

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADAPTING REINFORCEMENT LEARNING FOR PATH PLANNING IN CONSTRAINED PARKING SCENARIOS

Anonymous authors

Paper under double-blind review

ABSTRACT

Real-time path planning in constrained environments remains a fundamental challenge for autonomous systems. Traditional classical planners, while effective under perfect perception assumptions, are often sensitive to real-world perception constraints and rely on online search procedures that incur high computational costs. In complex surroundings, this renders real-time deployment prohibitive. To overcome these limitations, we introduce a Deep Reinforcement Learning (DRL) framework for real-time path planning in parking scenarios. In particular, we focus on challenging scenes with tight spaces that require a high number of reversal maneuvers and adjustments. Unlike classical planners, our solution does not require ideal and structured perception, and in principle, could avoid the need for additional modules such as localization and tracking, resulting in a simpler and more practical implementation. Also, at test time, the policy generates actions through a single forward pass at each step, which is lightweight enough for real-time deployment. The task is formulated as a sequential decision-making problem grounded in a bicycle model dynamics, enabling the agent to directly learn navigation policies that respect vehicle kinematics and environmental constraints in the closed-loop setting. A new benchmark is developed to support both training and evaluation, capturing diverse and challenging scenarios. Our approach achieves state-of-the-art success rates and efficiency, surpassing classical planner baselines by **+96%** in success rate and **+52%** in efficiency. Furthermore, we release our benchmark as an open-source resource for the community to foster future research in autonomous systems.

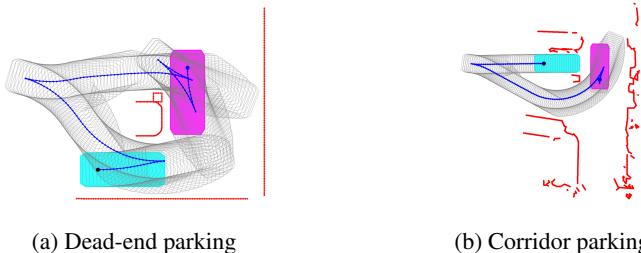
1 INTRODUCTION

Classical path planners, such as Hybrid A* (Dolgov et al., 2008), have long been widely used in autonomous systems to compute feasible trajectories. Given precise and complete perception observations, these methods can generate near-optimal¹ paths for tasks such as autonomous parking. However, in real-world scenarios, perception is inherently uncertain and often occluded in tight spaces, leading to brittle plans. For instance, as shown in Figure 1, paths computed under partial observability may result in unavoidable collisions. Moreover, classical planners do not retain prior knowledge beyond simple heuristics, causing them to repeatedly search for solutions online. This introduces significant risk of exceeding onboard computational limits, particularly in complex surroundings. Finally, the integration of classical planners into a full autonomy stack requires additional modules—such as localization and path tracking—that themselves introduce uncertainty and compounding errors across the system. These limitations motivate us to explore alternative approaches for solving the path planning task in constrained environments.

Recent advances in machine learning have inspired AI-based solutions for path planning (Jiang et al., 2023; Lazzaroni et al., 2023; Chi et al., 2023; Yang et al., 2024; Zheng et al., 2025). Broadly, these approaches can be categorized into open-loop and closed-loop training paradigms. Open-loop methods, such as supervised imitation learning (Ahn et al., 2022), are simple to implement but prone to distribution shift, limiting their generalizability to unseen scenarios. They also do not explicitly en-

¹In principle, Hybrid A* can recover the globally optimal path if allowed sufficient search time. However, in practice it is often combined with heuristic shortcuts such as Reeds-Shepp curves to accelerate search, which yields a solution but not truly the optimal one.

054
055
056
057
058
059
060
061
062



063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Non-optimal paths generated by the Hybrid A* planner in constrained parking environments. The start pose is denoted by magenta rounded rectangles, and the target pose by cyan rounded rectangles. Planned paths are shown in blue, with shaded gray regions indicating the space occupied by the vehicle along its intermediate poses. Due to partial observability, the current solutions for both cases are likely to result in collisions (obstacles are denoted by solid red lines).

force that predicted paths are dynamically feasible and trackable, particularly for challenging parking maneuvers. Closed-loop training, by contrast, directly accounts for sequential decision-making and vehicle feedback, thereby improving robustness and generalization. Yet, closed-loop learning for constrained path planning remains underexplored, **especially in the autonomous driving field**, largely due to (1) the absence of a standardized benchmark that reflects the tight spatial conditions encountered in practice, and (2) the challenge of designing RL pipelines, where the reward function and training strategy must be carefully tuned.

In this work, we propose a Reinforcement Learning-based planner to address the limitations of both classical and existing AI-driven approaches. In particular, we formulate path planning as a sequential decision-making problem under a bicycle model dynamics, enabling the planner to explicitly respect kinematic constraints. We develop our own RL training strategy with curriculum learning and balance effective exploration with precise vehicle control by adopting an action-chunking mechanism (Li et al., 2025). To support both training and evaluation, we construct a benchmark, named as **ParkBench**, tailored to constrained scenarios and build a simulation environment that leverages this benchmark for closed-loop interactions. Our approach achieves the state-of-the-art performance on the proposed benchmark, significantly surpassing classical planner baselines in a large margin.

Overall, our key contributions are summarized below:

- We formulate the path planning problem as a reinforcement learning task grounded in a bicycle model dynamics, and provide a detailed design methodology.
- We propose an action chunking wrapper as a mechanism to reconcile accurate movement control with effective RL exploration.
- We achieve state-of-the-art results on constrained path planning and release our benchmark, **ParkBench**, as an open-source dataset to foster future research in this direction.

2 RELATED WORKS

2.1 CLASSICAL PATH PLANNERS

Classical planners form the foundation of autonomous navigation and parking systems. Among them, Hybrid A* is one of the most widely adopted algorithms, combining grid-based search with continuous state interpolation to ensure feasible trajectories under vehicle kinematics. In principle, Hybrid A* can recover the optimal path with sufficient search time, but in practice, it is accelerated through heuristic shortcuts such as Reeds-Shepp curves (Reeds & Shepp, 1990), yielding near-optimal solutions that are computationally tractable. In our work, we adopt a publicly available Hybrid A* implementation² (Sakai et al., 2018) as a strong baseline, ensuring a fair comparison between reinforcement learning-based and classical planning approaches.

²<https://github.com/AtsushiSakai/PythonRobotics/tree/master/PathPlanning/HybridAStar>.

108
109

2.2 AI-BASED PLANNING APPROACHES

110 Recent years have seen growing interest in leveraging learning-based methods for path planning.
 111 For instance, VAD (Jiang et al., 2023) predicts a sequence of future waypoints conditioned on scene
 112 context, achieving good performance on the nuScenes benchmark (Caesar et al., 2020). However, its
 113 training follows the open-loop paradigm and thus suffers from covariate shift, where compounding
 114 errors lead to distribution drift at test time, and they cannot guarantee dynamically trackable paths in
 115 complex maneuvers such as parking. Another family of supervised approaches leverages diffusion
 116 models for trajectory generation. Examples such as Diffusion Policy (Chi et al., 2023) demonstrate
 117 strong generative capabilities, but generated paths must be explicitly constrained to ensure tracka-
 118 bility, and they require large-scale expert demonstrations for training.
 119

120 In contrast, closed-loop reinforcement learning (RL) approaches train agents through trial-and-error
 121 interactions in simulated environments, directly accounting for sequential decision-making. While
 122 promising, existing RL studies (Lazzaroni et al., 2023; Al-Mousa et al., 2025) on parking remain
 123 limited by overly simplified environments and do not address the tight constrained spaces that char-
 124 acterize realistic parking scenarios. This gap highlights the need for more challenging benchmarks
 125 and robust learning methods that can generalize beyond toy settings.
 126

127 **Deep reinforcement learning (DRL) has been widely explored in mobile robot navigation (Zhu &**
 128 **Zhang, 2021). However, these works are not directly applicable to the parking task we study in this**
 129 **work. Most navigation methods (Pérez-D’Arpino et al., 2021; Ruan et al., 2019; Xu et al., 2022;**
 130 **Akmandor et al., 2022) assume differential-drive robots with highly flexible motion capabilities,**
 131 **whereas parking requires vehicle modeling governed by nonholonomic constraints such as the bicy-
 132 **cle or the Ackermann-steering models. These kinematic models restrict maneuverability. A related**
 133 **study uses an RC-car platform and combines model-free and model-based RL for indoor naviga-
 134 **tion (Kahn et al., 2018). Despite these efforts, navigation goals are typically treated as waypoints**
 135 **without enforcing precise final orientation, while parking requires exact terminal conditions. To the**
 136 **best of our knowledge, few learning-based methods jointly consider these constraints, motivating**
 137 **the development of our RL-based parking planner.******

138

2.3 COMBINING CLASSICAL AND LEARNING-BASED METHODS

139

140 Another active line of research integrates classical planners with machine learning techniques to
 141 combine the strengths of both paradigms. Recent works (e.g., (Shan et al., 2023; Jiang et al., 2025))
 142 use learned models to guide search, accelerate tree expansion, or provide better heuristics for clas-
 143 sical planners. These hybrid approaches hold promise for balancing efficiency and generalizability.
 144 However, such methods remain outside the scope of this work, as our focus is on demonstrating the
 145 viability of a purely reinforcement learning-based planner in constrained path planning scenarios.
 146 We view the integration of RL with classical heuristics as a valuable direction for future research.

147

2.4 PARKING EVALUATION BENCHMARK

148

149 To the best of the authors’ knowledge, there are few practical benchmarks available for evaluating
 150 path planners, particularly in constrained parking scenarios. Among the limited existing attempts,
 151 the E2E Parking benchmark (Yang et al., 2024) leveraged CARLA (Dosovitskiy et al., 2017) to
 152 create a parking simulation environment, but its task setting is restricted to rear-in perpendicular
 153 parking in wide open spaces. Another notable effort is the TPCAP benchmark (Li et al., 2022),
 154 designed for an autonomous parking competition and consisting of 20 parking challenge cases.
 155 However, TPCAP represents obstacles as solid shapes and focuses solely on planning, which makes
 156 its formulation incompatible with existing autonomous driving pipelines. Moreover, the scenarios
 157 in TPCAP are overly simplified and not representative of realistic real-world conditions.

158

3 METHODOLOGY

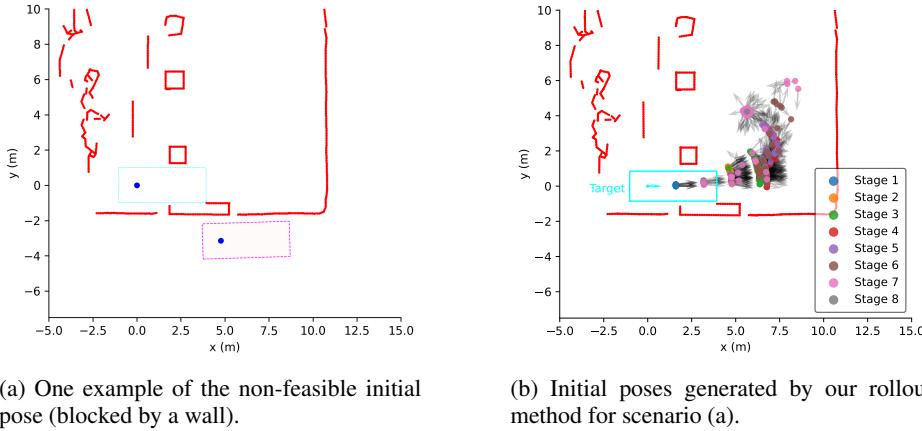
159

160

161

162 In this section, we present a reinforcement learning (RL) framework for path planning in constrained
 163 parking scenarios, designed as a drop-in replacement for the Hybrid A* module in the autonomous
 164 driving pipeline. This design choice ensures compatibility with existing autonomy stacks and en-
 165 ables a fair comparison against a strong classical baseline as well. Our methodology is organized

162 into five components. We first formulate the parking problem as a sequential decision-making task
 163 under vehicle kinematics. Next, we describe the input representation, which mirrors Hybrid A* to
 164 maintain pipeline consistency, along with our strategy to address the resulting training challenges.
 165 We then introduce our benchmark and simulation environment, followed by detailed training objec-
 166 tive and reward design. Finally, we introduce a plug-in action-chunking mechanism that balances
 167 exploration efficiency with maneuver precision.



180 Figure 2: Challenges in spawning ego initial poses in the sparse obstacle representation environment
 181 and our rollout solution. Arrows in (b) represent the heading directions, respectively.
 182

186 3.1 PROBLEM FORMULATION

188 We formulate the constrained path planning task as a sequential decision-making problem. The
 189 vehicle state is defined as (x, y, θ, δ) , representing the 2D position of the rear-axle center, the
 190 heading angle, and the front wheel steering angle, respectively. The environment provides obsta-
 191 cle information in the form of contour points' 2D coordinates, such as in lidar scans, of the type
 192 $(x^{obs,1}, y^{obs,1}, \dots, x^{obs,N}, y^{obs,N})$, where N is the maximum number of obstacle points consid-
 193 ered. A target parking pose $(x^{goal}, y^{goal}, \theta^{goal})$ is also provided. Here, all the coordinates are
 194 expressed in world frame.

195 At each iteration, the simulator updates the pose of the vehicle by executing the selected 1-step
 196 control action through a kinematic bicycle model (Rajamani, 2006), a common abstraction for
 197 autonomous driving applications. This ensures that the learned policy respects nonholonomic con-
 198 straints. The control space is discrete, and consists of two components (Δs , $\Delta \delta$):

- 200 1. displacement along longitudinal axis $\Delta s \in \{+ds, -ds, 0\}$, representing forward, back-
 201 ward, or no motion with distance $ds > 0$ in meters,
- 202 2. front wheel steering change $\Delta \delta \in \{+d\delta, -d\delta, 0\}$, representing left, right, or no change in
 203 radians. When the vehicle does not move, left and right steering changes are possible.

204 The ego state is therefore updated via the discrete-space bicycle model as:

$$\begin{aligned}
 x_{k+1} &= x_k + \Delta s_k \cdot \cos(\theta_k), \\
 y_{k+1} &= y_k + \Delta s_k \cdot \sin(\theta_k), \\
 \theta_{k+1} &= \theta_k + \Delta s / W_B \cdot \tan(\delta_k), \\
 \delta_k &= \delta_{k-1} + \Delta \delta_k,
 \end{aligned} \tag{1}$$

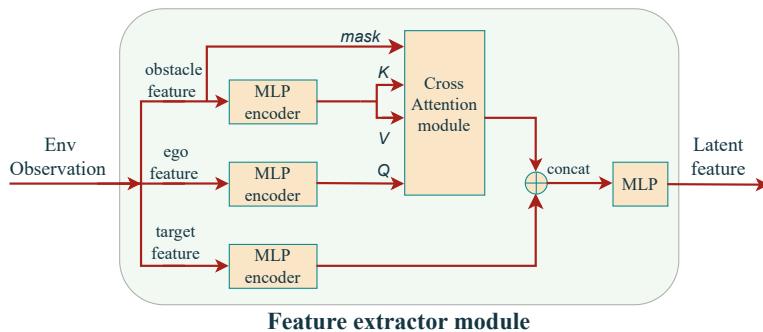
212 where W_B denotes the vehicle wheelbase in meters and subscript k denotes the iteration. Iteratively
 213 applying these updates will produce the complete planned path (waypoint sequence).

214 The planning objective is to generate a feasible action sequence that drives the vehicle from its initial
 215 state to the target parking pose without collisions, while make sure the derived path is reasonable
 (we will quantify the quality of the path in subsection 3.4).

216 3.2 INPUT REPRESENTATION
217

218 To ensure fairness in comparison and maintain pipeline consistency, we design the input to our RL
219 planner to match the information used by the Hybrid A* baseline. Specifically, the input includes
220 the ego’s current pose, the target pose, and obstacle contour features extracted from the environment.
221 While this ensures comparability, it also introduces additional challenges for RL: unlike Hybrid A*,
222 the RL training process must handle diverse ego initializations, and the sparse obstacle representation
223 (given as obstacle contours) makes certain spawn positions particularly problematic. The key
224 issue is that collision and feasibility checks cannot be reliably performed for the initial pose using
225 only sparse contours, which can result in infeasible configurations such as the ego starting outside a
226 wall or in positions with no valid path into the parking space (as shown in Figure 2a).

227 To address this challenge, we employ a roll-out function that gradually drives the ego away from the
228 target pose using the bicycle model, with perturbations added to the heading for diversity. This pro-
229 cedure guarantees that the sampled initial poses are feasible, effectively reducing variance in training
230 and improving convergence. An illustration of the sampled initial poses is shown in Figure 2b.



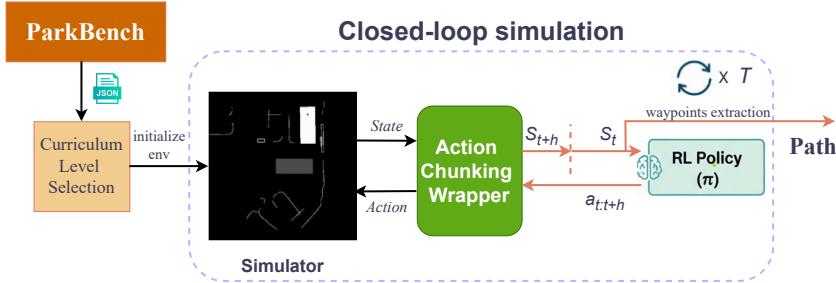
244 Figure 3: Our feature extractor architecture for vectorized environment observations.
245
246

247 The sparse contour representation of obstacles originates from the design of the existing pipeline,
248 where Hybrid A* performs collision checks during its search from a given feasible starting pose to
249 the target parking spot. Since Hybrid A* only requires obstacle boundaries for this purpose, obsta-
250 cles are encoded as contours rather than dense occupancy maps or volumetric representations. To
251 process this observation space effectively for the RL planner, we propose a feature extractor (Figure
252 3) that employs cross-attention to force the ego to attend to obstacle information. All coordinates
253 are transformed into the ego-centric coordinate system at each time step (such that the ego is always
254 located at the origin) and normalized before being passed to the feature extractor. We also impose
255 a finite horizon range on the input to mimic the sensing limits of a perception module. This de-
256 sign choice makes the setting more realistic for deployment and could, in future work, help reduce
257 reliance on additional downstream modules such as localization and path tracking, since the RL
258 agent directly outputs control commands. It may also provide robustness to perception noise in the
259 first frame and open the door to handling dynamic obstacles (e.g., moving vehicles or pedestrians).
260 While these aspects are beyond the scope of this work, our input design highlights the potential
261 of RL-based planners to integrate seamlessly into more complex real-world scenarios. **It is worth
262 mentioning that our feature extractor is intentionally lightweight to ensure feasibility for real-time,
263 on-device deployment, which is a key requirement of practical parking systems.**

263 3.3 BENCHMARK AND SIMULATION ENVIRONMENT
264

265 The missing of proper benchmarks for parking evaluation motivate the development of our bench-
266 mark, **ParkBench**, which is specifically tailored to constrained parking scenarios. Each scenario
267 specifies the ego’s initial pose, the target pose, and the positions of obstacles (contours) that define
268 tight maneuvering spaces. Our current **ParkBench** includes 51 set of scenario layouts (all extracted
269 from real-world dataset) for rear-in parking tasks, ranging from narrow aisles to occluded corner
spots, reflecting the challenges of real-world parking. Detailed layouts are provided in Appendix G.

270 Based on this benchmark, we build a simulation environment that follows the Gym interface, ensuring
 271 compatibility with standard RL libraries. The environment is initialized by loading one of the
 272 benchmark scenarios, after which the RL agent can interact with it and evolve through sequential
 273 actions (see Figure 4 for an overview of our closed-loop method). Our simulator design is similar in
 274 spirit to (Scheel et al., 2022), which was developed for closed-loop training in autonomous driving.
 275 Note here, the environment state updates are computed under the bicycle model with the simplifying
 276 assumption that no dynamic obstacles are present, *i.e.*, only static obstacles are considered.



288 Figure 4: Overview of our closed-loop path generation method. The simulator is initialized with a
 289 realistic parking scenario, and the environment is iteratively updated based on the RL policy. This
 290 framework enables both training the policy and extracting planned paths during inference.

293 3.4 RL TRAINING WITH CURRICULUM LEARNING

295 Once the simulator is available, we can train the RL policy by interacting with the environment in a
 296 closed-loop manner. We adopt Stable Baselines3 (SB3) (Raffin et al., 2021) as the training frame-
 297 work and use Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the base algorithm.

298 The key to successful RL training lies in the design of the reward function. However, designing
 299 dense rewards for parking tasks is challenging, and ill-defined reward functions often lead to un-
 300 intended behaviors. To address this, we adopt a sparse reward formulation instead. The reward
 301 function consists of the following components:

- 303 • **Goal achievement:** a positive reward is given if the ego reaches the target pose within
 304 tolerance.
- 305 • **Collision penalty:** a negative reward is applied if the ego collides with any obstacle con-
 306 tour.
- 307 • **Out-of-bounds penalty:** a negative reward if it moves too far away from the valid manue-
 308 vering space.
- 309 • **Idle penalty:** a small negative reward to discourage the agent from remaining idle.
- 310 • **Direction-change penalty:** a small negative reward to penalize gear changes (switching
 311 between forward and backward) for smooth paths.
- 312 • **Time penalty:** a small negative reward applied at each step to incentivize faster completion.

315 Of course, sparse rewards will make it difficult for an RL agent to learn, especially in complicated
 316 tasks. To make training more effective, we integrate this sparse reward design with curriculum
 317 learning (Florensa et al., 2017) by gradually increasing scenario difficulty: starting from initial
 318 poses close to the target, then progressively moving further away from the target plus heading angle
 319 perturbation (refer Figure 2b). This progression helps the agent first acquire basic maneuvering skills
 320 before tackling the full complexity of constrained parking tasks. It also reduces unsafe or wasteful
 321 exploration: early stages restrict initial conditions to feasible neighborhoods (near the target with
 322 small heading perturbations), keeping rollouts within valid free space and mitigating collisions and
 323 feasibility violations. As the difficulty increases, the agent gradually expands its coverage while
 retaining a learned prior over valid configurations.

324
 325 Table 1: Comparison on ParkBench. Best results are marked in **bold**. “CL” denotes whether cur-
 326 riculum learning is used, and “Chunking” denotes whether action chunking is used. PPO with
 327 curriculum training but without action chunking exhibits a large number of pivot points due to os-
 328 cillatory behavior, which motivated the introduction of action chunking.

Method	CL	Chunking	Succ. (%) \uparrow	Time (s) \downarrow	Dist. (m) \downarrow	Pivot Points \downarrow
Hybrid A*	\times	\times	47.1	0.42	22.3	3.2
PPO (Ours)	\checkmark	\times	62.7	0.72	21.7	53.4
PPO (Ours)	\checkmark	\checkmark	92.2	0.20	19.2	4.3

334
 335 With this sparse reward design and curriculum learning strategy, policies can be trained end-to-end
 336 within our simulation environment, producing agents capable of executing collision-free parking
 337 maneuvers in tightly constrained spaces.

339 3.5 ACTION CHUNKING FOR EFFICIENT LEARNING

341 The default setting for RL algorithms is to select and execute one primitive action at a time. How-
 342 ever, this setting is not well suited to parking tasks in constrained spaces. Training RL agents in such
 343 environments requires balancing the trade-off between exploration efficiency and precise movement
 344 control. Fine-grained primitive actions (*e.g.*, small steering adjustments) enable accurate maneuver-
 345 ing but make exploration highly inefficient due to long horizons. Conversely, coarse actions improve
 346 exploration efficiency but reduce maneuver precision, often leading to collisions.

347 To address this challenge, we adopt an action chunking mechanism, inspired by a recent work on Q-
 348 chunking (Li et al., 2025). In our formulation, a chunk corresponds to a short sequence of low-level
 349 control commands executed as a single macro-action. This reduces the effective planning horizon
 350 while preserving sufficient control fidelity, enabling efficient exploration without sacrificing maneuver
 351 precision. Different from the Q-chunking work, which introduces a modified Q-value function
 352 $Q(s_t, a_{t:t+h})$ where h denotes the chunk length, and is therefore restricted to Q-learning-based
 353 methods, our formulation is more general. In particular, our action chunking mechanism is imple-
 354 mented as an environment wrapper, allowing it to be seamlessly applied to any RL algorithm without
 355 modifying the underlying training objective. The pseudocode for our training pipeline is show in
 356 Appendix F (Algorithm 1).

357 4 EXPERIMENTS

360 In this section, we will evaluate our training methodology on the **ParkBench** benchmark and com-
 361 pare it with both the classical and standard RL baselines.

363 4.1 EVALUATION SETUP

365 We first train our RL approach with action chunking ($h = 4$) as well as the standard RL baseline
 366 following the same training strategy described in 3.4. The detailed reward values and curriculum
 367 learning stages are provided as follows:

368 **Reward values:** The reward function is defined as:

370
$$r = R_g \cdot \mathbb{1}_{\text{goal}} + R_c \cdot \mathbb{1}_{\text{collision}} + R_{\text{out}} \cdot \mathbb{1}_{\text{out_of_bounds}} + R_{\text{gear}} \cdot \mathbb{1}_{\text{direction_change}} + R_{\text{idle}} \cdot \mathbb{1}_{\text{idle}} + R_{\text{time}}, \quad (2)$$

371 where $R_g = 3, R_c = -3, R_{\text{out}} = -3, R_{\text{gear}} = -0.01, R_{\text{idle}} = -0.2, R_{\text{time}} = -0.01$, and we use
 372 $\mathbb{1}_{\text{condition}}$ to denote the indicator of the condition is reached, which equals 1 when condition holds
 373 and 0 otherwise. The tolerance for reaching the target pose is set as 0.2 meter (with respect to the
 374 geometric center) and ± 3 degrees in heading difference.

376 **Curriculum learning stages:** In this work, we define a multi-stage curriculum learning process. In
 377 particular, we set up 8 stages for the complete training iterations, the first 7 stages are illustrated in
 Figure 5 and the last stage uses the logged initial poses for the learning agent.

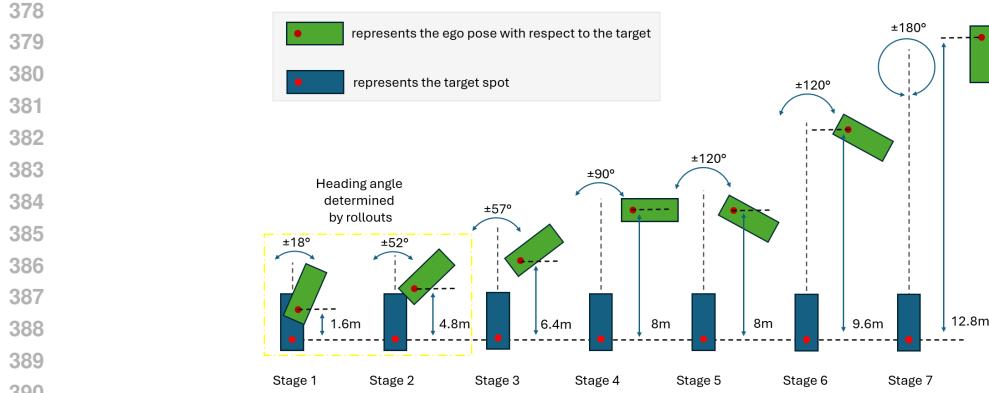


Figure 5: First seven stages in the curriculum learning. Stage 1 and 2 directly inherit the heading angle from rollout results. For other stages, the ego heading is reset to a collision-free angle sampled from the stage-specific range. All seven stages, the lateral offset is taken from the corresponding rollout result.

We evaluate our method on the **ParkBench** using the original logged ego pose as the starting point for each scenario, ensuring consistency across different planners. To assess performance, we report four key metrics: (1) **Success rate**: the fraction of cases where the ego successfully reaches the target pose within a tolerance on position and orientation; (2) **Planning time**: the average computation time required to generate a feasible trajectory; (3) **Travel distance**: the total path length of the executed trajectory, measuring efficiency; and (4) **Pivot points**: the number of direction changes (forward \leftrightarrow backward) in the trajectory, reflecting maneuver smoothness. These metrics jointly capture robustness, efficiency, and practicality of the planner in constrained parking scenarios.

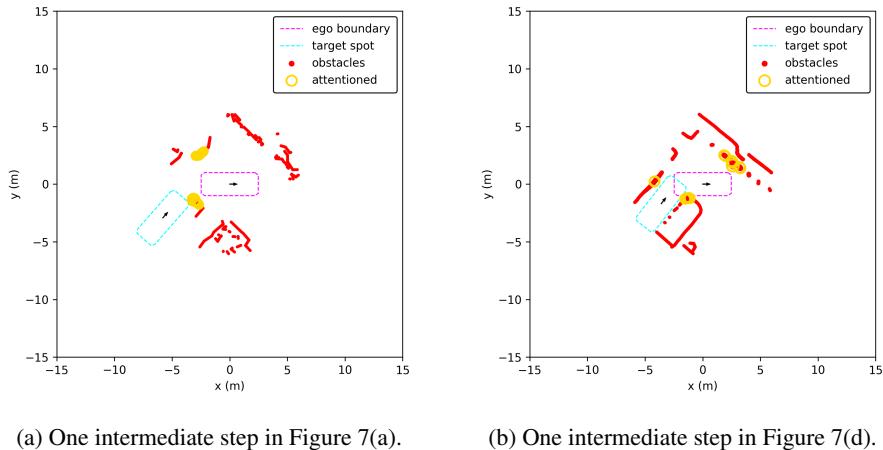


Figure 6: Examples of attention maps for one single decision-making step, respectively, in ego frame. We highlight the top 20 attention weights over the obstacle points.

4.2 RESULTS COMPARE

We compare our method against the Hybrid A* baseline on **ParkBench**. In addition to our full model, we also report a variant that uses PPO with curriculum learning but *without* action chunking to isolate the effect of chunking. Both learning methods start from the same logged ego poses as Hybrid A*. Results are summarized in Table 1. All evaluations are conducted on the same laptop with **CPU** Intel 12th Gen Core i5-1245U, **Python** 3.9, **PyTorch** 2.6.0, **SB3** 2.2.1. No GPU usage.

Our RL planner outperforms Hybrid A* across nearly all metrics, achieving higher success rates, substantially lower planning time, shorter paths, and comparable pivot counts, indicating smooth and

more efficient maneuvers in constrained settings. For clarity, Table 1 reports the classical baseline, PPO+Curriculum, and our full model (+Action Chunking). **We omit plain PPO and PPO+Action-Chunking in Table 1 because, without curriculum learning, both variants fail to acquire the parking behavior and achieve nearly zero success.** We also implemented standard SAC, DQN, DDPG, and other popular off-the-shelf RL algorithms (Andrychowicz et al., 2017). Without the proposed action-chunking wrapper, these methods achieve near-zero success rates. Therefore, we excluded them from the table for clarity.

4.3 QUALITATIVE RESULTS

Figure 7 shows some representative success cases from the parking scenarios in **ParkBench**. The examples demonstrate that our RL policy can generate human-like paths and is capable of conducting long-horizon planning. We also visualize the attention maps from the feature extractor module to verify that the model can correctly identify the obstacles most critical for planning at a given time frame. The plots in Figure 6 show that, at the current ego pose, the agent appropriately attends to the relevant obstacles.

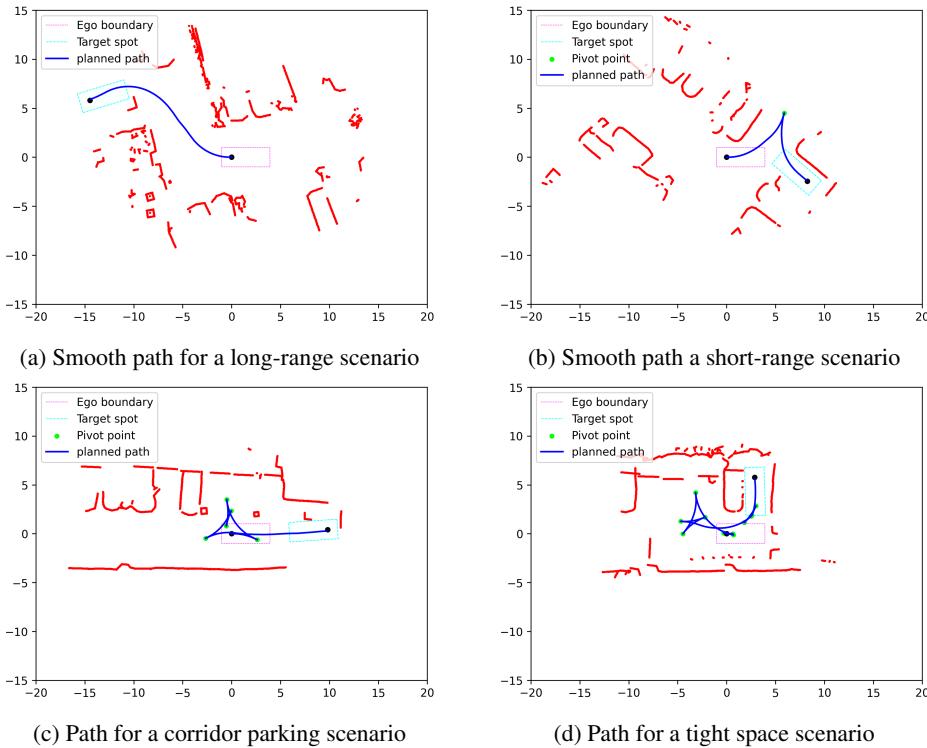


Figure 7: Representative planned paths generated in different parking scenarios. Panels (a) and (b) show smooth paths from the ego vehicle’s start pose (magenta) to the target pose (cyan), avoiding obstacles (red). Panels (c) and (d) illustrate highly constrained cases where the planner introduces multiple pivot points, resulting in non-optimal but collision-free paths.

4.4 REAL-VEHICLE DEPLOYMENT

Since our RL-based planner is designed with the goal of replacing the classical planner in the current pipeline, deployment on a real vehicle is straightforward. We first export the trained RL checkpoint to a compact C++ inference module (via ONNX) and integrate it into the onboard planning stack. At runtime, the RL planner receives the target pose from the user along with obstacle information from the perception system, and generates a collision-free reference path in the ego frame. This path is then tracked by a standard controller, which produces steering and velocity commands consistent with vehicle-dynamics and comfort constraints, enabling seamless execution of the learned policy

486 on the real vehicle. The deployment was conducted on our in-house test platform using the trained
 487 policy. The demonstration videos currently remain internal due to organizational policy, but we will
 488 be able to share more details in a future release.
 489

490 **4.5 LIMITATIONS**
 491

492 Through extensive evaluation across diverse rear-in parking scenarios to assess the generalization
 493 capability of the learned policy, we identify two main limitations.
 494

495 **(1) Degraded performance in open/empty spaces.** While the planner performs well in tightly
 496 constrained environments (remains 90%+), its success rate drops in sparsely constrained scenes.
 497 We hypothesize the cause: empty-space scenarios were underrepresented during training. Future
 498 work include augmenting observations with free-space/clearance features and incorporating empty-
 499 space cases into the curriculum.
 500

501 **(2) Manually specified curriculum.** The present eight-stage curriculum is hand-crafted for rear-in
 502 parking and does not transfer cleanly to other maneuvers (e.g., parallel parking), limiting scalability
 503 and parallelization of training. Future work include exploring automatic curricula to broaden the
 504 task coverage.
 505

506 **5 CONCLUSION**
 507

508 In this paper, we presented an RL framework for path planning in constrained parking spaces. We in-
 509 troduced **ParkBench**, a benchmark tailored to diverse and realistic parking scenarios, and designed
 510 a training methodology that integrates a plug-in action chunking wrapper with curriculum learning.
 511 Our approach achieves state-of-the-art performance, outperforming a classical Hybrid A* baseline
 512 by a significant margin. We open-sourced all layouts, vehicle parameters, and our RL training
 513 methodology to encourage broader community adoption and improvement. Our goal is to provide a
 514 standardized reference framework that others can build upon, refine, and potentially surpass.
 515

516 For future work, we plan to expand **ParkBench** with additional scenarios to cover a broader range of
 517 parking maneuvers, including head-in and parallel parking. We also want to improve the scalability
 518 of our RL training methodology by developing an automatic curriculum learning scheme.
 519

520 **REFERENCES**
 521

522 Joonwoo Ahn, Minsoo Kim, and Jaeheung Park. Autonomous driving using imitation learning with
 523 look ahead point for semi structured environments. *Scientific Reports*, 12(1):21285, 2022.
 524

525 Neşet Ünver Akmandor, Hongyu Li, Gary Lvov, Eric Dusel, and Taşkin Padır. Deep reinforcement
 526 learning based robot navigation in dynamic environments using occupancy values of motion prim-
 527 itives. In *2022 IEEE/RSJ international conference on intelligent robots and systems (IROS)*, pp.
 528 11687–11694. IEEE, 2022.
 529

530 Amjad Al-Mousa, Ahmad Arrabi, and Hamza Daoud. A reinforcement learning-based reverse-
 531 parking system for autonomous vehicles. *IET Intelligent Transport Systems*, 19(1):e12614, 2025.
 532

533 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
 534 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
 535 play. *Advances in neural information processing systems*, 30, 2017.
 536

537 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
 538 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
 539 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 540 recognition*, pp. 11621–11631, 2020.
 541

542 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 543 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-
 544 national Journal of Robotics Research*, pp. 02783649241273668, 2023.
 545

540 Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Practical search tech-
 541 niques in path planning for autonomous driving. *ann arbor*, 1001(48105):18–80, 2008.

542

543 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
 544 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017.

545

546 Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
 547 riculum generation for reinforcement learning. In *Conference on robot learning*, pp. 482–495.
 548 PMLR, 2017.

549

550 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
 551 Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient au-
 552 tonomous driving. *ICCV*, 2023.

553

554 Mingyang Jiang, Yueyuan Li, Songan Zhang, Siyuan Chen, Chunxiang Wang, and Ming Yang.
 555 Hope: A reinforcement learning-based hybrid policy path planner for diverse parking scenarios.
 556 *IEEE Transactions on Intelligent Transportation Systems*, 2025.

557

558 Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised
 559 deep reinforcement learning with generalized computation graphs for robot navigation. In *2018
 560 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 5129–5136, 2018. doi:
 561 10.1109/ICRA.2018.8460655.

562

563 Luca Lazzaroni, Alessandro Pighetti, Francesco Bellotti, Alessio Capello, Marianna Cossu, and
 564 Riccardo Berta. Automated parking in carla: A deep reinforcement learning-based approach.
 565 In *International Conference on Applications in Electronics Pervading Industry, Environment and
 566 Society*, pp. 352–357. Springer, 2023.

567

568 Bai Li, Lili Fan, Yakun Ouyang, Shiqi Tang, Xiao Wang, Dongpu Cao, and Fei-Yue Wang. Online
 569 competition of trajectory planning for automated parking: Benchmarks, achievements, learned
 570 lessons, and future perspectives. *IEEE Transactions on Intelligent Vehicles*, 8(1):16–21, 2022.

571

572 Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. 2025.
 573 URL <http://arxiv.org/abs/2507.07969>.

574

575 Claudia Pérez-D'Arpino, Can Liu, Patrick Goebel, Roberto Martín-Martín, and Silvio Savarese.
 576 Robot navigation in constrained pedestrian environments using reinforcement learning. In *2021
 577 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1140–1146, 2021. doi:
 578 10.1109/ICRA48506.2021.9560893.

579

580 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
 581 Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of
 582 Machine Learning Research*, 22(268):1–8, 2021. URL <http://jmlr.org/papers/v22/20-1364.html>.

583

584 Rajesh Rajamani. *Vehicle dynamics and control*. Springer, 2006.

585

586 James Reeds and Lawrence Shepp. Optimal paths for a car that goes both forwards and backwards.
 587 *Pacific journal of mathematics*, 145(2):367–393, 1990.

588

589 Xiaogang Ruan, Dingqi Ren, Xiaoqing Zhu, and Jing Huang. Mobile robot navigation based on
 590 deep reinforcement learning. In *2019 Chinese Control And Decision Conference (CCDC)*, pp.
 591 6174–6178, 2019. doi: 10.1109/CCDC.2019.8832393.

592

593 Atsushi Sakai, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin Raffin, and Alexis
 594 Paques. Pythonrobotics: a python code collection of robotics algorithms. *arXiv preprint
 595 arXiv:1808.10703*, 2018.

596

597 Oliver Scheel, Luca Bergamini, Maciej Wolczyk, Błażej Osiński, and Peter Ondruska. Urban driver:
 598 Learning to drive from real-world demonstrations using policy gradients. In *Conference on Robot
 599 Learning*, pp. 718–728. PMLR, 2022.

600

601 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 602 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

594 Yunxiao Shan, Ziwei Zhong, Li Fan, and Huang Kai. Deepparking: deep learning-based planning
595 method for autonomous parking. In *International Conference on Spatial Data and Intelligence*,
596 pp. 21–33. Springer, 2023.

597

598 Zifan Xu, Bo Liu, Xuesu Xiao, Anirudh Nair, and Peter Stone. Benchmarking reinforcement learning
599 techniques for autonomous navigation. *arXiv preprint arXiv:2210.04839*, 2022.

600

601 Yunfan Yang, Denglong Chen, Tong Qin, Xiangru Mu, Chunjing Xu, and Ming Yang. E2e parking:
602 Autonomous parking by the end-to-end neural network on the carla simulator. In *2024 IEEE*
603 *Intelligent Vehicles Symposium (IV)*, pp. 2375–2382. IEEE, 2024.

604

605 Yinan Zheng, Ruiming Liang, Kexin ZHENG, Jinliang Zheng, Liyuan Mao, Jianxiong Li, Weihao
606 Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, and Jingjing Liu. Diffusion-based planning for au-
607 tonomous driving with flexible guidance. In *The Thirteenth International Conference on Learning*
608 *Representations*, 2025. URL <https://openreview.net/forum?id=wM2sfVgMDH>.

609

610 Kai Zhu and Tao Zhang. Deep reinforcement learning based mobile robot navigation: A review.
611 *Tsinghua Science and Technology*, 26(5):674–691, 2021.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX

651 A USAGE OF LARGE LANGUAGE MODELS

652

653

654 During the preparation of this work, the authors used **ChatGPT-5**, a large language model, for
 655 grammar and language editing. However, all content was subsequently reviewed and revised by the
 656 authors for correctness, and the authors take full responsibility for the final manuscript.

657

658

659 B VEHICLE AND BICYCLE-MODEL PARAMETERS

660

661

662 In this work, we use the bicycle model to update the environment. The detailed parameters for the
 663 bicycle model are listed below (Table 2):

664

665

Name	Symbol	Value	Unit / Notes
Wheelbase	W_B	3.0	m
Vehicle width	W	2.0	m
Vehicle length	L	4.95	m
Rear overhang (rear center → bumper)	L_B	1.025	m
Front overhang (rear center → front bumper)	L_F	3.925	m
Max steering angle	δ_{\max}	32°	deg

673 Table 2: Physical and geometric parameters used by the kinematic bicycle model. The vehicle
 674 reference frame is the *rear-axle center* at the origin, $+x$ forward, $+y$ to the left.

675

676

677 Due to the tight space in the parking scenarios, we adopt a precise polygon footprint for collision
 678 check instead of a plain rectangle. The polygon is constructed by cropping each corner of the
 679 rectangle by a longitudinal offset $crop_l$ and a lateral offset $crop_w$. The resulting eight-vertex polygon
 680 is defined in the vehicle frame (rear-axle center at the origin, $+x$ forward, $+y$ left):

681

682

683

$$684 \text{ polygon} = \begin{bmatrix} -L_B + crop_l & -W/2 \\ 685 L_F - crop_l & -W/2 \\ 686 L_F & -W/2 + crop_w \\ 687 L_F & W/2 - crop_w \\ 688 L_F - crop_l & W/2 \\ 689 -L_B + crop_l & W/2 \\ 690 -L_B & W/2 - crop_w \\ 691 -L_B & -W/2 + crop_w \end{bmatrix},$$

692 where $crop_l = 0.3$ m and $crop_w = 0.2$ m.

693

694

695

696 C RL ALGORITHM SETTINGS

697

698

699 The following table (Table 3) summarizes the hyperparameter settings used in our RL training.
 700 The maximum episode length varies across curriculum stages. Specifically, we set it to
 701 $[100, 200, 400, 400, 800, 800, 800, 1000]$ for the 8 stages, respectively. All other parameters not
 702 listed are kept at their default values.

Parameter	Value
Training batch size	256
Batch size per GPU	1024
Num. PPO epochs	10
Discount factor γ	1.0
Max. episode length	depends on the training stage
Initial LR $\alpha^{(0)}$	3×10^{-4}
LR schedule	Constant
Entropy coefficient	0.001
GPU usage during inference	Not used

Table 3: RL algorithm settings and hyperparameters used during training.

D ENVIRONMENT ACTION SPACE

In our environment design, we use a discrete action space (shown in Table 4) parameterized by the steering increment $\Delta\delta$ and a signed speed v . In our environment, $\Delta\delta \in \{-8, 0, 8\}$ and $v \in \{-0.8, 0, 0.8\}$. The eight actions listed below are derived from statistics of motion primitives generated by our classical planner; this choice yields smooth curvature changes and reliable tracking under a pure-pursuit controller. We exclude the idle $(0, 0)$ action to avoid no-operation steps.

Table 4: Discrete action space used in all RL experiments. Each action is a primitive $(\Delta\delta, v)$ with steering increment $\Delta\delta$ in degrees and longitudinal speed v in m/s. Time step is 0.1s.

Index	$\Delta\delta$ [deg]	v [m/s]	Description
0	-8	+0.8	Turn right, forward
1	0	+0.8	Straight, forward
2	+8	+0.8	Turn left, forward
3	-8	-0.8	Turn right, reverse
4	0	-0.8	Straight, reverse
5	+8	-0.8	Turn left, reverse
6	-8	0	Pre-steer right (no translation)
7	+8	0	Pre-steer left (no translation)

E HYBRID A* HYPERPARAMETERS

We adopt the public available path planning repository as mentioned in section 2.1. To accelerate path searching, we exclude obstacle points located more than 25 meters from the ego’s initial position. The bicycle model follows the same configuration as our simulation environment, with a wheelbase of 3.0 m, a width of 2.0 m, a length of 4.95 m, and a maximum steering angle of 32°. Table 5 shows the ablation study we conducted on the hyperparameters of Hybrid A*. We report the best-performing configuration in the paper.

F RL ALGORITHM

Pseudocode: integrating curriculum learning and an action-chunking wrapper with the PPO algorithm. Shown in Algorithm 1.

756	Heuristic	$\Delta x, y$ (m)	$\Delta\theta$	Motion res. (m)	#Steer	Success (%)	Time (s)	Dist. (m)	Pivots
758	Default values [†]	0.1	8°	1.0	9	37.3	3.64	23.1	3.6
759		0.32	8°	1.0	9	41.2	0.41	22.8	4.1
760		0.5	8°	1.0	9	47.1	0.74	23.4	3.7
761		0.5	8°	0.5	9	45.1	0.64	24.3	3.7
762		0.5	8°	2.0	9	29.4	0.70	25.9	1.7
763		0.5	5°	1.0	20	47.1	0.42	22.3	3.2
764		1.0	5°	1.0	20	41.2	0.96	23.8	1.7
765	New values [‡]	0.1	8°	1.0	9	35.3	5.29	20.0	3.6
766		0.32	8°	1.0	9	41.2	0.53	19.8	4.1
767		0.5	8°	1.0	9	43.1	0.69	19.3	3.9
768		0.5	8°	2.0	9	29.4	0.82	24.8	1.8
769		0.5	8°	0.5	9	43.1	0.5	19.9	3.6

Table 5: Ablation study on Hybrid A* hyperparameters.

770
771 *Notes.* [†]The default values correspond to the existing heuristics in the public repository. [‡]The new values
772 correspond to our new experiments. Specifically, we set the switch-back penalty cost to 2.0, the backward
773 penalty cost to 1.3, the steering angle penalty cost to 0.2, the steering change penalty cost to 0.1, and the
774 heuristic cost to 1.0.

Algorithm 1 Training RL Planner with Action Chunking and Curriculum Learning

775 **Require:** Benchmark \mathcal{B} , simulator Env, policy π_θ , chunk length h , curriculum scheduler \mathcal{C} , PPO
776 optimizer, total_steps N

777 1: Initialize rollout buffer $\mathcal{D} \leftarrow \emptyset$, policy params θ

778 2: **for** iteration = 1, 2, . . . **do**

779 3: **Select curriculum level** $c \leftarrow \mathcal{C}(\text{iteration})$

780 4: step $\leftarrow 0$

781 5: **while** step $< N$ **do**

782 6: **Sample scenario** $(g, O) \sim \mathcal{B}$ ▷ g : target pose, O : obstacle contours

783 7: **Rollout init:** $p_0 \leftarrow \text{ROLLOUTFROMTARGET}(g, O, c)$ ▷ p_0 : ego initial pose

784 8: **Reset env:** Env.RESET(g, O, p_0)

785 9: **state:** $s_0 \leftarrow \text{EgoCentric}(p_0, g_0, O_0)$ ▷ coordinate transform, normalization, range clip

786 10: done \leftarrow False

787 11: **while** not done **do**

788 12: **Chunked action:** $a_{t:t+h} \sim \pi_\theta(s_t)$ ▷ $a_{t:t+h}$ encodes h primitive steps

789 13: $R \leftarrow 0$

790 14: **for** $k = 0$ to $h - 1$ **do** ▷ Action chunk wrapper executes h low-level steps

791 15: $(p_{t+k+1}, g_{t+k+1}, O_{t+k+1}, r, \text{done}) \leftarrow \text{Env.STEP}(\text{primitive}(a_{t+k}))$

792 16: $R \leftarrow R + r$; $s \leftarrow \text{EgoCentric}(p_{t+k+1}, g_{t+k+1}, O_{t+k+1})$

793 17: **if** done **then break**

794 18: **end if**

795 19: **end for**

796 20: Store transition $(s_t, a_t, R, s, \text{done})$ into \mathcal{D}

797 21: $s_{t+1} \leftarrow s$

798 22: **if** \mathcal{D} is full **then**

799 23: UPDATEPOLICYPPO(π_θ, \mathcal{D});

800 24: $\mathcal{D} \leftarrow \emptyset$

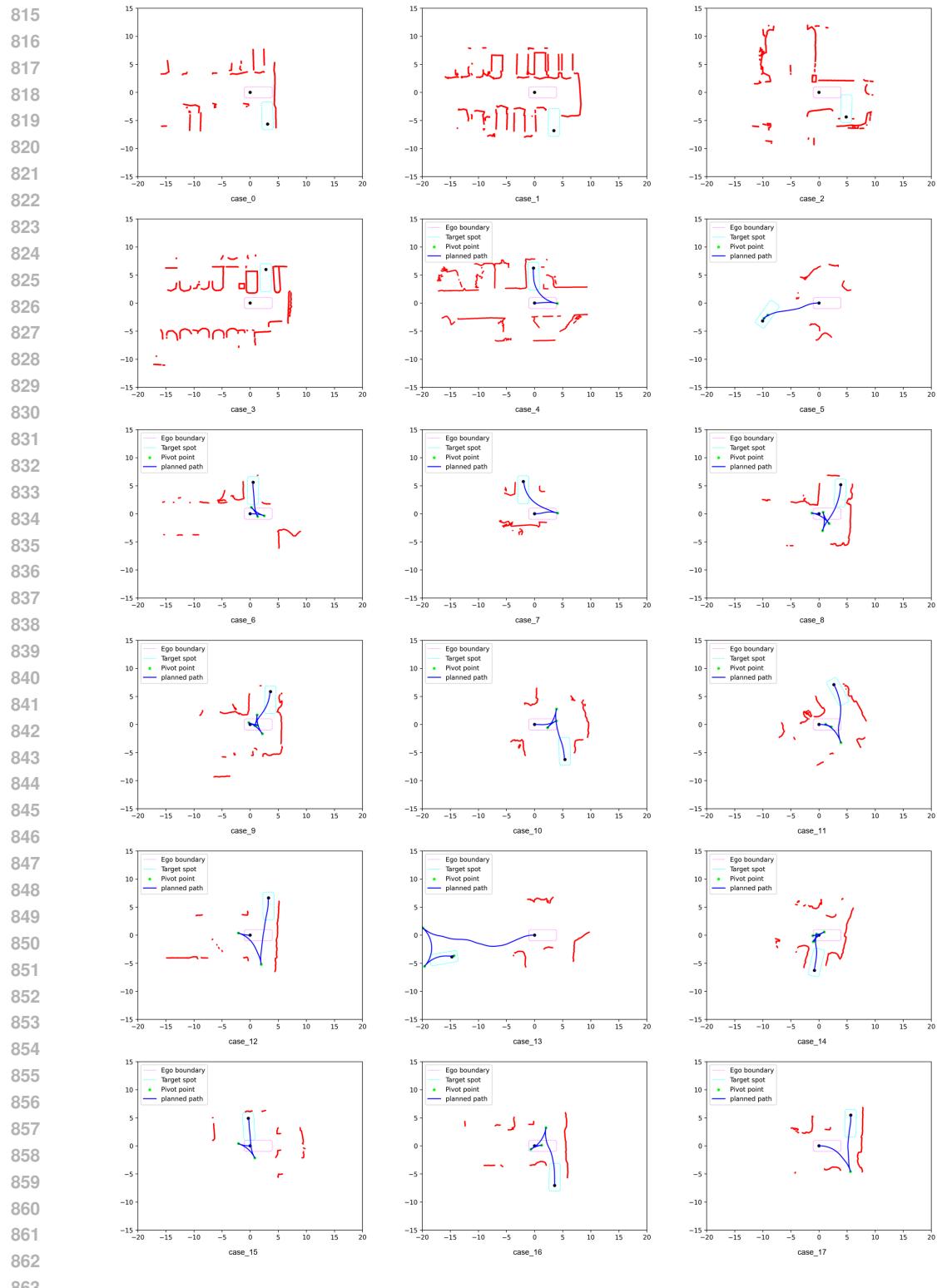
801 25: **end if**

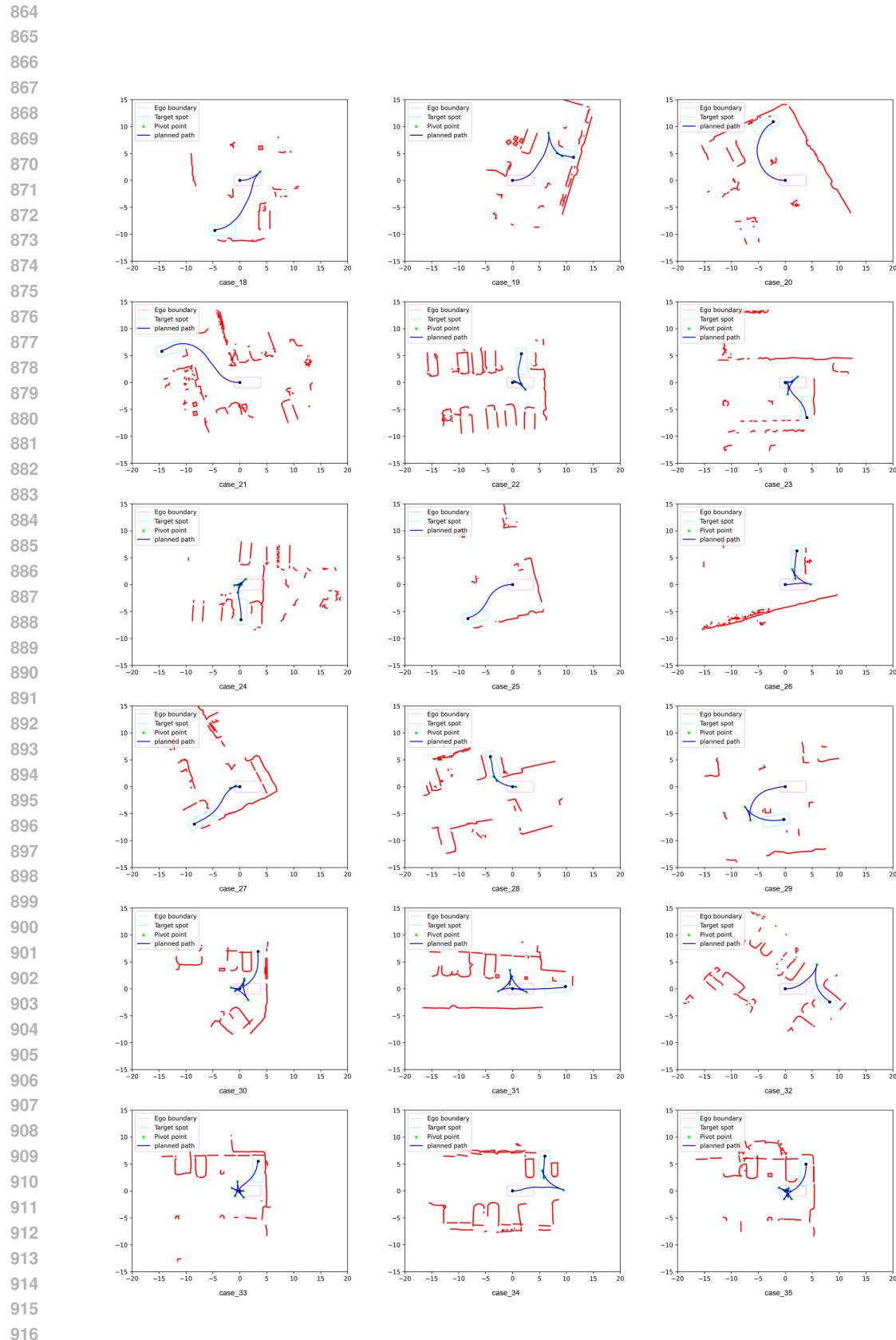
802 26: **end while**

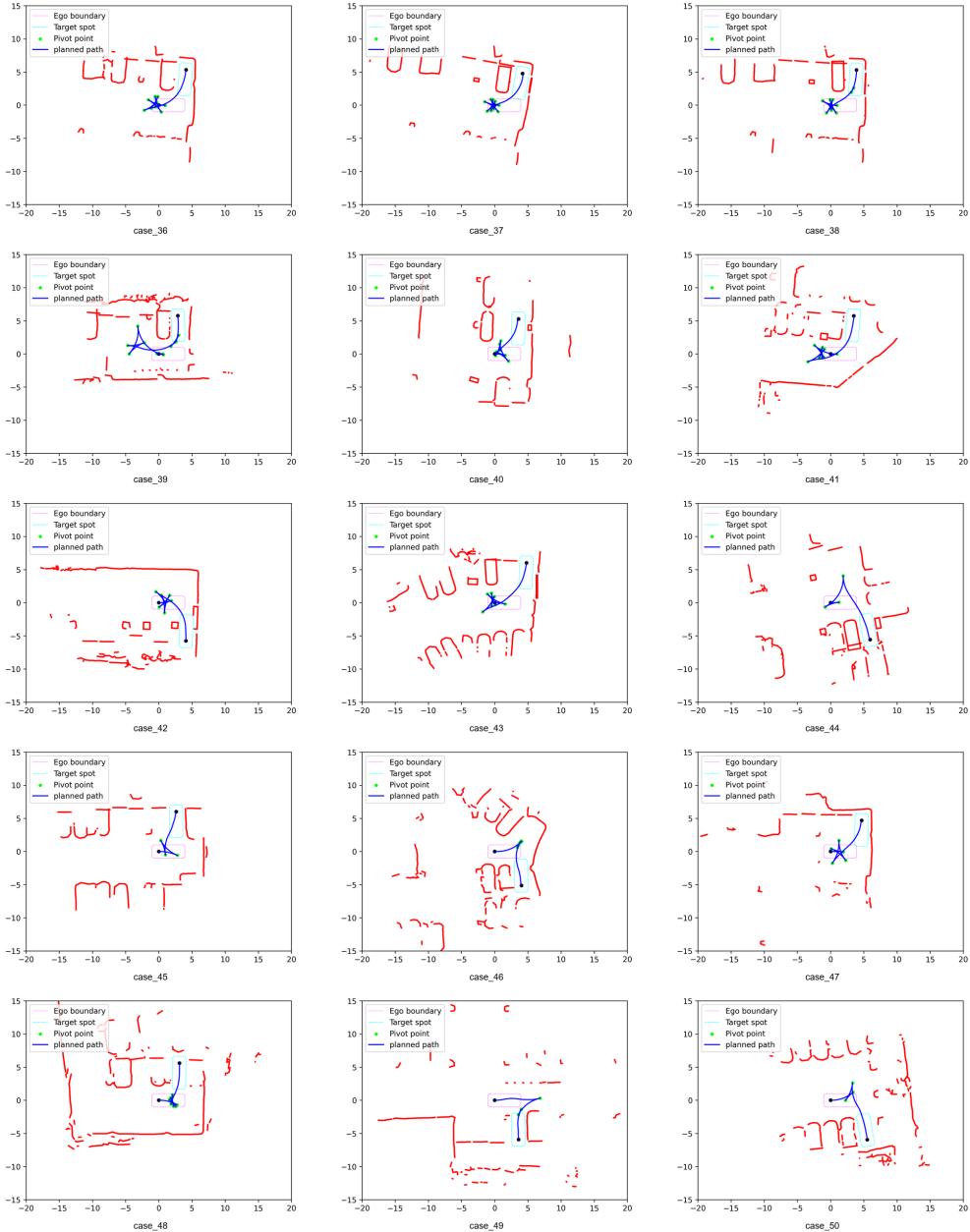
803 27: **end while**

804 28: **end for**

806
807
808
809

810 G LAYOUTS IN PARKBENCH
811812 All 51 ParkBench parking-scenario layouts (17×3 grid):
813



918
919
920
921
922

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 8: All 51 parking cases in the **ParkBench** benchmark, arranged in 17×3 grids across three pages. The magenta rectangle denotes the initial ego pose, while the cyan rectangle indicates the target pose. Obstacles are shown in red. The planned paths generated by our AI planner are illustrated in blue. The planner succeeds in 47 out of 51 scenarios, failing in 4 cases.