion “the an- 976

swer to 2 + 3 is 5” may emerge through diverse 977

intermediate forms such as “two apples plus three 978

apples equals five apples” or “2 is II and 3 is III in 979

Roman numerals, adding them gives V”. Similarly, 980

useful verifications include phrases like “which is 981

the same as 2 plus 3” or “this aligns with 2 plus 982

3 equals 5”. Our trigram-based similarity metric 983

recognizes these varied expressions as semantically 984

novel, encouraging diverse reasoning paths that in- 985

crease information richness and model confidence 986

in its answer. The strong performance of DeepSeek- 987

R1-Distill-Llama-8B in Table 3 validates the gener- 988

alization of our approach to long-thinking models. 989

Moreover, we can apply in-block novelty-guided 990

selection, filtering within reasoning blocks seg- 991

mented by special transition tokens (e.g., “Wait,” 992

or “Alternatively”) to maintain diversity while miti- 993

gating the risk of filtering meaningful content. 994
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Prompt without Self-Grounding (FOLIO)

You are a helpful assistant.
You will receive a query. Your task is to answer the query.

#### Examples
Query: LanguageA is a universal language. If a universal language exists, then for every two people if they both
know the same universal language they can communicate. Katya cannot communicate with Danil. Katya knows
LanguageA. Based on the above information, is the following statement true, false, or uncertain? Danil knows
LanguageA.
Thought:
Because LanguageA is a universal language, and if a universal language exists, then for every two people if they
both know the same universal language they can communicate, so every two people that know LanguageA can
communicate.
Because every two people that know LanguageA can communicate, and Katya knows LanguageA, so Katya can
communicate with others that know LanguageA.
Because Katya can communicate with others that knows LanguageA, and Katya cannot communicate with Danil, so
Danil does not know LanguageA.
Therefore, the statement "Danil knows LanguageA." is False.
END.
So the answer is: False.
——
Query: All eels are fish. No fish are plants. A thing is either a plant or animal. Nothing that breathes is paper. All
animals breathe. If a sea eel is either an eel or a plant, then a sea eel is an eel or an animal. Based on the above
information, is the following statement true, false, or uncertain? Sea eel breathes or is paper.
Thought:
Because all eels are fish, so a sea eel is a fish.
Because no fish are plants, a thing is either a plant or animal, so a fish is an animal.
Because a sea eel is a fish, and a fish is an animal, so a sea eel is an animal.
Because a sea eel is an animal, and all animals breathe, so a sea eel breathes.
Because a sea eel breathes and nothing that breathes is paper, so a sea eel is not paper.
Therefore, the statement "Sea eel breathes or is paper." is True.
END.
So the answer is: True.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline,
then end your thought with "END.". Finally respond "True", "False" or "Uncertain" in a newline, strictly starting with
"So the answer is: ".

Table 9: The prompt without self-grounding on FOLIO.
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Prompt without Self-Grounding (ProofWriter)

You are a helpful assitant.
You will receive a query. Your task is to answer the query.

#### Examples
Query: Bob is big. Dave is big. Dave is rough. Erin is nice. Erin is white. Gary is nice. Gary is white. Red things are
white. All big things are green. All red, white things are nice. All green things are blue. If something is nice then it is
big. All blue, green things are rough. All rough things are red. If something is blue then it is nice. If something is red
then it is blue. Based on the above information, is the following statement true, false, or unknown? Gary is not red.
Thought:
Because Gary is nice, and if something is nice then it is big, so Gary is big.
Because Gary is big and all big things are green, so Gary is green.
Because Gary is green and all green things are blue, so Gary is blue.
Because Gary is green and Gary is blue, and all blue, green things are rough, so Gary is rough.
Because Gary is rough and all rough things are red, so Gary is red.
Therefore, the statement "Gary is not red." is false.
END.
So the answer is: False.
——
Query: Anne is nice. Anne is smart. Charlie is green. Fiona is nice. Fiona is round. Fiona is white. Harry is blue.
White, kind things are nice. If something is smart and kind then it is green. If something is round and kind then it is
white. Smart things are kind. Nice, white things are kind. Round things are kind. If something is nice then it is smart.
All white things are round. If Charlie is green then Charlie is white. Based on the above information, is the following
statement true, false, or unknown? Charlie is smart.
Thought:
Because Charlie is green, and if Charlie is green then Charlie is white, so Charlie is white.
Because Charlie is white and all white things are round, so Charlie is round.
Because Charlie is round and round things are kind, so Charlie is kind.
Because Charlie is white and Charlie is kind, and white, kind things are nice, so Charlie is nice.
Because Charlie is nice, and if something is nice then it is smart, so Charlie is smart.
Therefore, the statement "Charlie is smart." is true.
END.
So the answer is: True.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline,
then end your thought with "END.". Finally respond "True", "False" or "Unknown" in a newline, strictly starting with
"So the answer is: ".

Table 10: The prompt without self-grounding on ProofWriter.
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Prompt without Self-Grounding (MMLU-Pro)

You will receive a query and ten options. Your task is to select an option to answer the query.

#### Examples
Query: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Options: A.24, B.54, C.40, D.32, E.64, F.8, G.16, H.60, I.100, J.74
Thought:
Because one glass costs $5, and every second glass costs only 60% of the price, so the discount price of every second
glass is 60/100 * 5 = $3.
Because every second glass is discounted at $3, and Kylar wants to buy 16 glasses, so Kylar is going to buy 16 / 2 = 8
discounted glasses and 16 - 8 = 8 regular-priced glasses.
Because Kylar is going to buy 8 discounted glasses, and every discounted glass is $3, so Kylar is going to pay 8 * 3 =
$24.
Because Kylar is also going to buy 8 regular-priced glasses, and one glass costs $5, so Kylar will pay 8 * 5 = $40.
Because Kylar will pay $24 for 8 discounted glasses, and $40 for 8 regular-priced glasses, so in total Kylar needs to
pay 24 + 40 = $64 for the glasses he wants to buy.
END.
So the answer is: E.
——
Query: A refracting telescope consists of two converging lenses separated by 100 cm. The eye-piece lens has a focal
length of 20 cm. The angular magnification of the telescope is ?
Options: A.10, B.40, C.6, D.25, E.15, F.50, G.30, H.4, I.5, J.20
Thought:
Because in a refracting telescope both lenses are converging, so their focus must be between the two lenses.
Because the focus of both lenses must lie between them, so their focal lengths must add up to their separation.
Because the two lenses are separated by 100 cm, and one lens has a focal length of 20 cm, so the other lens must have
a focal length of 80 cm.
Because one lens has a focal length of 20 cm and the other 80 cm, so the magnification is the ratio of their focal
lengths, which is 4.
END.
So the answer is: H.

#### Here’s what you need to do. Please first think step-by-step, presenting each of your step in a new
line. Then end your thought with "END.". Finally respond with an option from "A", "B", "C", "D", "E", "F", "G",
"H", "I" or "J" in a newline, strictly starting with "So the answer is: ".

Table 11: The prompt without self-grounding on MMLU-Pro.
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Prompt without Self-Grounding (GPQA-Diamond)

You will receive a query along with four options. Your task is to select an option to answer the query.

#### Examples
Query: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Options:
(A) 24
(B) 54
(C) 40
(D) 64
Thought:
Because one glass costs $5, and every second glass costs only 60% of the price, so the discount price of every second
glass is 60/100 * 5 = $3.
Because every second glass is discounted at $3, and Kylar wants to buy 16 glasses, so Kylar is going to buy 16 / 2 = 8
discounted glasses and 16 - 8 = 8 regular-priced glasses.
Because Kylar is going to buy 8 discounted glasses, and every discounted glass is $3, so Kylar is going to pay 8 * 3 =
$24.
Because Kylar is also going to buy 8 regular-priced glasses, and one glass costs $5, so Kylar will pay 8 * 5 = $40.
Because Kylar will pay $24 for 8 discounted glasses, and $40 for 8 regular-priced glasses, so in total Kylar needs to
pay 24 + 40 = $64 for the glasses he wants to buy.
END.
So the answer is: D.
——
Query: A refracting telescope consists of two converging lenses separated by 100 cm. The eye-piece lens has a focal
length of 20 cm. The angular magnification of the telescope is ?
Options:
(A) 10
(B) 6
(C) 4
(D) 25
Thought:
Because in a refracting telescope both lenses are converging, so their focus must be between the two lenses.
Because the focus of both lenses must lie between them, so their focal lengths must add up to their separation.
Because the two lenses are separated by 100 cm, and one lens has a focal length of 20 cm, so the other lens must have
a focal length of 80 cm.
Because one lens has a focal length of 20 cm and the other 80 cm, so the magnification is the ratio of their focal
lengths, which is 4.
END.
So the answer is: C.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline.
Then end all your thought with "END.". Finally respond with an option from "A", "B", "C" or "D" in a newline,
strictly starting with "So the answer is: ".

Table 12: The prompt without self-grounding on GPQA-Diamond.
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Prompt with Self-Grounding (GPQA-Diamond)

You will receive a query along with four options. Your task is to select an option to answer the query.

#### Examples
Query: Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs
only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Options:
(A) 24
(B) 54
(C) 40
(D) 64
Thought:
[Step-1] From Query, because one glass costs $5, and every second glass costs only 60% of the price, so the discount
price of every second glass is 60/100 * 5 = $3.
[Step-2] From Step-1 and Query, because every second glass is discounted at $3, and Kylar wants to buy 16 glasses,
so Kylar is going to buy 16 / 2 = 8 discounted glasses and 16 - 8 = 8 regular-priced glasses.
[Step-3] From Step-1 and Step-2, because Kylar is going to buy 8 discounted glasses, and every discounted glass is
$3, so Kylar is going to pay 8 * 3 = $24.
[Step-4] From Step-2 and Query, because Kylar is also going to buy 8 regular-priced glasses, and one glass costs $5,
so Kylar will pay 8 * 5 = $40.
[Step-5] From Step-3 and Step-4, because Kylar will pay $24 for 8 discounted glasses, and $40 for 8 regular-priced
glasses, so in total Kylar needs to pay 24 + 40 = $64 for the glasses he wants to buy.
END.
So the answer is: D.
——
Query: A refracting telescope consists of two converging lenses separated by 100 cm. The eye-piece lens has a focal
length of 20 cm. The angular magnification of the telescope is ?
Options:
(A) 10
(B) 6
(C) 4
(D) 25
Thought:
[Step-1] From Query, because in a refracting telescope both lenses are converging, so their focus must be between
the two lenses.
[Step-2] From Step-1, because the focus of both lenses must lie between them, so their focal lengths must add up to
their separation.
[Step-3] From Step-2 and Query, because the two lenses are separated by 100 cm, and one lens has a focal length of
20 cm, so the other lens must have a focal length of 80 cm.
[Step-4] From Step-3 and Query, because one lens has a focal length of 20 cm and the other 80 cm, so the
magnification is the ratio of their focal lengths, which is 4.
END.
So the answer is: C.

#### Here’s what you need to do. Please first think step-by-step, give out each of your step in a newline
starting with [Step-i], and cite the sources (e.g., Step-i, Query) of your premises at the beginning of each step. Then
end all your thought with "END.". Finally respond with an option from "A", "B", "C" or "D" in a newline, strictly
starting with "So the answer is: ".

Table 13: The prompt with self-grounding on GPQA-Diamond.
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