

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

SCALING LAWS FOR DIFFUSION TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion transformers (DiT) have already achieved appealing synthesis and scaling properties in content recreation, *e.g.*, image and video generation. However, scaling laws of DiT are less explored, which usually offer precise predictions regarding optimal model size and data requirements given a specific compute budget. Therefore, experiments across a broad range of compute budgets, from $1\text{e}17$ to $6\text{e}18$ FLOPs are conducted to confirm the existence of scaling laws in DiT *for the first time*. Concretely, the loss of pretraining DiT also follows a power-law relationship with the involved compute. Based on the scaling law, we can not only determine the optimal model size and required data but also accurately predict the text-to-image generation loss given a model with 1B parameters and a compute budget of $1.5\text{e}21$ FLOPs. Additionally, we also demonstrate that the trend of pretraining loss matches the generation performances (*e.g.*, FID), even across various datasets, which complements the mapping from compute to synthesis quality and thus provides a predictable benchmark that assesses model performance and data quality at a reduced cost.

1 INTRODUCTION

Scaling laws in large language models (LLMs) (Kaplan et al., 2020; Hestness et al., 2017; Henighan et al., 2020; Hoffmann et al., 2022) have been widely observed and validated, suggesting that pre-training performance follows a power-law relationship with the compute C . The actual compute could be roughly calculated as $C = 6ND$, where N is the model size and D is the data quantity. Therefore, determining the scaling law helps us make informed decisions about resource allocation to maximize computational efficiency, namely, figure out the optimal balance between model size and training data (*i.e.*, the optimal model and data scale) given a fixed compute budget. However, scaling laws in diffusion models remain less explored.

The scalability has already been demonstrated in diffusion models, especially for diffusion transformers (DiT). Specifically, several prior works (Mei et al., 2024; Li et al., 2024) reveal that larger models always result in better visual quality and improved text-image alignment. However, the scaling property of diffusion transformers is *clearly observed but not accurately predicted*. Besides, the absence of explicit scaling laws also hinders a comprehensive understanding of how training budget relate to model size, data quantity, and loss. As a result, we cannot determine accordingly the optimal model and data sizes for a given compute budget and accurately predict training loss. Instead, heuristic configuration searches of models and data are required, which are costly and challenging to ensure optimal balance.

In this work, we characterize the scaling behavior of diffusion models for text-to-image synthesis, resulting in the explicit scaling laws of DiT *for the first time*. To investigate the explicit relationship between pretraining loss and compute, a wide range of compute budgets from $1\text{e}17$ to $6\text{e}18$ FLOPs are used. Models ranging from 1M to 1B are pretrained under given compute budgets. As shown in [Fig. 1\(a\)](#), for each compute budget, we can fit a parabola and extract an optimal point that corresponds to the optimal model size and consumed data under that specific compute constraint. Using these optimal configurations, we derive scaling laws by fitting a power-law relationship between compute budgets, model size, consumed data, and training loss. To evaluate the derived scaling laws, we extrapolate the compute budget to $1.5\text{e}21$ FLOPs that results in the compute-optimal model size (approximately 1B parameters) and the corresponding data size. Therefore, a 1B-parameter model is trained under this budget and the final loss matches our prediction, demonstrating the effectiveness and accuracy of our scaling laws.

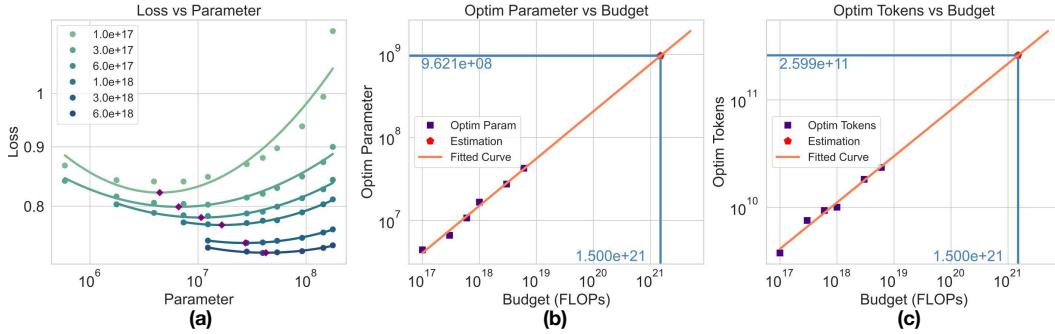


Figure 1: **IsoFLOP and Model/Data Scaling Curves.** For each training budget, we train multiple models of varying sizes. A parabola is fitted to the loss for each training budget, and the minimum point on each parabola (represented by the purple dots) corresponds to the optimal allocation of model size and data for that specific budget. By identifying the model and data sizes at these optimal points, we can plot the scaling trends of model parameters, tokens, and training budgets. The power-law curves shown allow us to predict the optimal configurations for larger compute budgets, such as 1.5×10^{21} FLOPs.

To make the best use of the scaling laws, we demonstrate that the generation performances (*e.g.*, FID (Fréchet Inception Distance)) also match the trend of pretraining loss. Namely, the synthesis quality also follows the power-law relationship with the compute budget, making it predictable. More importantly, this observation is transferable across various datasets. We conduct additional experiments on the COCO validation set (Lin et al., 2014), and the same scaling patterns hold, even when tested on out-of-domain data. Accordingly, scaling laws could serve as a predictable benchmark where we can assess the quality of both models and datasets at a significantly reduced computational cost, enabling efficient evaluation and optimization of the model training process.

To summarize, We at first confirm the presence of scaling laws in diffusion transformers during training, revealing a clear power-law relationship between compute budget and training losses. Next, we establish a connection between pretraining loss and synthesis evaluation metrics. Finally, We conducted preliminary experiments that demonstrate the potential of using scaling laws to evaluate both data and model performance. By conducting scaling experiments at a relatively low cost, we can assess and validate the effectiveness of different configurations based on the fitted power-law coefficients.

2 RELATED WORK

Scaling Laws Scaling laws (Hestness et al., 2017) have been fundamental in understanding the performance of neural networks as they scale in size and data. This concept has been validated across several large pretraining models (Dubey et al., 2024; Bi et al., 2024; Achiam et al., 2023). Kaplan et al. (2020); Henighan et al. (2020) were the first to formalize scaling laws in language models and extend them to autoregressive generative models, demonstrating that model performance scales predictably with increases in model size and dataset quantity. Hoffmann et al. (2022) further highlighted the importance of balancing model size and dataset size to achieve optimal performance. In the context of diffusion models, prior works (Mei et al., 2024; Li et al., 2024) have empirically demonstrated their scaling properties, showing that larger compute budgets generally result in better models. These studies also compared the scaling behavior of various model architectures and explored sampling efficiency. Hu et al. explains the properties of diffusion transformers from a statistical perspective, where the approximation and generalization theory respectively support the scalability of diffusion transformers in terms of model and data. However, no previous works provide an explicit formulation of scaling laws for diffusion transformers to capture the relationship between compute budget, model size, data, and loss. In this paper, we aim to address this gap by systematically investigating the scaling behavior of diffusion transformers (DiTs), offering a more comprehensive understanding of their scaling properties.

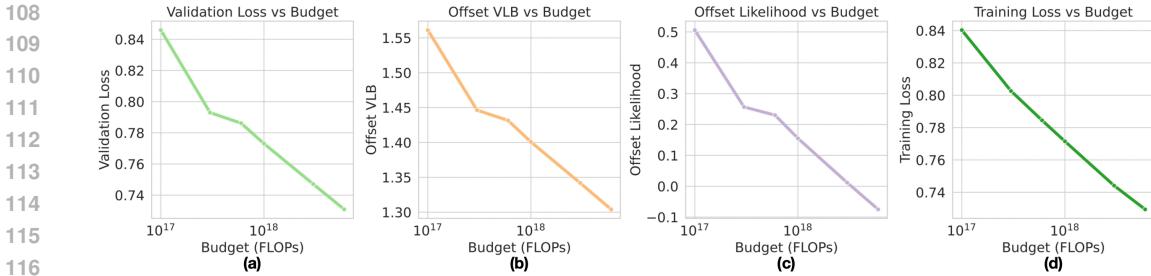


Figure 2: **Scaling Curves for Different Metrics.** We present the scaling curves for training and validation loss, offset VLB, and offset likelihood. Validation metrics are evaluated on the COCO 2014 validation set. The metrics display consistent trends and similar shapes, all adhering to a power-law relationship. This demonstrates that each of these metrics can be used to observe scaling laws effectively. For simplicity, we primarily focus on training loss in subsequent analyses.

3 METHOD

3.1 BASIC SETTINGS

Unless otherwise stated, all experiments in this paper adhere to the same basic settings. While the training techniques and strategies employed may not be optimal, they primarily affect the scaling coefficients rather than the scaling trends. In this section, we outline the critical settings used in our experiments. Additional details are provided in Appendix E.

Diffusion Formulation All experiments are conducted using the Rectified Flow (RF) formulation (Liu et al., 2022; Lipman et al., 2022; Albergo et al., 2023) with v -prediction. For timestep sampling, we adopt the Logit-Normal (LN) Sampling scheduler $\pi_{ln}(t; m, s)$, as proposed in Esser et al. (2024). A detailed ablation study of this choice can be found in Appendix H.1.

Models & Dataset As observed in Kaplan et al. (2020), model design has limited influence on scaling behavior unless the architecture is extremely shallow or narrow. We adopt a vanilla transformer architecture (Vaswani, 2017) with minimal modifications. Input tokens—comprising text, image, and timestep embeddings—are concatenated following in-context conditioning (Peebles & Xie, 2023). Our dataset consists of 108 million image-text pairs randomly sampled from Laion-Aesthetic (Schuhmann et al., 2022), and re-captioned using LLaVA 1.5 (Liu et al., 2024). A validation set of 1 million samples is drawn from the same subset. Further details are provided in Appendix E.1 and E.2. In most of our experiments, each data point is seen only once during training, which is consistent with the data-infinite setting commonly adopted in the industry. However, scaling laws do not rely on this assumption. To demonstrate this, we also evaluate scaling behavior under a data-constrained setting using ImageNet (Deng et al., 2009), with results presented in Appendix H.9.

3.2 SCALING METRICS

A natural question arises when investigating scaling laws during training: *What metrics should be selected to observe scaling behavior?* In the context of Large Language Models (LLMs), the standard approach is autoregressive training (Radford, 2018; Radford et al., 2019), where the model is trained to predict the next token in a sequence, directly optimizing the likelihood of the training data. This has proven to be a reliable method for measuring model performance as the compute budget scales up. Inspired by this approach, we extend the concept of scaling laws to diffusion models, using **loss** and **likelihood** as our key metrics.

3.2.1 LOSS

Loss is the primary metric chosen to observe scaling behavior during training. Unlike autoregressive models, diffusion models do not directly optimize likelihood. Instead, the objective is to match a

time-conditioned velocity field (Ma et al., 2024b; Liu et al., 2022; Lipman et al., 2022; Albergo et al., 2023). Specifically, the velocity $\mathbf{v}(x_t, t)$ at timestep t is defined as:

$$\mathbf{v}(x_t, t) = x'_t = \alpha'_t x_0 + \beta'_t \epsilon, \quad (1)$$

where x_0 represents the original data and ϵ denotes the noise. Here, the prime symbol ' indicates the derivative with respect to time t . In the rectified flow framework, the coefficients α_t and β_t are defined as $\alpha_t = 1 - t$, $\beta_t = t$. Thus, the velocity \mathbf{v} can be further simplified as:

$$\mathbf{v}(x_t, t) = -x_0 + \epsilon. \quad (2)$$

The corresponding loss function is expressed in terms of the expected value:

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}_0 \sim p_{\text{data}}, t \sim \mathcal{U}(\{1, \dots, T\}), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\|\mathbf{v}_\theta(\mathbf{x}_t, t) + \mathbf{x}_0 - \epsilon\|^2 \right] \quad (3)$$

$$\approx \frac{1}{N} \sum_{i=1}^N \|\mathbf{v}_\theta(\mathbf{x}_{t_i}^{(i)}, t_i) + \mathbf{x}_0^{(i)} - \epsilon_i\|^2, \quad (4)$$

The **training loss** is estimated using a Monte Carlo method, which involves timesteps and noise sampling. In Eq. 4, N denotes the number of training samples in the mini-batch, t_i and ϵ_i are the timestep and noise for constructing the i -th sample. The stochasticity inherent in this process can cause significant fluctuations, which are mitigated by employing a larger batch size of 1024 and applying Exponential Moving Average (EMA) smoothing on the loss value. In our experiments, we set $\alpha_{\text{EMA}} = 0.9$, which is found to produce stable results. A detailed ablation study on the choice of loss EMA coefficients is provided in Appendix H.2. This smoothing procedure helps reduce the variance of loss value and provides clearer insights into training dynamics.

In addition to the training loss, **validation loss** is also computed on the COCO 2014 dataset (Lin et al., 2014). To ensure consistency with the training loss, timesteps are sampled using the LN timestep sampler $\pi_{ln}(t; m, s)$, and evaluation is performed on 10,000 data points, with 1,000 timesteps sampled per point.

3.2.2 LIKELIHOOD

Likelihood is our secondary metric. The likelihood over the dataset distribution $P_{\mathcal{D}}$ given model parameters θ is represented as $\mathbb{E}_{x \sim P_{\mathcal{D}}} [p_\theta(x)]$, which can be challenging to compute directly. In this paper, we measure likelihood using two different methods. The first method is based on the Variational Autoencoder (VAE) framework (Kingma et al., 2021; Song et al., 2021; Vahdat et al., 2021), which approximates the lower bound of log-likelihood using the Variational Lower Bound (VLB). Since the VAE component in our experiments is fixed to Stable Diffusion 1.5, terms related to the VAE remain constant and are ignored in our computation, as they do not affect the scaling behavior. The second method uses Neural Ordinary Differential Equations (ODEs) (Chen et al., 2018; Grathwohl et al., 2018), enabling the computation of exact likelihood through reverse-time sampling.

Variational Lower Bound (VLB) We estimate the VLB following the approach in Kingma et al. (2021), where it is treated as a reweighted version of the validation loss. The process starts by converting the estimated velocity into a corresponding estimate of x_0 , after which the loss is computed based on the difference between the estimated x_0 and the original sample. To obtain the VLB, this loss is further reweighted with the weighting coefficient being the derivative of signal-to-noise ratio of noisy samples with respect to time t , *i.e.*, $\text{SNR}'(t)$. More details can be found in Appendix F. All models are evaluated on the COCO 2014 validation set using 10,000 data pairs. For each data point, 1,000 timesteps are sampled to ensure accurate estimations of the VLB.

Exact Likelihood The exact likelihood is computed using reverse-time sampling, where a clean sample is transformed into Gaussian noise. The accumulated likelihood transition is calculated using the instantaneous change of variables theorem (Chen et al., 2018):

$$\log p_\theta(x) = \log p_\theta(x_T) - \int_0^T \nabla \cdot f_\theta(x_t, t) dt, \quad (5)$$

216 where $f_\theta(x_t, t)$ represents the model’s output, and $\log p_\theta(x_T)$ is the log density of the final Gaussian
 217 noise. The reverse process evolves t from 0 (data points) to T (noise). The reverse sampling is
 218 performed over 500 steps using the Euler method.

219 Following model training, we evaluate models on the validation set to assess their compute-optimal
 220 performance. As illustrated in Fig. 2, all four metrics (training loss, validation loss, offset VLB, and
 221 offset exact likelihood) exhibit similar trends and shapes as the training budget increases, showing
 222 their utility in observing scaling laws. **All metrics for all models are computed using the evaluation**
 223 **protocol described in Sec. 3.3.** These consistent patterns suggest that any of these metrics can be
 224 effectively used to monitor scaling behavior. However, to simplify our experimental workflow, we
 225 prioritize **training loss** as the primary metric. Training loss can be observed directly during the
 226 training process, without the need for additional evaluation steps, making it a more practical choice
 227 for tracking scaling laws in real-time.

228

229 3.3 SCALING LAWS IN TRAINING DIFFUSION TRANSFORMERS

230

231 **Scaling Laws** In this section, we investigate the scaling laws governing diffusion transformers,
 232 which describe the relationships between several key quantities: the objective function, model
 233 parameters, tokens, and compute budget. The objective measures discrepancy between the data and
 234 model’s predictions. The number of parameters N reflects model’s capacity, while tokens D denote
 235 the total amount of data (in tokens) processed during training. **Compute budget C (we also refer**
 236 **to C as compute),** typically measured in Floating Point Operations (FLOPs), quantifies the total
 237 computational resources consumed. In our experiments, the relationship between compute, tokens,
 238 and model size is formalized as $C = 6ND$, directly linking the number of parameters and tokens
 239 to the overall compute budget. **We estimate C by explicitly counting the floating-point operations**
 240 **required by the transformer blocks of our diffusion transformer.** Focusing on these blocks, which
 241 dominate the total cost, and accounting for both forward and backward passes, we find that, on average,
 242 processing a single token requires approximately $6N$ FLOPs. Hence, training a model with
 243 N parameters on D tokens consumes

$$244 C = 6ND,$$

245

246 and in our setting, the compute budget, number of parameters, and tokens approximately satisfy this
 247 relationship. More details about FLOPs computation can be found in Appendix G and Sec. 2.1 in
 248 Kaplan et al. (2020).

249

250 For each compute budget C , we extract the corresponding compute-optimal parameter count
 251 $N_{\text{opt}}(C)$ and token count $D_{\text{opt}}(C)$ from configuration at the minimum point (purple marker) of
 252 each isoFLOP parabola in Fig. 1(a). When we plot these optimal points on log-log axes, both
 253 $\log N_{\text{opt}}$ and $\log D_{\text{opt}}$ vary approximately linearly with $\log C$, indicating an underlying power-law
 254 relationship between compute and the optimal allocation of parameters and data. Building on this,
 255 we hypothesize that power law equations can effectively capture the scaling relationships between
 256 these quantities. Specifically, we represent the optimal model size and token count as functions of
 257 the compute budget as follows:

258

$$259 N_{\text{opt}} \propto C^a \quad \text{and} \quad D_{\text{opt}} \propto C^b, \quad (6)$$

260

261 where N_{opt} and D_{opt} denote the optimal number of parameters and tokens for a given compute budget
 262 C , with a and b as scaling exponents that describe how these quantities grow with compute.

263

264 To empirically verify these scaling relationships, following Approach 2 in Hoffmann et al. (2022),
 265 we plot the isoFLOP figure to explore scaling laws. We select compute budgets $[1e17, 3e17,$
 266 $6e17, 1e18, 3e18, 6e18]$. We change the In-context Transformers from 2 layers to 15 layers.
 267 For all experiments, we use AdamW (Kingma, 2014; Loshchilov, 2017) as the default optimizer
 268 with a constant learning rate of 1e-4. Following several common practice from large-scale models
 269 Wortsman et al. (2023); Team (2024); Molybog et al. (2023), we use a weight decay of 0.01, an
 270 epsilon value of $1e-15$, and betas $[0.9, 0.95]$. For all experiments, we employ a batch size of
 271 1024 and apply gradient clipping with a threshold of 1.0. To enable classifier-free guidance (Ho
 272 & Salimans, 2022), we randomly drop the label with a probability of 0.1. During training, we use
 273 mixed precision with the BF16 data format. As is standard in diffusion models, we also maintain
 274 an EMA version of the model with a decay coefficient of 0.99, which is saved for evaluation. The
 275 scaling curves of the EMA model are presented in Appendix H.4.

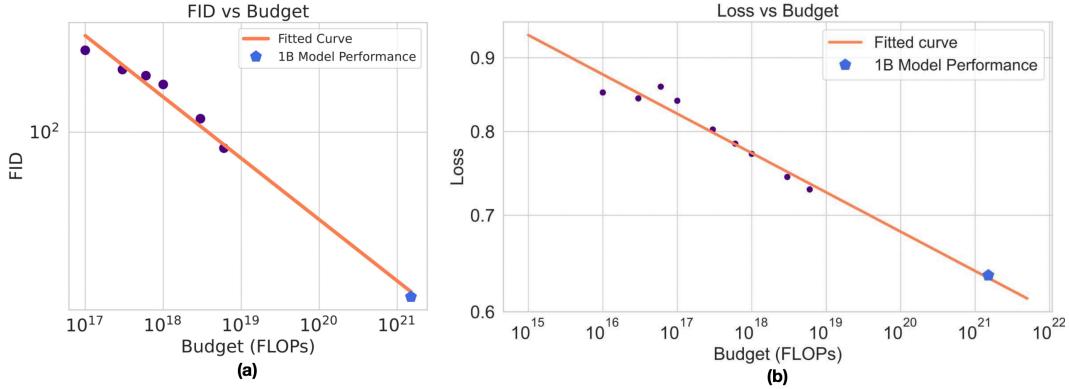


Figure 3: **Performance Scaling Curves.** The plot shows the relationship between training loss, FID, and compute budget, with both axes displayed on a logarithmic scale. The orange lines represent the fitted power-law curves for both metrics across various budgets, while the purple dots mark the performance of compute-optimal models at smaller budgets. In both cases, the blue pentagons indicate the predicted performance at a budget of 1.5×10^{21} FLOPs, demonstrating highly accurate predictions for large-scale models.

For each budget, we fit a parabola to the resulting performance curve, as illustrated in the Fig. 1(a), to identify the optimal loss, model size, and data allocation (highlighted by the purple dots). By collecting the optimal values from different budgets and fitting them to a power law, we establish relationships between the optimal loss, model size, data, and compute budgets.

As shown in the Fig. 1(a), except for the 1×10^{17} budget, the parabolic fits align closely with the empirical results. This analysis confirms that the optimal number of parameters and tokens scale with the compute budget according to the following expressions:

$$N_{\text{opt}} = 0.0009 \cdot C^{0.5681}, \quad (7)$$

$$D_{\text{opt}} = 186.8535 \cdot C^{0.4319}. \quad (8)$$

In this way, we establish the relationship between compute budget and model/data size. And from the fitted scaling curves, we observe that the ratio between the scaling exponent for data and the scaling exponent for model size is $0.4319/0.5681$. This indicates that, under our specific settings, both the model and data sizes need to increase in tandem as the training budget increases. However, the model size grows at a slightly faster rate compared to the data size, as reflected by the proportional relationship between the two exponents.

Additionally, in Fig. 3(b), we fit the relationship between the compute budget and loss, which follows the equation:

$$L = 2.3943 \cdot C^{-0.0273}. \quad (9)$$

To validate the accuracy of these fitted curves, we calculate the optimal model size (958.3M parameters) and token count for a compute budget of 1.5×10^{21} . A model is then trained with these specifications to compare its training loss with the predicted value. As demonstrated in Fig. 3(b), this model’s training loss closely matches the predicted loss, further confirming the validity of our scaling laws.

3.4 PREDICTING GENERATION PERFORMANCE

Evaluating generative models has long been a challenge, as many commonly used metrics have been criticized for their limitations. However, recent work (Esser et al., 2024; Fan et al., 2025) on large-scale foundation generative models has shown that metrics such as FID, GenEval, and loss, despite their imperfections, correlate well with human perception and preference—widely considered the gold standard in image generation evaluation. Notably, Esser et al. (2024) reports that the diffusion transformer’s loss serves as a strong predictor of overall model quality. In previous sections, we have analyzed the scaling behavior of loss. Here, we extend our analysis to additional evaluation

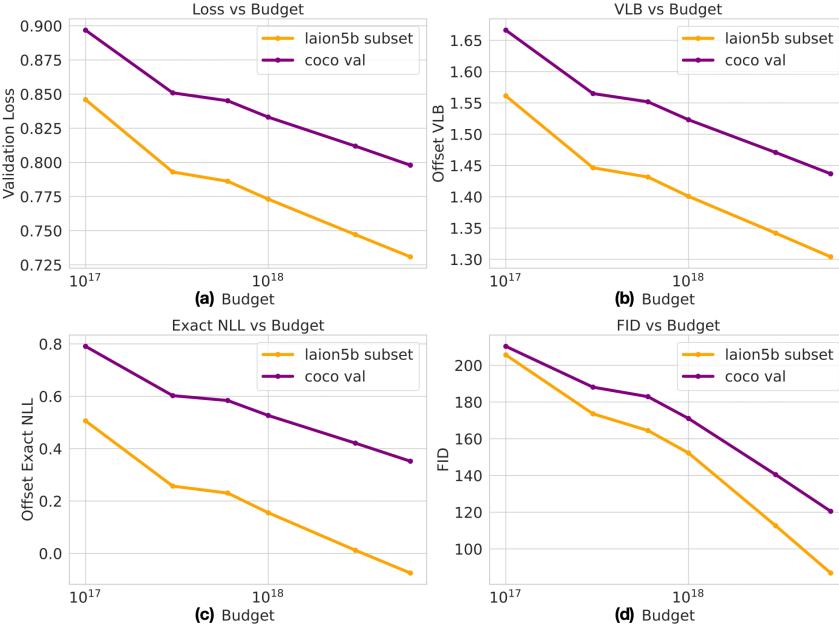


Figure 4: **Scaling laws for OOD data.** The evaluation of loss, VLB, and NLL are conducted on an out-of-domain dataset COCO 2014 validation set. All metrics decrease monotonically as the budget increases and they share a similar shape. However, a notable shift can be observed. Models have worse performance on the COCO validation set since they are trained on a different data distribution. The shift reflects the differences between datasets.

metrics. Specifically, we present scaling curves for **FID**, **GenEval**, and **human preferences**. Due to space constraints, the GenEval and Human preferences results are included in Appendix H.10 and H.11. These results confirm that generation quality also scales predictably with compute, following a power-law trend. We also provide some visual samples generated by compute-optimal models in Appendix H.8.

Evaluation Metrics We evaluate generation quality using multiple complementary metrics: FID, GenEval, and human preference reward models (HPSv2.1 (Wu et al., 2023) and ImageReward (Xu et al., 2023)). FID quantifies the distance between the distributions of generated and real images in a feature space, with lower values indicating higher fidelity. Following Sauer et al. (2021), we compute FID using CLIP features (ViT-L/14 Dosovitskiy et al. (2020)) instead of the traditional Inception features. GenEval captures the capability of instance-level compositionality by employing object detectors to provide fine-grained analyses, such as color binding and object counting. Finally, human preference reward models (HPSv2.1 and ImageReward) approximate human judgments by scoring generations according to preference signals.

Scaling laws for FID Predictions In this section, we provide analysis for FID. We reveal that the relationship between FID and the training compute budget follows a clear power-law trend, as shown in Fig. 3(b). The relationship is captured by the following equation:

$$FID = 2.2566 \times 10^6 \cdot C^{-0.234}, \quad (10)$$

where C is the training compute budget. The purple dots in the figure represent the FID scores of compute-optimal models at various budgets, and the orange line represents the fitted power-law curve. Notably, the prediction for FID at a large budget of 1.5×10^{21} FLOPs (blue pentagon) is highly accurate, confirming the reliability of scaling laws in forecasting model performance even at larger scales. As the compute budget increases, FID values decrease consistently, demonstrating that scaling laws can effectively model and predict the quality of generated images as resources grow.

378 3.5 SCALING LAWS FOR OUT-OF-DOMAIN DATA
379

380 Scaling laws remain valid even when models are tested on out-of-domain datasets. To demonstrate
381 this, we conduct validation experiments on the COCO 2014 validation set (Lin et al., 2014), using
382 models that were trained on the Laion5B subset. In these experiments, we evaluate four key metrics:
383 validation loss, Variational Lower Bound (VLB), exact likelihood, and Fréchet Inception Distance
384 (FID). Each metric is tested on 10,000 data points to examine the transferability of the scaling
385 laws across datasets. Additional experiments on other datasets (Flickr30k (Plummer et al., 2016),
386 JourneyDB (Sun et al., 2024)) are presented in Appendix H.7.

387 The results, as shown in Fig. 4, reveal two key observations:
388

- 389 • **Consistent Trends:** Across all four metrics (validation loss, VLB, exact likelihood, and
390 FID), the trends are consistent between the Laion5B subset and the COCO validation
391 dataset. As the training budget increases, model performance improves in both cases,
392 indicating that scaling laws generalize effectively across datasets, regardless of domain
393 differences.
- 394 • **Vertical Offset:** There is a clear vertical offset between the metrics for the Laion5B subset
395 and the COCO validation dataset, with consistently higher metric values observed on the
396 COCO dataset. This suggests that while scaling laws hold, the absolute performance is
397 influenced by dataset-specific characteristics, such as complexity or distribution. For
398 metrics like validation loss, VLB, and exact likelihood, this offset remains relatively constant
399 across different training budgets. The gap between the FID values for the Laion5B subset
400 and the COCO validation set widens as the training budget increases. However, the
401 relationship between FID and budget on the COCO validation set still follows a power-law
402 trend. This suggests that, even on out-of-domain data, the FID-budget relationship can be
403 reliably modeled using a power law, allowing us to predict the model’s FID for a given
404 budget.

405 In summary, these results demonstrate that scaling laws are robust and can be applied effectively to
406 out-of-domain datasets, maintaining consistent trends while accounting for dataset-specific perfor-
407 mance differences. Despite the vertical offset in absolute performance, particularly in metrics like
408 FID, the power-law relationships remain intact, allowing for reliable predictions of model perfor-
409 mance under varying budgets. These findings highlight the potential of scaling laws as a versatile
410 tool for understanding model behavior across datasets. The ability to project model efficiency and
411 performance onto new data domains underscores the broader applicability of scaling laws in real-
412 world scenarios.

413
414 4 SCALING LAWS AS A PREDICTABLE SCALABILITY BENCHMARK
415

416 Scaling laws offer a robust framework for evaluating the design quality of both models and datasets,
417 particularly with respect to their **scalability**. Previous work such as Dubey et al. (2024); Bi et al.
418 (2024) have all explored the scaling laws in data mix and quality. By modifying either the model
419 architecture or the data pipeline, isoFLOP curves can be generated at smaller compute budgets to
420 assess the impact of these changes. Specifically, after making adjustments to the model or dataset,
421 experiments can be conducted across a range of smaller compute budgets, and the relationship be-
422 tween compute and metrics such as loss, parameter count, or token count can be fitted. The effec-
423 tiveness of these modifications can then be evaluated by analyzing the exponents derived from the
424 power-law fits. Scaling laws provide a predictive framework for estimating a model’s performance
425 when scaled in both data and model size, offering a robust benchmark for evaluating the scalability
426 of data and model designs.

427 Our evaluation follows three key principles:
428

- 429 • **Model improvements:** With a fixed dataset, a more efficient model will exhibit a lower
430 model scaling exponent and a higher data scaling exponent. This suggests that the model
431 can more effectively utilize the available data, allowing for a greater focus on increasing
432 the dataset size with additional compute resources.

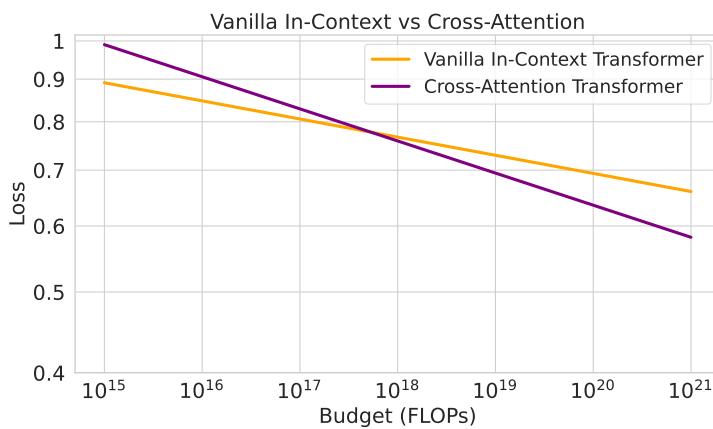


Figure 5: **Scaling curves for In-Context and Cross-Attention Transformers.** The plot compares the scaling behavior of In-Context Transformers and Cross-Attention Transformers with respect to compute budget (FLOPs). In-context transformers, which concatenate image, text, and time tokens, show a more gradual decline in loss compared to Cross-Attention Transformers, which inject time and text tokens via AdaLN and cross-attention blocks. The steeper slope of Cross-Attention Transformers indicates more efficient performance improvement with increasing compute, meaning they achieve lower loss with the same budget. These results highlight the efficiency of Cross-Attention Transformers and illustrate the potential of scaling laws in predicting performance trends across different model architectures.

- **Data improvements:** When the model is fixed, a higher-quality dataset will result in a lower data scaling exponent and a higher model scaling exponent. This implies that a better dataset enables the model to scale more efficiently, yielding superior results with fewer resources.
- **Loss/FID improvements:** Across both model and data modifications, an improved training pipeline is reflected in a smaller loss/FID scaling exponent relative to compute. This indicates that the model achieves better performance with less compute, signaling overall gains in training efficiency.

To illustrate the utility of scaling laws as a predictive benchmark for scalability, we compare two specific transformer designs: (1) Vanilla In-Context Transformers, which concatenate image and visual tokens as input and utilize only standard self-attention blocks, and (2) Cross-Attention Transformers, where conditioning is incorporated through cross-attention mechanisms. [We train and evaluate both models with a broad range of compute budgets, spanning 1e17, 3e17, 6e17, 1e18, 3e18, 6e18, and 1e19.](#)

The scaling trends for both models are clearly illustrated in Fig. 5. The loss scaling curves demonstrate that as the compute budget increases, the performance of both models improves, but at different rates. The Cross-Attention Transformer shows a steeper decline in loss compared to the Vanilla In-Context Transformer, indicating that when scaled up, it achieves better performance with the same amount of compute.

The fitted scaling curves, as summarized in Tab. 1, support this observation. [The Cross-Attention Transformer exhibits a smaller model exponent](#), meaning that as compute budgets increase, more resources should be allocated toward scaling the dataset. Additionally, the smaller loss exponent of the Cross-Attention Transformer suggests a more rapid decline in loss, indicating that this model achieves superior performance compared to the Vanilla In-Context Transformer. These findings align with the conclusions of Peebles & Xie (2023). However, this observation should not be generalized to conclude that the In-Context mechanism is inherently superior to Cross-Attention. Recent works, such as Flux and the MMDiT architecture in SD3 Esser et al. (2024), have demonstrated that models utilizing In-Context Conditioning can outperform those relying on Cross-Attention. Our analysis does not aim to compare these mechanisms. Instead, the scaling laws benchmark serves as a tool for assessing model scalability within a given architecture. The method evaluates how

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
efficiently a model benefits from increased data and computational resources as it scales. For completeness, we also provide a data quality comparison in Appendix H.6.

Table 1: Exponents of model, data, and loss for different model architectures.

Model	Model Exponent	Data Exponent	Loss Exponent
Vanilla In-context	0.56	0.43	-0.0273
Cross-Attention	0.54	0.46	-0.0385

This example illustrates how scaling laws can serve as a reliable and predictable scalability benchmark for evaluating the effectiveness of both model architectures and datasets. By analyzing the scaling exponents, we can draw meaningful conclusions about the potential and efficiency of different design choices in model and data pipelines.

5 CONCLUSION

In this work, we explored the scaling laws of Diffusion Transformers (DiT) across a broad range of compute budgets, from $1e17$ to $6e18$ FLOPs, and confirmed the existence of a power-law relationship between pretraining loss and compute. This relationship enables precise predictions of optimal model size, data requirements, and model performance, even for large-scale budgets such as $1e21$ FLOPs. Furthermore, we demonstrated the robustness of these scaling laws across different datasets, illustrating their generalizability beyond specific data distributions. In terms of generation performance, we showed that training budgets can be used to predict the visual quality of generated images, as measured by metrics like FID. Additionally, by testing both In-context Transformers and Cross-Attention Transformers, we validated the potential of scaling laws to serve as a predictable benchmark for evaluating and optimizing both model and data design, providing valuable guidance for future developments in text-to-image generation using DiT.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.
- Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22669–22679, 2023.
- Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint arXiv:2401.02954*, 2024.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-a: Fast training of diffusion transformer for photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in neural information processing systems*, 31, 2018.
- Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In *International Conference on Machine Learning*, pp. 7480–7512. PMLR, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.

- 540 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
 541 *arXiv preprint arXiv:1810.04805*, 2018.
 542
- 543 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 544 *in neural information processing systems*, 34:8780–8794, 2021.
- 545 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv*
 546 *preprint arXiv:1605.08803*, 2016.
 547
- 548 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 549 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 550 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 551 scale. *arXiv preprint arXiv:2010.11929*, 2020.
- 552 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 553 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 554 *arXiv preprint arXiv:2407.21783*, 2024.
 555
- 556 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 557 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 558 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
 559 2024.
- 560 Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
 561 Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
 562 with continuous tokens. In *The Thirteenth International Conference on Learning Representations*,
 563 2025. URL <https://openreview.net/forum?id=jQP5o1VAwC>.
 564
- 565 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 566 for evaluating text-to-image alignment. In *Thirty-seventh Conference on Neural Information Pro-*
 567 *cessing Systems Datasets and Benchmarks Track*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=Wbr51vK331)
 568 *forum?id=Wbr51vK331*.
- 569 Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
 570 Free-form continuous dynamics for scalable reversible generative models. *arXiv preprint*
 571 *arXiv:1810.01367*, 2018.
- 572 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 573 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 574 *vision and pattern recognition*, pp. 16000–16009, 2022.
- 575 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
 576 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
 577 modeling. *arXiv preprint arXiv:2010.14701*, 2020.
- 578 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 579 Md Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 580 empirically. *arXiv preprint arXiv:1712.00409*, 2017.
- 581 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 582 *arXiv:2207.12598*, 2022.
- 583 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 584 *neural information processing systems*, 33:6840–6851, 2020.
- 585 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 586 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 587 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
- 588 Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical
 589 rates and provably efficient criteria of latent diffusion transformers (dits). In *The Thirty-eighth*
 590 *Annual Conference on Neural Information Processing Systems*.

- 594 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 595 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 596 models. *arXiv preprint arXiv:2001.08361*, 2020.
- 597 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *Ad-*
 598 *vances in neural information processing systems*, 34:21696–21707, 2021.
- 600 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- 601 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 602 2014.
- 604 Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 605 *Advances in neural information processing systems*, 31, 2018.
- 606 Hao Li, Yang Zou, Ying Wang, Orchid Majumder, Yusheng Xie, R Manmatha, Ashwin Swami-
 607 nathan, Zhuowen Tu, Stefano Ermon, and Stefano Soatto. On the scalability of diffusion-based
 608 text-to-image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 609 *Pattern Recognition*, pp. 9400–9409, 2024.
- 611 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 612 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 613 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,*
 614 *Proceedings, Part V 13*, pp. 740–755. Springer, 2014.
- 615 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 616 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
- 617 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 618 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 619 *nition*, pp. 26296–26306, 2024.
- 621 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 622 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
- 623 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- 625 Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit:
 626 Flexible vision transformer for diffusion model. *arXiv preprint arXiv:2402.12376*, 2024.
- 627 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
 628 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable
 629 interpolant transformers. In *Computer Vision – ECCV 2024: 18th European Conference, Milan,*
 630 *Italy, September 29–October 4, 2024, Proceedings, Part LXXVII*, pp. 23–40, Berlin, Heidelberg,
 631 2024a. Springer-Verlag. ISBN 978-3-031-72979-9. doi: 10.1007/978-3-031-72980-5_2. URL
 632 https://doi.org/10.1007/978-3-031-72980-5_2.
- 633 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 634 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 635 transformers. *arXiv preprint arXiv:2401.08740*, 2024b.
- 637 Kangfu Mei, Zhengzhong Tu, Mauricio Delbracio, Hossein Talebi, Vishal M Patel, and Peyman
 638 Milanfar. Bigger is not always better: Scaling properties of latent diffusion models. *arXiv preprint*
 639 *arXiv:2404.01367*, 2024.
- 640 Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
 641 Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in large-
 642 scale machine learning. *arXiv preprint arXiv:2304.09871*, 2023.
- 643 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 644 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.
- 646 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 647 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial*
 648 *intelligence*, volume 32, 2018.

- 648 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
 649 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 650 image-to-sentence models. *International Journal of Computer Vision*, 123(1):74–93, October
 651 2016. ISSN 1573-1405. doi: 10.1007/s11263-016-0965-7. URL <http://dx.doi.org/10.1007/s11263-016-0965-7>.
- 653 Alec Radford. Improving language understanding by generative pre-training. 2018.
- 655 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 656 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- 657
- 658 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 659 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 660 learning*, pp. 8821–8831. Pmlr, 2021.
- 661 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 662 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 663 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 664
- 665 Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans converge faster.
 666 *Advances in Neural Information Processing Systems*, 34:17480–17492, 2021.
- 667
- 668 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 669 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 670 open large-scale dataset for training next generation image-text models. *Advances in Neural
 671 Information Processing Systems*, 35:25278–25294, 2022.
- 672 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 673 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 674 ing*, pp. 2256–2265. PMLR, 2015.
- 675
- 676 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 677 *Advances in neural information processing systems*, 32, 2019.
- 678
- 679 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 680 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 681 arXiv:2011.13456*, 2020.
- 682
- 683 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
 684 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–
 1428, 2021.
- 685
- 686 Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
 687 Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding.
 688 *Advances in Neural Information Processing Systems*, 36, 2024.
- 689
- 690 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 691 arXiv:2405.09818*, 2024.
- 692
- 693 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
 694 *Advances in neural information processing systems*, 34:11287–11302, 2021.
- 695
- 696 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
- 697
- 698 Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
 699 Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
 700 transformer training instabilities. *arXiv preprint arXiv:2309.14322*, 2023.
- 701
- Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 image synthesis, 2023. URL <https://arxiv.org/abs/2306.09341>.

702 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
703 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
704 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
705 15903–15935, 2023.

706 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural Infor-*
707 *mation Processing Systems*, 32, 2019.

709 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
710 with masked transformers. *arXiv preprint arXiv:2306.09305*, 2023.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **APPENDIX**
759760 This appendix is organized as follows:
761

- 762 • In Section B, we list an overview of the notation used in the paper.
763
- 764 • In Section D, we provide extended related work.
765
- 766 • In Section E, we provide experimental details.
767
- 768 • In Section F, we provide the derivation of the likelihood used in this paper.
769
- 770 • In Section G, we provide the details of scaling FLOPs counting based on our models.
771
- 772 • In Section H, we provide extra experiments.
773
- 774 • In Section I, we list the limitations and future works.
775
- 776 • In Section J, we discuss the in-context condition and cross attention mechanism in detail.
777

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 **B NOTATION**
811812 Tab. B provides an overview of the notation used in this paper.
813814
815 **Table 2: Summary of the notation and abbreviations used in this paper.**
816

Symbol	Meaning
RF	Rectified Flow (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023)
LN	Logit-Normal timestep sampler $\pi_{ln}(t; m, s)$ (Egger et al., 2024)
SNR	Signal-Noise-Ratio, $\lambda_t = \frac{\alpha_t^2}{\beta_t^2}$
DDPM	Denoising Diffusion Probabilistic Models (Ho et al., 2020)
LDM	Latent Diffusion Models (Rombach et al., 2022)
VP	Variance Preserving formulation (Song et al., 2020)
VLB	Variational Lower Bound
VAE	Variational Autoencoder
KL	KL Divergence $KL(p(x) q(x)) = \mathbb{E}_{p(x)}[\ln \frac{p(x)}{q(x)}]$
$P_{\mathcal{D}}$	Dataset distribution
d_{attn}	Dimension of the attention output
d_{ff}	Dimension of the Feedforward layer
d_{model}	Dimension of the residual stream
n_{layer}	Depth of the Transformer
l_{ctx}	Context length of input tokens
l_{img}	Context length of image tokens
l_{text}	Context length of text tokens
l_{time}	Context length of time tokens
N_{voc}	Size of Vocabulary list
n_{head}	Number of heads in Multi-Head Attention
N	Number of parameters
D	Size of training data (token number)
C	Compute budget, $C = 6ND$
N_{opt}	Optimal number of parameters for the given budget
D_{opt}	Optimal training tokens for the given budget.
ϵ	Gaussian Noise $\mathcal{N}(0, I)$
\mathbf{x}_t	A sample created at timestep t
t	Timestep ranging from $[0, 1]$
\mathbf{v}	Velocity $\mathbf{v} = \mathbf{x}_1 - \mathbf{x}_0$
α_t	α_t represents the scaling factor during noise sample creation.
β_t	β_t represents the diffusion factor during noise sample creation.
σ_t	Noise Level defined for each timestep
$f_{\theta}(\mathbf{x})$	The network we use to learn the transition kernel. $f_{\theta} : \mathbb{R}^{N \times M} \rightarrow \mathbb{R}^{N \times M}$
η	Learning rate
$\pi_{ln}(t; m, s)$	Logit-Normal Timestep sampling schedule, m is the location parameter, s is the scale parameter
$\mathcal{L}(\theta, \mathbf{x}, t)$	Loss given model parameters, data points, and timesteps.
λ	Fixed step size for ODE/SDE samplers
θ	Parameters for diffusion models
ϕ	Parameters for VAE encoder
ψ	Parameters for VAE decoder
α_{EMA}	EMA coefficient

857
858
859
860
861
862
863

864 **C LLM USAGE**
865866 In this work, large language models (LLMs) were only employed to polish the wording and improve
867 the readability of the manuscript. No part of the research design, data analysis, or result interpreta-
868 tion involved the use of LLMs. All scientific content and conclusions were produced entirely by the
869 authors.
870871 **D EXTENDED RELATED WORK**
872873 **Diffusion Transformers** Transformers have become the de facto model architecture in language
874 modeling (Radford, 2018; Radford et al., 2019; Devlin, 2018), and they have also achieved sig-
875 nificant success in computer vision tasks (Dosovitskiy et al., 2020; He et al., 2022). Recently,
876 Transformers have been introduced into diffusion models (Peebles & Xie, 2023), where images are
877 divided into patches (tokens), and the diffusion process is learned on these tokens. Additional con-
878 ditions, such as timestep and text, are incorporated into the network via cross-attention (Chen et al.,
879 2023), Adaptive Normalization (Perez et al., 2018), or by concatenating them with image tokens
880 (Bao et al., 2023).Zheng et al. (2023) proposed masked transformers to reduce training costs, while
881 Lu et al. (2024) introduced techniques for unrestricted resolution generation. Diffusion Transformers
882 (DiTs) inherit the scalability, efficiency, and high capacity of Transformer architectures, positioning
883 them as a promising backbone for diffusion models. Motivated by this scalability, we investigate the
884 scaling laws governing these models in this work. To ensure robust and clear conclusions, we adopt
885 a vanilla Transformer design (Vaswani, 2017), using a concatenation of image, text, and time tokens
886 as input to the models.
887888 **Diffusion Models** Diffusion models have gained significant attention due to their effectiveness
889 in generative modeling, starting from discrete-time models (Sohl-Dickstein et al., 2015; Ho et al.,
890 2020; Song & Ermon, 2019) to more recent continuous-time extensions (Song et al., 2020). The
891 core idea of diffusion models is to learn a sequence of noise-adding and denoising steps. In the
892 forward process, noise is gradually added to the data, pushing it toward a Gaussian distribution,
893 and in the reverse process, the model learns to iteratively denoise, recovering samples from the
894 noise. Continuous-time variants (Song et al., 2020) further generalize this framework using stochas-
895 tic differential equations (SDEs), allowing for smoother control over the diffusion process. These
896 methods leverage neural network architectures to model the score function and offer flexibility and
897 better convergence properties compared to discrete versions. Diffusion models have shown remark-
898 able success in various applications. For instance, ADM (Dhariwal & Nichol, 2021) outperforms
899 GAN on ImageNet. Following this success, diffusion models have been extended to more com-
900 plex tasks such as text-to-image generation. Notably, models like Stable Diffusion (Rombach et al.,
901 2022) and DALLE (Ramesh et al., 2021) have demonstrated the ability to generate highly realistic
902 and creative images from textual descriptions, representing a significant leap in the capabilities of
903 generative models across various domains.
904905 **Normalizing Flows** Normalizing flows has been a popular generative modeling approach due to
906 their ability to compute exact likelihoods while providing flexible and invertible transformations.
907 Early works like GLOW (Kingma & Dhariwal, 2018) and RealNVP (Dinh et al., 2016) introduced
908 powerful architectures that allowed for efficient sampling and likelihood estimation. However, these
909 models were limited by the necessity of designing specific bijective transformations, which con-
910 strained their expressiveness. To address these limitations, Neural ODE (Chen et al., 2018) and
911 FFJORD (Grathwohl et al., 2018) extended normalizing flows to the continuous domain using dif-
912 ferential equations. These continuous normalizing flows (CNFs) allowed for more flexible trans-
913 formations by parameterizing them through neural networks and solving ODEs. By modeling the
914 evolution of the probability density continuously, these methods achieved a higher level of expres-
915 siveness and adaptability compared to their discrete counterparts. Recent work has begun to bridge
916 the gap between continuous normalizing flows and diffusion models. For instance, ScoreSDE (Song
917 et al., 2020) demonstrated how the connection between diffusion models and neural ODEs can be
918 leveraged, allowing both exact likelihood computation and flexible generative processes. More re-
919 cent models like Flow Matching (Lipman et al., 2022) and Rectified Flow (Liu et al., 2022) further
920 combined the strengths of diffusion and flow-based models, enabling efficient training via diffusion
921 processes while maintaining the ability to compute exact likelihoods for generated samples. In this
922

918 paper, we build upon the formulation introduced by rectified flow and Flow Matching. By leveraging
 919 the training approach of diffusion models, we benefit from their generative performance, while
 920 retaining the capability to compute likelihoods.
 921

922 **Likelihood Estimation** Likelihood estimation in diffusion models can be approached from two
 923 primary perspectives: treating diffusion models as variational autoencoders (VAEs) or as normalizing
 924 flows. From the VAE perspective, diffusion models can be interpreted as models where we
 925 aim to optimize a variational lower bound (VLB) on the data likelihood (Kingma, 2013). The variational
 926 lower bound decomposes the data likelihood into a reconstruction term and a regularization
 927 term, where the latter measures the divergence between the approximate posterior and the prior.
 928 In diffusion models, this framework allows us to approximate the true posterior using a series of
 929 gradually noised latent variables. Recent works (Ho et al., 2020; Kingma et al., 2021; Song et al.,
 930 2021) have derived tighter bounds for diffusion models, enabling more accurate likelihood estima-
 931 tion by optimizing this variational objective. Alternatively, diffusion models can be viewed as a
 932 form of normalizing flows, particularly in the context of continuous-time formulations. Using neu-
 933 ral ODEs (Chen et al., 2018), diffusion models can be trained to learn exact likelihoods by modeling
 934 the continuous reverse process as an ODE. By solving this reverse-time differential equation, one
 935 can directly compute the change in log-likelihood through the flow of probability densities (Grath-
 936 wohl et al., 2018). This approach provides a method for exact likelihood computation, bridging the
 937 gap between diffusion models and normalizing flows, and offering a more precise estimate of the
 938 likelihood for generative modeling.
 939

940 E EXPERIMENTAL DETAILS

942 E.1 DATA

944 We primarily utilized three datasets in our work. Several ablation studies on formulation and model
 945 design were conducted using JourneyDB (Sun et al., 2024). Additionally, we curated a subset of 108
 946 million image-text pairs from the Laion-Aesthetic dataset, applying a threshold of 5 for the aesthetic
 947 score. After collecting the data, we re-captioned all images using LLaVA 1.5 (Liu et al., 2024),
 948 specifically employing the LLaVA-Lightning-MPT-7B-preview model for this task. We then split
 949 the data into training and validation sets with a ratio of 100:1. Our third dataset is COCO (Lin et al.,
 950 2014), where we used the 2014 validation set to test scaling laws on an out-of-domain dataset.
 951

952 E.2 MODEL DESIGN

954 In this paper, we evaluate two distinct model architectures. For the PixArt model, we follow the
 955 original design presented in Chen et al. (2023). The In-Context Transformers are based on the
 956 In-Context block described in Peebles & Xie (2023). To facilitate large-scale model training, we
 957 employ QK-Norm (Dehghani et al., 2023) and RMSNorm (Zhang & Sennrich, 2019). The patch size
 958 is set to 2. Although previous work (Kaplan et al., 2020) suggests that the aspect ratio (width/depth)
 959 of Transformers does not significantly impact scaling laws, it is crucial to maintain a consistent ratio
 960 when fitting models to scaling laws. To demonstrate this, we train a series of models under a fixed
 961 computational budget, selecting models of various sizes and aspect ratios (32 and 64). We then plot
 962 the relationship between the number of parameters and loss. As illustrated in Fig. 6, mixing models
 963 with aspect ratios of 64 and 32 obscure the overall trend. To address this issue, we maintain the
 964 aspect ratio at 64 throughout.
 965

966 F DERIVATION OF THE LIKELIHOOD

968 In this section, we provide a derivation of the likelihood estimation in our paper. In this paper, we
 969 use two ways to compute the likelihood. The first method is estimating the VLB (variational lower
 970 bound). Following Kingma et al. (2021); Vahdat et al. (2021), we derive a VLB in latent space.
 971 However, we cannot compute the entropy terms in the VAE. So our surrogate metric differs from the
 972 true VLB up to a constant factor.
 973

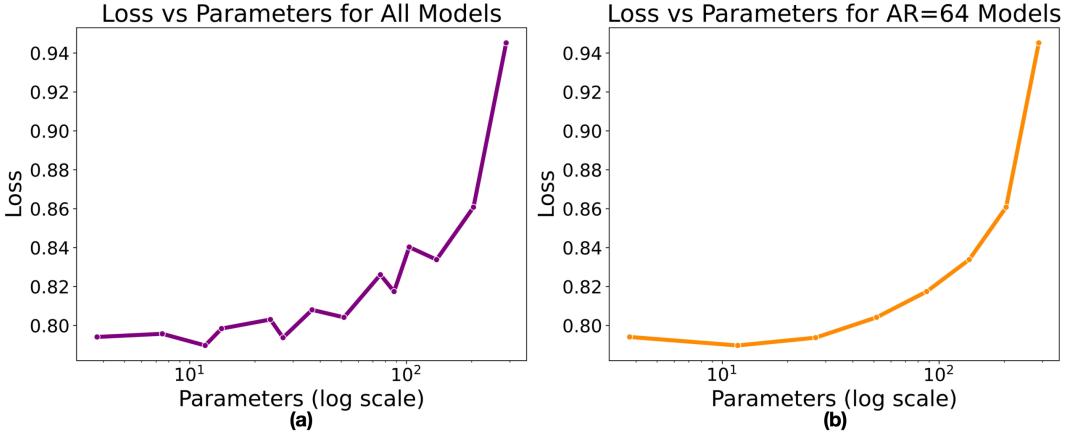


Figure 6: The effect of AR.

VAE The latent diffusion model (Vahdat et al., 2021; Rombach et al., 2022) consists of two components: a variational autoencoder (VAE) that encodes images into a latent space and decodes latents back into images, and a continuous diffusion model that operates in the latent space. To train the latent diffusion model, we optimize the variational encoder q_ϕ , the decoder p_ψ , and the diffusion model p_θ . Following Ho et al. (2020), the models are trained by minimizing the variational upper bound on the negative log-likelihood $\log P(x)$:

$$\mathcal{L}_{\theta, \phi, \psi}(x) = \mathbb{E}_{q_\phi(z_0|x)}[-\log p_\psi(x|z_0)] + KL(q_\phi(z_0|x)||p_\theta(z_0)) \quad (11)$$

$$= \mathbb{E}_{q_\phi(z_0|x)}[-\log p_\psi(x|z_0)] + \mathbb{E}_{q_\phi(z_0|x)}[\log q_\phi(z_0|x)] + \mathbb{E}_{q_\phi(z_0|x)}[-\log p_\theta(z_0)]. \quad (12)$$

In our implementation, we directly adopt the VAE from Stable Diffusion 1.5 and keep it fixed during training. As a result, the reconstruction term (first term) and the negative encoder entropy term (second term) remain constant across different models. In fact, the VAE in Stable Diffusion is trained following the VQGAN approach, which uses both $L1$ loss and an additional discriminator for training. Therefore, we cannot effectively estimate the reconstruction term since the decoder distribution is not tractable. To simplify further, we omit the VAE encoding process altogether. Specifically, we skip both encoding and decoding through the VAE and treat the latents produced by the VAE as the dataset samples. Under this assumption, we estimate the offset VLB directly in the latent space.

In the latent space, we model the distribution of latent variables that can be decoded into images using the VAE decoder. We denote the samples in latent space as x , and the noisy latent at timestep t as z_t . The variational lower bound (VLB) in the latent space is given by Kingma et al. (2021):

$$-\log p(x) \leq -VLB(x) = D_{KL}(q(z_1|x)||p(z_1)) + \mathbb{E}_{q(z_0|x)}[-\log p(x|z_0)] + \mathcal{L}_T(x), \quad (13)$$

where the first two terms depend only on the noise schedule, and we treat these terms as irreducible losses since the noise schedule is fixed across all models. The third term is the KL divergence between each pair of the reverse process $p(z_t|z_{t+1})$ and the forward process $q(z_t|x, z_{t+1})$:

$$\mathcal{L}_T(x) = \sum_{i=1}^T \mathbb{E}_{q(z_{t(i)}|x)}[D_{KL}(q||p)]. \quad (14)$$

Since we assume that the forward and reverse processes share the same variance and both p and q are Gaussian distributions, the KL terms reduce to weighted $L2$ distances:

1026
 1027
 1028
$$\mathcal{L}_T(x) = \frac{1}{2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)} \left[\sum_{i=1}^T (SNR(s) - SNR(t)) \|x - x_\theta(z_t; t)\|_2^2 \right], \quad (15)$$

 1029
 1030

1031 where $s = t - 1$. In the limit as $T \rightarrow \infty$, the loss becomes:
 1032
 1033

1034
$$\mathcal{L}_T(x) = -\frac{1}{2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)} \int_0^1 SNR'(t) \|x - x_\theta(z_t; t)\|_2^2 dt. \quad (16)$$

 1035
 1036

1037 In our case, we utilize the velocity \mathbf{v} to predict the clean sample x and compute the VLB.
 1038

1039 **Normalizing Flows** Another method to compute the likelihood in our diffusion model is by viewing
 1040 the diffusion process as a type of normalizing flow. Specifically, we leverage the theoretical
 1041 results from Neural ODEs, which allow us to connect continuous normalizing flows with the evolution
 1042 of probability density over time. In Neural ODEs, the transformation of data through the flow
 1043 can be described by the following differential equation for the state variable x_t as a function of time:
 1044

1045
$$\frac{dx_t}{dt} = f_\theta(x_t, t), \quad (17)$$

 1046
 1047

1048 where $f_\theta(x_t, t)$ represents the network that predicts the time-dependent vector field \mathbf{v} . To compute
 1049 the change in log-probability of the transformed data, the log-likelihood of the input data under the
 1050 flow is given by:
 1051

1052
$$\frac{d \log p(x_t)}{dt} = -\text{Tr} \left(\frac{\partial f(x_t, t)}{\partial x_t} \right), \quad (18)$$

 1053
 1054

1055 where Tr represents the trace of the Jacobian matrix of $f_\theta(x_t, t)$. This equation describes how the
 1056 log-density evolves as the data is pushed forward through the flow. To compute the likelihood, we
 1057 integrate the following expression over the trajectory from the initial state t_0 to the terminal state t_1 :
 1058

1059
 1060
$$\log p(x_{t_1}) = \log p(x_{t_0}) - \int_{t_0}^{t_1} \text{Tr} \left(\frac{\partial f_\theta(x_t, t)}{\partial x_t} \right) dt. \quad (19)$$

 1061
 1062

1063 Here, $\log p(x_{t_0})$ represents the log-likelihood of the initial state (often modeled as a Gaussian), and
 1064 the integral accounts for the change in probability density over time as the data evolves through the
 1065 ODE. In our formulation, the network predicts the velocity $\mathbf{v}_\theta(x_t, t) = x'_t = \alpha'_t x_0 + \beta'_t \epsilon$, which
 1066 corresponds to the derivative of x_t with respect to time. Thus, we start with clean samples, estimate
 1067 the velocity, perform an iterative reverse-time sampling, and convert the samples into Gaussian
 1068 noise. We can then compute the prior likelihood of the noise easily and add it to the probability shift
 1069 accumulated during reverse sampling. In our experiments, we set the steps of reverse sampling to
 1070 500 to obtain a rather accurate estimation.
 1071

1072 G SCALING FLOPs COUNTING

1073 In this section, we provide a detailed explanation of our FLOPs scaling calculations. Several prior
 1074 works have employed different methods for counting FLOPs. In Kaplan et al. (2020), the authors
 1075 exclude embedding matrices, bias terms, and sub-leading terms. Moreover, under their framework,
 1076 the model dimension d_{model} is much larger than the context length l_{ctx} , allowing them to disregard
 1077 context-dependent terms. Consequently, the FLOPs count N for their model is given by:
 1078

1079
$$M = 12 \times d_{model} \times n_{layer} \times (2d_{attn} + d_{ff}), \quad (20)$$

1080 where d_{model} represents the model dimension, n_{layer} denotes the depth of the model, d_{attn} refers
 1081 to the attention dimension, and d_{ff} represents the feed-forward layer dimension.
 1082

1083 In contrast, Hoffmann et al. (2022) includes all training FLOPs, accounting for embedding matrices,
 1084 attention mechanisms, dense blocks, logits, and context-dependent terms. Specifically, their FLOP
 1085 computation includes:

- 1086 • **Embedding:** $2 \times l_{ctx} \times N_{voc} \times d_{model}$
- 1087 • **Attention:**
 - 1088 – **QKV Mapping:** $2 \times 3 \times l_{ctx} \times d_{model} \times d_{model}$
 - 1089 – **QK:** $2 \times l_{ctx} \times l_{ctx} \times d_{model}$
 - 1090 – **Softmax:** $3 \times n_{head} \times l_{ctx} \times l_{ctx}$
 - 1091 – **Mask:** $2 \times l_{ctx} \times l_{ctx} \times d_{model}$
 - 1092 – **Projection:** $2 \times l_{ctx} \times d_{model} \times d_{model}$
- 1093 • **Dense:** $2 \times l_{ctx} \times (d_{model} \times d_{ff} \times 2)$
- 1094 • **Logits:** $2 \times l_{ctx} \times d_{model} \times N_{voc}$

1095 Further details can be found in the Appendix F of Hoffmann et al. (2022).

1096 In Bi et al. (2024), the authors omit the embedding computation but retain the context-dependent
 1097 terms, which aligns with our approach. The parameter scaling calculation for vanilla Transformers
 1098 in this paper follows the same format as theirs. We now present detailed scaling FLOPs calculations
 1099 for the In-Context Transformers and Cross-Attn Transformers used in our experiments.

1100 Attention blocks are the primary components responsible for scaling in Transformer architectures.
 1101 In line with previous studies, we only consider the attention blocks, excluding embedding matrices
 1102 and sub-leading terms. Unlike large language models (LLMs), our model dimension is comparable
 1103 to the context length, and therefore, we include context-dependent terms. In this section, we present
 1104 FLOPs per sample rather than parameters, as different tokens participate in different parts of the
 1105 cross-attention computation. Additionally, since our input length is fixed, the FLOPs per sample are
 1106 straightforward to compute.

1107 **In-Context Transformers** In-Context Transformers process a joint embedding consisting of text,
 1108 image, and time tokens, all of which undergo attention computation. Tab. 3 details the FLOPs
 1109 calculations for a single attention layer.

1110 Table 3: Scaling FLOPs Calculation in In-Context Transformers

1111 Operation	1112 FLOPs per Sample
1113 Self-Attn: QKV Projection	$3 \times 2 \times n_{layer} \times l_{ctx} \times d_{model} \times 3 \times d_{attn}$
1114 Self-Attn: QK	$3 \times 2 \times n_{layer} \times l_{ctx} \times l_{ctx} \times d_{attn}$
1115 Self-Attn: Mask	$3 \times 2 \times n_{layer} \times l_{ctx} \times l_{ctx} \times d_{attn}$
1116 Self-Attn: Projection	$3 \times 2 \times n_{layer} \times l_{ctx} \times d_{model} \times d_{attn}$
1117 Self-Attn: FFN	$3 \times 2 \times 2 \times n_{layer} \times l_{ctx} \times 4 \times d_{model}^2$

1118 In our experiments, we set $d_{model} = d_{attn}$, and $l_{ctx} = 377$, where $l_{ctx} = l_{img}(256) + l_{text}(120) +$
 1119 $l_{time}(1)$. Thus, the simplified FLOPs-per-sample scaling equation M is:

$$1120 M = 72 \times l_{ctx} \times n_{layer} \times d_{model}^2 + 12 \times n_{layer} \times l_{ctx}^2 \times d_{model} \quad (21)$$

1121 **Cross-Attn Transformers** In Cross-Attn Transformers, each attention block consists of self-
 1122 attention and cross-attention mechanisms to integrate text information. The cross-attention uses
 1123 image embeddings as the query and text embeddings as the key and value. The attention mask re-
 1124 reflects the cross-modal similarity between image patches and text segments. As a result, the FLOPs
 1125 calculation differs from that of models using joint text-image embeddings. Tab. 4 lists the FLOPs
 1126 costs for each operation.

1134

1135

Table 4: Scaling FLOPs Calculation in Cross-Attn Transformers

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

Based on the experimental settings, we can simplify the FLOPs calculation as follows:

$$\begin{aligned} M = & 84 \times n_{layer} \times l_{img} \times d_{model}^2 + 12 \times n_{layer} \times l_{img}^2 \times d_{attn} \\ & + 12 \times n_{layer} \times l_{text} \times d_{model}^2 + 12 \times n_{layer} \times l_{text} \times l_{img} \times d_{model} \end{aligned} \quad (22)$$

1154

1155

1156

Context-Dependent Terms From the equations above, it is evident that some context-dependent terms, such as $12 \times n_{layer} \times l_{ctx}^2 \times d_{model}$, cannot be omitted. In our experiments, the aspect ratio of Transformers (width/depth=64) is maintained across all model sizes. The context length l_{ctx} is 377 (image: 256, text: 120, time: 1), and $d_{model} = n_{layer} \times 64$. Since l_{ctx} and d_{model} are comparable, the context-dependent terms must be retained.

1157

1158

1159

1160

1161

1162

1163

H ABLATIONS

1164

1165

H.1 DIFFUSION FORMULATION

1166

1167

1168

1169

1170

1171

1172

1173

In diffusion models, various formulations for noise schedules, timestep schedules, and prediction objectives have been proposed. These three components are interdependent and require specific tuning to achieve optimal performance. In this paper, we explore several common formulations and conduct ablation studies to identify the best combination in our setting.

Below, we list the candidate formulations used in our ablation study.

1174

1175

Noise Schedule

1176

1177

1178

DDPM Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is a discrete-time diffusion model that generates noisy samples via the following formula:

$$x_t = \alpha_t x_0 + \beta_t \epsilon$$

1179

1180

1181

where ϵ is Gaussian noise, and α_t and β_t satisfy $\alpha_t^2 + \beta_t^2 = 1$. Given a sequence of σ_t , the scaling factor can be defined as:

1182

1183

1184

1185

1186

In DDPM, σ_t follows:

1187

$$\sigma_t = \sigma_0 + \frac{t}{T}(\sigma_T - \sigma_0) \quad (24)$$

1188 **LDM** Latent Diffusion Models (LDM) (Rombach et al., 2022), as used in Stable Diffusion, is
 1189 a variant of the DDPM schedule. It is also a variance-preserving formulation, sharing the same
 1190 structure as DDPM but employing a different noise schedule:

$$1192 \quad 1193 \quad \sigma_t = \left(\sqrt{\sigma_0} + \frac{t}{T} (\sqrt{\sigma_T} - \sqrt{\sigma_0}) \right)^2 \\ 1194$$

1195 **Continuous Diffusion Models**

1197 **VP** Variance Preserving (VP) diffusion (Song et al., 2020) is the continuous counterpart of DDPM,
 1198 where the noise is added while preserving variance across timesteps. The sampling process is given
 1199 by:

$$1201 \quad 1202 \quad x_t = e^{-\frac{1}{2} \int_0^t \sigma_s ds} x_0 + \sqrt{1 - e^{-\int_0^t \sigma_s ds}} \epsilon \quad (25)$$

1203 where $t \in [0, 1]$.

1205 **Rectified Flow** Rectified Flow (RF) (Liu et al., 2022; Lipman et al., 2022; Albergo et al., 2023)
 1206 is another continuous-time formulation, where a straight-line interpolation is defined between the
 1207 initial sample x_0 and the Gaussian noise ϵ . The process is described by:

$$1209 \quad 1210 \quad x_t = (1 - t)x_0 + t\epsilon \quad (26)$$

1211 **Prediction Type**

1213 **Noise Prediction (ϵ)** The network predicts the Gaussian noise $\epsilon \sim \mathcal{N}(0, I)$ added to the samples
 1214 during the diffusion process.

1216 **Velocity Prediction (\mathbf{v})** In this formulation, the network predicts the velocity $\mathbf{v}(x_t, t)$, which is
 1217 defined as the derivative of the noisy sample x_t with respect to time. If the noisy sample x_t is defined
 1218 by:

$$1220 \quad 1221 \quad x_t = \alpha_t x_0 + \beta_t \epsilon \quad (27)$$

1222 The velocity is given by:

$$1224 \quad \mathbf{v}(x_t, t) = x'_t = \alpha'_t x_0 + \beta'_t \epsilon \quad (28)$$

1225 where α'_t and β'_t are the derivatives of α_t and β_t with respect to timestep t .

1227 **Score Prediction (\mathbf{s})** The network predicts the score function $\mathbf{s}(x, t) = \nabla \log P(x, t)$, which is
 1228 the gradient of the log-probability density function. The score can be derived as:

$$1230 \quad 1231 \quad \mathbf{s}(x, t) = -\frac{\epsilon}{\beta_t} \quad (29)$$

1233 **Timestep Sampling Schedule**

1235 **Uniform Timestep Schedule** In this schedule, the timestep t is uniformly sampled. For discrete-
 1236 time diffusion models:

$$1238 \quad 1239 \quad t \sim \mathcal{U}(0, 1, 2, \dots, 999) \quad (30)$$

1240 For continuous-time diffusion models:

$$1241 \quad t \sim \mathcal{U}(0, 1) \quad (31)$$

1242 **Logit-Normal (LN) Timestep Schedule** The Logit-Normal (LN) timestep schedule $\pi_{ln}(t; m, s)$,
 1243 proposed in Esser et al. (2024), generates timesteps according to the following distribution:
 1244

$$\pi_{ln}(t; m, s) = \frac{1}{s\sqrt{2\pi}} \cdot \frac{1}{t(1-t)} \exp\left(-\frac{(\text{logit}(t) - m)^2}{2s^2}\right), \quad (32)$$

1248 where $\text{logit}(t) = \log\left(\frac{t}{1-t}\right)$. The LN schedule has two parameters: m and s . It defines an unimodal
 1249 distribution, where m controls the center of the distribution in logit space, shifting the emphasis
 1250 of training samples towards noisier or cleaner regions. The parameter s adjusts the spread of the
 1251 distribution, determining its width. As suggested in Esser et al. (2024), to obtain a timestep, we first
 1252 sample $u \sim \mathcal{N}(m, s)$, and then transform it using the logistic function. For discrete-time diffusion,
 1253 after obtaining $t \sim \pi_{ln}(t; m, s)$, we scale t by $t = \text{round}(t \times 999)$ to obtain a discrete timestep.
 1254 Following Esser et al. (2024), we utilized the parameters $m = 0.0, s = 1.00$ and didn't sweep over
 1255 m and s . More details and visualizations can be found in Esser et al. (2024) Appendix B.4.
 1256

1257 We conducted a series of experiments using different combinations of formulations. Selective com-
 1258 binations are listed in Tab. 5. A ‘-’ indicates that the combination is either not comparable with
 1259 other formulations or that training diverges. We assume that the choice of formulation will not be
 1260 significantly affected by specific model designs or datasets. All experiments were conducted using
 1261 Pixart (Chen et al., 2023), a popular text-to-image diffusion transformer architecture. Specifically,
 1262 we used a small model with 12 layers and a hidden size of 384, setting the patch size to 2. The
 1263 models were trained on JourneyDB (Sun et al., 2024), a medium-sized text-to-image dataset con-
 1264 sisting of synthetic images collected from Midjourney. All models were trained for 400k steps using
 1265 AdamW as the optimizer. As shown in Tab. 5, the optimal combination is [RF, LN, v], achieving
 1266 an FID of **36.336** and a Clip Score of **0.26684**. This combination achieved the best performance on
 1267 both metrics and therefore, we used this setting in the remaining experiments.
 1268

1269 Table 5: Ablation on diffusion formulations.

1270 Noise Schedule	1271 Timestep Schedule	1272 Prediction Type	1273 FID	1274 CLIP Score
1272 DDPM	1273 Uniform	1274 ϵ	1275 40.469	1276 0.26123
1273 DDPM	1274 Uniform	1275 v	1276 74.049	1277 0.23136
1274 DDPM	1275 LN	1276 ϵ	1277 40.100	1278 0.26283
1275 LDM	1276 Uniform	1277 ϵ	1278 39.001	1279 0.26423
1276 LDM	1277 Uniform	1278 v	1279 —	1280 —
1277 LDM	1278 LN	1279 ϵ	1280 38.196	1281 0.26624
1278 VP	1279 Uniform	1280 ϵ	1281 44.343	1282 0.26148
1279 VP	1280 Uniform	1281 v	1282 41.808	1283 0.26320
1280 VP	1281 Uniform	1282 s	1283 45.808	1284 0.25970
1281 VP	1282 LN	1283 ϵ	1284 42.872	1285 0.26354
1282 VP	1283 LN	1284 v	1285 44.107	1286 0.26380
1283 RF	1284 Uniform	1285 v	1286 44.840	1287 0.25682
1284 RF	1285 Uniform	1286 s	1287 —	1288 —
1285 RF	1286 LN	1287 ϵ	1288 36.336	1289 0.26684

1288

H.2 EFFECT OF EMA ON LOSS

 1289

1290 The Exponential Moving Average (EMA) coefficient plays a crucial role in shaping the loss curve
 1291 and affects final outcomes. In EMA, the loss l is updated via $l = (1 - \alpha_{\text{EMA}})l + \alpha_{\text{EMA}}v$, where v is
 1292 the latest loss value. This smoothing mechanism reduces fluctuations in cumulative loss. However,
 1293 during the early stages of training, EMA can overestimate the loss. As shown in Fig. 7, higher EMA
 1294 coefficients lead to elevated loss values compared to actual loss, potentially introducing bias in curve
 1295 fitting and causing inefficient use of compute. From Fig. 7, we observe that $\alpha_{\text{EMA}} = 0.9$ strikes a
 1296 good balance, effectively smoothing the loss while only mildly inflating values early in training.

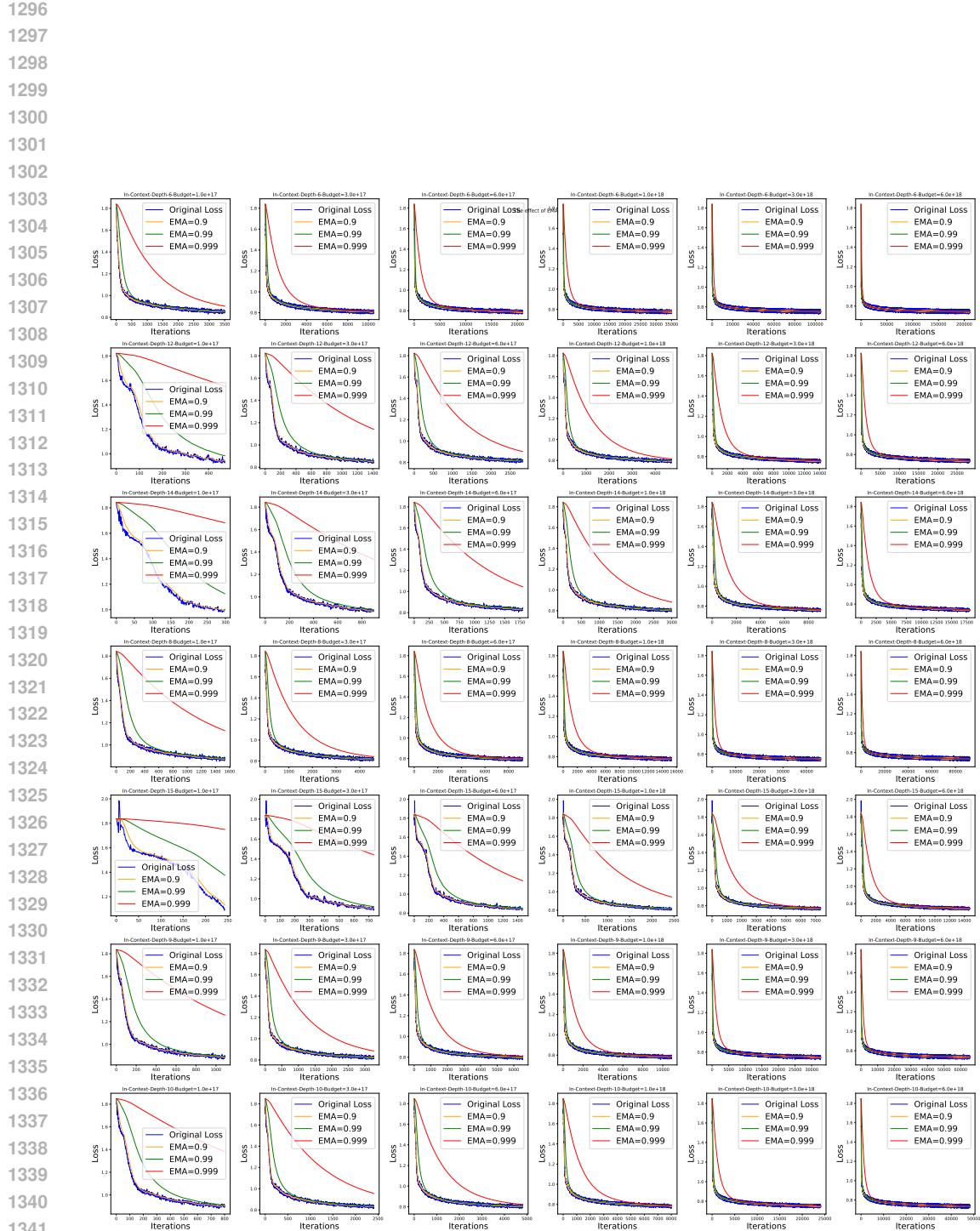


Figure 7: Effect of EMA on loss values.

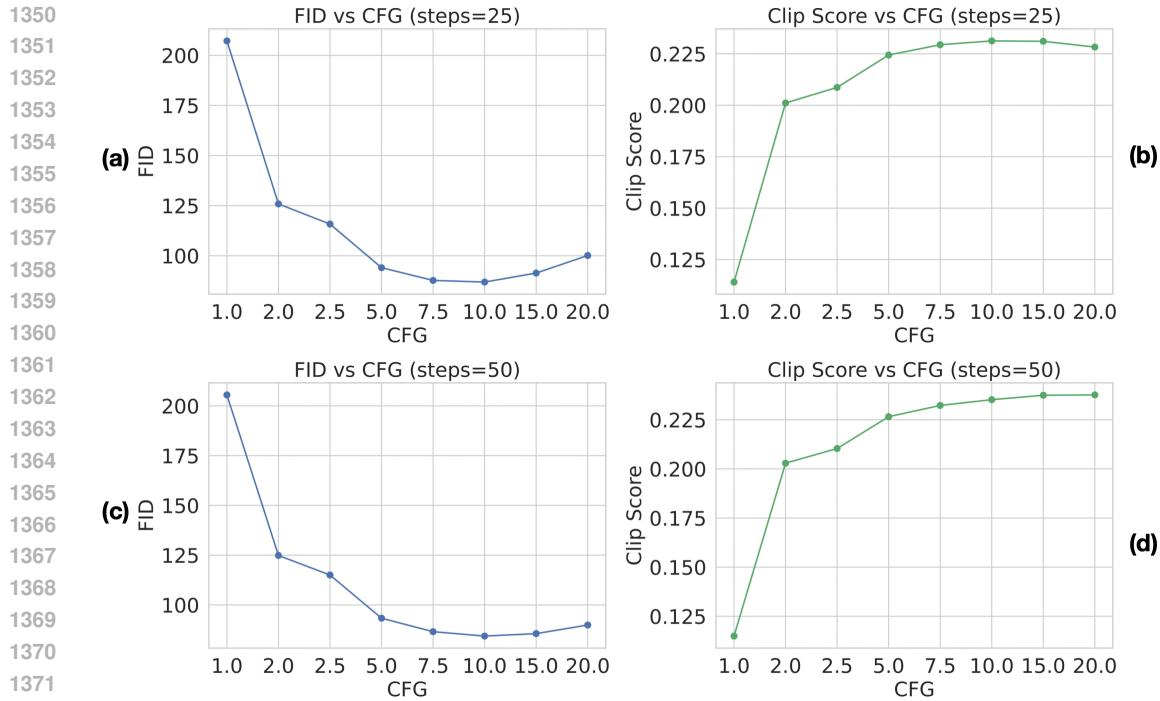


Figure 8: Ablation on sampling steps.

1376 H.3 CLASSIFIER-FREE GUIDANCE & SAMPLING STEPS

1378 We conduct ablation studies on CFG scales and sampling steps using compute-optimal models
 1379 trained with a budget of 6×10^{18} . In Fig. 22, we evaluate various CFG scales (2.5, 5.0, 7.5, 10.0)
 1380 across different step counts and compute the FID. We find that 25 steps suffice for good performance.
 1381 Next, fixing the number of steps to 25, we assess different CFG scales. As shown in Fig. 9, a CFG
 1382 scale of 10.0 yields the best FID and is thus chosen as the default.

1383 Although CFG influences generated results, the linearity of the FID scaling curves remains largely
 1384 invariant to the CFG scale. To demonstrate this, we plot FID scaling curves under various CFG
 1385 settings in Fig. 10. The results confirm that scaling behavior remains linear across all tested CFG
 1386 values.

1388 H.4 EFFECT OF EMA ON MODEL

1390 Maintaining an EMA copy of the model is a common practice in diffusion models, as it often leads to
 1391 improved sample quality. To evaluate its impact, we maintain a model copy with an EMA coefficient
 1392 of 0.99 during training and measure the FID of the EMA versions across different compute budgets.
 1393 As shown in Fig. 11(a), the EMA models also exhibit a power-law scaling trend.

1395 H.5 SCALING LAWS FOR MORE ARCHITECTURES & DATA

1398 We extend our scaling law analysis to additional architectures, including PixArt (Chen et al., 2023)
 1399 and Flux. As shown in Fig. 13(b) and Fig. 12(b), both models exhibit clear linear behavior in
 1400 their loss curves. These results suggest that scaling laws are consistent across different diffusion
 1401 transformer architectures.

1402 We further test the applicability of scaling laws on higher-resolution data. Specifically, we train
 1403 models on 512×512 images using budgets ranging from $1e17$ to $6e18$. The results, presented in
 Fig. 14(b), show clear linear trends, indicating that scaling laws hold regardless of data resolution.

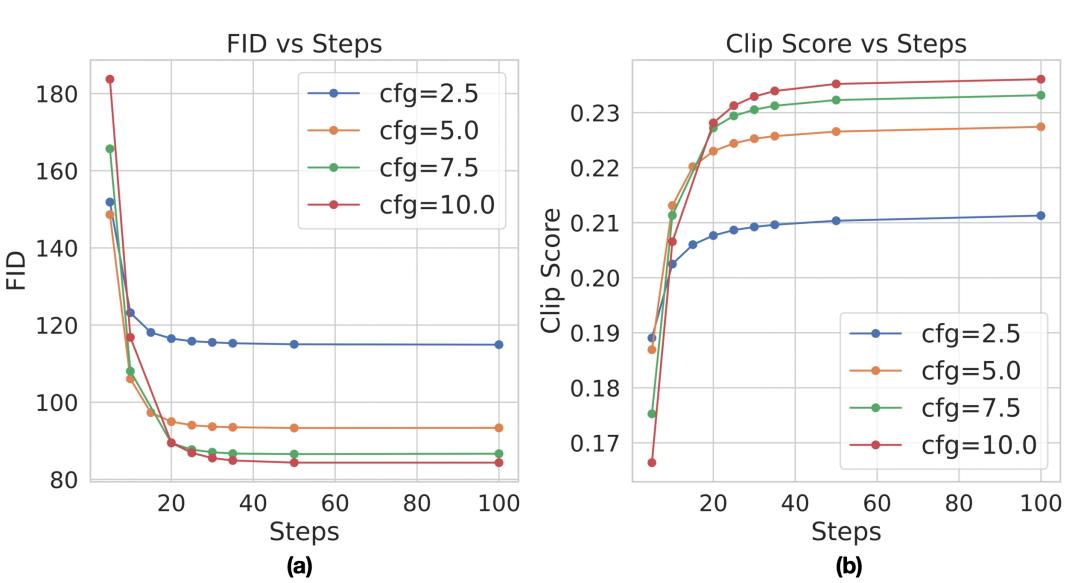


Figure 9: Ablation on CFG scale.

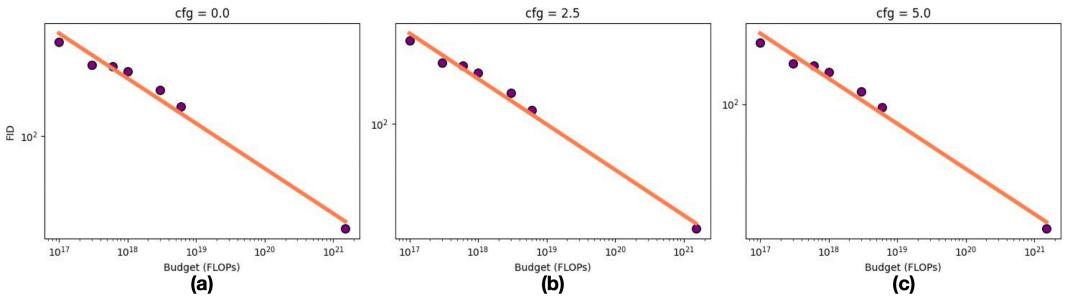


Figure 10: Scaling curves for different CFG scales.

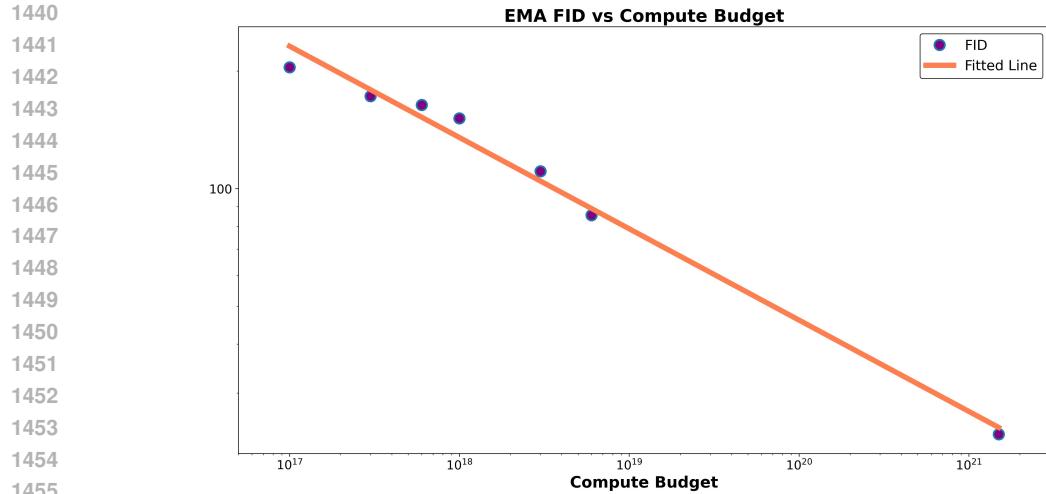


Figure 11: Scaling curves for EMA models.

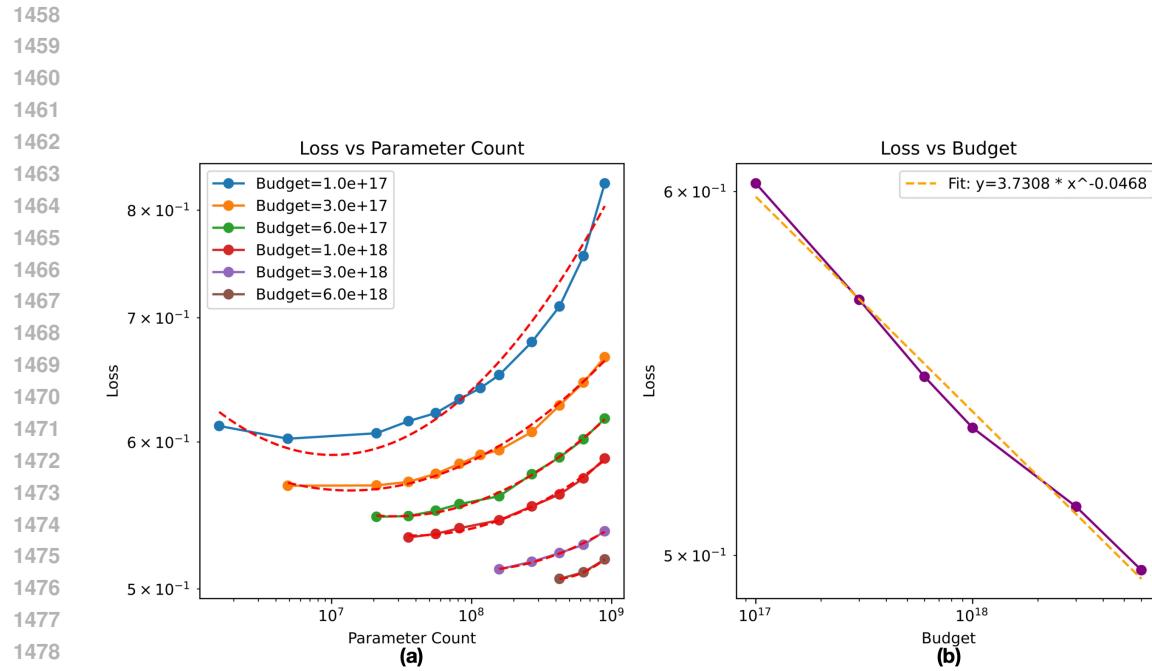


Figure 12: Scaling laws for Flux.

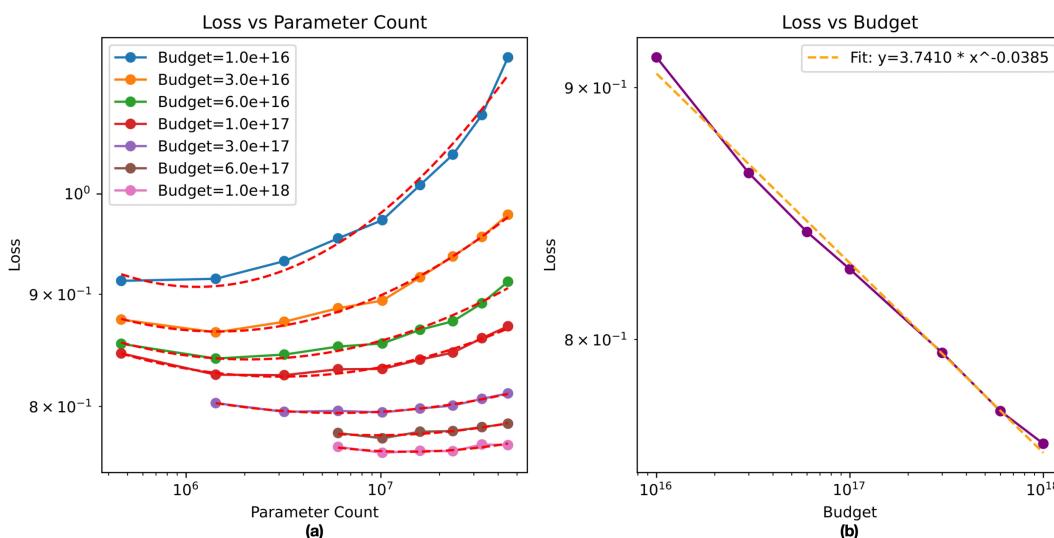


Figure 13: Scaling laws for PixArt.

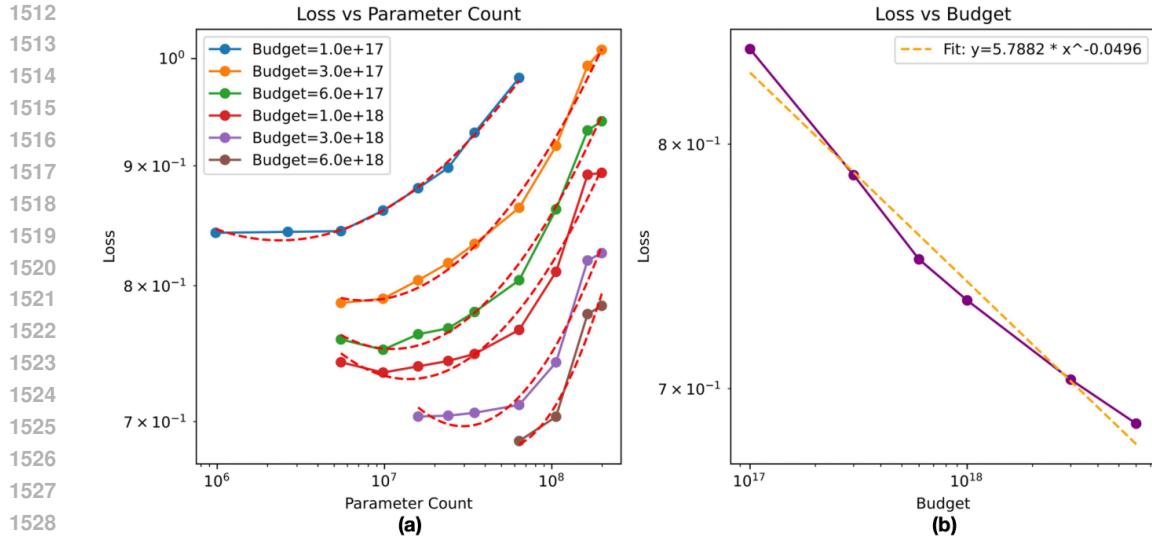


Figure 14: Scaling laws for 512x512 resolution.

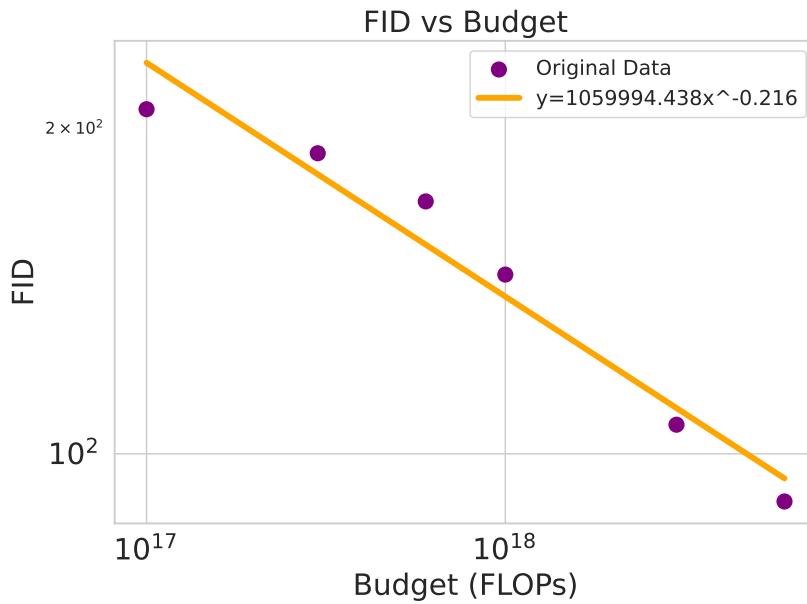


Figure 15: Scaling curves for FID on sparse-captioned dataset.

H.6 DATA ASSESSMENT

To demonstrate how scaling laws can assess data quality, we apply them to a dataset with the same images as our main experiment but using sparse tag captions instead of dense descriptions. As shown in Fig. 15, the FID scaling exponent is -0.216 , whereas the main dataset achieves -0.234 . This indicates that dense captions lead to faster FID improvement, suggesting superior data quality compared to sparse tags.

H.7 TRANSFER RESULTS ON MORE DATASETS

To further validate the generalizability of our scaling laws, we perform transfer experiments on Flickr30k (Plummer et al., 2016) and JourneyDB (Sun et al., 2024), following the same setup as

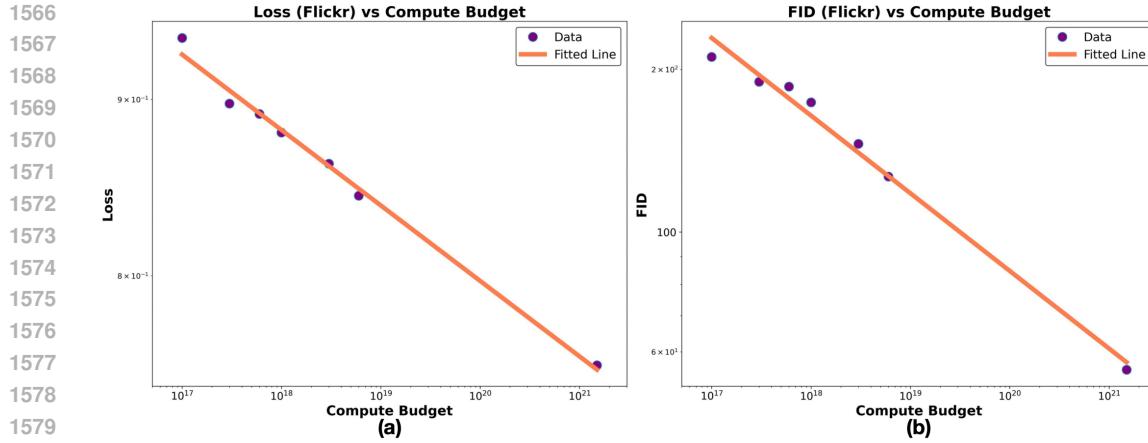


Figure 16: Transfer results of loss and FID on Flickr30k.

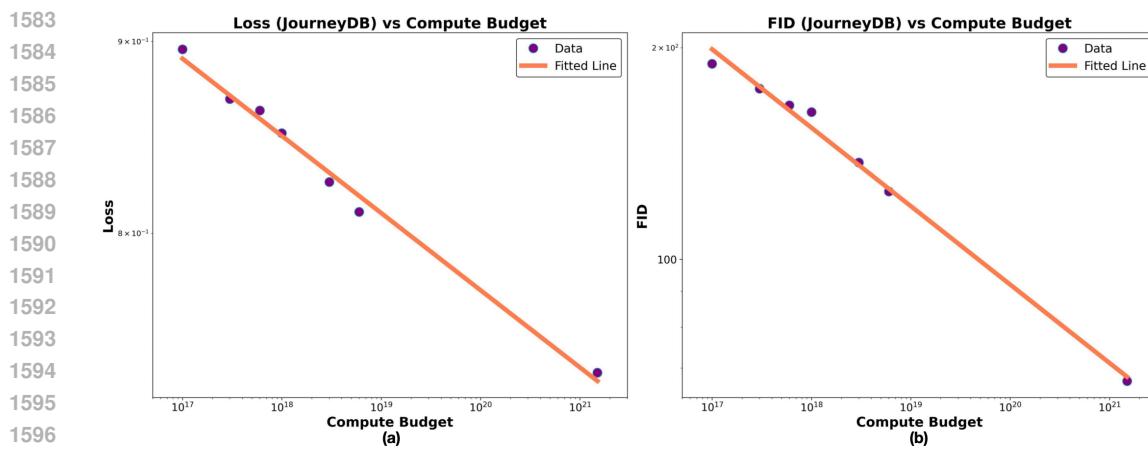


Figure 17: Transfer results of loss and FID on JourneyDB.

with COCO. Models pretrained on our dataset are evaluated on these new domains. As illustrated in Fig. 16 and Fig. 17, both loss and FID maintain clear linear relationships, confirming that our findings transfer well across datasets.

H.8 GENERATED SAMPLES

We provide qualitative results by showcasing generated samples from models trained with increasing compute. Sampling is performed using fixed prompts and seeds. As shown in Fig. 18, sample quality improves with more compute. However, our goal is not to produce state-of-the-art results, but rather to understand scaling behavior in diffusion transformers. Hence, we did not curate high-quality datasets or optimize for SOTA image generation.

H.9 SCALING LAWS ON IMAGENET

While our primary experiments assume data-infinite settings, we also test scaling behavior under data-constrained conditions using ImageNet (Deng et al., 2009). For this, we adopt the model from SiT (Ma et al., 2024a) and vary compute from 2×10^{17} to 6×10^{18} . As shown in Fig. 19(c), the loss curves still follow clear power-law trends, indicating that scaling laws also emerge in finite-data regimes.

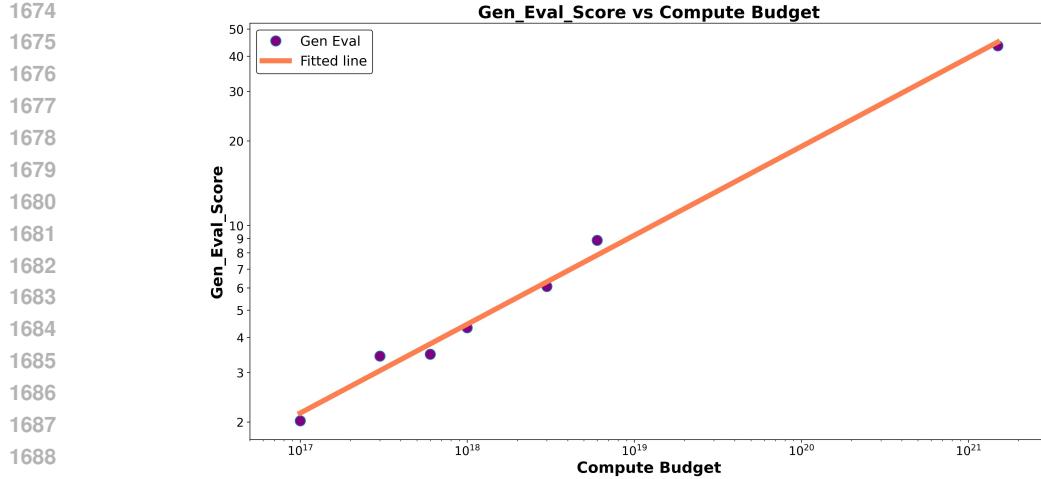


Figure 20: Scaling laws on GenEval benchmark.

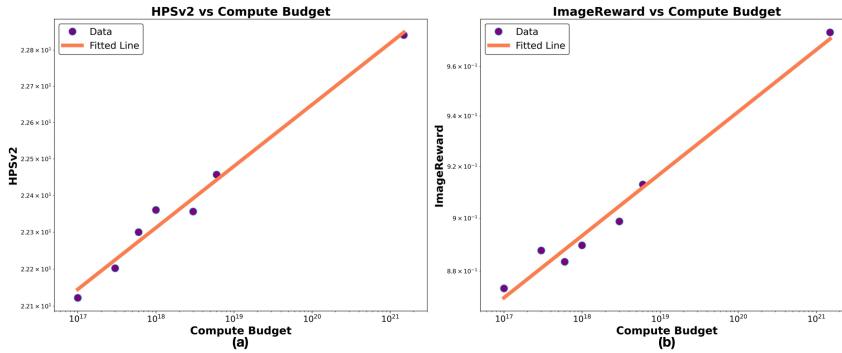


Figure 21: Scaling laws on Human Preference Rewards.

H.10 GENEVAL RESULTS

In addition to traditional metrics like FID and loss, we evaluate models using the GenEval (Ghosh et al., 2023) benchmark, which measures text-image alignment across aspects such as object count, color, and position. For each compute budget, we evaluate the corresponding compute-optimal model. Results are presented in Fig. 20, further supporting the presence of consistent scaling behavior across diverse evaluation metrics.

H.11 HUMAN PREFERENCE RESULTS

We also employ human-preference-based reward models, including HPSv2.1 (Wu et al., 2023) and ImageReward (Xu et al., 2023), to evaluate our models. These benchmarks capture alignment with human preference. Across different compute budgets, the performance measured by these human preference rewards also follows a power-law scaling trend. The results are plotted in Fig. 21.

H.12 SAMPLING STEPS

To study the effect of the sampling schedule on scaling behavior, we additionally vary the number of diffusion sampling steps while fixing the classifier-free guidance scale to 10.0. Specifically, we compare models evaluated with 35 and 50 sampling steps. As shown in Figure 22, changing the number of sampling steps shifts the overall performance, but the resulting points still lie on a clear straight line in log-log space. This indicates that the power-law relationship between compute and generation quality remains intact, and that modifying the sampling steps mainly affects the offset of the scaling curve rather than the existence of the scaling law itself.

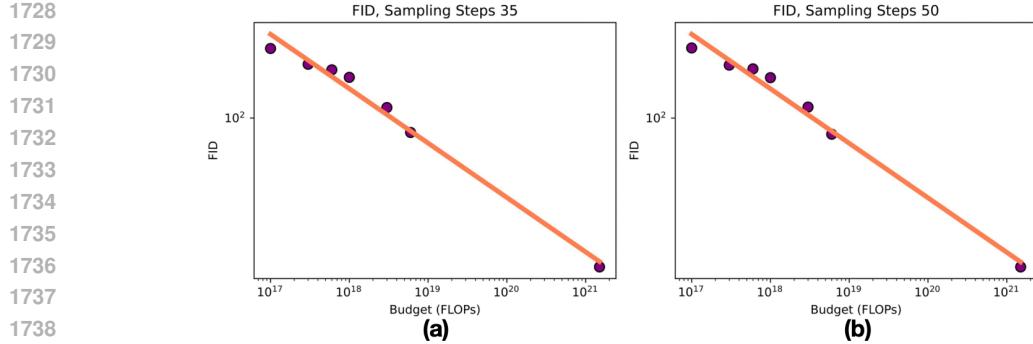


Figure 22: Scaling laws of FID with different sampling steps.

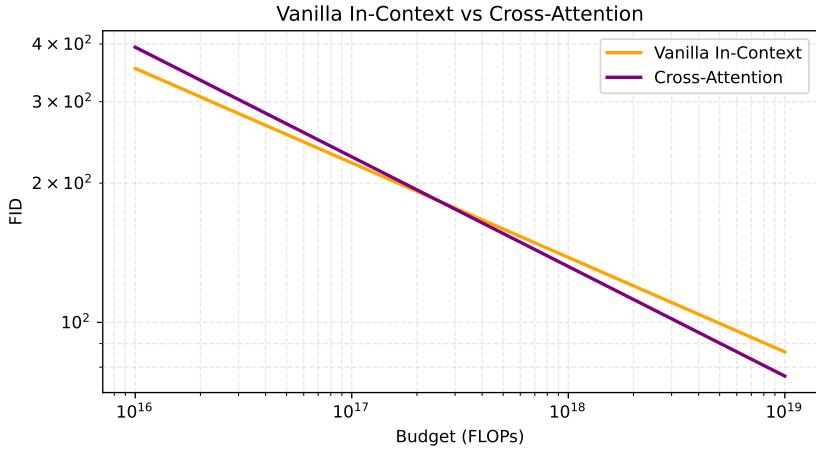


Figure 23: FID results of cross attention vs vanilla in-context.

H.13 FID RESULTS OF CROSS-ATTN VS VANILLA IN-CONTEXT

We provide the FID results of cross attention architecture and vanilla in-context architecture. The result is shown in Fig. 23, the cross attention architecture has more steep slope and shows greater scalability, which is consistent with the loss curve.

I LIMITATIONS AND FUTURE DIRECTIONS

Limited modalities and downstream tasks. Our empirical study focuses exclusively on the text-to-image setting. We do not experiment with additional modalities such as text-to-video or other multi-modal generative tasks. Moreover, our evaluation is restricted to the core generative objective and a small set of aggregate metrics; we do not consider richer downstream applications such as image editing, inpainting, or other task-specific evaluations. As a result, the extent to which the observed scaling laws transfer to these broader modalities and downstream tasks remains an open question.

Compute-limited regime only. All experiments are conducted in a compute-limited regime, where we assume access to sufficiently large datasets and primarily vary the compute budget via model size and training steps. In practice, large-scale training often becomes data-constrained

1782 when scaling up compute, and the effective scaling behavior in such regimes may deviate from
 1783 the laws observed here. In particular, data-constrained settings typically require corrections to stan-
 1784 dard compute-optimal scaling laws to account for finite-data effects. We leave a systematic study of
 1785 scaling behavior and its correction under data-limited regimes to future work.
 1786
 1787

1788 **More accurate hyperparameters.** Our results are obtained using a single, well-tuned set of train-
 1789 ing hyperparameters for each model family, which are reused across different compute budgets.
 1790 While this choice reflects a realistic training protocol, it also means that our scaling laws may not
 1791 reflect fully optimized performance at each operating point. Better or more carefully adapted hy-
 1792 perparameters (e.g., learning rate schedules, regularization strength, or optimization settings) could
 1793 further reduce the variance and systematic bias in the observed scaling curves, thereby improving
 1794 the accuracy of compute-optimal predictions. However, with our current setting, we can already
 1795 reveal the scaling dynamics of diffusion models, and we leave the more accurate hyperparameter as
 1796 an important direction for future research.
 1797

1798 J DISCUSSION: IN-CONTEXT VS. CROSS-ATTENTION TRANSFORMERS 1799

1800 Our main experiments in Sec. 4 indicate that, under our controlled setting, cross-attention transform-
 1801 ers exhibit a more favorable scaling trend with compute compared to the simple in-context baseline
 1802 we study. At the same time, recent text-to-image systems, such as MMDiT-style architectures and
 1803 Flux-like models, report very strong absolute performance with in-context conditioning. This may
 1804 appear to be in tension with our findings.

1805 We emphasize that this apparent discrepancy can arise from many factors beyond the condition-
 1806 ing mechanism itself. Publicly available systems differ not only in whether they use in-context or
 1807 cross-attention conditioning, but also in total compute, data mixture and quality, and overall training
 1808 recipe, all of which strongly affect both performance and observed scaling behavior. In practice,
 1809 models like Flux are among the strongest systems largely because of their full recipe (data + com-
 1810 pute + architecture), rather than solely because in-context conditioning is intrinsically superior to
 1811 cross-attention. Under the same data and compute budget, a carefully tuned cross-attention architec-
 1812 ture could plausibly achieve similar or even better performance. However, such a direct, controlled
 1813 comparison is not currently available in the literature.

1814 Moreover, modern in-context architectures typically incorporate several important improvements
 1815 relative to the simple in-context baseline considered in this work: (i) *Stronger conditioning*: they
 1816 often use multiple CLIP encoders plus a large language model (e.g., T5-XXL) and inject text fea-
 1817 tures into every block via MLPs that modulate attention and FFN layers, leading to much stronger
 1818 conditioning; (ii) *Better timestep conditioning*: instead of encoding timesteps as in-context tokens,
 1819 they employ adaptive LayerNorm-style conditioning, where a timestep embedding is mapped to
 1820 scale/shift/gate parameters that modulate each block, which is empirically more efficient; (iii) *More
 1821 efficient modality interaction*: as in SD3-style designs, text and image tokens may maintain sepa-
 1822 rate parameter sets, with attention used only for cross-modal interaction and text injected primarily
 1823 in earlier blocks, reducing cross-modal compute; (iv) *More advanced architectural and training
 1824 choices*: improved positional encodings, noise/timestep schedules, and other refinements further
 1825 enhance scaling efficiency.

1826 Taken together, these design choices, combined with different data and compute budgets, can explain
 1827 why state-of-the-art in-context models achieve very strong performance in practice, without imply-
 1828 ing a direct, controlled advantage of in-context conditioning over cross-attention in terms of intrinsic
 1829 scalability. Our results should therefore be interpreted as characterizing scaling behavior within a
 1830 simplified and carefully matched setting. Extending this analysis to more advanced in-context and
 1831 cross-attention architectures is an important direction for future work.
 1832
 1833

1834
 1835