
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING LAWS FOR DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion transformers (DiT) have already achieved appealing synthesis and scal-
ing properties in content recreation, e.g., image and video generation. However,
scaling laws of DiT are less explored, which usually offer precise predictions re-
garding optimal model size and data requirements given a specific compute bud-
get. Therefore, experiments across a broad range of compute budgets, from 1e17
to 6e18 FLOPs are conducted to confirm the existence of scaling laws in DiT for
the first time. Concretely, the loss of pretraining DiT also follows a power-law
relationship with the involved compute. Based on the scaling law, we can not only
determine the optimal model size and required data but also accurately predict the
text-to-image generation loss given a model with 1B parameters and a compute
budget of 1.5e21 FLOPs. Additionally, we also demonstrate that the trend of
pretraining loss matches the generation performances (e.g., FID), even across var-
ious datasets, which complements the mapping from compute to synthesis quality
and thus provides a predictable benchmark that assesses model performance and
data quality at a reduced cost.

1 INTRODUCTION

Scaling laws in large language models (LLMs) (Kaplan et al., 2020; Hestness et al., 2017; Henighan
et al., 2020; Hoffmann et al., 2022) have been widely observed and validated, suggesting that pre-
training performance follows a power-law relationship with the compute C. The actual compute
could be roughly calculated as C = 6ND, where N is the model size and D is the data quantity.
Therefore, determining the scaling law helps us make informed decisions about resource allocation
to maximize computational efficiency, namely, figure out the optimal balance between model size
and training data (i.e., the optimal model and data scale) given a fixed compute budget. However,
scaling laws in diffusion models remain less explored.

The scalability has already been demonstrated in diffusion models, especially for diffusion trans-
formers (DiT). Specifically, several prior works (Mei et al., 2024; Li et al., 2024) reveal that larger
models always result in better visual quality and improved text-image alignment. However, the scal-
ing property of diffusion transformers is clearly observed but not accurately predicted. Besides, the
absence of explicit scaling laws also hinders a comprehensive understanding of how training budget
relate to model size, data quantity, and loss. As a result, we cannot determine accordingly the opti-
mal model and data sizes for a given compute budget and accurately predict training loss. Instead,
heuristic configuration searches of models and data are required, which are costly and challenging
to ensure optimal balance.

In this work, we characterize the scaling behavior of diffusion models for text-to-image synthesis,
resulting in the explicit scaling laws of DiT for the first time. To investigate the explicit relation-
ship between pretraining loss and compute, a wide range of compute budgets from 1e17 to 6e18
FLOPs are used. Models ranging from 1M to 1B are pretrained under given compute budgets. As
shown in Fig. 1(a), for each compute budget, we can fit a parabola and extract an optimal point that
corresponds to the optimal model size and consumed data under that specific compute constraint.
Using these optimal configurations, we derive scaling laws by fitting a power-law relationship be-
tween compute budgets, model size, consumed data, and training loss. To evaluate the derived
scaling laws, we extrapolate the compute budget to 1.5e21 FLOPs that results in the compute-
optimal model size (approximately 1B parameters) and the corresponding data size. Therefore, a
1B-parameter model is trained under this budget and the final loss matches our prediction, demon-
strating the effectiveness and accuracy of our scaling laws.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 1: IsoFLOP and Model/Data Scaling Curves. For each training budget, we train multiple
models of varying sizes. A parabola is fitted to the loss for each training budget, and the minimum
point on each parabola (represented by the purple dots) corresponds to the optimal allocation of
model size and data for that specific budget. By identifying the model and data sizes at these optimal
points, we can plot the scaling trends of model parameters, tokens, and training budgets. The power-
law curves shown allow us to predict the optimal configurations for larger compute budgets, such as
1.5e21 FLOPs.

To make the best use of the scaling laws, we demonstrate that the generation performances (e.g.,
FID (Fréchet Inception Distance)) also match the trend of pretraining loss. Namely, the synthesis
quality also follows the power-law relationship with the compute budget, making it predictable.
More importantly, this observation is transferable across various datasets. We conduct additional
experiments on the COCO validation set (Lin et al., 2014), and the same scaling patterns hold,
even when tested on out-of-domain data. Accordingly, scaling laws could serve as a predictable
benchmark where we can assess the quality of both models and datasets at a significantly reduced
computational cost, enabling efficient evaluation and optimization of the model training process.

To summarize, We at first confirm the presence of scaling laws in diffusion transformers during
training, revealing a clear power-law relationship between compute budget and training losses. Next,
we establish a connection between pretraining loss and synthesis evaluation metrics. Finally, We
conducted preliminary experiments that demonstrate the potential of using scaling laws to evaluate
both data and model performance. By conducting scaling experiments at a relatively low cost, we
can assess and validate the effectiveness of different configurations based on the fitted power-law
coefficients.

2 RELATED WORK

Scaling Laws Scaling laws (Hestness et al., 2017) have been fundamental in understanding the
performance of neural networks as they scale in size and data. This concept has been validated
across several large pretraining models (Dubey et al., 2024; Bi et al., 2024; Achiam et al., 2023).
Kaplan et al. (2020); Henighan et al. (2020) were the first to formalize scaling laws in language
models and extend them to autoregressive generative models, demonstrating that model performance
scales predictably with increases in model size and dataset quantity. Hoffmann et al. (2022) further
highlighted the importance of balancing model size and dataset size to achieve optimal performance.
In the context of diffusion models, prior works (Mei et al., 2024; Li et al., 2024) have empirically
demonstrated their scaling properties, showing that larger compute budgets generally result in bet-
ter models. These studies also compared the scaling behavior of various model architectures and
explored sampling efficiency. Hu et al. explains the properties of diffusion transformers from a
statistical perspective, where the approximation and generalization theory respectively support the
scalability of diffusion transformers in terms of model and data. However, no previous works pro-
vide an explicit formulation of scaling laws for diffusion transformers to capture the relationship
between compute budget, model size, data, and loss. In this paper, we aim to address this gap by
systematically investigating the scaling behavior of diffusion transformers (DiTs), offering a more
comprehensive understanding of their scaling properties.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Scaling Curves for Different Metrics. We present the scaling curves for training and
validation loss, offset VLB, and offset likelihood. Validation metrics are evaluated on the COCO
2014 validation set. The metrics display consistent trends and similar shapes, all adhering to a
power-law relationship. This demonstrates that each of these metrics can be used to observe scaling
laws effectively. For simplicity, we primarily focus on training loss in subsequent analyses.

3 METHOD

3.1 BASIC SETTINGS

Unless otherwise stated, all experiments in this paper adhere to the same basic settings. While the
training techniques and strategies employed may not be optimal, they primarily affect the scaling
coefficients rather than the scaling trends. In this section, we outline the critical settings used in our
experiments. Additional details are provided in Appendix E.

Diffusion Formulation All experiments are conducted using the Rectified Flow (RF) formulation
(Liu et al., 2022; Lipman et al., 2022; Albergo et al., 2023) with v-prediction. For timestep sampling,
we adopt the Logit-Normal (LN) Sampling scheduler πln(t;m, s), as proposed in Esser et al. (2024).
A detailed ablation study of this choice can be found in Appendix H.1.

Models & Dataset As observed in Kaplan et al. (2020), model design has limited influence on
scaling behavior unless the architecture is extremely shallow or narrow. We adopt a vanilla trans-
former architecture (Vaswani, 2017) with minimal modifications. Input tokens—comprising text,
image, and timestep embeddings—are concatenated following in-context conditioning (Peebles &
Xie, 2023). Our dataset consists of 108 million image-text pairs randomly sampled from Laion-
Aesthetic (Schuhmann et al., 2022), and re-captioned using LLAVA 1.5 (Liu et al., 2024). A val-
idation set of 1 million samples is drawn from the same subset. Further details are provided in
Appendix E.1 and E.2. In most of our experiments, each data point is seen only once during train-
ing, which is consistent with the data-infinite setting commonly adopted in the industry. However,
scaling laws do not rely on this assumption. To demonstrate this, we also evaluate scaling behav-
ior under a data-constrained setting using ImageNet (Deng et al., 2009), with results presented in
Appendix H.9.

3.2 SCALING METRICS

A natural question arises when investigating scaling laws during training: What metrics should
be selected to observe scaling behavior? In the context of Large Language Models (LLMs), the
standard approach is autoregressive training (Radford, 2018; Radford et al., 2019), where the model
is trained to predict the next token in a sequence, directly optimizing the likelihood of the training
data. This has proven to be a reliable method for measuring model performance as the compute
budget scales up. Inspired by this approach, we extend the concept of scaling laws to diffusion
models, using loss and likelihood as our key metrics.

3.2.1 LOSS

Loss is the primary metric chosen to observe scaling behavior during training. Unlike autoregressive
models, diffusion models do not directly optimize likelihood. Instead, the objective is to match a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

time-conditioned velocity field (Ma et al., 2024b; Liu et al., 2022; Lipman et al., 2022; Albergo
et al., 2023). Specifically, the velocity v(xt, t) at timestep t is defined as:

v(xt, t) = x′
t = α′

tx0 + β′
tϵ, (1)

where x0 represents the original data and ϵ denotes the noise. Here, the prime symbol ′ indicates
the derivative with respect to time t. In the rectified flow framework, the coefficients αt and βt are
defined as αt = 1− t, βt = t. Thus, the velocity v can be further simplified as:

v(xt, t) = −x0 + ϵ. (2)

The corresponding loss function is expressed in terms of the expected value:

L(θ) = Ex0∼pdata, t∼U({1,...,T}), ϵ∼N (0,I)

[∥∥vθ(xt, t) + x0 − ϵ
∥∥2] (3)

≈ 1

N

N∑
i=1

∥∥vθ(x(i)
ti , ti) + x

(i)
0 − ϵi

∥∥2, (4)

The training loss is estimated using a Monte Carlo method, which involves timesteps and noise
sampling. In Eq. 4, N denotes the number of training samples in the mini-batch, ti and ϵi are the
timestep and noise for constructing the i-th sample. The stochasticity inherent in this process can
cause significant fluctuations, which are mitigated by employing a larger batch size of 1024 and
applying Exponential Moving Average (EMA) smoothing on the loss value. In our experiments, we
set αEMA = 0.9, which is found to produce stable results. A detailed ablation study on the choice
of loss EMA coefficients is provided in Appendix H.2. This smoothing procedure helps reduce the
variance of loss value and provides clearer insights into training dynamics.

In addition to the training loss, validation loss is also computed on the COCO 2014 dataset
(Lin et al., 2014). To ensure consistency with the training loss, timesteps are sampled using the
LN timestep sampler πln(t;m, s), and evaluation is performed on 10,000 data points, with 1,000
timesteps sampled per point.

3.2.2 LIKELIHOOD

Likelihood is our secondary metric. The likelihood over the dataset distribution PD given model
parameters θ is represented as Ex∼PD [pθ(x)], which can be challenging to compute directly. In
this paper, we measure likelihood using two different methods. The first method is based on the
Variational Autoencoder (VAE) framework (Kingma et al., 2021; Song et al., 2021; Vahdat et al.,
2021), which approximates the lower bound of log-likelihood using the Variational Lower Bound
(VLB). Since the VAE component in our experiments is fixed to Stable Diffusion 1.5, terms related
to the VAE remain constant and are ignored in our computation, as they do not affect the scaling
behavior. The second method uses Neural Ordinary Differential Equations (ODEs) (Chen et al.,
2018; Grathwohl et al., 2018), enabling the computation of exact likelihood through reverse-time
sampling.

Variational Lower Bound (VLB) We estimate the VLB following the approach in Kingma et al.
(2021), where it is treated as a reweighted version of the validation loss. The process starts by con-
verting the estimated velocity into a corresponding estimate of x0, after which the loss is computed
based on the difference between the estimated x0 and the original sample. To obtain the VLB, this
loss is further reweighted with the weighting coefficient being the derivative of signal-to-noise ratio
of noisy samples with respect to time t, i.e., SNR

′
(t). More details can be found in Appendix F. All

models are evaluated on the COCO 2014 validation set using 10,000 data pairs. For each data point,
1,000 timesteps are sampled to ensure accurate estimations of the VLB.

Exact Likelihood The exact likelihood is computed using reverse-time sampling, where a clean
sample is transformed into Gaussian noise. The accumulated likelihood transition is calculated using
the instantaneous change of variables theorem (Chen et al., 2018):

log pθ(x) = log pθ(xT)−
∫ T

0

∇ · fθ(xt, t) dt, (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where fθ(xt, t) represents the model’s output, and log pθ(xT) is the log density of the final Gaussian
noise. The reverse process evolves t from 0 (data points) to T (noise). The reverse sampling is
performed over 500 steps using the Euler method.

Following model training, we evaluate models on the validation set to assess their compute-optimal
performance. As illustrated in Fig. 2, all four metrics (training loss, validation loss, offset VLB, and
offset exact likelihood) exhibit similar trends and shapes as the training budget increases, showing
their utility in observing scaling laws. All metrics for all models are computed using the evaluation
protocol described in Sec. 3.3. These consistent patterns suggest that any of these metrics can be
effectively used to monitor scaling behavior. However, to simplify our experimental workflow, we
prioritize training loss as the primary metric. Training loss can be observed directly during the
training process, without the need for additional evaluation steps, making it a more practical choice
for tracking scaling laws in real-time.

3.3 SCALING LAWS IN TRAINING DIFFUSION TRANSFORMERS

Scaling Laws In this section, we investigate the scaling laws governing diffusion transformers,
which describe the relationships between several key quantities: the objective function, model pa-
rameters, tokens, and compute budget. The objective measures discrepancy between the data and
model’s predictions. The number of parameters N reflects model’s capacity, while tokens D denote
the total amount of data (in tokens) processed during training. Compute budget C (we also refer
to C as compute), typically measured in Floating Point Operations (FLOPs), quantifies the total
computational resources consumed. In our experiments, the relationship between compute, tokens,
and model size is formalized as C = 6ND, directly linking the number of parameters and tokens
to the overall compute budget. We estimate C by explicitly counting the floating-point operations
required by the transformer blocks of our diffusion transformer. Focusing on these blocks, which
dominate the total cost, and accounting for both forward and backward passes, we find that, on av-
erage, processing a single token requires approximately 6N FLOPs. Hence, training a model with
N parameters on D tokens consumes

C = 6ND,

and in our setting, the compute budget, number of parameters, and tokens approximately satisfy this
relationship. More details about FLOPs computation can be found in Appendix G and Sec. 2.1 in
Kaplan et al. (2020).

For each compute budget C, we extract the corresponding compute-optimal parameter count
Nopt(C) and token count Dopt(C) from configuration at the minimum point (purple marker) of
each isoFLOP parabola in Fig. 1(a). When we plot these optimal points on log–log axes, both
logNopt and logDopt vary approximately linearly with logC, indicating an underlying power-law
relationship between compute and the optimal allocation of parameters and data. Building on this,
we hypothesize that power law equations can effectively capture the scaling relationships between
these quantities. Specifically, we represent the optimal model size and token count as functions of
the compute budget as follows:

Nopt ∝ Ca and Dopt ∝ Cb, (6)

where Nopt and Dopt denote the optimal number of parameters and tokens for a given compute budget
C, with a and b as scaling exponents that describe how these quantities grow with compute.

To empirically verify these scaling relationships, following Approach 2 in Hoffmann et al. (2022),
we plot the isoFLOP figure to explore scaling laws. We select compute budgets [1e17, 3e17,
6e17, 1e18, 3e18, 6e18]. We change the In-context Transformers from 2 layers to 15 layers.
For all experiments, we use AdamW (Kingma, 2014; Loshchilov, 2017) as the default optimizer
with a constant learning rate of 1e-4. Following several common practice from large-scale models
Wortsman et al. (2023); Team (2024); Molybog et al. (2023), we use a weight decay of 0.01, an
epsilon value of 1e-15, and betas [0.9, 0.95]. For all experiments, we employ a batch size of
1024 and apply gradient clipping with a threshold of 1.0. To enable classifier-free guidance (Ho
& Salimans, 2022), we randomly drop the label with a probability of 0.1. During training, we use
mixed precision with the BF16 data format. As is standard in diffusion models, we also maintain
an EMA version of the model with a decay coefficient of 0.99, which is saved for evaluation. The
scaling curves of the EMA model are presented in Appendix H.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Performance Scaling Curves. The plot shows the relationship between training loss, FID,
and compute budget, with both axes displayed on a logarithmic scale. The orange lines represent
the fitted power-law curves for both metrics across various budgets, while the purple dots mark
the performance of compute-optimal models at smaller budgets. In both cases, the blue pentagons
indicate the predicted performance at a budget of 1.5e21 FLOPs, demonstrating highly accurate
predictions for large-scale models.

For each budget, we fit a parabola to the resulting performance curve, as illustrated in the Fig. 1(a),
to identify the optimal loss, model size, and data allocation (highlighted by the purple dots). By
collecting the optimal values from different budgets and fitting them to a power law, we establish
relationships between the optimal loss, model size, data, and compute budgets.

As shown in the Fig. 1(a), except for the 1e17 budget, the parabolic fits align closely with the
empirical results. This analysis confirms that the optimal number of parameters and tokens scale
with the compute budget according to the following expressions:

Nopt = 0.0009 · C0.5681, (7)

Dopt = 186.8535 · C0.4319. (8)

In this way, we establish the relationship between compute budget and model/data size. And from
the fitted scaling curves, we observe that the ratio between the scaling exponent for data and the scal-
ing exponent for model size is 0.4319/0.5681. This indicates that, under our specific settings, both
the model and data sizes need to increase in tandem as the training budget increases. However, the
model size grows at a slightly faster rate compared to the data size, as reflected by the proportional
relationship between the two exponents.

Additionally, in Fig. 3(b), we fit the relationship between the compute budget and loss, which follows
the equation:

L = 2.3943 · C−0.0273. (9)

To validate the accuracy of these fitted curves, we calculate the optimal model size (958.3M pa-
rameters) and token count for a compute budget of 1.5e21. A model is then trained with these
specifications to compare its training loss with the predicted value. As demonstrated in Fig. 3(b),
this model’s training loss closely matches the predicted loss, further confirming the validity of our
scaling laws.

3.4 PREDICTING GENERATION PERFORMANCE

Evaluating generative models has long been a challenge, as many commonly used metrics have been
criticized for their limitations. However, recent work (Esser et al., 2024; Fan et al., 2025) on large-
scale foundation generative models has shown that metrics such as FID, GenEval, and loss, despite
their imperfections, correlate well with human perception and preference—widely considered the
gold standard in image generation evaluation. Notably, Esser et al. (2024) reports that the diffusion
transformer’s loss serves as a strong predictor of overall model quality. In previous sections, we
have analyzed the scaling behavior of loss. Here, we extend our analysis to additional evaluation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Scaling laws for OOD data. The evaluation of loss, VLB, and NLL are conducted on an
out-of-domain dataset COCO 2014 validation set. All metrics decrease monotonically as the budget
increases and they share a similar shape. However, a notable shift can be observed. Models have
worse performance on the COCO validation set since they are trained on a different data distribution.
The shift reflects the differences between datasets.

metrics. Specifically, we present scaling curves for FID, GenEval, and human preferences. Due to
space constraints, the GenEval and Human preferences results are included in Appendix H.10 and
H.11. These results confirm that generation quality also scales predictably with compute, following
a power-law trend. We also provide some visual samples generated by compute-optimal models in
Appendix H.8.

Evaluation Metrics We evaluate generation quality using multiple complementary metrics: FID,
GenEval, and human preference reward models (HPSv2.1 (Wu et al., 2023) and ImageReward (Xu
et al., 2023)). FID quantifies the distance between the distributions of generated and real images
in a feature space, with lower values indicating higher fidelity. Following Sauer et al. (2021), we
compute FID using CLIP features (ViT-L/14 Dosovitskiy et al. (2020)) instead of the traditional
Inception features. GenEval captures the capability of instance-level compositionality by employing
object detectors to provide fine-grained analyses, such as color binding and object counting. Finally,
human preference reward models (HPSv2.1 and ImageReward) approximate human judgments by
scoring generations according to preference signals.

Scaling laws for FID Predictions In this section, we provide analysis for FID. We reveal that
the relationship between FID and the training compute budget follows a clear power-law trend, as
shown in Fig. 3(b). The relationship is captured by the following equation:

FID = 2.2566× 106 · C−0.234, (10)

where C is the training compute budget. The purple dots in the figure represent the FID scores
of compute-optimal models at various budgets, and the orange line represents the fitted power-law
curve. Notably, the prediction for FID at a large budget of 1.5e21 FLOPs (blue pentagon) is
highly accurate, confirming the reliability of scaling laws in forecasting model performance even at
larger scales. As the compute budget increases, FID values decrease consistently, demonstrating that
scaling laws can effectively model and predict the quality of generated images as resources grow.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.5 SCALING LAWS FOR OUT-OF-DOMAIN DATA

Scaling laws remain valid even when models are tested on out-of-domain datasets. To demonstrate
this, we conduct validation experiments on the COCO 2014 validation set (Lin et al., 2014), using
models that were trained on the Laion5B subset. In these experiments, we evaluate four key metrics:
validation loss, Variational Lower Bound (VLB), exact likelihood, and Fréchet Inception Distance
(FID). Each metric is tested on 10,000 data points to examine the transferability of the scaling
laws across datasets. Additional experiments on other datasets (Flickr30k (Plummer et al., 2016),
JourneyDB (Sun et al., 2024)) are presented in Appendix H.7.

The results, as shown in Fig. 4, reveal two key observations:

• Consistent Trends: Across all four metrics (validation loss, VLB, exact likelihood, and
FID), the trends are consistent between the Laion5B subset and the COCO validation
dataset. As the training budget increases, model performance improves in both cases,
indicating that scaling laws generalize effectively across datasets, regardless of domain
differences.

• Vertical Offset: There is a clear vertical offset between the metrics for the Laion5B subset
and the COCO validation dataset, with consistently higher metric values observed on the
COCO dataset. This suggests that while scaling laws hold, the absolute performance is
influenced by dataset-specific characteristics, such as complexity or distribution. For met-
rics like validation loss, VLB, and exact likelihood, this offset remains relatively constant
across different training budgets. The gap between the FID values for the Laion5B subset
and the COCO validation set widens as the training budget increases. However, the re-
lationship between FID and budget on the COCO validation set still follows a power-law
trend. This suggests that, even on out-of-domain data, the FID-budget relationship can be
reliably modeled using a power law, allowing us to predict the model’s FID for a given
budget.

In summary, these results demonstrate that scaling laws are robust and can be applied effectively to
out-of-domain datasets, maintaining consistent trends while accounting for dataset-specific perfor-
mance differences. Despite the vertical offset in absolute performance, particularly in metrics like
FID, the power-law relationships remain intact, allowing for reliable predictions of model perfor-
mance under varying budgets. These findings highlight the potential of scaling laws as a versatile
tool for understanding model behavior across datasets. The ability to project model efficiency and
performance onto new data domains underscores the broader applicability of scaling laws in real-
world scenarios.

4 SCALING LAWS AS A PREDICTABLE SCALABILITY BENCHMARK

Scaling laws offer a robust framework for evaluating the design quality of both models and datasets,
particularly with respect to their scalability. Previous work such as Dubey et al. (2024); Bi et al.
(2024) have all explored the scaling laws in data mix and quality. By modifying either the model
architecture or the data pipeline, isoFLOP curves can be generated at smaller compute budgets to
assess the impact of these changes. Specifically, after making adjustments to the model or dataset,
experiments can be conducted across a range of smaller compute budgets, and the relationship be-
tween compute and metrics such as loss, parameter count, or token count can be fitted. The effec-
tiveness of these modifications can then be evaluated by analyzing the exponents derived from the
power-law fits. Scaling laws provide a predictive framework for estimating a model’s performance
when scaled in both data and model size, offering a robust benchmark for evaluating the scalability
of data and model designs.

Our evaluation follows three key principles:

• Model improvements: With a fixed dataset, a more efficient model will exhibit a lower
model scaling exponent and a higher data scaling exponent. This suggests that the model
can more effectively utilize the available data, allowing for a greater focus on increasing
the dataset size with additional compute resources.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1015 1016 1017 1018 1019 1020 1021

Budget (FLOPs)
0.4

0.5

0.6

0.7

0.8
0.9

1

Lo
ss

Vanilla In-Context vs Cross-Attention
Vanilla In-Context Transformer
Cross-Attention Transformer

Figure 5: Scaling curves for In-Context and Cross-Attention Transformers. The plot compares
the scaling behavior of In-Context Transformers and Cross-Attention Transformers with respect to
compute budget (FLOPs). In-context transformers, which concatenate image, text, and time tokens,
show a more gradual decline in loss compared to Cross-Attention Transformers, which inject time
and text tokens via AdaLN and cross-attention blocks. The steeper slope of Cross-Attention Trans-
formers indicates more efficient performance improvement with increasing compute, meaning they
achieve lower loss with the same budget. These results highlight the efficiency of Cross-Attention
Transformers and illustrate the potential of scaling laws in predicting performance trends across dif-
ferent model architectures.

• Data improvements: When the model is fixed, a higher-quality dataset will result in a
lower data scaling exponent and a higher model scaling exponent. This implies that a
better dataset enables the model to scale more efficiently, yielding superior results with
fewer resources.

• Loss/FID improvements: Across both model and data modifications, an improved train-
ing pipeline is reflected in a smaller loss/FID scaling exponent relative to compute. This
indicates that the model achieves better performance with less compute, signaling overall
gains in training efficiency.

To illustrate the utility of scaling laws as a predictive benchmark for scalability, we compare two spe-
cific transformer designs: (1) Vanilla In-Context Transformers, which concatenate image and visual
tokens as input and utilize only standard self-attention blocks, and (2) Cross-Attention Transform-
ers, where conditioning is incorporated through cross-attention mechanisms. We train and evaluate
both models with a broad range of compute budgets, spanning 1e17, 3e17, 6e17, 1e18, 3e18, 6e18,
and 1e19.

The scaling trends for both models are clearly illustrated in Fig. 5. The loss scaling curves demon-
strate that as the compute budget increases, the performance of both models improves, but at differ-
ent rates. The Cross-Attention Transformer shows a steeper decline in loss compared to the Vanilla
In-Context Transformer, indicating that when scaled up, it achieves better performance with the
same amount of compute.

The fitted scaling curves, as summarized in Tab. 1, support this observation. The Cross-Attention
Transformer exhibits a smaller model exponent, meaning that as compute budgets increase, more
resources should be allocated toward scaling the dataset. Additionally, the smaller loss exponent of
the Cross-Attention Transformer suggests a more rapid decline in loss, indicating that this model
achieves superior performance compared to the Vanilla In-Context Transformer. These findings
align with the conclusions of Peebles & Xie (2023). However, this observation should not be gener-
alized to conclude that the In-Context mechanism is inherently superior to Cross-Attention. Recent
works, such as Flux and the MMDiT architecture in SD3 Esser et al. (2024), have demonstrated that
models utilizing In-Context Conditioning can outperform those relying on Cross-Attention. Our
analysis does not aim to compare these mechanisms. Instead, the scaling laws benchmark serves
as a tool for assessing model scalability within a given architecture. The method evaluates how

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

efficiently a model benefits from increased data and computational resources as it scales. For com-
pleteness, we also provide a data quality comparison in Appendix H.6.

Table 1: Exponents of model, data, and loss for different model architectures.
Model Model Exponent Data Exponent Loss Exponent

Vanilla In-context 0.56 0.43 -0.0273
Cross-Attention 0.54 0.46 -0.0385

This example illustrates how scaling laws can serve as a reliable and predictable scalability bench-
mark for evaluating the effectiveness of both model architectures and datasets. By analyzing the
scaling exponents, we can draw meaningful conclusions about the potential and efficiency of differ-
ent design choices in model and data pipelines.

5 CONCLUSION

In this work, we explored the scaling laws of Diffusion Transformers (DiT) across a broad range
of compute budgets, from 1e17 to 6e18 FLOPs, and confirmed the existence of a power-law
relationship between pretraining loss and compute. This relationship enables precise predictions of
optimal model size, data requirements, and model performance, even for large-scale budgets such as
1e21 FLOPs. Furthermore, we demonstrated the robustness of these scaling laws across different
datasets, illustrating their generalizability beyond specific data distributions. In terms of generation
performance, we showed that training budgets can be used to predict the visual quality of generated
images, as measured by metrics like FID. Additionally, by testing both In-context Transformers and
Cross-Attention Transformers, we validated the potential of scaling laws to serve as a predictable
benchmark for evaluating and optimizing both model and data design, providing valuable guidance
for future developments in text-to-image generation using DiT.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669–22679, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-a: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
with continuous tokens. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=jQP5o1VAVc.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/
forum?id=Wbr51vK331.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical
rates and provably efficient criteria of latent diffusion transformers (dits). In The Thirty-eighth
Annual Conference on Neural Information Processing Systems.

11

https://openreview.net/forum?id=jQP5o1VAVc
https://openreview.net/forum?id=Wbr51vK331
https://openreview.net/forum?id=Wbr51vK331

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Hao Li, Yang Zou, Ying Wang, Orchid Majumder, Yusheng Xie, R Manmatha, Ashwin Swami-
nathan, Zhuowen Tu, Stefano Ermon, and Stefano Soatto. On the scalability of diffusion-based
text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9400–9409, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit:
Flexible vision transformer for diffusion model. arXiv preprint arXiv:2402.12376, 2024.

Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow andnbsp;diffusion-based generative models withnbsp;scalable
interpolant transformers. In Computer Vision – ECCV 2024: 18th European Conference, Milan,
Italy, September 29–October 4, 2024, Proceedings, Part LXXVII, pp. 23–40, Berlin, Heidelberg,
2024a. Springer-Verlag. ISBN 978-3-031-72979-9. doi: 10.1007/978-3-031-72980-5 2. URL
https://doi.org/10.1007/978-3-031-72980-5_2.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024b.

Kangfu Mei, Zhengzhong Tu, Mauricio Delbracio, Hossein Talebi, Vishal M Patel, and Peyman
Milanfar. Bigger is not always better: Scaling properties of latent diffusion models. arXiv preprint
arXiv:2404.01367, 2024.

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in large-
scale machine learning. arXiv preprint arXiv:2304.09871, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

12

https://doi.org/10.1007/978-3-031-72980-5_2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models. International Journal of Computer Vision, 123(1):74–93, October
2016. ISSN 1573-1405. doi: 10.1007/s11263-016-0965-7. URL http://dx.doi.org/10.
1007/s11263-016-0965-7.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster.
Advances in Neural Information Processing Systems, 34:17480–17492, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021.

Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding.
Advances in Neural Information Processing Systems, 36, 2024.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287–11302, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis, 2023. URL https://arxiv.org/abs/2306.09341.

13

http://dx.doi.org/10.1007/s11263-016-0965-7
http://dx.doi.org/10.1007/s11263-016-0965-7
https://arxiv.org/abs/2306.09341

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems, pp.
15903–15935, 2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
with masked transformers. arXiv preprint arXiv:2306.09305, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

APPENDIX

This appendix is organized as follows:

• In Section B, we list an overview of the notation used in the paper.

• In Section D, we provide extended related work.

• In Section E, we provide experimental details.

• In Section F, we provide the derivation of the likelihood used in this paper.

• In Section G, we provide the details of scaling FLOPs counting based on our models.

• In Section H, we provide extra experiments.

• In Section I, we list the limitations and future works.

• In Section J, we discuss the in-context condition and cross attention mechanism in detail.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B NOTATION

Tab. B provides an overview of the notation used in this paper.

Table 2: Summary of the notation and abbreviations used in this paper.
Symbol Meaning

RF Rectified Flow (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023)
LN Logit-Normal timestep sampler πln(t;m, s) (Esser et al., 2024)

SNR Signal-Noise-Ratio, λt =
α2

t

β2
t

DDPM Denoising Diffusion Probabilistic Models (Ho et al., 2020)
LDM Latent Diffusion Models (Rombach et al., 2022)
VP Variance Preserving formulation (Song et al., 2020)

VLB Variational Lower Bound
VAE Variational Autoencoder
KL KL Divergence KL(p(x)|q(x)) = Ep(x)[lnp(x)q(x)]

PD Dataset distribution
dattn Dimension of the attention output
dff Dimension of the Feedforward layer

dmodel Dimension of the residual stream
nlayer Depth of the Transformer
lctx Context length of input tokens
limg Context length of image tokens
ltext Context length of text tokens
ltime Context length of time tokens
Nvoc Size of Vocabulary list
nhead Number of heads in Multi-Head Attention
N Number of parameters
D Size of training data (token number)
C Compute budget, C = 6ND

Nopt Optimal number of parameters for the given budget
Dopt Optimal training tokens for the given budget.
ϵ Gaussian Noise N (0, I)
xt A sample created at timestep t
t Timestep ranging from [0, 1]
v Velocity v = x1 − x0

αt αt represents the scaling factor during noise sample creation.
βt βt represents the diffusion factor during noise sample creation.
σt Noise Level defined for each timestep

fθ(x) The network we use to learn the transition kernel. fθ : RN×M −→ RN×M

η Learning rate
πln(t;m, s) Logit-Normal Timestep sampling schedule,

m is the location parameter, s is the scale parameter
L(θ,x, t) Loss given model parameters, data points, and timesteps.

λ Fixed step size for ODE/SDE samplers
θ Parameters for diffusion models
ϕ Parameters for VAE encoder
ψ Parameters for VAE decoder

αEMA EMA coefficient

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C LLM USAGE

In this work, large language models (LLMs) were only employed to polish the wording and improve
the readability of the manuscript. No part of the research design, data analysis, or result interpreta-
tion involved the use of LLMs. All scientific content and conclusions were produced entirely by the
authors.

D EXTENDED RELATED WORK

Diffusion Transformers Transformers have become the de facto model architecture in language
modeling (Radford, 2018; Radford et al., 2019; Devlin, 2018), and they have also achieved sig-
nificant success in computer vision tasks (Dosovitskiy et al., 2020; He et al., 2022). Recently,
Transformers have been introduced into diffusion models (Peebles & Xie, 2023), where images are
divided into patches (tokens), and the diffusion process is learned on these tokens. Additional con-
ditions, such as timestep and text, are incorporated into the network via cross-attention (Chen et al.,
2023), Adaptive Normalization (Perez et al., 2018), or by concatenating them with image tokens
(Bao et al., 2023).Zheng et al. (2023) proposed masked transformers to reduce training costs, while
Lu et al. (2024) introduced techniques for unrestricted resolution generation. Diffusion Transformers
(DiTs) inherit the scalability, efficiency, and high capacity of Transformer architectures, positioning
them as a promising backbone for diffusion models. Motivated by this scalability, we investigate the
scaling laws governing these models in this work. To ensure robust and clear conclusions, we adopt
a vanilla Transformer design (Vaswani, 2017), using a concatenation of image, text, and time tokens
as input to the models.

Diffusion Models Diffusion models have gained significant attention due to their effectiveness
in generative modeling, starting from discrete-time models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) to more recent continuous-time extensions (Song et al., 2020). The
core idea of diffusion models is to learn a sequence of noise-adding and denoising steps. In the
forward process, noise is gradually added to the data, pushing it toward a Gaussian distribution,
and in the reverse process, the model learns to iteratively denoise, recovering samples from the
noise. Continuous-time variants (Song et al., 2020) further generalize this framework using stochas-
tic differential equations (SDEs), allowing for smoother control over the diffusion process. These
methods leverage neural network architectures to model the score function and offer flexibility and
better convergence properties compared to discrete versions. Diffusion models have shown remark-
able success in various applications. For instance, ADM (Dhariwal & Nichol, 2021) outperforms
GAN on ImageNet. Following this success, diffusion models have been extended to more com-
plex tasks such as text-to-image generation. Notably, models like Stable Diffusion (Rombach et al.,
2022) and DALLE (Ramesh et al., 2021) have demonstrated the ability to generate highly realistic
and creative images from textual descriptions, representing a significant leap in the capabilities of
generative models across various domains.

Normalizing Flows Normalizing flows has been a popular generative modeling approach due to
their ability to compute exact likelihoods while providing flexible and invertible transformations.
Early works like GLOW (Kingma & Dhariwal, 2018) and RealNVP (Dinh et al., 2016) introduced
powerful architectures that allowed for efficient sampling and likelihood estimation. However, these
models were limited by the necessity of designing specific bijective transformations, which con-
strained their expressiveness. To address these limitations, Neural ODE (Chen et al., 2018) and
FFJORD (Grathwohl et al., 2018) extended normalizing flows to the continuous domain using dif-
ferential equations. These continuous normalizing flows (CNFs) allowed for more flexible trans-
formations by parameterizing them through neural networks and solving ODEs. By modeling the
evolution of the probability density continuously, these methods achieved a higher level of expres-
siveness and adaptability compared to their discrete counterparts. Recent work has begun to bridge
the gap between continuous normalizing flows and diffusion models. For instance, ScoreSDE (Song
et al., 2020) demonstrated how the connection between diffusion models and neural ODEs can be
leveraged, allowing both exact likelihood computation and flexible generative processes. More re-
cent models like Flow Matching (Lipman et al., 2022) and Rectified Flow (Liu et al., 2022) further
combined the strengths of diffusion and flow-based models, enabling efficient training via diffusion
processes while maintaining the ability to compute exact likelihoods for generated samples. In this

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

paper, we build upon the formulation introduced by rectified flow and Flow Matching. By leverag-
ing the training approach of diffusion models, we benefit from their generative performance, while
retaining the capability to compute likelihoods.

Likelihood Estimation Likelihood estimation in diffusion models can be approached from two
primary perspectives: treating diffusion models as variational autoencoders (VAEs) or as normal-
izing flows. From the VAE perspective, diffusion models can be interpreted as models where we
aim to optimize a variational lower bound (VLB) on the data likelihood (Kingma, 2013). The vari-
ational lower bound decomposes the data likelihood into a reconstruction term and a regularization
term, where the latter measures the divergence between the approximate posterior and the prior.
In diffusion models, this framework allows us to approximate the true posterior using a series of
gradually noised latent variables. Recent works (Ho et al., 2020; Kingma et al., 2021; Song et al.,
2021) have derived tighter bounds for diffusion models, enabling more accurate likelihood estima-
tion by optimizing this variational objective. Alternatively, diffusion models can be viewed as a
form of normalizing flows, particularly in the context of continuous-time formulations. Using neu-
ral ODEs (Chen et al., 2018), diffusion models can be trained to learn exact likelihoods by modeling
the continuous reverse process as an ODE. By solving this reverse-time differential equation, one
can directly compute the change in log-likelihood through the flow of probability densities (Grath-
wohl et al., 2018). This approach provides a method for exact likelihood computation, bridging the
gap between diffusion models and normalizing flows, and offering a more precise estimate of the
likelihood for generative modeling.

E EXPERIMENTAL DETAILS

E.1 DATA

We primarily utilized three datasets in our work. Several ablation studies on formulation and model
design were conducted using JourneyDB (Sun et al., 2024). Additionally, we curated a subset of 108
million image-text pairs from the Laion-Aesthetic dataset, applying a threshold of 5 for the aesthetic
score. After collecting the data, we re-captioned all images using LLAVA 1.5 (Liu et al., 2024),
specifically employing the LLaVA-Lightning-MPT-7B-preview model for this task. We then split
the data into training and validation sets with a ratio of 100:1. Our third dataset is COCO (Lin et al.,
2014), where we used the 2014 validation set to test scaling laws on an out-of-domain dataset.

E.2 MODEL DESIGN

In this paper, we evaluate two distinct model architectures. For the PixArt model, we follow the
original design presented in Chen et al. (2023). The In-Context Transformers are based on the
In-Context block described in Peebles & Xie (2023). To facilitate large-scale model training, we
employ QK-Norm (Dehghani et al., 2023) and RMSNorm (Zhang & Sennrich, 2019). The patch size
is set to 2. Although previous work (Kaplan et al., 2020) suggests that the aspect ratio (width/depth)
of Transformers does not significantly impact scaling laws, it is crucial to maintain a consistent ratio
when fitting models to scaling laws. To demonstrate this, we train a series of models under a fixed
computational budget, selecting models of various sizes and aspect ratios (32 and 64). We then plot
the relationship between the number of parameters and loss. As illustrated in Fig. 6, mixing models
with aspect ratios of 64 and 32 obscure the overall trend. To address this issue, we maintain the
aspect ratio at 64 throughout.

F DERIVATION OF THE LIKELIHOOD

In this section, we provide a derivation of the likelihood estimation in our paper. In this paper, we
use two ways to compute the likelihood. The first method is estimating the VLB (variational lower
bound). Following Kingma et al. (2021); Vahdat et al. (2021), we derive a VLB in latent space.
However, we cannot compute the entropy terms in the VAE. So our surrogate metric differs from the
true VLB up to a constant factor.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: The effect of AR.

VAE The latent diffusion model (Vahdat et al., 2021; Rombach et al., 2022) consists of two com-
ponents: a variational autoencoder (VAE) that encodes images into a latent space and decodes latents
back into images, and a continuous diffusion model that operates in the latent space. To train the
latent diffusion model, we optimize the variational encoder qϕ, the decoder pψ , and the diffusion
model pθ. Following Ho et al. (2020), the models are trained by minimizing the variational upper
bound on the negative log-likelihood logP (x):

Lθ,ϕ,ψ(x) = Eqϕ(z0|x)[− log pψ(x|z0)] +KL(qϕ(z0|x)||pθ(z0)) (11)

= Eqϕ(z0|x)[− log pψ(x|z0)] + Eqϕ(z0|x)[log qϕ(z0|x)] + Eqϕ(z0|x)[− log pθ(z0)]. (12)

In our implementation, we directly adopt the VAE from Stable Diffusion 1.5 and keep it fixed during
training. As a result, the reconstruction term (first term) and the negative encoder entropy term
(second term) remain constant across different models. In fact, the VAE in Stable Diffusion is
trained following the VQGAN approach, which uses both L1 loss and an additional discriminator
for training. Therefore, we cannot effectively estimate the reconstruction term since the decoder
distribution is not tractable. To simplify further, we omit the VAE encoding process altogether.
Specifically, we skip both encoding and decoding through the VAE and treat the latents produced by
the VAE as the dataset samples. Under this assumption, we estimate the offset VLB directly in the
latent space.

In the latent space, we model the distribution of latent variables that can be decoded into images
using the VAE decoder. We denote the samples in latent space as x, and the noisy latent at timestep
t as zt. The variational lower bound (VLB) in the latent space is given by Kingma et al. (2021):

− log p(x) ≤ −VLB(x) = DKL(q(z1|x)||p(z1)) + Eq(z0|x)[− log p(x|z0)] + LT (x), (13)

where the first two terms depend only on the noise schedule, and we treat these terms as irreducible
losses since the noise schedule is fixed across all models. The third term is the KL divergence
between each pair of the reverse process p(zt|zt+1) and the forward process q(zt|x, zt+1):

LT (x) =
T∑
i=1

Eq(zt(i)|x)[DKL(q||p)]. (14)

Since we assume that the forward and reverse processes share the same variance and both p and q
are Gaussian distributions, the KL terms reduce to weighted L2 distances:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

LT (x) =
1

2
Eϵ∼N (0,I)

[
T∑
i=1

(SNR(s)− SNR(t))∥x− xθ(zt; t)∥22

]
, (15)

where s = t− 1. In the limit as T → ∞, the loss becomes:

LT (x) = −1

2
Eϵ∼N (0,I)

∫ 1

0

SNR′(t)∥x− xθ(zt; t)∥22 dt. (16)

In our case, we utilize the velocity v to predict the clean sample x and compute the VLB.

Normalizing Flows Another method to compute the likelihood in our diffusion model is by view-
ing the diffusion process as a type of normalizing flow. Specifically, we leverage the theoretical
results from Neural ODEs, which allow us to connect continuous normalizing flows with the evolu-
tion of probability density over time. In Neural ODEs, the transformation of data through the flow
can be described by the following differential equation for the state variable xt as a function of time:

dxt
dt

= fθ(xt, t), (17)

where fθ(xt, t) represents the network that predicts the time-dependent vector field v. To compute
the change in log-probability of the transformed data, the log-likelihood of the input data under the
flow is given by:

d log p(xt)

dt
= −Tr

(
∂f(xt, t)

∂xt

)
, (18)

where Tr represents the trace of the Jacobian matrix of fθ(xt, t). This equation describes how the
log-density evolves as the data is pushed forward through the flow. To compute the likelihood, we
integrate the following expression over the trajectory from the initial state t0 to the terminal state t1:

log p(xt1) = log p(xt0)−
∫ t1

t0

Tr
(
∂fθ(xt, t)

∂xt

)
dt. (19)

Here, log p(xt0) represents the log-likelihood of the initial state (often modeled as a Gaussian), and
the integral accounts for the change in probability density over time as the data evolves through the
ODE. In our formulation, the network predicts the velocity vθ(xt, t) = x

′

t = α
′

tx0 + β
′

tϵ, which
corresponds to the derivative of xt with respect to time. Thus, we start with clean samples, estimate
the velocity, perform an iterative reverse-time sampling, and convert the samples into Gaussian
noise. We can then compute the prior likelihood of the noise easily and add it to the probability shift
accumulated during reverse sampling. In our experiments, we set the steps of reverse sampling to
500 to obtain a rather accurate estimation.

G SCALING FLOPS COUNTING

In this section, we provide a detailed explanation of our FLOPs scaling calculations. Several prior
works have employed different methods for counting FLOPs. In Kaplan et al. (2020), the authors
exclude embedding matrices, bias terms, and sub-leading terms. Moreover, under their framework,
the model dimension dmodel is much larger than the context length lctx, allowing them to disregard
context-dependent terms. Consequently, the FLOPs count N for their model is given by:

M = 12× dmodel × nlayer × (2dattn + dff), (20)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where dmodel represents the model dimension, nlayer denotes the depth of the model, dattn refers
to the attention dimension, and dff represents the feed-forward layer dimension.

In contrast, Hoffmann et al. (2022) includes all training FLOPs, accounting for embedding matrices,
attention mechanisms, dense blocks, logits, and context-dependent terms. Specifically, their FLOP
computation includes:

• Embedding: 2× lctx ×Nvoc × dmodel

• Attention:
– QKV Mapping: 2× 3× lctx × dmodel × dmodel
– QK: 2× lctx × lctx × dmodel
– Softmax: 3× nhead × lctx × lctx
– Mask: 2× lctx × lctx × dmodel
– Projection: 2× lctx × dmodel × dmodel

• Dense: 2× lctx × (dmodel × dff × 2)

• Logits: 2× lctx × dmodel ×Nvoc

Further details can be found in the Appendix F of Hoffmann et al. (2022).

In Bi et al. (2024), the authors omit the embedding computation but retain the context-dependent
terms, which aligns with our approach. The parameter scaling calculation for vanilla Transformers
in this paper follows the same format as theirs. We now present detailed scaling FLOPs calculations
for the In-Context Transformers and Cross-Attn Transformers used in our experiments.

Attention blocks are the primary components responsible for scaling in Transformer architectures.
In line with previous studies, we only consider the attention blocks, excluding embedding matrices
and sub-leading terms. Unlike large language models (LLMs), our model dimension is comparable
to the context length, and therefore, we include context-dependent terms. In this section, we present
FLOPs per sample rather than parameters, as different tokens participate in different parts of the
cross-attention computation. Additionally, since our input length is fixed, the FLOPs per sample are
straightforward to compute.

In-Context Transformers In-Context Transformers process a joint embedding consisting of text,
image, and time tokens, all of which undergo attention computation. Tab. 3 details the FLOPs
calculations for a single attention layer.

Table 3: Scaling FLOPs Calculation in In-Context Transformers

Operation FLOPs per Sample

Self-Attn: QKV Projection 3× 2× nlayer × lctx × dmodel × 3× dattn

Self-Attn: QK 3× 2× nlayer × lctx × lctx × dattn

Self-Attn: Mask 3× 2× nlayer × lctx × lctx × dattn

Self-Attn: Projection 3× 2× nlayer × lctx × dmodel × dattn

Self-Attn: FFN 3× 2× 2× nlayer × lctx × 4× d2model

In our experiments, we set dmodel = dattn, and lctx = 377, where lctx = limg(256) + ltext(120) +
ltime(1). Thus, the simplified FLOPs-per-sample scaling equation M is:

M = 72× lctx × nlayer × d2model + 12× nlayer × l2ctx × dmodel (21)

Cross-Attn Transformers In Cross-Attn Transformers, each attention block consists of self-
attention and cross-attention mechanisms to integrate text information. The cross-attention uses
image embeddings as the query and text embeddings as the key and value. The attention mask re-
flects the cross-modal similarity between image patches and text segments. As a result, the FLOPs
calculation differs from that of models using joint text-image embeddings. Tab. 4 lists the FLOPs
costs for each operation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4: Scaling FLOPs Calculation in Cross-Attn Transformers

Operation FLOPs per Sample

Self-Attn: QKV Projection 3× 2× nlayer × limg × dmodel × 3× dattn

Self-Attn: QK 3× 2× nlayer × limg × limg × dattn

Self-Attn: Mask 3× 2× nlayer × limg × limg × dattn

Self-Attn: Projection 3× 2× nlayer × limg × dmodel × dattn

Cross-Attn QKV 3× 2×nlayer× (limg +2× ltext)× dmodel×
dattn

Cross-Attn QK 3× 2× nlayer × ltext × limg × dattn

Cross-Attn Mask 3× 2× nlayer × ltext × limg × dattn

Cross-Attn Projection 3× 2× nlayer × limg × dmodel × dattn

FFN 3× 2× 2× nlayer × limg × 4× d2model

Based on the experimental settings, we can simplify the FLOPs calculation as follows:

M = 84× nlayer × limg × d2model + 12× nlayer × l2img × dattn

+12× nlayer × ltext × d2model + 12× nlayer × ltext × limg × dmodel (22)

Context-Dependent Terms From the equations above, it is evident that some context-dependent
terms, such as 12×nlayer× l2ctx×dmodel, cannot be omitted. In our experiments, the aspect ratio of
Transformers (width/depth=64) is maintained across all model sizes. The context length lctx is 377
(image: 256, text: 120, time: 1), and dmodel = nlayer × 64. Since lctx and dmodel are comparable,
the context-dependent terms must be retained.

H ABLATIONS

H.1 DIFFUSION FORMULATION

In diffusion models, various formulations for noise schedules, timestep schedules, and prediction
objectives have been proposed. These three components are interdependent and require specific
tuning to achieve optimal performance. In this paper, we explore several common formulations and
conduct ablation studies to identify the best combination in our setting.

Below, we list the candidate formulations used in our ablation study.

Noise Schedule

Discrete Diffusion Models

DDPM Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is a discrete-time
diffusion model that generates noisy samples via the following formula:

xt = αtx0 + βtϵ

where ϵ is Gaussian noise, and αt and βt satisfy α2
t + β2

t = 1. Given a sequence of σt, the scaling
factor can be defined as:

αt =

√√√√ t∏
s=0

(1− σt) (23)

In DDPM, σt follows:

σt = σ0 +
t

T
(σT − σ0) (24)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

LDM Latent Diffusion Models (LDM) (Rombach et al., 2022), as used in Stable Diffusion, is
a variant of the DDPM schedule. It is also a variance-preserving formulation, sharing the same
structure as DDPM but employing a different noise schedule:

σt =

(
√
σ0 +

t

T
(
√
σT −

√
σ0)

)2

Continuous Diffusion Models

VP Variance Preserving (VP) diffusion (Song et al., 2020) is the continuous counterpart of DDPM,
where the noise is added while preserving variance across timesteps. The sampling process is given
by:

xt = e−
1
2

∫ t
0
σsdsx0 +

√
1− e−

∫ t
0
σsdsϵ (25)

where t ∈ [0, 1].

Rectified Flow Rectified Flow (RF) (Liu et al., 2022; Lipman et al., 2022; Albergo et al., 2023)
is another continuous-time formulation, where a straight-line interpolation is defined between the
initial sample x0 and the Gaussian noise ϵ. The process is described by:

xt = (1− t)x0 + tϵ (26)

Prediction Type

Noise Prediction (ϵ) The network predicts the Gaussian noise ϵ ∼ N (0, I) added to the samples
during the diffusion process.

Velocity Prediction (v) In this formulation, the network predicts the velocity v(xt, t), which is
defined as the derivative of the noisy sample xt with respect to time. If the noisy sample xt is defined
by:

xt = αtx0 + βtϵ (27)

The velocity is given by:

v(xt, t) = x′
t = α′

tx0 + β′
tϵ (28)

where α′
t and β′

t are the derivatives of αt and βt with respect to timestep t.

Score Prediction (s) The network predicts the score function s(x, t) = ∇ logP (x, t), which is
the gradient of the log-probability density function. The score can be derived as:

s(x, t) = − ϵ

βt
(29)

Timestep Sampling Schedule

Uniform Timestep Schedule In this schedule, the timestep t is uniformly sampled. For discrete-
time diffusion models:

t ∼ U(0, 1, 2, . . . , 999) (30)

For continuous-time diffusion models:

t ∼ U(0, 1) (31)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Logit-Normal (LN) Timestep Schedule The Logit-Normal (LN) timestep schedule πln(t;m, s),
proposed in Esser et al. (2024), generates timesteps according to the following distribution:

πln(t;m, s) =
1

s
√
2π

· 1

t(1− t)
exp

(
− (logit(t)−m)2

2s2

)
, (32)

where logit(t) = log
(

t
1−t

)
. The LN schedule has two parameters: m and s. It defines an unimodal

distribution, where m controls the center of the distribution in logit space, shifting the emphasis
of training samples towards noisier or cleaner regions. The parameter s adjusts the spread of the
distribution, determining its width. As suggested in Esser et al. (2024), to obtain a timestep, we first
sample u ∼ N (m, s), and then transform it using the logistic function. For discrete-time diffusion,
after obtaining t ∼ πln(t;m, s), we scale t by t = round(t × 999) to obtain a discrete timestep.
Following Esser et al. (2024), we utilized the parameters m = 0.0, s = 1.00 and didn’t sweep over
m and s. More details and visualizations can be found in Esser et al. (2024) Appendix B.4.

We conducted a series of experiments using different combinations of formulations. Selective com-
binations are listed in Tab. 5. A ’−’ indicates that the combination is either not comparable with
other formulations or that training diverges. We assume that the choice of formulation will not be
significantly affected by specific model designs or datasets. All experiments were conducted using
Pixart (Chen et al., 2023), a popular text-to-image diffusion transformer architecture. Specifically,
we used a small model with 12 layers and a hidden size of 384, setting the patch size to 2. The
models were trained on JourneyDB (Sun et al., 2024), a medium-sized text-to-image dataset con-
sisting of synthetic images collected from Midjourney. All models were trained for 400k steps using
AdamW as the optimizer. As shown in Tab. 5, the optimal combination is [RF, LN, v], achieving
an FID of 36.336 and a Clip Score of 0.26684. This combination achieved the best performance on
both metrics and therefore, we used this setting in the remaining experiments.

Table 5: Ablation on diffusion formulations.
Noise Schedule Timestep Schedule Prediction Type FID CLIP Score

DDPM Uniform ϵ 40.469 0.26123
DDPM Uniform v 74.049 0.23136
DDPM LN ϵ 40.100 0.26283
LDM Uniform ϵ 39.001 0.26423
LDM Uniform v − −
LDM LN ϵ 38.196 0.26624
VP Uniform ϵ 44.343 0.26148
VP Uniform v 41.808 0.26320
VP Uniform s 45.808 0.25970
VP LN ϵ 42.872 0.26354
VP LN v 44.107 0.26380
RF Uniform v 44.840 0.25682
RF Uniform s − −
RF Uniform ϵ − −
RF LN v 36.336 0.26684

H.2 EFFECT OF EMA ON LOSS

The Exponential Moving Average (EMA) coefficient plays a crucial role in shaping the loss curve
and affects final outcomes. In EMA, the loss l is updated via l = (1− αEMA)l + αEMAv, where v is
the latest loss value. This smoothing mechanism reduces fluctuations in cumulative loss. However,
during the early stages of training, EMA can overestimate the loss. As shown in Fig. 7, higher EMA
coefficients lead to elevated loss values compared to actual loss, potentially introducing bias in curve
fitting and causing inefficient use of compute. From Fig. 7, we observe that αEMA = 0.9 strikes a
good balance, effectively smoothing the loss while only mildly inflating values early in training.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000 3500

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000 30000 35000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 20000 40000 60000 80000 100000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 50000 100000 150000 200000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 100 200 300 400

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000 1200 1400

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000 12000 14000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 50 100 150 200 250 300

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 250 500 750 1000 1250 1500 1750

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500 3000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2500 5000 7500 10000 12500 15000 17500

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000 1200 1400 1600

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000 12000 14000 16000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 10000 20000 30000 40000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 20000 40000 60000 80000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 50 100 150 200 250

Iterations

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 100 200 300 400 500 600 700

Iterations

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000 1200 1400

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000 6000 7000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000 12000 14000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500 3000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000 6000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000 30000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 10000 20000 30000 40000 50000 60000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 100 200 300 400 500 600 700 800

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 10000 20000 30000 40000 50000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

The effect of EMA

Figure 7: Effect of EMA on loss values.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 8: Ablation on sampling steps.

H.3 CLASSIFIER-FREE GUIDANCE & SAMPLING STEPS

We conduct ablation studies on CFG scales and sampling steps using compute-optimal models
trained with a budget of 6 × 1018. In Fig. 22, we evaluate various CFG scales (2.5, 5.0, 7.5, 10.0)
across different step counts and compute the FID. We find that 25 steps suffice for good perfor-
mance. Next, fixing the number of steps to 25, we assess different CFG scales. As shown in Fig. 9,
a CFG scale of 10.0 yields the best FID and is thus chosen as the default.

Although CFG influences generated results, the linearity of the FID scaling curves remains largely
invariant to the CFG scale. To demonstrate this, we plot FID scaling curves under various CFG
settings in Fig. 10. The results confirm that scaling behavior remains linear across all tested CFG
values.

H.4 EFFECT OF EMA ON MODEL

Maintaining an EMA copy of the model is a common practice in diffusion models, as it often leads to
improved sample quality. To evaluate its impact, we maintain a model copy with an EMA coefficient
of 0.99 during training and measure the FID of the EMA versions across different compute budgets.
As shown in Fig. 11(a), the EMA models also exhibit a power-law scaling trend.

H.5 SCALING LAWS FOR MORE ARCHITECTURES & DATA

We extend our scaling law analysis to additional architectures, including PixArt (Chen et al., 2023)
and Flux. As shown in Fig. 13(b) and Fig. 12(b), both models exhibit clear linear behavior in
their loss curves. These results suggest that scaling laws are consistent across different diffusion
transformer architectures.

We further test the applicability of scaling laws on higher-resolution data. Specifically, we train
models on 512× 512 images using budgets ranging from 1e17 to 6e18. The results, presented in
Fig. 14(b), show clear linear trends, indicating that scaling laws hold regardless of data resolution.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 9: Ablation on CFG scale.

Figure 10: Scaling curves for different CFG scales.

Figure 11: Scaling curves for EMA models.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 12: Scaling laws for Flux.

Figure 13: Scaling laws for PixArt.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 14: Scaling laws for 512×512 resolution.

1017 1018

Budget (FLOPs)

102

2 × 102

FI
D

FID vs Budget
Original Data
y=1059994.438x^-0.216

Figure 15: Scaling curves for FID on sparse-captioned dataset.

H.6 DATA ASSESSMENT

To demonstrate how scaling laws can assess data quality, we apply them to a dataset with the same
images as our main experiment but using sparse tag captions instead of dense descriptions. As
shown in Fig. 15, the FID scaling exponent is -0.216, whereas the main dataset achieves -0.234.
This indicates that dense captions lead to faster FID improvement, suggesting superior data quality
compared to sparse tags.

H.7 TRANSFER RESULTS ON MORE DATASETS

To further validate the generalizability of our scaling laws, we perform transfer experiments on
Flickr30k (Plummer et al., 2016) and JourneyDB (Sun et al., 2024), following the same setup as

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 16: Transfer results of loss and FID on Flickr30k.

Figure 17: Transfer results of loss and FID on JourneyDB.

with COCO. Models pretrained on our dataset are evaluated on these new domains. As illustrated
in Fig. 16 and Fig. 17, both loss and FID maintain clear linear relationships, confirming that our
findings transfer well across datasets.

H.8 GENERATED SAMPLES

We provide qualitative results by showcasing generated samples from models trained with increasing
compute. Sampling is performed using fixed prompts and seeds. As shown in Fig. 18, sample quality
improves with more compute. However, our goal is not to produce state-of-the-art results, but rather
to understand scaling behavior in diffusion transformers. Hence, we did not curate high-quality
datasets or optimize for SOTA image generation.

H.9 SCALING LAWS ON IMAGENET

While our primary experiments assume data-infinite settings, we also test scaling behavior under
data-constrained conditions using ImageNet (Deng et al., 2009). For this, we adopt the model from
SiT (Ma et al., 2024a) and vary compute from 2 × 1017 to 6 × 1018. As shown in Fig. 19(c), the
loss curves still follow clear power-law trends, indicating that scaling laws also emerge in finite-data
regimes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1.5e21

6e18

3e18

6e17

1e17

Figure 18: Generated samples from models with increasing compute.

Figure 19: Scaling curves on ImageNet.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 20: Scaling laws on GenEval benchmark.

Figure 21: Scaling laws on Human Preference Rewards.

H.10 GENEVAL RESULTS

In addition to traditional metrics like FID and loss, we evaluate models using the GenEval (Ghosh
et al., 2023) benchmark, which measures text-image alignment across aspects such as object count,
color, and position. For each compute budget, we evaluate the corresponding compute-optimal
model. Results are presented in Fig. 20, further supporting the presence of consistent scaling behav-
ior across diverse evaluation metrics.

H.11 HUMAN PREFERENCE RESULTS

We also employ human-preference-based reward models, including HPSv2.1 (Wu et al., 2023) and
ImageReward (Xu et al., 2023), to evaluate our models. These benchmarks capture alignment with
human preference. Across different compute budgets, the performance measured by these human
preference rewards also follows a power-law scaling trend. The results are plotted in Fig.21.

H.12 SAMPLING STEPS

To study the effect of the sampling schedule on scaling behavior, we additionally vary the number
of diffusion sampling steps while fixing the classifier-free guidance scale to 10.0. Specifically, we
compare models evaluated with 35 and 50 sampling steps. As shown in Figure 22, changing the
number of sampling steps shifts the overall performance, but the resulting points still lie on a clear
straight line in log–log space. This indicates that the power-law relationship between compute and
generation quality remains intact, and that modifying the sampling steps mainly affects the offset of
the scaling curve rather than the existence of the scaling law itself.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 22: Scaling laws of FID with differnet sampling steps.

1016 1017 1018 1019

Budget (FLOPs)

102

2 × 102

3 × 102

4 × 102

FI
D

Vanilla In-Context vs Cross-Attention
Vanilla In-Context
Cross-Attention

Figure 23: FID results of cross attention vs vanilla in-context.

H.13 FID RESULTS OF CROSS-ATTN VS VANILLA IN-CONTEXT

We provide the FID results of cross attention architecture and vanilla in-context architecture. The
result is shown in Fig. 23, the cross attention architecture has more steep slope and shows greater
scalability, which is consistent with the loss curve.

I LIMITATIONS AND FUTURE DIRECTIONS

Limited modalities and downstream tasks. Our empirical study focuses exclusively on the text-
to-image setting. We do not experiment with additional modalities such as text-to-video or other
multi-modal generative tasks. Moreover, our evaluation is restricted to the core generative objective
and a small set of aggregate metrics; we do not consider richer downstream applications such as
image editing, inpainting, or other task-specific evaluations. As a result, the extent to which the
observed scaling laws transfer to these broader modalities and downstream tasks remains an open
question.

Compute-limited regime only. All experiments are conducted in a compute-limited regime,
where we assume access to sufficiently large datasets and primarily vary the compute budget via
model size and training steps. In practice, large-scale training often becomes data-constrained

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

when scaling up compute, and the effective scaling behavior in such regimes may deviate from
the laws observed here. In particular, data-constrained settings typically require corrections to stan-
dard compute-optimal scaling laws to account for finite-data effects. We leave a systematic study of
scaling behavior and its correction under data-limited regimes to future work.

More accurate hyperparameters. Our results are obtained using a single, well-tuned set of train-
ing hyperparameters for each model family, which are reused across different compute budgets.
While this choice reflects a realistic training protocol, it also means that our scaling laws may not
reflect fully optimized performance at each operating point. Better or more carefully adapted hy-
perparameters (e.g., learning rate schedules, regularization strength, or optimization settings) could
further reduce the variance and systematic bias in the observed scaling curves, thereby improving
the accuracy of compute-optimal predictions. However, with our current setting, we can already
reveal the scaling dynamics of diffusion models, and we leave the more accurate hyperparameter as
an important direction for future research.

J DISCUSSION: IN-CONTEXT VS. CROSS-ATTENTION TRANSFORMERS

Our main experiments in Sec. 4 indicate that, under our controlled setting, cross-attention transform-
ers exhibit a more favorable scaling trend with compute compared to the simple in-context baseline
we study. At the same time, recent text-to-image systems, such as MMDiT-style architectures and
Flux-like models, report very strong absolute performance with in-context conditioning. This may
appear to be in tension with our findings.

We emphasize that this apparent discrepancy can arise from many factors beyond the condition-
ing mechanism itself. Publicly available systems differ not only in whether they use in-context or
cross-attention conditioning, but also in total compute, data mixture and quality, and overall training
recipe, all of which strongly affect both performance and observed scaling behavior. In practice,
models like Flux are among the strongest systems largely because of their full recipe (data + com-
pute + architecture), rather than solely because in-context conditioning is intrinsically superior to
cross-attention. Under the same data and compute budget, a carefully tuned cross-attention architec-
ture could plausibly achieve similar or even better performance. However, such a direct, controlled
comparison is not currently available in the literature.

Moreover, modern in-context architectures typically incorporate several important improvements
relative to the simple in-context baseline considered in this work: (i) Stronger conditioning: they
often use multiple CLIP encoders plus a large language model (e.g., T5-XXL) and inject text fea-
tures into every block via MLPs that modulate attention and FFN layers, leading to much stronger
conditioning; (ii) Better timestep conditioning: instead of encoding timesteps as in-context tokens,
they employ adaptive LayerNorm-style conditioning, where a timestep embedding is mapped to
scale/shift/gate parameters that modulate each block, which is empirically more efficient; (iii) More
efficient modality interaction: as in SD3-style designs, text and image tokens may maintain sepa-
rate parameter sets, with attention used only for cross-modal interaction and text injected primarily
in earlier blocks, reducing cross-modal compute; (iv) More advanced architectural and training
choices: improved positional encodings, noise/timestep schedules, and other refinements further
enhance scaling efficiency.

Taken together, these design choices, combined with different data and compute budgets, can explain
why state-of-the-art in-context models achieve very strong performance in practice, without imply-
ing a direct, controlled advantage of in-context conditioning over cross-attention in terms of intrinsic
scalability. Our results should therefore be interpreted as characterizing scaling behavior within a
simplified and carefully matched setting. Extending this analysis to more advanced in-context and
cross-attention architectures is an important direction for future work.

34

	Introduction
	Related Work
	Method
	Basic Settings
	Scaling Metrics
	Loss
	Likelihood

	Scaling Laws in Training Diffusion Transformers
	Predicting Generation Performance
	Scaling Laws for Out-Of-Domain Data

	Scaling laws as a predictable scalability benchmark
	Conclusion
	Appendix
	Notation
	LLM Usage
	Extended Related Work
	Experimental Details
	Data
	Model Design

	Derivation of the likelihood
	Scaling FLOPs Counting
	Ablations
	Diffusion Formulation
	Effect of EMA on Loss
	Classifier-Free Guidance & Sampling Steps
	Effect of EMA on Model
	Scaling Laws for More Architectures & Data
	Data Assessment
	Transfer Results on More Datasets
	Generated Samples
	Scaling Laws on ImageNet
	GenEval Results
	Human Preference Results
	Sampling Steps
	FID results of Cross-Attn vs Vanilla In-Context

	Limitations and Future Directions
	Discussion: In-Context vs. Cross-Attention Transformers

