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ABSTRACT

Real-time path planning in constrained environments remains a fundamental chal-
lenge for autonomous systems. Traditional classical planners, while effective un-
der perfect perception assumptions, are often sensitive to real-world perception
constraints and rely on online search procedures that incur high computational
costs. In complex surroundings, this renders real-time deployment prohibitive. To
overcome these limitations, we introduce a Deep Reinforcement Learning (DRL)
framework for real-time path planning in parking scenarios. In particular, we fo-
cus on challenging scenes with tight spaces that require a high number of reversal
maneuvers and adjustments. Unlike classical planners, our solution does not re-
quire ideal and structured perception, and in principle, could avoid the need for
additional modules such as localization and tracking, resulting in a simpler and
more practical implementation. Also, at test time, the policy generates actions
through a single forward pass at each step, which is lightweight enough for real-
time deployment. The task is formulated as a sequential decision-making problem
grounded in a bicycle model dynamics, enabling the agent to directly learn naviga-
tion policies that respect vehicle kinematics and environmental constraints in the
closed-loop setting. A new benchmark is developed to support both training and
evaluation, capturing diverse and challenging scenarios. Our approach achieves
state-of-the-art success rates and efficiency, surpassing classical planner baselines
by +96% in success rate and +52% in efficiency. Furthermore, we release our
benchmark as an open-source resource for the community to foster future research
in autonomous systems.

1 INTRODUCTION

Classical path planners, such as Hybrid A* (Dolgov et al., 2008), have long been widely used in
autonomous systems to compute feasible trajectories. Given precise and complete perception ob-
servations, these methods can generate near-optimal1 paths for tasks such as autonomous parking.
However, in real-world scenarios, perception is inherently uncertain and often occluded in tight
spaces, leading to brittle plans. For instance, as shown in Figure 1, paths computed under partial
observability may result in unavoidable collisions. Moreover, classical planners do not retain prior
knowledge beyond simple heuristics, causing them to repeatedly search for solutions online. This
introduces significant risk of exceeding onboard computational limits, particularly in complex sur-
roundings. Finally, the integration of classical planners into a full autonomy stack requires additional
modules—such as localization and path tracking—that themselves introduce uncertainty and com-
pounding errors across the system. These limitations motivate us to explore alternative approaches
for solving the path planning task in constrained environments.

Recent advances in machine learning have inspired AI-based solutions for path planning (Jiang et al.,
2023; Lazzaroni et al., 2023; Chi et al., 2023; Yang et al., 2024; Zheng et al., 2025). Broadly, these
approaches can be categorized into open-loop and closed-loop training paradigms. Open-loop meth-
ods, such as supervised imitation learning (Ahn et al., 2022), are simple to implement but prone to
distribution shift, limiting their generalizability to unseen scenarios. They also do not explicitly en-

1In principle, Hybrid A* can recover the globally optimal path if allowed sufficient search time. However,
in practice it is often combined with heuristic shortcuts such as Reeds-Shepp curves to accelerate search, which
yields a solution but not truly the optimal one.
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(a) Dead-end parking (b) Corridor parking

Figure 1: Non-optimal paths generated by the Hybrid A* planner in constrained parking environ-
ments. The start pose is denoted by magenta rounded rectangles, and the target pose by cyan rounded
rectangles. Planned paths are shown in blue, with shaded gray regions indicating the space occupied
by the vehicle along its intermediate poses. Due to partial observability, the current solutions for
both cases are likely to result in collisions (obstacles are denoted by solid red lines).

force that predicted paths are dynamically feasible and trackable, particularly for challenging park-
ing maneuvers. Closed-loop training, by contrast, directly accounts for sequential decision-making
and vehicle feedback, thereby improving robustness and generalization. Yet, closed-loop learning
for constrained path planning remains underexplored, especially in the autonomous driving field,
largely due to (1) the absence of a standardized benchmark that reflects the tight spatial conditions
encountered in practice, and (2) the challenge of designing RL pipelines, where the reward function
and training strategy must be carefully tuned.

In this work, we propose a Reinforcement Learning-based planner to address the limitations of both
classical and existing AI-driven approaches. In particular, we formulate path planning as a sequen-
tial decision-making problem under a bicycle model dynamics, enabling the planner to explicitly
respect kinematic constraints. We develop our own RL training strategy with curriculum learning
and balance effective exploration with precise vehicle control by adopting an action-chunking mech-
anism (Li et al., 2025). To support both training and evaluation, we construct a benchmark, named
as ParkBench, tailored to constrained scenarios and build a simulation environment that leverages
this benchmark for closed-loop interactions. Our approach achieves the state-of-the-art performance
on the proposed benchmark, significantly surpassing classical planner baselines in a large margin.

Overall, our key contributions are summarized below:

• We formulate the path planning problem as a reinforcement learning task grounded in a
bicycle model dynamics, and provide a detailed design methodology.

• We propose an action chunking wrapper as a mechanism to reconcile accurate movement
control with effective RL exploration.

• We achieve state-of-the-art results on constrained path planning and release our benchmark,
ParkBench, as an open-source dataset to foster future research in this direction.

2 RELATED WORKS

2.1 CLASSICAL PATH PLANNERS

Classical planners form the foundation of autonomous navigation and parking systems. Among
them, Hybrid A* is one of the most widely adopted algorithms, combining grid-based search with
continuous state interpolation to ensure feasible trajectories under vehicle kinematics. In principle,
Hybrid A* can recover the optimal path with sufficient search time, but in practice, it is accel-
erated through heuristic shortcuts such as Reeds-Shepp curves (Reeds & Shepp, 1990), yielding
near-optimal solutions that are computationally tractable. In our work, we adopt a publicly available
Hybrid A* implementation2 (Sakai et al., 2018) as a strong baseline, ensuring a fair comparison
between reinforcement learning-based and classical planning approaches.

2https://github.com/AtsushiSakai/PythonRobotics/tree/master/PathPlanning/HybridAStar.
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2.2 AI-BASED PLANNING APPROACHES

Recent years have seen growing interest in leveraging learning-based methods for path planning.
For instance, VAD (Jiang et al., 2023) predicts a sequence of future waypoints conditioned on scene
context, achieving good performance on the nuScenes benchmark (Caesar et al., 2020). However, its
training follows the open-loop paradigm and thus suffers from covariate shift, where compounding
errors lead to distribution drift at test time, and they cannot guarantee dynamically trackable paths in
complex maneuvers such as parking. Another family of supervised approaches leverages diffusion
models for trajectory generation. Examples such as Diffusion Policy (Chi et al., 2023) demonstrate
strong generative capabilities, but generated paths must be explicitly constrained to ensure tracka-
bility, and they require large-scale expert demonstrations for training.

In contrast, closed-loop reinforcement learning (RL) approaches train agents through trial-and-error
interactions in simulated environments, directly accounting for sequential decision-making. While
promising, existing RL studies (Lazzaroni et al., 2023; Al-Mousa et al., 2025) on parking remain
limited by overly simplified environments and do not address the tight constrained spaces that char-
acterize realistic parking scenarios. This gap highlights the need for more challenging benchmarks
and robust learning methods that can generalize beyond toy settings.

Deep reinforcement learning (DRL) has been widely explored in mobile robot navigation (Zhu &
Zhang, 2021). However, these works are not directly applicable to the parking task we study in this
work. Most navigation methods (Pérez-D’Arpino et al., 2021; Ruan et al., 2019; Xu et al., 2022;
Akmandor et al., 2022) assume differential-drive robots with highly flexible motion capabilities,
whereas parking requires vehicle modeling governed by nonholonomic constraints such as the bicy-
cle or the Ackermann-steering models. These kinematic models restrict maneuverability. A related
study uses an RC-car platform and combines model-free and model-based RL for indoor naviga-
tion (Kahn et al., 2018). Despite these efforts, navigation goals are typically treated as waypoints
without enforcing precise final orientation, while parking requires exact terminal conditions. To the
best of our knowledge, few learning-based methods jointly consider these constraints, motivating
the development of our RL-based parking planner.

2.3 COMBINING CLASSICAL AND LEARNING-BASED METHODS

Another active line of research integrates classical planners with machine learning techniques to
combine the strengths of both paradigms. Recent works (e.g., (Shan et al., 2023; Jiang et al., 2025))
use learned models to guide search, accelerate tree expansion, or provide better heuristics for clas-
sical planners. These hybrid approaches hold promise for balancing efficiency and generalizability.
However, such methods remain outside the scope of this work, as our focus is on demonstrating the
viability of a purely reinforcement learning-based planner in constrained path planning scenarios.
We view the integration of RL with classical heuristics as a valuable direction for future research.

2.4 PARKING EVALUATION BENCHMARK

To the best of the authors’ knowledge, there are few practical benchmarks available for evaluating
path planners, particularly in constrained parking scenarios. Among the limited existing attempts,
the E2E Parking benchmark (Yang et al., 2024) leveraged CARLA (Dosovitskiy et al., 2017) to
create a parking simulation environment, but its task setting is restricted to rear-in perpendicular
parking in wide open spaces. Another notable effort is the TPCAP benchmark (Li et al., 2022),
designed for an autonomous parking competition and consisting of 20 parking challenge cases.
However, TPCAP represents obstacles as solid shapes and focuses solely on planning, which makes
its formulation incompatible with existing autonomous driving pipelines. Moreover, the scenarios
in TPCAP are overly simplified and not representative of realistic real-world conditions.

3 METHODOLOGY

In this section, we present a reinforcement learning (RL) framework for path planning in constrained
parking scenarios, designed as a drop-in replacement for the Hybrid A* module in the autonomous
driving pipeline. This design choice ensures compatibility with existing autonomy stacks and en-
ables a fair comparison against a strong classical baseline as well. Our methodology is organized
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into five components. We first formulate the parking problem as a sequential decision-making task
under vehicle kinematics. Next, we describe the input representation, which mirrors Hybrid A* to
maintain pipeline consistency, along with our strategy to address the resulting training challenges.
We then introduce our benchmark and simulation environment, followed by detailed training objec-
tive and reward design. Finally, we introduce a plug-in action-chunking mechanism that balances
exploration efficiency with maneuver precision.

(a) One example of the non-feasible initial
pose (blocked by a wall).
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(b) Initial poses generated by our rollout
method for scenario (a).

Figure 2: Challenges in spawning ego initial poses in the sparse obstacle representation environment
and our rollout solution. Arrows in (b) represent the heading directions, respectively.

3.1 PROBLEM FORMULATION

We formulate the constrained path planning task as a sequential decision-making problem. The
vehicle state is defined as (x, y, θ, δ), representing the 2D position of the rear-axle center, the
heading angle, and the front wheel steering angle, respectively. The environment provides obsta-
cle information in the form of contour points’ 2D coordinates, such as in lidar scans, of the type
(xobs,1, yobs,1, ..., xobs,N , yobs,N ), where N is the maximum number of obstacle points consid-
ered. A target parking pose (xgoal, ygoal, θgoal) is also provided. Here, all the coordinates are
expressed in world frame.

At each iteration, the simulator updates the pose of the vehicle by executing the selected 1-step
control action through a kinematic bicycle model (Rajamani, 2006), a common abstraction for au-
tonomous driving applications. This ensures that the learned policy respects nonholonomic con-
straints. The control space is discrete, and consists of two components (∆s, △δ):

1. displacement along longitudinal axis ∆s ∈ {+ds, −ds, 0}, representing forward, back-
ward, or no motion with distance ds > 0 in meters,

2. front wheel steering change△δ ∈ {+dδ, −dδ, 0}, representing left, right, or no change in
radians. When the vehicle does not move, left and right steering changes are possible.

The ego state is therefore updated via the discrete-space bicycle model as:

xk+1 = xk +∆sk · cos(θk),

yk+1 = yk +∆sk · sin(θk),

θk+1 = θk +∆s/WB · tan(δk),

δk = δk−1 +∆δk,

(1)

where WB denotes the vehicle wheelbase in meters and subscript k denotes the iteration. Iteratively
applying these updates will produce the complete planned path (waypoint sequence).

The planning objective is to generate a feasible action sequence that drives the vehicle from its initial
state to the target parking pose without collisions, while make sure the derived path is reasonable
(we will quantify the quality of the path in subsection 3.4).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 INPUT REPRESENTATION

To ensure fairness in comparison and maintain pipeline consistency, we design the input to our RL
planner to match the information used by the Hybrid A* baseline. Specifically, the input includes
the ego’s current pose, the target pose, and obstacle contour features extracted from the environment.
While this ensures comparability, it also introduces additional challenges for RL: unlike Hybrid A*,
the RL training process must handle diverse ego initializations, and the sparse obstacle representa-
tion (given as obstacle contours) makes certain spawn positions particularly problematic. The key
issue is that collision and feasibility checks cannot be reliably performed for the initial pose using
only sparse contours, which can result in infeasible configurations such as the ego starting outside a
wall or in positions with no valid path into the parking space (as shown in Figure 2a).

To address this challenge, we employ a roll-out function that gradually drives the ego away from the
target pose using the bicycle model, with perturbations added to the heading for diversity. This pro-
cedure guarantees that the sampled initial poses are feasible, effectively reducing variance in training
and improving convergence. An illustration of the sampled initial poses is shown in Figure 2b.

Env
Observation 

obstacle
feature 

ego
feature 

target
feature

MLP
encoder

MLP
encoder

MLP
encoder

mask

Q

K

V

Cross
Attention
module

concat
MLP

Latent
feature

Feature extractor module

Figure 3: Our feature extractor architecture for vectorized environment observations.

The sparse contour representation of obstacles originates from the design of the existing pipeline,
where Hybrid A* performs collision checks during its search from a given feasible starting pose to
the target parking spot. Since Hybrid A* only requires obstacle boundaries for this purpose, obsta-
cles are encoded as contours rather than dense occupancy maps or volumetric representations. To
process this observation space effectively for the RL planner, we propose a feature extractor (Fig-
ure 3) that employs cross-attention to force the ego to attend to obstacle information. All coordinates
are transformed into the ego-centric coordinate system at each time step (such that the ego is always
located at the origin) and normalized before being passed to the feature extractor. We also impose
a finite horizon range on the input to mimic the sensing limits of a perception module. This de-
sign choice makes the setting more realistic for deployment and could, in future work, help reduce
reliance on additional downstream modules such as localization and path tracking, since the RL
agent directly outputs control commands. It may also provide robustness to perception noise in the
first frame and open the door to handling dynamic obstacles (e.g., moving vehicles or pedestrians).
While these aspects are beyond the scope of this work, our input design highlights the potential
of RL-based planners to integrate seamlessly into more complex real-world scenarios. It is worth
mentioning that our feature extractor is intentionally lightweight to ensure feasibility for real-time,
on-device deployment, which is a key requirement of practical parking systems.

3.3 BENCHMARK AND SIMULATION ENVIRONMENT

The missing of proper benchmarks for parking evaluation motivate the development of our bench-
mark, ParkBench, which is specifically tailored to constrained parking scenarios. Each scenario
specifies the ego’s initial pose, the target pose, and the positions of obstacles (contours) that define
tight maneuvering spaces. Our current ParkBench includes 51 set of scenario layouts (all extracted
from real-world dataset) for rear-in parking tasks, ranging from narrow aisles to occluded corner
spots, reflecting the challenges of real-world parking. Detailed layouts are provided in Appendix G.
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Based on this benchmark, we build a simulation environment that follows the Gym interface, ensur-
ing compatibility with standard RL libraries. The environment is initialized by loading one of the
benchmark scenarios, after which the RL agent can interact with it and evolve through sequential
actions (see Figure 4 for an overview of our closed-loop method). Our simulator design is similar in
spirit to (Scheel et al., 2022), which was developed for closed-loop training in autonomous driving.
Note here, the environment state updates are computed under the bicycle model with the simplifying
assumption that no dynamic obstacles are present, i.e., only static obstacles are considered.

ParkBench

Curriculum
Level 

Selection

initialize
env

Simulator

State

Action

Action 
Chunking 
Wrapper

St+h

at:t+h 

St

Closed-loop simulation
X T

Path
waypoints extraction

Figure 4: Overview of our closed-loop path generation method. The simulator is initialized with a
realistic parking scenario, and the environment is iteratively updated based on the RL policy. This
framework enables both training the policy and extracting planned paths during inference.

3.4 RL TRAINING WITH CURRICULUM LEARNING

Once the simulator is available, we can train the RL policy by interacting with the environment in a
closed-loop manner. We adopt Stable Baselines3 (SB3) (Raffin et al., 2021) as the training frame-
work and use Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the base algorithm.

The key to successful RL training lies in the design of the reward function. However, designing
dense rewards for parking tasks is challenging, and ill-defined reward functions often lead to un-
intended behaviors. To address this, we adopt a sparse reward formulation instead. The reward
function consists of the following components:

• Goal achievement: a positive reward is given if the ego reaches the target pose within
tolerance.

• Collision penalty: a negative reward is applied if the ego collides with any obstacle con-
tour.

• Out-of-bounds penalty: a negative reward if it moves too far away from the valid maneu-
vering space.

• Idle penalty: a small negative reward to discourage the agent from remaining idle.

• Direction-change penalty: a small negative reward to penalize gear changes (switching
between forward and backward) for smooth paths.

• Time penalty: a small negative reward applied at each step to incentivize faster completion.

Of course, sparse rewards will make it difficult for an RL agent to learn, especially in complicated
tasks. To make training more effective, we integrate this sparse reward design with curriculum
learning (Florensa et al., 2017) by gradually increasing scenario difficulty: starting from initial
poses close to the target, then progressively moving further away from the target plus heading angle
perturbation (refer Figure 2b). This progression helps the agent first acquire basic maneuvering skills
before tackling the full complexity of constrained parking tasks. It also reduces unsafe or wasteful
exploration: early stages restrict initial conditions to feasible neighborhoods (near the target with
small heading perturbations), keeping rollouts within valid free space and mitigating collisions and
feasibility violations. As the difficulty increases, the agent gradually expands its coverage while
retaining a learned prior over valid configurations.
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Table 1: Comparison on ParkBench. Best results are marked in bold. “CL” denotes whether cur-
riculum learning is used, and “Chunking” denotes whether action chunking is used. PPO with
curriculum training but without action chunking exhibits a large number of pivot points due to os-
cillatory behavior, which motivated the introduction of action chunking.

Method CL Chunking Succ. (%) ↑ Time (s) ↓ Dist. (m) ↓ Pivot Points ↓
Hybrid A* ✗ ✗ 47.1 0.42 22.3 3.2
PPO (Ours) ✓ ✗ 62.7 0.72 21.7 53.4

PPO (Ours) ✓ ✓ 92.2 0.20 19.2 4.3

With this sparse reward design and curriculum learning strategy, policies can be trained end-to-end
within our simulation environment, producing agents capable of executing collision-free parking
maneuvers in tightly constrained spaces.

3.5 ACTION CHUNKING FOR EFFICIENT LEARNING

The default setting for RL algorithms is to select and execute one primitive action at a time. How-
ever, this setting is not well suited to parking tasks in constrained spaces. Training RL agents in such
environments requires balancing the trade-off between exploration efficiency and precise movement
control. Fine-grained primitive actions (e.g., small steering adjustments) enable accurate maneuver-
ing but make exploration highly inefficient due to long horizons. Conversely, coarse actions improve
exploration efficiency but reduce maneuver precision, often leading to collisions.

To address this challenge, we adopt an action chunking mechanism, inspired by a recent work on Q-
chunking (Li et al., 2025). In our formulation, a chunk corresponds to a short sequence of low-level
control commands executed as a single macro-action. This reduces the effective planning horizon
while preserving sufficient control fidelity, enabling efficient exploration without sacrificing maneu-
ver precision. Different from the Q-chunking work, which introduces a modified Q-value function
Q(st, at:t+h) where h denotes the chunk length, and is therefore restricted to Q-learning–based
methods, our formulation is more general. In particular, our action chunking mechanism is imple-
mented as an environment wrapper, allowing it to be seamlessly applied to any RL algorithm without
modifying the underlying training objective. The pseudocode for our training pipeline is show in
Appendix F (Algorithm 1).

4 EXPERIMENTS

In this section, we will evaluate our training methodology on the ParkBench benchmark and com-
pare it with both the classical and standard RL baselines.

4.1 EVALUATION SETUP

We first train our RL approach with action chunking (h = 4) as well as the standard RL baseline
following the same training strategy described in 3.4. The detailed reward values and curriculum
learning stages are provided as follows:

Reward values: The reward function is defined as:

r = Rg · 1goal +Rc · 1collision +Rout · 1out of bounds +Rgear · 1direction change +Ridle · 1idle +Rtime, (2)

where Rg = 3, Rc = −3, Rout = −3, Rgear = −0.01, Ridle = −0.2, Rtime = −0.01, and we use
1condition to denote the indicator of the condition is reached, which equals 1 when condition holds
and 0 otherwise. The tolerance for reaching the target pose is set as 0.2 meter (with respect to the
geometric center) and ±3 degrees in heading difference.

Curriculum learning stages: In this work, we define a multi-stage curriculum learning process. In
particular, we set up 8 stages for the complete training iterations, the first 7 stages are illustrated in
Figure 5 and the last stage uses the logged initial poses for the learning agent.

7
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Figure 5: First seven stages in the curriculum learning. Stage 1 and 2 directly inherit the heading
angle from rollout results. For other stages, the ego heading is reset to a collision-free angle sampled
from the stage-specific range. All seven stages, the lateral offset is taken from the corresponding
rollout result.

We evaluate our method on the ParkBench using the original logged ego pose as the starting point
for each scenario, ensuring consistency across different planners. To assess performance, we report
four key metrics: (1) Success rate: the fraction of cases where the ego successfully reaches the target
pose within a tolerance on position and orientation; (2) Planning time: the average computation
time required to generate a feasible trajectory; (3)Travel distance: the total path length of the
executed trajectory, measuring efficiency; and (4) Pivot points: the number of direction changes
(forward ↔ backward) in the trajectory, reflecting maneuver smoothness. These metrics jointly
capture robustness, efficiency, and practicality of the planner in constrained parking scenarios.

(a) One intermediate step in Figure 7(a). (b) One intermediate step in Figure 7(d).

Figure 6: Examples of attention maps for one single decision-making step, respectively, in ego
frame. We highlight the top 20 attention weights over the obstacle points.

4.2 RESULTS COMPARE

We compare our method against the Hybrid A* baseline on ParkBench. In addition to our full
model, we also report a variant that uses PPO with curriculum learning but without action chunking
to isolate the effect of chunking. Both learning methods start from the same logged ego poses as
Hybrid A*. Results are summarized in Table 1. All evaluations are conducted on the same laptop
with CPU Intel 12th Gen Core i5-1245U, Python 3.9, PyTorch 2.6.0, SB3 2.2.1. No GPU usage.

Our RL planner outperforms Hybrid A* across nearly all metrics, achieving higher success rates,
substantially lower planning time, shorter paths, and comparable pivot counts, indicating smooth and

8
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more efficient maneuvers in constrained settings. For clarity, Table 1 reports the classical baseline,
PPO+Curriculum, and our full model (+Action Chunking). We omit plain PPO and PPO+Action-
Chunking in Table 1 because, without curriculum learning, both variants fail to acquire the
parking behavior and achieve nearly zero success. We also implemented standard SAC, DQN,
DDPG, and other popular off-the-shelf RL algorithms (Andrychowicz et al., 2017). Without the
proposed action-chunking wrapper, these methods achieve near-zero success rates. Therefore, we
excluded them from the table for clarity.

4.3 QUALITATIVE RESULTS

Figure 7 shows some representative success cases from the parking scenarios in ParkBench. The
examples demonstrate that our RL policy can generate human-like paths and is capable of conduct-
ing long-horizon planning. We also visualize the attention maps from the feature extractor module
to verify that the model can correctly identifies the obstacles most critical for planning at a given
time frame. The plots in Figure 6 show that, at the current ego pose, the agent appropriately attends
to the relevant obstacles.

(a) Smooth path for a long-range scenario (b) Smooth path a short-range scenario

(c) Path for a corridor parking scenario (d) Path for a tight space scenario

Figure 7: Representative planned paths generated in different parking scenarios. Panels (a) and (b)
show smooth paths from the ego vehicle’s start pose (magenta) to the target pose (cyan), avoiding
obstacles (red). Panels (c) and (d) illustrate highly constrained cases where the planner introduces
multiple pivot points, resulting in non-optimal but collision-free paths.

4.4 REAL-VEHICLE DEPLOYMENT

Since our RL-based planner is designed with the goal of replacing the classical planner in the current
pipeline, deployment on a real vehicle is straightforward. We first export the trained RL checkpoint
to a compact C++ inference module (via ONNX) and integrate it into the onboard planning stack.
At runtime, the RL planner receives the target pose from the user along with obstacle information
from the perception system, and generates a collision-free reference path in the ego frame. This path
is then tracked by a standard controller, which produces steering and velocity commands consistent
with vehicle-dynamics and comfort constraints, enabling seamless execution of the learned policy

9
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on the real vehicle. The deployment was conducted on our in-house test platform using the trained
policy. The demonstration videos currently remain internal due to organizational policy, but we will
be able to share more details in a future release.

4.5 LIMITATIONS

Through extensive evaluation across diverse rear-in parking scenarios to assess the generalization
capability of the learned policy, we identify two main limitations.

(1) Degraded performance in open/empty spaces. While the planner performs well in tightly
constrained environments (remains 90%+), its success rate drops in sparsely constrained scenes.
We hypothesize the cause: empty-space scenarios were underrepresented during training. Future
work include augmenting observations with free-space/clearance features and incorporating empty-
space cases into the curriculum.

(2) Manually specified curriculum. The present eight-stage curriculum is hand-crafted for rear-in
parking and does not transfer cleanly to other maneuvers (e.g., parallel parking), limiting scalability
and parallelization of training. Future work include exploring automatic curricula to broaden the
task coverage.

5 CONCLUSION

In this paper, we presented an RL framework for path planning in constrained parking spaces. We in-
troduced ParkBench, a benchmark tailored to diverse and realistic parking scenarios, and designed
a training methodology that integrates a plug-in action chunking wrapper with curriculum learning.
Our approach achieves state-of-the-art performance, outperforming a classical Hybrid A* baseline
by a significant margin. We open-sourced all layouts, vehicle parameters, and our RL training
methodology to encourage broader community adoption and improvement. Our goal is to provide a
standardized reference framework that others can build upon, refine, and potentially surpass.

For future work, we plan to expand ParkBench with additional scenarios to cover a broader range of
parking maneuvers, including head-in and parallel parking. We also want to improve the scalability
of our RL training methodology by developing an automatic curriculum learning scheme.
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APPENDIX

A USAGE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used ChatGPT-5, a large language model, for
grammar and language editing. However, all content was subsequently reviewed and revised by the
authors for correctness, and the authors take full responsibility for the final manuscript.

B VEHICLE AND BICYCLE-MODEL PARAMETERS

In this work, we use the bicycle model to update the environment. The detailed parameters for the
bicycle model are listed below (Table 2):

Name Symbol Value Unit / Notes

Wheelbase WB 3.0 m
Vehicle width W 2.0 m
Vehicle length L 4.95 m
Rear overhang (rear center → bumper) LB 1.025 m
Front overhang (rear center → front bumper) LF 3.925 m
Max steering angle δmax 32◦ deg

Table 2: Physical and geometric parameters used by the kinematic bicycle model. The vehicle
reference frame is the rear-axle center at the origin, +x forward, +y to the left.

Due to the tight space in the parking scenarios, we adopt a precise polygon footprint for collision
check instead of a plain rectangle. The polygon is constructed by cropping each corner of the
rectangle by a longitudinal offset cropl and a lateral offset cropw. The resulting eight-vertex polygon
is defined in the vehicle frame (rear-axle center at the origin, +x forward, +y left):

polygon =



−LB + cropl −W/2
LF − cropl −W/2

LF −W/2 + cropw
LF W/2− cropw

LF − cropl W/2
−LB + cropl W/2
−LB W/2− cropw
−LB −W/2 + cropw


,

where cropl = 0.3 m and cropw = 0.2 m.

C RL ALGORITHM SETTINGS

The following table (Table 3) summarizes the hyperparameter settings used in our RL train-
ing. The maximum episode length varies across curriculum stages. Specifically, we set it to
[100, 200, 400, 400, 800, 800, 800, 1000] for the 8 stages, respectively. All other parameters not
listed are kept at their default values.
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Parameter Value
Training batch size 256
Batch size per GPU 1024
Num. PPO epochs 10
Discount factor γ 1.0
Max. episode length depends on the training stage
Initial LR α(0) 3× 10−4

LR schedule Constant
Entropy coefficient 0.001
GPU usage during inference Not used

Table 3: RL algorithm settings and hyperparameters used during training.

D ENVIRONMENT ACTION SPACE

In our environment design, we use a discrete action space (shown in Table 4) parameterized by
the steering increment ∆δ and a signed speed v. In our environment, ∆δ ∈ {−8, 0, 8} and
v ∈ {−0.8, 0, 0.8}. The eight actions listed below are derived from statistics of motion primi-
tives generated by our classical planner; this choice yields smooth curvature changes and reliable
tracking under a pure-pursuit controller. We exclude the idle (0, 0) action to avoid no-operation
steps.

Table 4: Discrete action space used in all RL experiments. Each action is a primitive (∆δ, v) with
steering increment ∆δ in degrees and longitudinal speed v in m/s. Time step is 0.1s.

Index ∆δ [deg] v [m/s] Description

0 −8 +0.8 Turn right, forward
1 0 +0.8 Straight, forward
2 +8 +0.8 Turn left, forward
3 −8 −0.8 Turn right, reverse
4 0 −0.8 Straight, reverse
5 +8 −0.8 Turn left, reverse
6 −8 0 Pre-steer right (no translation)
7 +8 0 Pre-steer left (no translation)

E HYBRID A* HYPERPARAMETERS

We adopt the public available path planning repository as mentioned in section 2.1. To accelerate
path searching, we exclude obstacle points located more than 25 meters from the ego’s initial po-
sition. The bicycle model follows the same configuration as our simulation environment, with a
wheelbase of 3.0 m, a width of 2.0 m, a length of 4.95 m, and a maximum steering angle of 32◦.
Table 5 shows the ablation study we conducted on the hyperparameters of Hybrid A*. We report the
best-performing configuration in the paper.

F RL ALGORITHM

Pseudocode: integrating curriculum learning and an action-chunking wrapper with the PPO algo-
rithm. Shown in Algorithm 1.

14
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Heuristic ∆x, y (m) ∆θ Motion res. (m) #Steer Success (%) Time (s) Dist. (m) Pivots

Default values†

0.1 8◦ 1.0 9 37.3 3.64 23.1 3.6
0.32 8◦ 1.0 9 41.2 0.41 22.8 4.1
0.5 8◦ 1.0 9 47.1 0.74 23.4 3.7
0.5 8◦ 0.5 9 45.1 0.64 24.3 3.7
0.5 8◦ 2.0 9 29.4 0.70 25.9 1.7
0.5 5◦ 1.0 20 47.1 0.42 22.3 3.2
1.0 5◦ 1.0 20 41.2 0.96 23.8 1.7

New values‡

0.1 8◦ 1.0 9 35.3 5.29 20.0 3.6
0.32 8◦ 1.0 9 41.2 0.53 19.8 4.1
0.5 8◦ 1.0 9 43.1 0.69 19.3 3.9
0.5 8◦ 2.0 9 29.4 0.82 24.8 1.8
0.5 8◦ 0.5 9 43.1 0.5 19.9 3.6

Table 5: Ablation study on Hybrid A* hyperparameters.

Notes. †The default values correspond to the existing heuristics in the public repository. ‡The new values
correspond to our new experiments. Specifically, we set the switch-back penalty cost to 2.0, the backward
penalty cost to 1.3, the steering angle penalty cost to 0.2, the steering change penalty cost to 0.1, and the
heuristic cost to 1.0.

Algorithm 1 Training RL Planner with Action Chunking and Curriculum Learning

Require: Benchmark B, simulator Env, policy πθ, chunk length h, curriculum scheduler C, PPO
optimizer, total steps N

1: Initialize rollout buffer D ← ∅, policy params θ
2: for iteration = 1, 2, . . . do
3: Select curriculum level c← C(iteration)
4: step← 0
5: while step < N do
6: Sample scenario (g,O) ∼ B ▷ g: target pose, O: obstacle contours
7: Rollout init: p0 ← ROLLOUTFROMTARGET(g,O, c) ▷ p0: ego initial pose
8: Reset env: Env.RESET(g,O, p0)
9: state: s0 ← EgoCentric(p0, g0, O0) ▷ coordinate transform, normalization, range clip

10: done← False
11: while not done do
12: Chunked action: at:t+h ∼ πθ(st) ▷ at:t+h encodes h primitive steps
13: R← 0
14: for k = 0 to h− 1 do ▷ Action chunk wrapper executes h low-level steps
15: (pt+k+1, gt+k+1, Ot+k+1, r, done)← Env.STEP(primitive(at+k))
16: R← R+ r; s← EgoCentric(pt+k+1, gt+k+1, Ot+k+1)
17: if done then break
18: end if
19: end for
20: Store transition

(
st, at, R, s, done

)
into D

21: st+1 ← s
22: if D is full then
23: UPDATEPOLICYPPO(πθ,D);
24: D ← ∅
25: end if
26: end while
27: end while
28: end for
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G LAYOUTS IN PARKBENCH

All 51 ParkBench parking-scenario layouts (17×3 grid):
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Figure 8: All 51 parking cases in the ParkBench benchmark, arranged in 17×3 grids across three
pages. The magenta rectangle denotes the initial ego pose, while the cyan rectangle indicates the
target pose. Obstacles are shown in red. The planned paths generated by our AI planner are illus-
trated in blue. The planner succeeds in 47 out of 51 scenarios, failing in 4 cases.
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