
Published as a conference paper at ICLR 2022

ROTOGRAD: GRADIENT HOMOGENIZATION IN
MULTITASK LEARNING

Adrián Javaloy
Department of Computer Science
Saarland University
Saarbrücken, Germany
ajavaloy@cs.uni-saarland.de

Isabel Valera
Department of Computer Science
Saarland University
Saarbrücken, Germany

ABSTRACT

Multitask learning is being increasingly adopted in applications domains like
computer vision and reinforcement learning. However, optimally exploiting its ad-
vantages remains a major challenge due to the effect of negative transfer. Previous
works have tracked down this issue to the disparities in gradient magnitudes and
directions across tasks when optimizing the shared network parameters. While
recent work has acknowledged that negative transfer is a two-fold problem, existing
approaches fall short. These methods only focus on either homogenizing the gradi-
ent magnitude across tasks; or greedily change the gradient directions, overlooking
future conflicts. In this work, we introduce RotoGrad, an algorithm that tackles neg-
ative transfer as a whole: it jointly homogenizes gradient magnitudes and directions,
while ensuring training convergence. We show that RotoGrad outperforms compet-
ing methods in complex problems, including multi-label classification in CelebA
and computer vision tasks in the NYUv2 dataset. A Pytorch implementation can
be found in https://github.com/adrianjav/rotograd.

1 INTRODUCTION

As neural network architectures get larger in order to solve increasingly more complex tasks, the
idea of jointly learning multiple tasks (for example, depth estimation and semantic segmentation
in computer vision) with a single network is becoming more and more appealing. This is precisely
the idea of multitask learning (MTL) (Caruana, 1993), which promises higher performance in the
individual tasks and better generalization to unseen data, while drastically reducing the number of
parameters (Ruder, 2017).

Unfortunately, sharing parameters between tasks may also lead to difficulties during training as
tasks compete for shared resources, often resulting in poorer results than solving individual tasks,
a phenomenon known as negative transfer (Ruder, 2017). Previous works have tracked down this
issue to the two types of differences between task gradients. First, differences in magnitude across
tasks can make some tasks dominate the others during the learning process. Several methods have
been proposed to homogenize gradient magnitudes such as MGDA-UB (Sener & Koltun, 2018),
GradNorm (Chen et al., 2018), or IMTL-G Liu et al. (2021b). However, little attention has been put
towards the second source of the problem: conflicting directions of the gradients for different tasks.
Due to the way gradients are added up, gradients of different tasks may cancel each other out if they
point to opposite directions of the parameter space, thus leading to a poor update direction for a subset
or even all tasks. Only very recently a handful of works have started to propose methods to mitigate
the conflicting gradients problem, for example, by removing conflicting parts of the gradients (Yu
et al., 2020), or randomly ‘dropping’ some elements of the gradient vector (Chen et al., 2020).

In this work we propose RotoGrad, an algorithm that tackles negative transfer as a whole by ho-
mogenizing both gradient magnitudes and directions across tasks. RotoGrad addresses the gradient
magnitude discrepancies by re-weighting task gradients at each step of the learning, while encourag-
ing learning those tasks that have converged the least thus far. In that way, it makes sure that no task is
overlooked during training. Additionally, instead of directly modifying gradient directions, RotoGrad
smoothly rotates the shared feature space differently for each task, seamlessly aligning gradients in

1

mailto:ajavaloy@cs.uni-saarland.de?subject=[RotoGrad] Add subject here
https://github.com/adrianjav/rotograd

Published as a conference paper at ICLR 2022

t 1 2 3 4 5

Va
ni

lla
Ro

to
Gr

ad

0

(a) Convex avocado-shaped experiment. (b) Non-convex experiment.

Figure 1: Level plots showing the evolution of two regression MTL problems with/without RotoGrad,
see §4. RotoGrad is able to reach the optimum (�) for both tasks. (a) In the space of z, RotoGrad
rotates the function-spaces to align task gradients (blue/orange arrows), finding shared features z
(green arrow) closer to the (matched) optima. (b) In the space of rk, RotoGrad rotates the shared
feature z, providing per-task features rk that better fit each task.

the long run. As shown by our theoretical insights, the cooperation between gradient magnitude-
and direction-homogenization ensures the stability of the overall learning process. Finally, we run
extensive experiments to empirically demonstrate that RotoGrad leads to stable (convergent) learning,
scales up to complex network architectures, and outperforms competing methods in multi-label
classification settings in CIFAR10 and CelebA, as well as in computer vision tasks using the NYUv2
dataset. Moreover, we provide a simple-to-use library to include RotoGrad in any Pytorch pipeline.

2 MULTITASK LEARNING AND NEGATIVE TRANSFER

The goal of MTL is to simultaneously learn K different tasks, that is, finding K mappings from a
common input datasetX ∈ RN×D to a task-specific set of labels Yk ∈ YN

k . Most settings consider
a hard-parameter sharing architecture, which is characterized by two components: the backbone and
heads networks. The backbone uses a set of shared parameters, θ, to transform each input x ∈X
into a shared intermediate representation z = f(x;θ) ∈ Rd, where d is the dimensionality of z.
Additionally, each task k = 1, 2, . . . ,K has a head network hk, with exclusive parameters φk, that
takes this intermediate feature z and outputs the prediction hk(x) = hk(z;φk) for the corresponding
task. This architecture is illustrated in Figure 2, where we have added task-specific rotation matrices
Rk that will be necessary for the proposed approach, RotoGrad. Note that the general architecture
described above is equivalent to the one in Figure 2 when all rotations Rk correspond to identity
matrices, such that rk = z for all k.

r1 L1(h1(r1),y1)

x z r2 L2(h2(r2),y2)

rK LK(hK(rK),yK)

hφ1

fθ

R1

R2

RK

...

hφ2

...
hφK

Figure 2: Hard-parameter sharing architecture, in-
cluding the rotation matricesRk of RotoGrad.

MTL aims to learn the architecture parameters
θ,φ1,φ2, . . . ,φK by simultaneously minimiz-
ing all task losses, that is, Lk(hk(x),yk) for
k = 1, . . . ,K. Although this is a priori a multi-
objective optimization problem (Sener & Koltun,
2018), in practice a single surrogate loss consist-
ing of a linear combination of the task losses,
L =

∑
k ωkLk, is optimized. While this ap-

proach leads to a simpler optimization problem,
it may also trigger negative transfer between tasks, hurting the overall MTL performance due to an
imbalanced competition among tasks for the shared parameters (Ruder, 2017).

The negative transfer problem can be studied through the updates of the shared parameters θ. At each
training step, θ is updated according to a linear combination of task gradients,∇θL =

∑
k ωk∇θLk,

which may suffer from two problems. First, magnitude differences of the gradients across tasks
may lead to a subset of tasks dominating the total gradient, and therefore to the model prioritizing
them over the others. Second, conflicting directions of the gradients across tasks may lead to update
directions that do not improve any of the tasks. Figure 1 shows an example of poor direction updates
(left) as well as magnitude dominance (right).

2

Published as a conference paper at ICLR 2022

In this work, we tackle negative transfer as a whole by homogenizing tasks gradients both in
magnitude and direction. To reduce overhead, we adopt the usual practice and homogenize gradients
with respect to the shared feature z (rather than θ), as all tasks share gradient up to that point,
∇θLk = ∇θz · ∇zLk. Thus, from now on we focus on feature-level task gradients∇zLk.

3 ROTOGRAD

In this section we introduce RotoGrad, a novel algorithm that addresses the negative transfer problem
as a whole. RotoGrad consists of two building blocks which, respectively, homogenize task-gradient
magnitudes and directions. Moreover, these blocks complement each other and provide convergence
guarantees of the network training. Next, we detail each of these building blocks and show how they
are combined towards an effective MTL learning process.

3.1 GRADIENT-MAGNITUDE HOMOGENIZATION

As discussed in §2, we aim to homogenize gradient magnitudes across tasks, as large magnitude
disparities can lead to a subset of tasks dominating the learning process. Thus, the first goal of
RotoGrad is to homogenize the magnitude of the gradients across tasks at each step of the training.

Let us denote the feature-level task gradient of the k-th task for the n-th datapoint, at iteration t, by
gn,k := ∇zLk(hk(xn),yn,k), and its batch versions by G>k := [g1,k, g2,k, . . . , gB,k], where B is
the batch size. Then, equalizing gradient magnitudes amounts to finding weights ωk that normalize
and scale each gradientGk, that is,

||ωkGk|| = ||ωiGi|| ∀i ⇐⇒ ωkGk =
C

||Gk||
Gk = CUk ∀k, (1)

where Uk := Gk

||Gk|| denotes the normalized task gradient and C is the target magnitude for all tasks.
Note that, in the above expression, C is a free parameter that we need to select.

In RotoGrad, we select C such that all tasks converge at a similar rate. We motivate this choice
by the fact that, by scaling all gradients, we change their individual step size, interfering with the
convergence guarantees provided by their Lipschitz-smoothness (for an introduction to optimization
see, for example, (Nesterov, 2004)). Therefore, we seek for the value of C providing the best
step-size for those tasks that have converged the least up to iteration t. Specifically, we set C to be a
convex combination of the task-wise gradient magnitudes, C :=

∑
k αk||Gk||, where the weights

α1, α2, . . . , αK measure the relative convergence of each task and sum up to one, that is,

αk =
||Gk||/||G0

k||∑
i ||Gi||/||G0

i ||
, (2)

withG0
k being the initial gradient of the k-th task, i.e., the gradient at iteration t = 0 of the training.

As a result, we obtain a (hyper)parameter-free approach that equalizes the gradient magnitude across
tasks to encourage learning slow-converging tasks. Note that the resulting approach resembles
Normalized Gradient Descent (NGD) (Cortés, 2006) for single-task learning, which has been proved
to quickly escape saddle points during optimization (Murray et al., 2019). Thus, we expect a similar
behavior for RotoGrad, where slow-converging tasks will force quick-converging tasks to escape
from saddle points.

Whilst the algorithm works well in general, its simplicity also facilitates unfavorable settings. For
example, in the presence of noisy tasks that do not progress; or in scenarios where, when one task
improves, there is always another task that deteriorates. In Appendix A we show that, when gradients
do not conflict in direction with each other (which we pursue next), following the gradient C

∑
kUk

improves all task losses for the given batch. This result, while simple, provides insights in favor of
having as desideratum of an efficient MTL pipeline the absence of conflicting gradients.

3.2 GRADIENT-DIRECTION HOMOGENIZATION

In the previous subsection, we have shown that avoiding conflicting gradients may not only be
necessary to avoid negative transfer, but also to ensure the stability of the training. In this section

3

Published as a conference paper at ICLR 2022

we introduce the second building block of RotoGrad, an algorithm that homogenizes task-gradient
directions. The main idea of this approach is to smoothly rotate the feature-space z in order to reduce
the gradient conflict between tasks—in following iterations—of the training by bringing (local)
optima for different tasks closer to each other (in the parameter space). As a result, it complements
the previous magnitude-scaling approach and reduces the likelihood of the training to diverge.

In order to homogenize gradients, for each task k = 1, . . . ,K, RotoGrad introduces a matrix Rk

so that, instead of optimizing Lk(z) with z being the last shared representation, we optimize an
equivalent (in optimization terms, as it is a bijective mapping) loss function Lk(Rkz). As we are
only interested in changing directions (not the gradient magnitudes), we chooseRk ∈ SO(d) to be a
rotation matrix1 leading to per-task representations rk := Rkz. RotoGrad thus extends the standard
MTL architecture by adding task-specific rotations before each head, as depicted in Figure 2.

Unlike all other network parameters, matrices Rk do not seek to reduce their task’s loss. Instead,
these additional parameters are optimized to reduce the direction conflict of the gradients across
tasks. To this end, for each task we optimize Rk to maximize the batch-wise cosine similarity or,
equivalently, to minimize

Lk
rot := −

∑
n

〈R>k g̃n,k,vn〉, (3)

where g̃n,k := ∇rkLk(hk(xn),yn,k)) (which holds that gn,k = R>k g̃n,k) and vn is the target vector
that we want all task gradients pointing towards. We set the target vector vn to be the gradient we
would have followed if all task gradients weighted the same, that is, vn := 1

K

∑
k un,k, where un,k

is a row vector of the normalized batch gradient matrix Uk, as defined before.

As a result, in each training step of RotoGrad we simultaneously optimize the following two problems:

N etwork: minimize
θ,{φ}k

∑
k

ωk Lk., Rotation: minimize
{Rk}k

∑
k

Lk
rot (4)

The above problem can be interpreted as a Stackelberg game: a two player-game in which leader
and follower alternately make moves in order to minimize their respective losses, Ll and Lf , and the
leader knows what will be the follower’s response to their moves. Such an interpretation allows us to
derive simple guidelines to guarantee training convergence—that is, that the network loss does not
oscillate as a result of optimizing the two different objectives in Equation 4. Specifically, following
Fiez et al. (2020), we can ensure that problem 4 converges as long as the rotations’ optimizer (leader)
is a slow-learner compared with the network optimizer (follower). That is, as long as we make the
rotations’ learning rate decrease faster than that of the network, we know that RotoGrad will converge
to a local optimum for both objectives. A more extensive discussion can be found in Appendix B.

3.3 ROTOGRAD: THE FULL PICTURE

After the two main building blocks of RotoGrad, we can now summarize the overall proposed
approach in Algorithm 1. At each step, RotoGrad first homogenizes the gradient magnitudes such
that there is no dominant task and the step size is set by the slow-converging tasks. Additionally,
RotoGrad smoothly updates the rotation matrices—using the local information given by the task
gradients—to seamlessly align task gradients in the following steps, thus reducing direction conflicts.

3.4 PRACTICAL CONSIDERATIONS

In this section, we discuss the main practical considerations to account for when implementing
RotoGrad and propose efficient solutions.

Unconstrained optimization. As previously discussed, parameters Rk are defined as rotation
matrices, and thus the Rotation optimization in problem 4 is a constrained problem. While this would
typically imply using expensive algorithms like Riemannian gradient descent (Absil et al., 2008), we
can leverage recent work on manifold parametrization (Casado & Martínez-Rubio, 2019) and, instead,
apply unconstrained optimization methods by automatically2 parametrizingRk via exponential maps
on the Lie algebra of SO(d).

1The special orthogonal group, SO(d), denotes the set of all (proper) rotation matrices of dimension d.
2For example, Geotorch (Casado, 2019) makes this transparent to the user.

4

Published as a conference paper at ICLR 2022

Algorithm 1 Training step with RotoGrad.
Input input samplesX , task labels {Yk}, network’s (RotoGrad’s) learning rate η (ηroto)
Output backbone (heads) parameters θ ({φk}), RotoGrad’s parameters {Rk}

1: compute shared feature Z = f(X;θ)
2: for k = 1, 2, . . . ,K do
3: compute task-specific loss Lk =

∑
n Lk(hk(Rkzn;φk),yn,k)

4: compute gradient of shared featureGk = ∇zLk

5: compute gradient of task-specific feature G̃k = RkGk . Treated as constant w.r.t. Rk.
6: compute unitary gradients Uk = Gk/||Gk||
7: compute relative task convergence αk = ||Gk||/||G0

k||
8: end for
9: make {αk} sum up to one [α1, α2, . . . , αK] = [α1, α2, . . . , αK]/

∑
k αk

10: compute shared magnitude C =
∑

k αk||Gk||
11: update backbone parameters θ = θ − η∇θz · C

∑
kUk

12: compute target vector V = 1
K

∑
kUk

13: for k = 1, 2, . . . ,K do
14: compute RotoGrad’s loss Lroto

k = −
∑

n〈R>k g̃n,k,vn〉
15: update RotoGrad’s parametersRk = Rk − ηroto∇Rk

Lroto
k

16: update head’s parameters φk = φk − η∇φk
Lk

17: end for

Memory efficiency and time complexity. As we need one rotation matrix per task, we have to
store O(Kd2) additional parameters. In practice, we only need Kd(d− 1)/2 parameters due to the
aforementioned parametrization and, in most cases, this amounts to a small part of the total number
of parameters. Moreover, as described by Casado & Martínez-Rubio (2019), parametrizing Rk

enables efficient computations compared with traditional methods, with a time complexity of O(d3)
independently of the batch size. In our case, the time complexity is of O(Kd3), which scales better
with respect to the number of tasks than existing methods (for example, O(K2d) for PCGrad (Yu
et al., 2020)). Forward-pass caching and GPU parallelization can further reduce training time.

Scaling-up RotoGrad. Despite being able to efficiently compute and optimize the rotation matrix
Rk, in domains like computer vision, where the size d of the shared representation z is large, the time
complexity for updating the rotation matrix may become comparable to the one of the network updates.
In those cases, we propose to only rotate a subspace of the feature space, that is, rotate only m << d
dimensions of z. Then, we can simply apply a transformation of the form rk = [Rkz1:m, zm+1:d],
where za:b denotes the elements of z with indexes a, a+ 1, . . . , b. While there exist other possible
solutions, such as using block-diagonal rotation matricesRk, we defer them to future work.

4 ILLUSTRATIVE EXAMPLES

In this section, we illustrate the behavior of RotoGrad in two synthetic scenarios, providing clean
qualitative results about its effect on the optimization process. Appendix C.1 provides a detailed
description of the experimental setups.

To this end, we propose two different multitask regression problems of the form

L(x) = L1(x) + L2(x) = ϕ(R1f(x;θ), 0) + ϕ(R2f(x;θ), 1), (5)

where ϕ is a test function with a single global optimum whose position is parametrized by the second
argument, that is, both tasks are identical (and thus related) up to a translation. We use a single input
x ∈ R2 and drop task-specific network parameters. As backbone, we take a simple network of the
form z = W2 max(W1x+ b1, 0) + b2 with b1 ∈ R10, b2 ∈ R2, andW1,W

>
2 ∈ R10×2.

For the first experiment we choose a simple (avocado-shaped) convex objective function and, for
the second one, we opt for a non-convex function with several local optima and a single global
optimum. Figure 1 shows the training trajectories in the presence (and absence) of RotoGrad in both
experiments, depicted as level plots in the space of z and rk, respectively. We can observe that in the
first experiment (Figure 1a), RotoGrad finds both optima by rotating the feature space and matching
the (unique) local optima of the tasks. Similarly, the second experiment (Figure 1b) shows that, as we

5

Published as a conference paper at ICLR 2022

have two symmetric tasks and a non-equidistant starting point, in the vanilla case the optimization is
dominated by the task with an optimum closest to the starting point. RotoGrad avoids this behavior
by equalizing gradients and, by aligning gradients, is able to find the optima of both functions.

5 RELATED WORK

Understanding and improving the interaction between tasks is one of the most fundamental problems
of MTL, since any improvement in this regard would translate to all MTL systems. Consequently,
several approaches to address this problem have been adopted in the literature. Among the different
lines of work, the one most related to the present work is gradient homogenization.

Gradient homogenization. Since the problem is two-fold, there are two main lines of work. On the
one hand, we have task-weighting approaches that focus on alleviating magnitude differences. Similar
to us, GradNorm (Chen et al., 2018) attempts to learn all tasks at a similar rate, yet they propose to
learn these weights as parameters. Instead, we provide a closed-form solution in Equation 1, and so
does IMTL-G Liu et al. (2021b). However, IMTL-G scales all task gradients such that all projections
of G onto Gk are equal. MGDA-UB (Sener & Koltun, 2018), instead, adopts an iterative method
based on the Frank-Wolfe algorithm in order to find the set of weights {ωk} (with

∑
k ωk = 1) such

that
∑

k ωkGk has minimum norm. On the other hand, recent works have started to put attention on
the conflicting direction problem. Maninis et al. (2019) and Sinha et al. (2018) proposed to make
task gradients statistically indistinguishable via adversarial training. More recently, PCGrad (Yu
et al., 2020) proposed to drop the projection of one task gradient onto another if they are in conflict,
whereas GradDrop (Chen et al., 2020) randomly drops elements of the task gradients based on a
sign-purity score. Contemporaneously to this work, improved versions of MGDA (Désidéri, 2012)
and PCGrad have been proposed by Liu et al. (2021a) and Wang et al. (2021), respectively.

The literature also includes approaches which, while orthogonal to the gradient homogenization, are
complementary to our work and thus could be used along with RotoGrad. Next, we provide a brief
overview of them. A prominent approach for MTL is task clustering, that is, selecting which tasks
should be learned together. This approach dates back to the original task-clustering algorithm (Thrun
& O’Sullivan, 1996), but new work in this direction keeps coming out (Standley et al., 2020; Zamir
et al., 2018; Shen et al., 2021; Fifty et al., 2021). Alternative approaches, for example, scale the loss
of each task differently based on different criteria such as task uncertainty (Kendall et al., 2018), task
prioritization (Guo et al., 2018), or similar loss magnitudes (Liu et al., 2021b). Moreover, while most
models fall into the hard-parameter sharing umbrella, there exists other architectures in the literature.
Soft-parameter sharing architectures (Ruder, 2017), for example, do not have shared parameters
but instead impose some kind of shared restrictions to the entire set of parameters. An interesting
approach consists in letting the model itself learn which parts of the architecture should be used for
each of the tasks (Guo et al., 2020; Misra et al., 2016; Sun et al., 2020; Vandenhende et al., 2020).
Other architectures, such as MTAN (Liu et al., 2019b), make use of task-specific attention to select
relevant features for each task. Finally, similar issues have also been studied in other domains like
meta-learning (Flennerhag et al., 2019) and continual learning (Lopez-Paz & Ranzato, 2017).

6 EXPERIMENTS

In this section we assess the performance of RotoGrad on a wide range of datasets and MTL
architectures. First, we check the effect of the learning rates of the rotation and network updates on
the stability of RotoGrad. Then, with the goal of applying RotoGrad to scenarios with large sizes
of z, we explore the effect of rotating only a subspace of z. Finally, we compare our approach
with competing MTL solutions in the literature, showing that RotoGrad consistently outperforms all
existing methods. Refer to Appendix C for a more details on the experiments and additional results.

Relative task improvement. Since MTL uses different metrics for different tasks, throughout this
section we group results by means of the relative task improvement, first introduced by Maninis
et al. (2019). Given a task k, and the metrics obtained during test time by a model, Mk, and by a
baseline model, Sk, which consists of K networks trained on each task individually, the relative task
improvement for the k-th task is defined as

∆k := 100 · (−1)lk
Mk − Sk

Sk
, (6)

6

Published as a conference paper at ICLR 2022

where lk = 1 if Mk < Sk means that our model performs better than the baseline in the k-th task, and
lk = 0 otherwise. We depict our results using different statistics of ∆k such as its mean (avgk ∆k),
maximum (maxk ∆k), and median (medk ∆k) across tasks.

Statistical significance. We highlight significant improvements according to a one-sided paired t-test
(α = 0.05), with respect to MTL with vanilla optimization (marked with † in each table).

6.1 TRAINING STABILITY

Figure 3: Test error on the sum of digits
task for different values of RotoGrad’s
learning rate on multi-MNIST.

At the end of §3.2 we discussed that, by casting problem 4
as a Stackelberg game, we have convergence guarantees
when the rotation optimizer is the slow-learner. Next, we
empirically show this necessary condition.

Experimental setup. Similar to (Sener & Koltun, 2018),
we use a multitask version of MNIST (LeCun et al., 2010)
where each image is composed of a left and right digit,
and use as backbone a reduced version of LeNet (LeCun
et al., 1998) with light-weight heads. Besides the left-
and right-digit classification proposed in (Sener & Koltun,
2018), we consider three other quantities to predict: i) sum
of digits; ii) parity of the digit product; and iii) number of
active pixels. The idea here is to enforce all digit-related tasks to cooperate (positive transfer), while
the (orthogonal) image-related task should not disrupt these learning dynamics.

Results. Figure 3 shows the effect—averaged over ten independent runs—of changing the rotations’
learning rate in terms of test error in the sum task, while the rest of tasks are shown in Appendix C.2.
We observe that, the bigger the learning rate is, in comparison to that of the network’s parameters
(1e−3), the higher and noisier the test error becomes. MSE keeps decreasing as we lower the learning
rate, reaching a sweet-spot at half the network’s learning rate (5e−4). For smaller values, the rotations’
learning is too slow and results start to resemble those of the vanilla case, in which no rotations are
applied (leftmost box in Figure 3).

6.2 ROTOGRAD BUILDING BLOCKS

In this section, we empirically evaluate to which extent each of the RotoGrad building blocks, that
we denote Scale Only (§3.1) and Rotate Only (§3.2), contribute to the performance gain in MTL.

Experimental setup. We test all methods on three different tasks of NYUv2 (Couprie et al., 2013):
13-class semantic segmentation; depth estimation; and normal surfaces estimation. To speed up
training, all images were resized to 288 × 384 resolution; and data augmentation was applied to
alleviate overfitting. As MTL architecture, we use SegNet (Badrinarayanan et al., 2017) where the
decoder is split into three convolutional heads. This is the same setup as that of Liu et al. (2019b).

Results. The three top rows of Table 1 show the performance of RotoGrad and its both components
in isolation. All the methods with the same number of parameters. Compared to Vanilla optimization
(4th row), Rotate Only improves all metrics by homogenizing gradient directions. Scale Only avoids
overlooking the normal estimation task and improves on segmentation by homogenizing gradient
magnitudes, at the expense of higher depth estimation error. Remarkably, RotoGrad exploits its
scaling and rotation components to obtain the best results in semantic segmentation and depth
estimation, while still achieving comparable performance in the normal estimation task.

6.3 SUBSPACE ROTATIONS

We now evaluate the effect of subspace rotations as described at the end of §3.4, assessing the
trade-off between avoiding negative transfer and size of the subspace considered by RotoGrad.

Experimental setup. We test RotoGrad on a 10-task classification problem on CIFAR10 (Krizhevsky
et al., 2009), using binary cross-entropy and f1-score as loss and metric, respectively, for all tasks.
We use ResNet18 (He et al., 2016) without pre-training as backbone (d = 512), and linear layers
with sigmoid activation functions as task-specific heads.

7

Published as a conference paper at ICLR 2022

Table 1: Median (over five runs) on the NYUv2 dataset. RotoGrad obtains great performance in
segmentation and depth tasks, and significantly improves the results on normal surfaces. ∆S , ∆D,
and ∆N denote the relative task improvement for each task.

Relative
improvements ↑

Segmentation ↑ Depth ↓ Normal Surfaces
Angle Dist. ↓ Within t◦ ↑

Method ∆S ∆D ∆N mIoU Pix Acc Abs. Rel. Mean Median 11.25 22.5 30

Single 0.0 0.0 0.0 39.21 64.59 0.70 0.27 25.09 19.18 30.01 57.33 69.30

W
ith
R

k
(m

=
10

24
) Rotate Only 3.3 20.5 −6.6 39.63 66.16 0.53 0.21 26.12 20.93 26.85 53.76 66.50

Scale Only −0.3 20.0 −7.9 38.89 65.94 0.54 0.22 26.47 21.24 26.24 53.04 65.81
RotoGrad 1.8 24.0 −6.1 39.32 66.07 0.53 0.21 26.01 20.80 27.18 54.02 66.53

Vanilla −2.7 20.6 −25.7 38.05 64.39 0.54 0.22 30.02 26.16 20.02 43.47 56.87

GradDrop −0.9 14.0 −25.2 38.79 64.36 0.59 0.24 29.80 25.81 19.88 44.08 57.54
PCGrad −2.7 20.5 −26.3 37.15 63.44 0.55 0.22 30.06 26.18 19.58 43.51 56.87
MGDA-UB −31.2 −0.7 0.6 21.60 51.60 0.77 0.29 24.74 18.90 30.32 57.95 69.88
GradNorm −0.6 19.5 −10.5 37.22 63.61 0.54 0.22 26.68 21.67 25.95 52.16 64.95
IMTL-G −0.3 17.6 −7.5 38.38 64.66 0.54 0.22 26.38 21.35 26.56 52.84 65.69

W
ith

ou
tR

k

Vanilla† −0.9 16.8 −25.0 37.11 63.98 0.56 0.22 29.93 25.89 20.34 43.92 57.39
GradDrop −0.1 15.7 −27.0 37.51 63.62 0.59 0.23 30.15 26.33 19.32 43.15 56.59
PCGrad −0.5 20.0 −24.6 38.51 63.95 0.55 0.22 29.79 25.77 20.61 44.22 57.64
MGDA-UB −32.2 −8.2 1.5 20.75 51.44 0.73 0.28 24.70 18.92 30.57 57.95 69.99
GradNorm 2.2 20.6 −10.2 39.29 64.80 0.53 0.22 26.77 21.88 25.39 51.78 64.76
IMTL-G 1.9 21.4 −6.7 39.94 65.96 0.55 0.21 26.23 21.14 26.77 53.25 66.22

Results. Table 2 (top) shows that rotating the entire space provides the best results, and that these
worsen as we decrease the size ofRk. Remarkably, rotating only 128 features already outperforms
vanilla with no extra per-task parameters (1st row); and rotating 256 features already yields com-
parable results to vanilla optimization with extra capacity (6th row) despite its larger number of
(task-specific) parameters. These results can be further explained by Figure 9 in Appendix C.2, which
shows a positive correlation between the size ofRk and cosine similarity.

6.4 METHODS COMPARISON

Experimental setup. In order to provide fair comparisons among methods, all experiments use
identical configurations and random initializations. For all methods we performed a hyperparameter
search and chose the best ones based on validation error. Unless otherwise specified, all baselines use
the same architecture (and thus, number of parameters) as RotoGrad, taking each rotation matrixRk

as extra task-specific parameters. Further experimental details can be found in Appendix C.1, as well
as extra experiments and complete results in Appendix C.2.

NYUv2. Table 1 shows the performance of all baselines with and without the extra capacity.
RotoGrad significantly improves performance on all tasks compared with vanilla optimization,
and outperforms all other baselines. Remarkably, we rotate only 1024 dimensions of z (out of
a total of 7 millions) and, as a result, RotoGrad stays on par in training time with the base-
lines (around 4 h, Appendix C.2). We can also assert the importance of learning the matrices
Rk properly by comparing in Table 1 the different baselines with and without extra capacity.

Figure 4: Similarity between task and update gradients
for different methods on CIFAR10, averaged over tasks
and five runs.

This comparison reveals that the extra pa-
rameters do not solve the negative trans-
fer but instead amplifies biases (methods
that overlook a subset of tasks, keep over-
looking them) and, in the best case, pro-
vides trade-off solutions (also shown in
Appendix C.2). Note, moreover, that Ro-
toGrad (due to its Rotate Only component)
is the only method to tackle conflicting gra-
dient directions that manages to not over-
look the normal surfaces task.

CIFAR10. We reuse the setting from §6.3
to compare different MTL baselines in
terms of relative improvements (Table 2)

8

Published as a conference paper at ICLR 2022

Table 2: (Top) Relative task improvement on CIFAR10
for RotoGrad with matricesRk of different sizes; and
(bottom) comparison with baseline methods including
rotation matrices as extra task-specific parameters. Ta-
ble shows median and standard deviation over five runs.

Method d avgk ∆k ↑ medk ∆k ↑ maxk ∆k ↑
Vanilla† 0 2.58± 0.54 1.90± 0.53 11.14± 3.35
RotoGrad 64 2.90± 0.49 1.79± 0.57 13.16± 2.40
RotoGrad 128 2.97± 1.08 2.25± 1.07 12.64± 3.56
RotoGrad 256 3.68± 0.68 2.16± 0.72 14.01± 3.22
RotoGrad 512 4.48± 0.99 3.67± 1.40 15.57± 3.99

W
ith
R

k

(m
=

51
2)

Vanilla 3.12± 0.79 3.10± 1.29 14.23± 2.86

GradDrop 3.54± 1.10 3.27± 1.61 13.88± 2.95
PCGrad 3.29± 0.46 2.67± 0.88 13.44± 1.86
MGDA-UB 0.21± 0.67 0.57± 0.62 4.78± 2.15
GradNorm 3.21± 1.04 3.10± 1.01 10.88± 4.73
IMTL-G 3.02± 0.69 1.81± 0.87 12.76± 1.77

Table 3: F1-score statistics in CelebA for
two neural network architectures. Median
over five different runs.

task f1-scores (%) ↑
Method mink medk avgk stdk ↓

C
on

v.
N

et
.w

ith
R

k
(m

=
2
5
6

)

Vanilla 4.59 50.28 56.03 25.65

GradDrop 3.18 50.07 54.43 27.21
PCGrad 1.44 53.05 54.72 27.61
GradNorm 2.08 52.53 56.71 24.57
IMTL-G 0.00 37.00 42.24 33.46
RotoGrad 4.59 55.02 57.20 24.75

R
es

N
et

18
w

ith
R

k
(m

=
1
5
3
6

) Vanilla 19.71 63.56 63.23 21.16

GradDrop 12.33 62.40 62.74 21.74
PCGrad 14.71 63.65 62.61 22.22
GradNorm 9.05 60.20 60.78 22.31
IMTL-G 17.11 61.68 60.72 22.80
RotoGrad 9.96 63.84 62.81 21.80

and cosine similarity (Fig. 4), averaged over five different runs. Table 2 (bottom) shows that, similar to
the NYUv2 results, both direction-aware solutions (PCGrad and GradDrop) behave similar to vanilla
optimization, marginally increasing the average improvement. Unlike previous experiments, all
magnitude-aware methods substantially worsen (at least) one of the statistics. In contrast, RotoGrad
improves the relative task improvement across all statistics using the same number of parameters.
Figure 4 shows the cosine similarity between task and update gradients, averaged over all tasks and
runs (shaded areas correspond to 90 % confidence intervals). It is clear that RotoGrad obtains the
highest cosine similarity, that other direction-aware methods also effectively align task gradients
and, combined with the low cosine similarity achieved by MGDA-UB, suggests that there exists a
correlation between cosine similarity and performance.

CelebA. To finalize, we test all methods in a 40-class multi-classification problem on CelebA (Liu
et al., 2015) and two different settings: one using a convolutional network as backbone (d = 512);
and another using ResNet18 (He et al., 2016) as backbone (d = 2048). As above, we use binary
cross-entropy and f1-score as loss and metric for all tasks, thus accounting for highly imbalanced
attributes. Results in Table 3 show that RotoGrad performs great in all f1-score statistics and both
architectures, specially in the convolutional neural network, outperforming competing methods.

Moreover, RotoGrad achieves these results rotating 50 % of the shared feature z for the convolutional
network, and 75 % for the residual network, which further demonstrates that RotoGrad can scale-up
to real-world settings. We believe it is important to remark that, due to the high number of tasks, this
setup is specially demanding. Results in Appendix C.2 show the performance of all baselines without
the rotation matrices, demonstrating the negative effect that the extra capacity can have if not learned
properly, as well as that RotoGrad stays on par with non-extended baselines in training time.

7 CONCLUSIONS

In this work, we have introduced RotoGrad, an algorithm that tackles negative transfer in MTL by
homogenizing task gradients in terms of both magnitudes and directions. RotoGrad enforces a similar
convergence rate for all tasks, while at the same time smoothly rotates the shared representation
differently for each task in order to avoid conflicting gradients. As a result, RotoGrad leads to
stable and accurate MTL. Our empirical results have shown the effectiveness of RotoGrad in many
scenarios, staying on top of all competing methods in performance, while being on par in terms of
computational complexity with those that better scale to complex networks.

We believe our work opens up interesting venues for future work. For example, it would be interesting
to study alternative approaches to further scale up RotoGrad using, for example, diagonal-block or
sparse rotation matrices; to rotate the feature space in application domains with structured features
(e.g., channel-wise rotations in images); and to combine different methods, for example, by scaling
gradients using the direction-awareness of IMTL-G and the “favor slow-learners” policy of RotoGrad.

9

Published as a conference paper at ICLR 2022

REFERENCES

Pierre-Antoine Absil, Robert E. Mahony, and Rodolphe Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2008. ISBN 978-0-691-13298-3. URL http:
//press.princeton.edu/titles/8586.html.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(12):
2481–2495, 2017. doi: 10.1109/TPAMI.2016.2644615. URL https://doi.org/10.1109/
TPAMI.2016.2644615.

Rich Caruana. Multitask learning: A knowledge-based source of inductive bias. In Paul E.
Utgoff (ed.), Machine Learning, Proceedings of the Tenth International Conference, Univer-
sity of Massachusetts, Amherst, MA, USA, June 27-29, 1993, pp. 41–48. Morgan Kaufmann,
1993. doi: 10.1016/b978-1-55860-307-3.50012-5. URL https://doi.org/10.1016/
b978-1-55860-307-3.50012-5.

Mario Lezcano Casado. Trivializations for gradient-based optimization on manifolds. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 9154–9164, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/1b33d16fc562464579b7199ca3114982-Abstract.html.

Mario Lezcano Casado and David Martínez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. 97:3794–3803, 2019. URL
http://proceedings.mlr.press/v97/lezcano-casado19a.html.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 793–802. PMLR, 2018. URL http://proceedings.
mlr.press/v80/chen18a.html.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai,
and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient
sign dropout. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
16002f7a455a94aa4e91cc34ebdb9f2d-Abstract.html.

Jorge Cortés. Finite-time convergent gradient flows with applications to network consensus. Autom.,
42(11):1993–2000, 2006. doi: 10.1016/j.automatica.2006.06.015. URL https://doi.org/
10.1016/j.automatica.2006.06.015.

Camille Couprie, Clément Farabet, Laurent Najman, and Yann LeCun. Indoor semantic segmentation
using depth information. In Yoshua Bengio and Yann LeCun (eds.), 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Conference
Track Proceedings, 2013. URL http://arxiv.org/abs/1301.3572.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. Implicit learning dynamics in stackelberg games:
Equilibria characterization, convergence analysis, and empirical study. 119:3133–3144, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/fiez20a.html.

Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently iden-
tifying task groupings for multi-task learning. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=hqDb8d65Vfh.

10

http://press.princeton.edu/titles/8586.html
http://press.princeton.edu/titles/8586.html
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1016/b978-1-55860-307-3.50012-5
https://doi.org/10.1016/b978-1-55860-307-3.50012-5
https://proceedings.neurips.cc/paper/2019/hash/1b33d16fc562464579b7199ca3114982-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1b33d16fc562464579b7199ca3114982-Abstract.html
http://proceedings.mlr.press/v97/lezcano-casado19a.html
http://proceedings.mlr.press/v80/chen18a.html
http://proceedings.mlr.press/v80/chen18a.html
https://proceedings.neurips.cc/paper/2020/hash/16002f7a455a94aa4e91cc34ebdb9f2d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/16002f7a455a94aa4e91cc34ebdb9f2d-Abstract.html
https://doi.org/10.1016/j.automatica.2006.06.015
https://doi.org/10.1016/j.automatica.2006.06.015
http://arxiv.org/abs/1301.3572
https://proceedings.mlr.press/v119/fiez20a.html
https://openreview.net/forum?id=hqDb8d65Vfh

Published as a conference paper at ICLR 2022

Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. arXiv preprint arXiv:1909.00025, 2019.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task pri-
oritization for multitask learning. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XVI, volume 11220 of Lecture Notes in
Computer Science, pp. 282–299. Springer, 2018. doi: 10.1007/978-3-030-01270-0_17. URL
https://doi.org/10.1007/978-3-030-01270-0_17.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 3854–3863.
PMLR, 2020. URL http://proceedings.mlr.press/v119/guo20e.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 4880–4889. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/jin20e.html.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482–7491, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online],
2, 2010. URL http://yann.lecun.com/exdb/mnist.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and qiang liu. Conflict-averse gradient descent for
multi-task learning. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021a.
URL https://openreview.net/forum?id=_61Qh8tULj_.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021b. URL https://openreview.net/forum?id=IMPnRXEWpvr.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019a.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning
with attention. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 1871–1880. Computer
Vision Foundation / IEEE, 2019b. doi: 10.1109/CVPR.2019.00197. URL http:
//openaccess.thecvf.com/content_CVPR_2019/html/Liu_End-To-End_
Multi-Task_Learning_With_Attention_CVPR_2019_paper.html.

11

https://doi.org/10.1007/978-3-030-01270-0_17
http://proceedings.mlr.press/v119/guo20e.html
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.mlr.press/v119/jin20e.html
https://proceedings.mlr.press/v119/jin20e.html
http://yann.lecun.com/exdb/mnist
https://openreview.net/forum?id=_61Qh8tULj_
https://openreview.net/forum?id=IMPnRXEWpvr
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_End-To-End_Multi-Task_Learning_With_Attention_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_End-To-End_Multi-Task_Learning_With_Attention_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_End-To-End_Multi-Task_Learning_With_Attention_CVPR_2019_paper.html

Published as a conference paper at ICLR 2022

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, pp. 3730–3738. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.425. URL
https://doi.org/10.1109/ICCV.2015.425.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 6467–6476, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-
tasking of multiple tasks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 1851–
1860. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00195.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/Maninis_
Attentive_Single-Tasking_of_Multiple_Tasks_CVPR_2019_paper.html.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 3994–4003. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.433. URL https://doi.org/10.1109/CVPR.2016.433.

Ryan W. Murray, Brian Swenson, and Soummya Kar. Revisiting normalized gradient descent:
Fast evasion of saddle points. IEEE Trans. Autom. Control., 64(11):4818–4824, 2019. doi:
10.1109/TAC.2019.2914998. URL https://doi.org/10.1109/TAC.2019.2914998.

Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course, volume 87 of Ap-
plied Optimization. Springer, 2004. ISBN 978-1-4613-4691-3. doi: 10.1007/978-1-4419-8853-9.
URL https://doi.org/10.1007/978-1-4419-8853-9.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. NeurIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. CoRR, abs/1706.05098,
2017. URL http://arxiv.org/abs/1706.05098.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pp. 525–536, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
432aca3a1e345e339f35a30c8f65edce-Abstract.html.

Jiayi Shen, Xiantong Zhen, Marcel Worring, and Ling Shao. Variational multi-task learning with
gumbel-softmax priors. In Thirty-Fifth Conference on Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=-2rkcde3CDJ.

Ayan Sinha, Zhao Chen, Vijay Badrinarayanan, and Andrew Rabinovich. Gradient adversarial
training of neural networks. arXiv preprint arXiv:1806.08028, 2018.

Trevor Standley, Amir Roshan Zamir, Dawn Chen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Which tasks should be learned together in multi-task learning? In Proceedings of the
37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 9120–9132. PMLR, 2020. URL
http://proceedings.mlr.press/v119/standley20a.html.

Ximeng Sun, Rameswar Panda, Rogério Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing

12

https://doi.org/10.1109/ICCV.2015.425
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Maninis_Attentive_Single-Tasking_of_Multiple_Tasks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Maninis_Attentive_Single-Tasking_of_Multiple_Tasks_CVPR_2019_paper.html
https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.1109/TAC.2019.2914998
https://doi.org/10.1007/978-1-4419-8853-9
http://arxiv.org/abs/1706.05098
https://proceedings.neurips.cc/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html
https://openreview.net/forum?id=-2rkcde3CDJ
http://proceedings.mlr.press/v119/standley20a.html

Published as a conference paper at ICLR 2022

Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/634841a6831464b64c072c8510c7f35c-Abstract.html.

Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks: The TC
algorithm. In Lorenza Saitta (ed.), Machine Learning, Proceedings of the Thirteenth International
Conference (ICML ’96), Bari, Italy, July 3-6, 1996, pp. 489–497. Morgan Kaufmann, 1996.

Simon Vandenhende, Stamatios Georgoulis, Luc Van Gool, and Bert De Brabandere. Branched
multi-task networks: Deciding what layers to share. In 31st British Machine Vision Conference
2020, BMVC 2020, Virtual Event, UK, September 7-10, 2020. BMVA Press, 2020. URL https:
//www.bmvc2020-conference.com/assets/papers/0213.pdf.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
F1vEjWK-lH_.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5824–
5836. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

Amir Roshan Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and
Silvio Savarese. Taskonomy: Disentangling task transfer learning. In 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pp. 3712–3722. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00391. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.html.

13

https://proceedings.neurips.cc/paper/2020/hash/634841a6831464b64c072c8510c7f35c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/634841a6831464b64c072c8510c7f35c-Abstract.html
https://www.bmvc2020-conference.com/assets/papers/0213.pdf
https://www.bmvc2020-conference.com/assets/papers/0213.pdf
https://openreview.net/forum?id=F1vEjWK-lH_
https://openreview.net/forum?id=F1vEjWK-lH_
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/html/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.html

Published as a conference paper at ICLR 2022

Appendices
A PROOFS

Proposition A.1. Suppose fk := Lk ◦ hk is an infinitely differentiable real-valued function, and
let us call Gk = ∇Zfk(Z) its derivative with respect to Z, for every k = 1, 2, . . . ,K. If
cos_sim(Gi,Gj) > −1/(K − 1) pairwise; then there exists a small-enough step size ε > 0
such that, for all k, we have that Lk(hk(Z − ε · C

∑
kUk;φk);Yk) < Lk(hk(Z;φk);Yk), where

Uk := Gk/||Gk|| and C ≥ 0.

Proof. Since fk is infinitely differentiable, we can take the first-order Taylor expansion of fk around
Z, for any k, evaluated at Z − εV for a given vector V :

fk(Z − εV) = fk(Z)− ε〈Gk,V 〉+ o(ε). (7)

In our case, V = C
∑

kUk with C ≥ 0, then:

fk(Z − εV)− fk(Z) = −ε · C||Gk||
∑
i

〈Uk,Ui〉+ o(ε) (8)

= −ε · C||Gk||

1 +
∑
i 6=j

〈Uk,Ui〉

 + o(ε). (9)

Since ||Uk|| = 1 for all k = 1, 2, . . . ,K, it holds that −1 ≤ cos_sim(Uk,Ui) = 〈Uk,Ui〉 ≤ 1.

If cos_sim(Gk,Gi) > −1/(K − 1) for all i 6= k, then we have that 1 +
∑

i 6=j〈Uk,Ui〉 > 0 and
fk(Z − εV) < fk(V) for a small enough ε > 0.

Q.E.D.

B STACKELBERG GAMES AND ROTOGRAD

In game theory, a Stackelberg game (Fiez et al., 2020) is an asymmetric game where two players play
alternately. One of the players—whose objective is to blindly minimize their loss function—is known
as the follower, F . The other player is known as the leader, L. In contrast to the follower, the leader
attempts to minimize their own loss function, but it does so with the advantage of knowing which
will be the best response to their move by the follower. The problem can be written as

Leader: min
xl∈Xl

{L(xl, xf) |xf ∈ argmin
y∈Xf

F(xl, y)},

Follower: min
xf∈Xf

F(xl, xf),
(10)

where xl ∈ Xl and xf ∈ Xf are the actions taken by the leader and follower, respectively.

While traditionally one assumes that players make perfect alternate moves in each step of problem 10,
gradient-play Stackelberg games assume instead that players perform simultaneous gradient updates,

xt+1
l = xtl − αt

l ∇xl
L(xl, xf),

xt+1
f = xtf − αt

f ∇xf
L(xl, xf), (11)

where αl and αf are the learning rates of the leader and follower, respectively.

An important concept in game theory is that of an equilibrium point, that is, a point in which
both players are satisfied with their situation, meaning that there is no available move immediately
improving any of the players’ scores, so that none of the players is willing to perform additional
actions/updates. Specifically, we focus on the following definition introduced by Fiez et al. (2020):

14

Published as a conference paper at ICLR 2022

Definition B.1 (differential Stackelberg equilibrium). A pair of points x∗l ∈ Xl, x∗f ∈ Xf , where
x∗f = r(x∗l) is implicitly defined by ∇xf

F(x∗l , x
∗
f) = 0, is a differential Stackelberg equilibrium

point if∇xl
L(x∗l , r(x

∗
l)) = 0, and ∇2

xl
L(x∗l , r(x

∗
l)) is positive definite.

Note that, when the players manage to reach such an equilibrium point, both of them are in a local
optimum. Here, we make use of the following result, introduced by Fiez et al. (2020), to provide
theoretical convergence guarantees to an equilibrium point:

Proposition B.1. In the given setting, if the leader’s learning rate goes to zero at a faster rate than
the follower’s, that is, αl(t) = o(αf (t)), where αi(t) denotes the learning rate of player i at step t,
then they will asymptotically converge to a differential Stackelberg equilibrium point almost surely.

In other words, as long as the follower learns faster than the leader, they will end up in a situation
where both are satisfied. Even more, Fiez et al. (2020) extended this result to the finite-time case,
showing that the game will end close to an equilibrium point with high probability.

As we can observe, the Stackelberg formulation in Equation (10) is really similar to RotoGrad’s
formulation in Equation (4). Even more, the update rule in Equation (11) is quite similar to that
one shown in Algorithm 1. Therefore, it is sensible to cast RotoGrad as a Stackelberg game. One
important but subtle bit about this link regards the extra information used by the leader. In our case,
this extra knowledge explicitly appears in Equation 3 in the form of the follower’s gradient, gi,k,
which is the direction the follower will follow and, as it is performing first-order optimization by
assumption, this gradient directly encodes the follower’s response.

Thanks to the Stackelberg formulation in Equation 4 we can make use of Prop. B.1 and, thus, draw
theoretical guarantees on the training stability and convergence. In other words, we can say that
performing training steps as those described in Algorithm 1 will stably converge as long as the leader
is asymptotically the slow learner, that is αt

l = o(αt
f), where o denotes the little-o notation.

In practice, however, the optimization procedure proposed by Fiez et al. (2020) requires computing the
gradient of a gradient, thus incurring a significant overhead. Instead, we use Gradient Ascent-Descent
(GDA), which only computes partial derivatives and enjoys similar guarantees (Jin et al., 2020), as
we empirically showed in the manuscript.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUPS

Here, we discuss common settings across all experiments. Refer to specific sections further below for
details concerning single experiments.

Computational resources. All experiments were performed on a shared cluster system with two
NVIDIA DGX-A100. Therefore, all experiments were run with (up to) 4 cores of AMD EPYC 7742
CPUs and, for those trained on GPU (CIFAR10, CelebA, and NYUv2), a single NVIDIA A100 GPU.
All experiments were restricted to 12 GB of RAM.

Loss normalization. Similar as in the gradient case studied in this work, magnitude differences
between losses can make the model overlook some tasks. To overcome this issue, here we perform
loss normalization, that is, we normalize all losses by their value at the first training iteration (so that
they are all 1 in the first iteration). To account for some losses that may quickly decrease at the start,
after the 20th iteration, we instead normalize losses dividing by their value at that iteration.

Checkpoints. For the single training of a model, we select the parameters of the model by taking
those that obtained the best validation error after each training epoch. That is, after each epoch we
evaluate the linearly-scalarized validation loss,

∑
k Lk, and use the parameters that obtained the best

error during training. This can be seen as an extension of early-stopping where, instead of stopping,
we keep training until reaching the maximum number of epochs hoping to keep improving.

Baselines. We have implemented all baselines according to the original paper descriptions, except
for PCGrad, which we apply to the gradients with respect to the feature z (instead of the shared
parameters θ, as in the original paper). Note that this is in accordance with recent works, for example
Chen et al. (2020) and Liu et al. (2021b), which also use this implementation of PCGrad in the feature

15

Published as a conference paper at ICLR 2022

space. This way, all competing methods modify gradients with respect to the same variables and, as
backpropagation performs the sum of gradients at the last shared representation z, PCGrad can be
applied to reduce conflict at that level.

Hyperparameter tuning. Model-specific hyperparameters were mostly selected by a combination
of: i) using values described in prior works; and ii) empirical validation on the vanilla case (without
any gradient-modifiers) to verify that the combinations of hyperparameters work. To select method-
specific hyperparameters we performed a grid search, choosing those combinations of values that
performed the best with respect to validation error.

Specifically, we took α ∈ {0, 0.5, 1, 2} andRk ∈ Rm×m with m ∈ {0.25d, 0.5d, 0.75d, d} (restrict-
ing ourselves to m ≤ 1500) for RotoGrad. Regarding the learning rate of RotoGrad (GradNorm),
we performed a grid search considering ηroto ∈ {0.05η, 0.1η, 0.5η, η, 2η}, where ηroto and η are the
learning rates of RotoGrad (GradNorm) and the network, respectively.

Statistical test. For the tabular data, we highlight those results that are significantly better than those
from the multitask baseline (that is, better than the vanilla MTL optimization without theRk matrices).
To find these values, we run a paired one-sided Student’s t-test across each method and the baseline.
For those metrics for which higher is better, our null hypothesis is that the method’s performance is
equal or lower than the baseline, and for those for which lower is better, the null hypothesis is that the
method’s performance is equal or greater than the baseline. We use a significance level of α = 0.05.

Notation. Along this section, we use the following to describe different architectures: [Conv-F-C]
denotes a convolutional layer with filter size F and C number of channels; [Max]denotes a max-pool
layer of filter size and stride 2, and [Dense-H] a dense layer with output size H .

C.1.1 ILLUSTRATIVE EXAMPLES

Losses and metrics. Both illustrative experiments use MSE as both loss and metric. Regarding the
specific form of ϕ in Equation (5), the avocado-shaped experiments uses

ϕ((x, y), s) = (x− s)2 + 25y2, (12)

while the non-convex second experiment uses

ϕ((x, y), s) = − sin(3x+ 4.5s)

x+ 1.5s
− sin(3y + 4.5s)

y + 1.5s
+ |x+ 1.5s|+ |y + 1.5s| (13)

Model. As described in the main manuscript, we use a single input x ∈ R2 picked at random from a
standard normal distribution, and drop all task-specific network parameters (that is, hk(rk) = rk).
As backbone, we take a simple network of the form z = W2 max(W1x + b1, 0) + b2 with
b1 ∈ R10, b2 ∈ R2, andW1,W

>
2 ∈ R10×2.

Hyperparameters, convex-case. We train the model for one hundred epochs. As network optimizer
we use stochastic gradient descent (SGD) with a learning rate of 0.01. For the rotations we use
RAdam (Liu et al., 2019a) with a learning rate of 0.5 (for visualization purposes we need a high
learning rate, in such a simple scenario it still converges) and exponential decay with decaying factor
0.999 99.

Hyperparameter, non-convex case. For the second experiment, we train the model for 400 epochs
and, once again, use SGD as the network optimizer with a learning rate of 0.015. For the rotations,
we use RAdam (Liu et al., 2019a) with a learning rate of 0.1 and an exponential decay of 0.999 99.

C.1.2 MNIST/SVHN

Datasets. We use two modified versions of MNIST (LeCun et al., 2010) and SVHN (Netzer et al.,
2011) in which each image has two digits, one on each side of the image. In the case of MNIST, both
of them are merged such that they form an overlapped image of 28×28, as shown in Figure 5a. Since
SVHN contains backgrounds, we simply paste two images together without overlapping, obtaining
images of size 32 × 64, as shown in Figure 5b. Moreover, we transform all SVHN samples to
grayscale.

Tasks, losses, and metrics. In order to further clarify the setup used, here we describe in detail each
task. Specifically, we have:

16

Published as a conference paper at ICLR 2022

(a) Multi-MNIST. (b) Multi-SVHN.

Figure 5: Samples extracted from the modified MNIST and SVHN datasets.

• Left digit classification. Loss: negative log-likelihood (NLL). Metric: accuracy (ACC).
• Right digit classification. Loss: NLL. Metric: ACC.
• Parity of the product of digits, that is, whether the product of both digits gives an odd

number (binary-classification). Loss: binary cross entropy (BCE). Metric: f1-score (F1).
• Sum of both digits (regression). Loss: MSE. Metric: MSE.
• Active pixels in the image, that is, predict the number of pixels with values higher than 0.5,

where we use pixels lying in the unit interval (regression). Loss: MSE. Metric: MSE.

Model. Our backbone is an adaption from the original LeNet (LeCun et al., 1998) model. Specifically,
we use:

• MNIST. [Conv-5-10][Max][ReLU][Conv-5-20][Max][Dense-50][ReLU][BN],
• SVHN. [Conv-5-10][Max][ReLU][Conv-5-20][Max][Conv-5-20][Dense-50]
[ReLU][BN],

where [BN]refers to Batch Normalization (Ioffe & Szegedy, 2015). Depending on the type of task,
we use a different head. Specifically, we use:

• Regression. [Dense-50][ReLU][Dense-1],
• Classification. [Dense-50][ReLU][Dense-10][Log-Softmax],
• Binary-classification. [Dense-1][Sigmoid].

Model hyperparameters. For both datasets, we train the model for 300 epochs using a batch size of
1024. For the network parameters, we use RAdam (Liu et al., 2019a) with a learning rate of 1e−3.

Methods hyperparameters. In Tables 4 and 5 we show the results of GradNorm with: i) MNIST
with Rk, α = 0; ii) MNIST without Rk, α = 0.5; iii) SVHN with Rk, α = 1; and iv) SVHN without
Rk, α = 2. We train RotoGrad with full-size rotation matrices (m = d). Both methods use RAdam
with learning rate 5e−4 and exponential decay of 0.9999.

C.1.3 CIFAR10

Dataset. We use CIFAR10 (Krizhevsky et al., 2009) as dataset, with 40 000 instances as training data
and the rest as testing data. Additionally, every time we get a sample from the dataset we: i) crop the
image by a randomly selected square of size 3×32×32; ii) randomly flip the image horizontally; and

17

Published as a conference paper at ICLR 2022

iii) standardize the image channel-wise using the mean and standard deviation estimators obtained on
the training data.

Model. We take as backbone ResNet18 (He et al., 2016) without pre-training, where we remove the
last linear and pool layers. In addition, we add a Batch Normalization layer. For each task-specific
head, we simply use a linear layer followed by a sigmoid function, that is, [Dense-1][Sigmoid].

Losses and metrics. We treat each class (out of ten) as a binary-classification task where we use
BCE and F1 as loss and metric, respectively.

Model hyperparameters. We use a batch size of 128 and train the model for 500 epochs. For the
network parameters, we use as optimizer SGD with learning rate of 0.01, Nesterov momentum of 0.9,
and a weight decay of 5e−4. Additionally, we use for the network parameters a cosine learning-rate
scheduler with a period of 200 iterations.

Methods hyperparameters. Results shown in Tables 2 and 6 use α = 0 and α = 0.5 for GradNorm
with and without Rk, respectively, and we use RAdam (Liu et al., 2019a) as optimizer with learning
rate 0.001 and an exponential decay factor of 0.999 95 for both GradNorm and RotoGrad.

C.1.4 NYUV2

Setup. In contrast with the rest of experiments, for the NYUv2 experiments shown in §6, instead of
writing our own implementation, we slightly modified the open-source code provided by Liu et al.
(2019b) at https://github.com/lorenmt/mtan (commit 268c5c1). We therefore use the
exact same setting as Liu et al. (2019b)—and refer to their paper and code for further details, with the
addition of using data augmentation for the experiments which, although not described in the paper,
is included in the repository as a command-line argument. We will provide along this work a diff file
to include all gradient-modifier methods into the aforementioned code.

Methods hyperparameters. For the results shown in Table 1 we use GradNorm with α = 0 and
RotoGrad with rotations Rk of size 1024. We use a similar optimization strategy as the rest of
parameters, using Adam (Kingma & Ba, 2014) with learning rate 5e−5 (half the one of the network
parameters) and where we halve this learning rate every 100 iterations.

C.1.5 CELEBA

Dataset. We use CelebA (Liu et al., 2015) as dataset with usual splits. We resize each sample image
so that they have size 3× 64× 64.

Losses and metrics. We treat each class (out of forty) as a binary-classification task where we use
BCE and F1 as loss and metric, respectively.

ResNet model. As with CIFAR10, we use as backbone ResNet18 (He et al., 2016) without pre-
training, where we remove the last linear and pool layers. In addition, we add a Batch Normalization
layer. For each task-specific head, we use a linear layer followed by a sigmoid function, that is,
[Dense-1][Sigmoid].

ResNet hyperparameters. We use a batch size of 256 and train the model for 100 epochs. For the
network parameters, we use RAdam (Liu et al., 2019a) as optimizer with learning rate 0.001 and
exponential decay of 0.999 95 applied every 2400 iterations.

Convolutional model. For the second architecture, we use a convolutional network as backbone,
[Conv-3-64][BN][Max][Conv-3-128][BN][Conv-3-128][BN][Max][Conv-3-256][BN]
[Conv-3-256][BN][Max][Conv-3-512][BN][Dense-512][BN]. For the task-specific heads, we
take a simple network of the form [Dense-128][BN][Dense-1][Sigmoid].

Convolutional hyperparameters. We use a batch size of 8 and train the model for 20 epochs. For
the network parameters, we use RAdam (Liu et al., 2019a) as optimizer with learning rate 0.001 and
exponential decay of 0.96 applied every 2400 iterations.

Methods hyperparameters. Results shown in Tables 3 and 7 use GradNorm with: i) convolutional
network with Rk, α = 0; ii) convolutional network without Rk, α = 1; iii) residual network with
Rk, α = 0.5; and iv) residual network without Rk, α = 1. For RotoGrad, we rotate 256 and 1536
elements of z for the convolutional and residual networks. As optimizer, we use RAdam (Liu et al.,

18

https://github.com/lorenmt/mtan

Published as a conference paper at ICLR 2022

2019a) with learning rate 5e−6 and an exponential decay factor of 0.999 95 for both GradNorm and
RotoGrad.

Note that for these experiments we omit MGDA-UB (Sener & Koltun, 2018) as it is computationally
prohibitive in comparisons with other methods. In single-seed experiments, we however observed
that it does not perform too well (specially in the convolutional network).

C.2 ADDITIONAL RESULTS

C.2.1 MULTI-MNIST AND MULTI-SVHN

Table 4: Test performance (median and standard deviation) on two set of unrelated tasks on MNIST
and SVHN, across ten different runs.

MNIST SVHN
Digits Act Pix Digits Act Pix

Method avgk ∆k ↑ MSE ↓ avgk ∆k ↑ MSE ↓
Single 0.00± 0.00 0.01± 0.01 0.00± 0.00 0.17± 0.06
Vanilla −1.43± 3.24 0.14± 0.05 4.78± 0.88 3.04± 2.53

GradDrop −1.30± 1.82 0.16± 0.04 5.34± 0.92 2.99± 2.59
PCGrad −1.22± 2.81 0.13± 0.01 5.01± 0.65 2.70± 2.25
MGDA-UB −29.14± 9.23 0.06± 0.00−4.36± 6.72 1.00± 0.57
GradNorm 0.86± 1.93 0.09± 0.04 5.24± 0.89 4.12± 9.46
IMTL-G 2.12± 1.46 0.07± 0.02 5.94± 0.99 1.70± 1.05
RotoGrad 1.55± 2.22 0.08± 0.03 6.08± 0.48 1.61± 2.72

We reuse the experimental setting from §6.1—now using the original LeNet (LeCun et al., 1998)
and a multitask-version of SVHN (Netzer et al., 2011)—in order to evaluate how disruptive the
orthogonal image-related task is for different methods. We can observe (Table 4) that the effect of the
image-related task is more disruptive in MNIST, in which MGDA-UB utterly fails. Direction-aware
methods (GradDrop and PCGrad) do not improve the vanilla results, whereas IMTL-G, GradNorm,
and RotoGrad obtain the best results.

We also provide the complete results for all metrics in Table 5. In the case of MNIST, we can observe
that both regression tasks tend to be quite disruptive. GradNorm, IMTL-G, and RotoGrad manage to
improve over all tasks while maintaining good performance on the rest of tasks. MGDA-UB, however,
focuses on the image-related task too much and overlooks other tasks. In SVHN we observe a similar
behavior. This time, all methods are able to leverage positive transfer and improve their results on
the parity and sum tasks, obtaining similar task improvement results. Yet, the image-related task is
more disruptive than before, showing bigger differences between methods. As before, MGDA-UB
completely focuses on this task, but now is able to not overlook any task while doing so. Regarding
the rest of the methods, all of them improved their results with respect to the vanilla case, with
RotoGrad and GradNorm obtaining the second-best results.

19

Published as a conference paper at ICLR 2022

Table 5: Complete results (median and standard deviation) of different competing methods on
MNIST/SVHN on all tasks, see Appendix C.1.2 and Appendix C.2.

Left digit Right digit Product parity Sum digits Act. Pix.
Method Acc. ↑ Acc. ↑ f1 ↑ MSE ↓ avgk ∆k ↑ MSE ↓

M
N

IS
T

W
ith

ou
tR

k

Single 95.70± 0.20 94.05± 0.16 92.09± 0.76 1.90± 0.10 0.00± 0.00 0.01± 0.01

Vanilla† 94.94± 0.20 93.26± 0.27 93.07± 0.48 2.10± 0.17 −3.26± 3.12 0.11± 0.01
GradDrop 95.33± 0.39 93.55± 0.29 93.32± 0.54 2.14± 0.07 −2.52± 1.63 0.13± 0.02
PCGrad 95.07± 0.39 93.28± 0.18 93.34± 0.51 2.14± 0.19 −3.36± 3.86 0.12± 0.02
MGDA-UB 94.46± 1.04 92.23± 1.54 83.89± 1.84 2.50± 0.60 −10.80± 10.45 0.06± 0.02
GradNorm 95.19± 0.37 93.70± 0.31 93.31± 0.39 2.06± 28.71 −1.81± 37.99 0.09± 7.46
IMTL-G 95.28± 0.38 93.84± 0.21 93.24± 0.49 1.91± 6.61 −0.01± 82.48 0.07± 2.05

W
ith
R

k

Vanilla 95.13± 0.20 93.41± 0.17 93.54± 0.50 1.99± 0.17 −1.43± 3.24 0.14± 0.05
GradDrop 95.14± 0.16 93.47± 0.12 93.59± 0.32 2.00± 0.06 −1.30± 1.82 0.16± 0.04
PCGrad 95.04± 0.26 93.36± 0.30 93.49± 0.30 1.98± 0.13 −1.22± 2.81 0.13± 0.01
MGDA-UB 89.99± 2.21 86.76± 1.18 79.24± 2.83 3.65± 0.42 −29.14± 9.23 0.06± 0.00
GradNorm 95.28± 0.18 93.56± 0.25 93.56± 0.57 1.86± 0.07 0.86± 1.93 0.09± 0.04
IMTL-G 95.47± 0.27 93.79± 0.31 93.56± 0.57 1.73± 0.09 2.12± 1.46 0.07± 0.02
RotoGrad 95.45± 0.19 93.83± 0.19 93.22± 0.35 1.85± 0.13 1.55± 2.22 0.08± 0.03

SV
H

N

W
ith

ou
tR

k

Single 85.05± 0.45 84.58± 0.24 77.47± 1.13 5.84± 0.14 0.00± 0.00 0.17± 0.06

Vanilla† 84.18± 0.30 84.18± 0.38 80.11± 0.85 4.81± 0.06 5.14± 0.83 2.75± 3.17
GradDrop 84.38± 0.29 84.48± 0.41 80.11± 0.69 4.69± 0.12 5.68± 1.05 1.91± 0.86
PCGrad 84.22± 0.31 84.23± 0.21 79.92± 0.79 4.69± 0.09 5.50± 0.75 2.26± 0.85
MGDA-UB 84.61± 0.75 84.38± 0.45 77.44± 1.44 4.47± 0.18 5.99± 1.48 0.66± 0.75
GradNorm 84.23± 0.33 84.13± 0.30 79.40± 0.87 4.92± 0.07 4.60± 1.01 4.30± 2.18
IMTL-G 84.60± 0.45 84.39± 0.37 79.63± 1.10 4.57± 0.13 5.81± 0.85 2.47± 1.65

W
ith
R

k

Vanilla 84.11± 0.48 84.11± 0.40 79.83± 0.79 4.84± 0.10 4.78± 0.88 3.04± 2.53
GradDrop 84.23± 0.35 84.33± 0.40 80.10± 0.83 4.73± 0.09 5.34± 0.92 2.99± 2.59
PCGrad 84.21± 0.21 84.26± 0.38 79.64± 0.48 4.84± 0.06 5.01± 0.65 2.70± 2.25
MGDA-UB 77.05± 5.44 78.00± 5.04 71.76± 4.32 5.27± 0.56 −4.36± 6.72 1.00± 0.57
GradNorm 84.37± 0.34 84.30± 0.46 79.97± 0.75 4.72± 0.13 5.24± 0.89 4.12± 9.46
IMTL-G 84.23± 0.34 84.23± 0.39 79.77± 1.04 4.51± 0.12 5.94± 0.99 1.70± 1.05
RotoGrad 84.60± 0.50 84.44± 0.45 79.14± 0.96 4.45± 0.10 6.08± 0.48 1.61± 2.72

20

Published as a conference paper at ICLR 2022

C.2.2 ILLUSTRATIVE EXAMPLES

Figure 6: Level plots showing the illustrative examples
of Figure 1 for RotoGrad. Top: Convex case. Bot-
tom: Non-convex case. Left: Active transformation
(trajectories of rk and the level plot of L1 + L2. Right:
Passive transformation (trajectory of z and level plot of
(L1 ◦R1) + (L2 ◦R2)).

We complement the illustrative figures
shown in Figure 1 by providing, for each
example, an illustration of the effect of
RotoGrad shown as an active and passive
transformation. In an active transformation
(Figure 6 left), points in the space are the
ones modified. In our case, this means that
we rotate feature z, obtaining r1 and r2,
while the loss functions remain the same.
In other words, for each z we obtain a task-
specific feature rk that optimizes its loss
function. In contrast, a passive transforma-
tion (Figure 6 right) keeps the points unal-
tered while applying the transformation to
the space itself. In our case, this translates
to rotating the optimization landscape of
each loss function (now we have Lk ◦Rk

instead of LK), so that our single feature z
has an easier job at optimizing both tasks.
In the case of RotoGrad, we can observe
in both right figures that both optima lie
in the same point, as we are aligning task
gradients.

Accuracy
Vanilla MTL
Rotograd 87.57%

84.93%
73.14%
28.50%

Task 1 Task 2

RotoGrad

Figure 7: Logistic regression for opposite classifica-
tion tasks. Test data is plotted scattered as gray dots.
RotoGrad learns both opposite rotationsR1 = R>2 .

Besides the two regression experiments
shown in §4, we include here an additional
experiment where we test RotoGrad in the
worst-case scenario of gradient conflict,
that is, one in which task gradients are op-
posite to each other. To this end, we solve a
2-task binary classification problem where,
as dataset, we take 1000 samples from a
2D Gaussian mixture model with two clus-
ters; yn,k = 1 if xn was sampled from
cluster k; and yn,k = 0 otherwise. We use
as model a logistic regression model of the
form yk = W2 max(W1x + b1, 0) + b2
with b1 ∈ R2, b2 ∈ R, W1 ∈ R2×2, and
W2 ∈ R1×2. Because rotations in 1D are
ill-posed (there is a unique proper rotation),
here we add task parameters to increase
the dimensionality of z and make all pa-
rameters shared, so that there is still no
task-specific parameters. To avoid a complete conflict where∇zL1 +∇zL2 = 0, we randomly flip
the labels for the second tasks with 5 % probability. Figure 7 shows that, in this extreme scenario,
RotoGrad is able to learn both tasks by aligning gradients, that is, by learning that one rotation is the
inverse of the otherR1 = R>2 .

C.2.3 TRAINING STABILITY

While we showed in §6.1 only the results for the sum-of-digits task as they were nice and clear, here
we show in Figure 8 the results of those same experiments in §6.1 for all the different tasks. The
same discussion from the main manuscript can be carried out for all metrics. Additionally, we can
observe that the vanilla case (learning rate zero) completely overlooks the image-related task (Active
pixels) while performing the best in the parity task.

Additionally, let us clarify what we mean here with stability, as in the main manuscript we mainly
talked about convergence guarantees. In these experiments we measure the convergence guarantees

21

Published as a conference paper at ICLR 2022

of the experiments in terms of ‘training stability’, meaning the variance of the obtained results across
different runs. The intuition here is that, since the model does not converge, we should expect some
wriggling learning curves during training and, as we take the model with the best validation error, the
individual task metrics should have bigger variance (that is, less stability) across runs.

91.0 91.5 92.0 92.5 93.0 93.5 94.0
Acc(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Left digit

87 88 89 90 91 92
Acc(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Right digit

2.5 3.0 3.5 4.0 4.5 5.0
MSE

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Sum of digits

0.1 0.2 0.3 0.4
MSE

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Active pixels

75 80 85 90
F1-score(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Product of digits is odd

30 25 20 15 10 5
avgk k

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Digit-related tasks

Figure 8: RotoGrad’s performance on all tasks for the experiments in §6.1 for all metrics. We can
observe training instabilities/stiffness on all tasks as we highly increase/decrease RotoGrad’s learning
rate, as discussed in the main manuscript.

C.2.4 CIFAR10 AND CELEBA

For the sake of completeness, we present in Table 6 and Table 7 the same tables as in §6, but with more
statistics of the results. For CIFAR10, we now included in Table 6 the minimum task improvement
across tasks and, while noisier, we can still observe that RotoGrad also improve this statistic. The
standard deviation of the task improvement across tasks is, however, not too informative. We also
include in Figure 9 the cosine similarity plots for the different subspace rotations from §6.3, showing
a clear positive correlation between the cosine similarity and the size of the considered subspace.
While the cosine similarities look low, we want to remark that we are computing the cosine similarity
of a huge space, and we only align a subspace of it. If we, instead, showed the cosine similarity with
respect to each specific subspace, the cosine similarity should look similar to that of RotoGrad 512.
In the case of CelebA, we added in Table 7 the maximum f1-score across tasks and, similar to the last
case, it is not too informative, as all methods achieve almost perfect f1-score in one of the classes.
We also include the training times for some baselines, showing that RotoGrad stays on par with them.

C.2.5 NYUV2

Complementing the results shown in §6, we show in Table 8 the results obtained combining RotoGrad
with all other existing methods (rows within RotoGrad +), for gradient scaling methods we only
apply the rotation part of RotoGrad. Results show that RotoGrad helps improve/balance all other

22

Published as a conference paper at ICLR 2022

Table 6: Complete task-improvement statistics in CIFAR10 for all competing methods and RotoGrad
with different dimensionality forRk, see §6.

Method d mink ∆k ↑ medk ∆k ↑ avgk ∆k ↑ stdk ∆k ↓ maxk ∆k ↑
Vanilla† 0 −0.81± 0.37 1.90± 0.53 2.58± 0.54 3.38± 0.94 11.14± 3.35
RotoGrad 64 −1.70± 0.81 1.79± 0.57 2.90± 0.49 3.98± 0.62 13.16± 2.40
RotoGrad 128 −1.12± 0.36 2.25± 1.07 2.97± 1.08 3.84± 0.87 12.64± 3.56
RotoGrad 256 0.17± 1.01 2.16± 0.72 3.68± 0.68 3.83± 0.74 14.01± 3.22
RotoGrad 512 −0.43± 0.76 3.67± 1.40 4.48± 0.99 4.23± 0.82 15.57± 3.99

W
ith

ou
tR

k

Vanilla† −0.81± 0.37 1.90± 0.53 2.58± 0.54 3.38± 0.94 11.14± 3.35
GradDrop −0.73± 0.33 2.80± 0.20 3.41± 0.45 4.08± 0.34 13.58± 1.50
PCGrad −1.52± 0.98 1.95± 0.87 2.86± 0.81 3.74± 0.69 12.01± 3.19
MGDA-UB −7.27± 1.36 −1.21± 0.74 −1.75± 0.43 3.24± 0.55 3.67± 0.98
GradNorm −0.35± 0.59 2.45± 0.66 3.23± 0.35 4.02± 0.33 14.25± 1.35
IMTL-G −0.39± 0.82 1.97± 0.29 2.73± 0.27 3.25± 0.75 10.20± 2.98

W
ith
R

k

(d
=

51
2)

Vanilla −0.85± 0.58 3.10± 1.29 3.12± 0.79 4.05± 0.56 14.23± 2.86
GradDrop −1.49± 0.78 3.27± 1.61 3.54± 1.10 4.11± 0.56 13.88± 2.95
PCGrad −1.44± 0.58 2.67± 0.88 3.29± 0.46 3.90± 0.37 13.44± 1.86
MGDA-UB −3.59± 1.48 0.57± 0.62 0.21± 0.67 2.44± 0.52 4.78± 2.15
GradNorm −0.79± 1.28 3.10± 1.01 3.21± 1.04 3.41± 0.86 10.88± 4.73
IMTL-G −1.29± 0.52 1.81± 0.87 3.02± 0.69 3.81± 0.21 12.76± 1.77
RotoGrad −0.43± 0.76 3.67± 1.40 4.48± 0.99 4.23± 0.82 15.57± 3.99

Table 7: Complete f1-score statistics and training hours in CelebA for all competing methods and
two different architectures/settings (median over five runs), see §6. For the convolutional network we
use m = 256, and m = 1536 for the residual network.

Convolutional (d = 512) ResNet18 (d = 2048)
task f1-scores (%) ↑ task f1-scores (%) ↑

Method mink medk avgk stdk ↓ maxk Hours mink medk avgk stdk ↓ maxk Hours

W
ith

ou
tR

k Vanilla† 1.62 53.39 58.49 24.26 96.97 7.62 15.45 63.04 62.85 22.09 96.58 1.49

GradDrop 2.63 52.32 57.33 25.27 96.72 8.53 13.31 64.37 63.95 20.93 96.59 1.60
PCGrad 2.69 54.60 56.87 25.75 97.04 34.05 13.61 62.45 62.74 21.60 96.64 5.75
GradNorm 2.17 52.98 56.91 24.72 96.84 20.93 17.42 62.49 62.62 21.93 96.55 3.61
IMTL-G 0.00 14.81 31.90 33.58 93.31 9.46 9.87 62.22 62.03 22.47 96.51 1.73

W
ith
R

k

Vanilla 4.24 49.85 55.33 26.03 96.88 16.29 19.71 63.56 63.23 21.16 96.55 9.33

GradDrop 3.18 50.07 54.43 27.21 96.80 17.20 12.33 62.40 62.74 21.74 96.65 9.41
PCGrad 1.44 53.05 54.72 27.61 96.90 41.79 14.71 63.65 62.61 22.22 96.59 13.72
GradNorm 2.08 52.53 56.71 24.57 96.96 30.02 9.05 60.20 60.78 22.31 96.38 11.36
IMTL-G 0.00 37.00 42.24 33.46 94.34 18.05 17.11 61.68 60.72 22.80 96.44 9.52
RotoGrad 4.59 55.02 57.20 24.75 96.79 27.20 9.96 63.84 62.81 21.80 96.45 6.68

23

Published as a conference paper at ICLR 2022

Figure 9: Cosine similarity between the task gradients and the update gradient on CIFAR10. Results
are averaged over tasks and five runs, showing 90 % confidence intervals (shaded areas).

Table 8: Results for different methods on the NYUv2 dataset with a SegNet model. RotoGrad obtains
the best performance in segmentation and depth tasks on all metrics, while significantly improving
the results on normal surfaces with respect to the vanilla case.

Relative
improvements ↑

Segmentation ↑ Depth ↓ Normal Surfaces Time ↓
Angle Dist. ↓ Within t◦ ↑

Method ∆S ∆D ∆N mIoU Pix Acc Abs. Rel. Mean Median 11.25 22.5 30 h

Single 0.0 0.0 0.0 39.21 64.59 0.70 0.27 25.09 19.18 30.01 57.33 69.30 8.90

R
ot

oG
ra

d
+ GradDrop 1.2 12.6 −7.5 40.26 65.63 0.63 0.24 26.33 21.08 26.47 53.38 66.05 3.94

PCGrad −0.0 19.7 −8.3 39.08 64.68 0.54 0.21 26.41 21.29 26.13 52.99 65.72 3.89
MGDA-UB 2.5 23.2 −8.1 39.32 65.48 0.54 0.21 26.43 21.22 26.16 53.16 66.07 3.85
GradNorm 1.1 21.4 −7.7 39.08 65.43 0.54 0.21 26.44 21.42 26.17 52.59 65.52 3.84
IMTL-G 1.7 21.2 −6.9 40.13 65.17 0.55 0.21 26.20 21.06 26.69 53.39 66.04 3.96

W
ith
R

k
(m

=
10

24
) Rotate Only 3.3 20.5 −6.6 39.63 66.16 0.53 0.21 26.12 20.93 26.85 53.76 66.50 3.82

Scale Only −0.3 20.0 −7.9 38.89 65.94 0.54 0.22 26.47 21.24 26.24 53.04 65.81 3.87
RotoGrad 1.8 24.0 −6.1 39.32 66.07 0.53 0.21 26.01 20.80 27.18 54.02 66.53 3.83

Vanilla −2.7 20.6 −25.7 38.05 64.39 0.54 0.22 30.02 26.16 20.02 43.47 56.87 3.81

GradDrop −0.9 14.0 −25.2 38.79 64.36 0.59 0.24 29.80 25.81 19.88 44.08 57.54 4.01
PCGrad −2.7 20.5 −26.3 37.15 63.44 0.55 0.22 30.06 26.18 19.58 43.51 56.87 3.89
MGDA-UB −31.2 −0.7 0.6 21.60 51.60 0.77 0.29 24.74 18.90 30.32 57.95 69.88 3.85
GradNorm −0.6 19.5 −10.5 37.22 63.61 0.54 0.22 26.68 21.67 25.95 52.16 64.95 3.85
IMTL-G −0.3 17.6 −7.5 38.38 64.66 0.54 0.22 26.38 21.35 26.56 52.84 65.69 3.99

W
ith

ou
tR

k

Vanilla† −0.9 16.8 −25.0 37.11 63.98 0.56 0.22 29.93 25.89 20.34 43.92 57.39 3.46
GradDrop −0.1 15.7 −27.0 37.51 63.62 0.59 0.23 30.15 26.33 19.32 43.15 56.59 3.55
PCGrad −0.5 20.0 −24.6 38.51 63.95 0.55 0.22 29.79 25.77 20.61 44.22 57.64 3.51
MGDA-UB −32.2 −8.2 1.5 20.75 51.44 0.73 0.28 24.70 18.92 30.57 57.95 69.99 3.52
GradNorm 2.2 20.6 −10.2 39.29 64.80 0.53 0.22 26.77 21.88 25.39 51.78 64.76 3.50
IMTL-G 1.9 21.4 −6.7 39.94 65.96 0.55 0.21 26.23 21.14 26.77 53.25 66.22 3.61

methods, which is specially true for those methods that heavily overlook some tasks. Specifically,
MGDA-UB stops overlooking the semantic segmentation and depth estimation tasks, while PCGrad
and GradDrop stop completely overlooking the surface normal loss. Note that we also show in
Table 8 the training times of each method, and RotoGrad stays on par with non-extended methods in
training time. As mentioned in Appendix C.1, due to cluster overload, some times were deceivingly
high (specifically those baselines withRk) as we had to run them on different machines, and were
omitted to avoid confusion.

24

	Introduction
	Multitask learning and negative transfer
	RotoGrad
	Gradient-magnitude homogenization
	Gradient-direction homogenization
	RotoGrad: the full picture
	Practical considerations

	Illustrative examples
	Related Work
	Experiments
	Training stability
	RotoGrad building blocks
	Subspace rotations
	Methods comparison

	Conclusions
	Appendices
	Proofs
	Stackelberg games and RotoGrad
	Experiments
	Experimental setups
	Illustrative examples
	MNIST/SVHN
	CIFAR10
	NYUv2
	CelebA

	Additional results
	Multi-MNIST and multi-SVHN
	Illustrative examples
	Training stability
	CIFAR10 and CelebA
	NYUv2

