Under review as submission to TMLR

Self-Supervised Graph Representation Learning for Neuronal
Morphologies

Anonymous authors
Paper under double-blind review

Abstract

Unsupervised graph representation learning has recently gained interest in several applica-
tion domains such as neuroscience, where modeling the diverse morphology of cell types
in the brain is one of the key challenges. It is currently unknown how many excitatory
cortical cell types exist and what their defining morphological features are. Here we present
GRAPHDINO, a purely data-driven approach to learn low-dimensional representations of
3D neuronal morphologies from unlabeled large-scale datasets. GRAPHDINO is a novel
transformer-based representation learning method for spatially-embedded graphs. To enable
self-supervised learning on transformers, we (1) developed data augmentation strategies for
spatially-embedded graphs, (2) adapted the positional encoding and (3) introduced a novel
attention mechanism, AC-ATTENTION, which combines attention-based global interaction
between nodes and classic graph convolutional processing. We show, in two different species
and across multiple brain areas, that this method yields morphological cell type cluster-
ings that are on par with manual feature-based classification by experts, but without using
prior knowledge about the structural features of neurons. Moreover, it outperforms pre-
vious approaches on quantitative benchmarks predicting expert labels. Our method could
potentially enable data-driven discovery of novel morphological features and cell types in
large-scale datasets. It is applicable beyond neuroscience in settings where samples in a
dataset are graphs and graph-level embeddings are desired.

1 Introduction

The brain is structured into different areas that contain diverse types of neurons (Ascoli et al., 2008]). The
morphology of cortical neurons is highly complex with widely varying shapes that are tightly linked to their
function. Cell morphology has long been used to classify neurons into cell types (Ramén y Cajall (1911)), but
characterizing neuronal morphologies is still a challenging open research question. Morphological analysis has
traditionally been carried out by visual inspection (Ascoli et al., 2008}, |Defelipe et al., 2013]) or by computing
a set of predefined, quantitatively measurable features such as number of branching points (Uylings &
Van Pelt], |2002; |Scorcioni et al.| 2008; |(Oberlaender et al., 2012; |Polavaram et all [2014; [Markram et al.,
2015} |Lu et al., |2015; |Gouwens et al |2019)). However, both approaches have deficits: expert assessments
have a high variance(Defelipe et al., [2013) and the manual definition of morphological features introduces
biases (Wang), 2018), thus calling for more unbiased, data-driven approaches to characterize the morphology
of neurons.

Recent advances in recording technologies have greatly accelerated data collection and therefore the amount
of data available. These developments have opened the floor for data-driven approaches based on unsuper-
vised machine learning methods. One form of data representation that is particularly suitable for neurons
is representing the skeleton of a neuron as a tree. In such a tree, the root node represents the neuron’s cell
body and the node features are their 3D locations. The availability of a number of such skeleton datasets
has recently sparked some work on graph-level representation learning (Laturnus & Berens| 2021} |Sun et al.|
2020; [You et al.l 2020). Following this line of research, we here present a fully automatic and scalable
graph-level representation learning approach.

Under review as submission to TMLR

Our contributions in this paper are fourfold:

1. We propose a new self-supervised model to learn graph-level embeddings for spatial graphs. Unlike
previous methods, our approach does not require human annotation or manual feature definition.

2. We introduce a novel attention module that combines transformer-style attention and message pass-
ing between neighboring nodes as in graph neural networks.

3. We apply this approach to the classification of excitatory neuronal morphologies and show that it
produces clusters that are comparable with known excitatory cell types obtained by manual feature-
based classification and expert-labeling.

4. We outperform existing approaches based on manual feature engineering and auto-encoding in pre-
dicting expert labels.

Source code will be publicly available.

2 Related Work

2.1 Representation learning for neuronal morphologies

Morphology has been used for a long time to classify neurons by either letting experts visually inspect
the cells (Ramén y Cajal, 1911} Defelipe et al., 2013) or by specifying expert-defined features that can be
extracted and used as input to a classifier (Oberlaender et al. 2012; [Markram et al., [2015; Kanari et al.
2017; Wang, [2018; |[Kanari et al., 2019; (Gouwens et al., 2019)) (see Armananzas & Ascoli (2015) for review).
Ascoli et al.| (2008) made an effort to unify the used expert-defined features.

With the advent of new technologies for microscopic imaging, electrical recording, and molecular analysis
such as Patch-seq (Cadwell et all, 2015) that allow the simultaneous recording of transcriptomy, electro-
physiology and morphology of whole cells, several works have explored the prediction of cell types from
multiple modalities (Gala et al., 2021) or one modality from the other (Cadwell et al., |2015} Scala et al.
[2021} |Gouwens et al., [2020)).

Several works try to learn a representation of neuronal morphologies. |[Laturnus & Berens| (2021]) propose
a generative approach involving random walks in graphs to model neuronal morphologies. [Schubert et al.
process 2D projections of neuronal morphologies with a convolutional neural network (CNN) to
learn low-dimensional representations. Seshamani et al.| (2020) extract local mesh features around spines
and combine them with traditional Sholl analysis (Sholl, [1953). |Gouwens et al.| (2019) define a set of
morphological features based on graphs and perform hierarchical clustering on them. We use the latter as a
baseline for a classical approach with pre-defined features and [Laturnus & Berens| (2021)) as a baseline of a
model with learned features.

Concurrently to this work, |Zhao et al.| (2022) proposed a contrastive graph neural network to learn neuronal
embeddings with a focus on retrieval efficiency from large-scale databases. (Elabbady et al.,|2022|) developed
a method to learn representations of neurons based on the subcellular features of the somatic region of
the neurons and show that those features are sufficient for classifying cell types on large-scale EM datasets.
[Chen et al.| (2022b) proposed a combination of graph-based processing and manually-defined features to learn
embeddings of neuronal morphologies using a LSTM-based network and contrastive learning. We compare
to the latter in Section 5.8l

2.2 Graph Neural Networks (GNNs)

Graph neural networks learn node representations by recursively aggregating information from adjacent nodes
as defined by the graph’s structure. While early approaches date back over a decade |Scarselli et al.| (2009),
recently numerous new variants were introduced for (semi-) supervised settings: relying on convolution over
nodes [Duvenaud et al| (2015); Hamilton et al| (2017); Kipf & Welling (2017), using recurrence [Li et al]
(2016)), or making use of attention mechanisms [Velickovié¢ et al.| (2018). A representation for the whole graph

Under review as submission to TMLR

is often derived by a readout operation on the node representations, for instance averaging. See
(2020) for a recent benchmark on graph neural network architectures.

Transformer-based GNNs. Similar to us,|Zhang et al.|(2020) and [Dwivedi & Bresson| (2021)) use trans-
former attention to work with graphs. However, |Zhang et al. (2020) compute transformer attention over the
nodes of sampled subgraphs, while Dwivedi & Bresson! (2021) compute the attention only over local neighbors
of nodes, which boils down to a weighted message passing that is conditioned on node feature similarity, and
trains supervised. Unlike these previous approaches, we compute the attention between nodes of the global
graph and adapt the transformer attention to consider the adjacency matrix of the graph, which allows the
model to take into account both the direct neighbors of a node as well as all other nodes in the graph.
Concurrently, [Ying et al| (2021)) and [Mialon et al. (2021)) propose strategies to adapt positional encodings
to graphs to leverage the structural information of the graphs with transformer attention. |[Rampasek et al.|
implements a two-stream architecture, in which transformer attention and message passing are com-
puted in parallel and then combined after each block. |Chen et al.| (2022a)) incorporates structural information
into the transformer attention by extracting a subgraph representation around each node before computing
the attention.

Self-supervised learning on graphs. Self-supervised learning has proven to be a useful technique for
training image feature extractors Oord et al.| (2018); |Chen et al. (2020); Chen & He| (2021); Caron et al.
(2021) and has been investigated for learning graph (Li et al., 2016; Hassani & Khasahmadi, 2020; Qiu
et al., 2020; |You et al., 2020; Xu et all [2021) and node |Velickovi¢ et al.| (2019)) representations. [Narayanan
et al| learn graph representations through skip-gram with negative sampling by predicting present sub-
graphs. [You et al.|(2020]) propose four data augmentations for contrastive learning of graph-level embeddings.
[Sun et al(2020)) learn graph-level representations in a contrastive way, by predicting if a subgraph and a
graph representation originate from the same graph. Similarly, Hassani & Khasahmadi (2020) put node
features of one view in contrast with the graph encoding of a second view and vice versa. They build
on graph diffusion networks Klicpera et al.| (2019)) and only augment the structure of the graph but not
the initial node features. We use Sun et al| (2020) and [You et al| (2020) as a baseline for graph-level
unsupervised representation learning. |Qiu et al.| (2020) propose a generic pre-training method which uses
an InfoNCE objective |Oord et al.| (2018)) to learn features by telling augmented versions of one subgraph
from other subgraphs with random walks as augmentations. aim to capture local and global
structures for whole-graph representation learning. They rely on an EM-like algorithm to jointly train the
assignment of graphs to hierarchical prototypes, the GNN parameters and the prototypes.
propose adaptive augmentation, which considers node centrality and importance to generate graph views in
a contrastive framework. Unlike most prior work, we contrast two global views of a graph in order to learn a
whole-graph representation. Our method operates on spatially embedded graphs, in which nodes correspond
to points in 3D space. We make use of this knowledge in the choice of augmentations.

3 GraphDINO

We propose GRAPHDINO, a method for self-supervised representation learning of graphs. It is inspired by
recent progress in self-supervised representation learning of images that has been shown to be competitive
to supervised learning without relying on labels. The core idea is to enforce that the representations of two
augmented versions of the same image are close to each other in latent space.

DINO (Caron et al., 2021) is an implementation of this self-supervised learning framework consisting of two
encoders with a transformer backbone. To avoid mode collapse, only one encoder is directly trained through
backpropagation (student) while the weights of the other encoder (teacher) are an exponential moving
average (ema) of the student’s weights. The latent representations given by the encoders are mapped to

probability distributions by a multi-layer perceptron (MLP) and subsequent softmax operator over which
the cross-entropy loss is computed (Fig. . For further explanation of DINO see Appendix

GRAPHDINO adapts this self-supervised framework to the data domain of graphs (Fig. . In order to use
information given by the connectivity of the graph, we modify the computation of the transformer attention
to take the graph adjacency matrix into account and use the graph Laplacian as positional encoding.

Under review as submission to TMLR

More specifically, we introduce the following modi-
fications: (1) we incorporate the graph’s adjacency
- matrix into the attention computation; (2) we use
Nattract | the graph Laplacian as positional encoding; (3) we
Tk define augmentations suitable for spatial graphs.

A. GraphDINO training

Augmentations Encoder Objective function

/% > P2 b
| ¢ .
EMA weii\t update max. similarity .
Encoder *
f > ‘\%’ \-}Zz—b I|I||.|||

Graph input

Input. Input to the network is the 3D shape of a

. neuron which is represented as an undirected graph

« jtter node location G = (V,E). V is the set of nodes {v;}}¥, and E

v the set of undirected edges E = {e;; = (v;,v;)} that

B. Embedding .. Erbeddin.g Con.nect two nodes v;,v;. The features of each .node

oo v; in the graph are encoded into a token using a

—3» Encoder > H> 0. linear transformation. These tokens are then used

as input to the transformer model, which consists of
[multi-head attention modules with ~ heads each.

) VectorZ
Graph input

Figure 1: A. Self-supervised learning of low di- Attention bias. Key-value query attention be-
mensional vector embeddings z1,z; that capture the came popular in natural language modelling
essence of the 3D morphology of individual neurons us- (Vaswani et al.,[2017) and is now used routinely also
ing GraphDINO. Two augmented “views” of the neu- jn image models (Dosovitskiy et all, [2020)).

ron are input into the network, where the weights of]]))
one encoder (bottom) are an exponential moving aver- 10 Make use of the g}foj\gmamon given by the ad:]a—
age (EMA) of the other encoder (top). The objective Cency matrix A € RTXT of the input graph — i.e.
is to maximize the similarity between the vector em- the neighborhood of nodes —, we bias the attention
beddings of both views. Vector embeddings of similar towards A by adding a learned bias to the atten-
neurons are close to each other in latent space. B. An tion matrix that is conditioned on the input token

individual neuron is represented by its vector embed- values:
ding as a point in the 32-dimensional vector space.
. QK" .
Attention(Q,K, V) =c| A NP +9A |V, with [\, 5] =exp(Wa;), (1)

where K, Q, V are the keys, queries and values which are computed as a learned linear projection of the
tokens. o(-) denotes the softmax function. z; € RP is the token of node v;, W € R?*P is a learned weight
matrix, A,y € RV are two factors per node that trade off how much weight is assigned to neighboring nodes
versus all other nodes in the graph, and N is the number of nodes.

When v = 0 and A = 1, the adjacency-conditioned attention (AC-ATTENTION) reduces to regular trans-
former attention. In the other extreme case (A = 0,), the attention matrix is dominated by A and the
transformer attention computation is akin to the message passing algorithm that is commonly used when
working with graphs (Scarselli et al., |2009; Duvenaud et al. 2015; |Gilmer et all 2017). But GRAPHDINO
is more flexible than both regular message passing and point-cloud attention since it can decide how much
weight is given to the neighbors of a node while maintaining the flexibility to attend to all other nodes in
the graph as well.

Positional encoding. Following Dwivedi et al.| (2020), we use the normalized graph Laplacian matrix L
as positional encoding, which is computed by L = I — D-1/2AD™ Y2 = UTAU, where I is the identity
matrix, D the N x N degree matrix, A the adjacency matrix, and U and A are the matrices of eigenvectors
and eigenvalues, respectively. The positional encodings are the first 32 eigenvectors with largest eigenvalues.
Positional encodings are added to the nodes features after tokenization.

Data augmentation. Data augmentation plays an important role in self-supervised learning and needs to
be adapted to the data, since it expresses which invariances should be imposed. Given the spatial neuronal
data, we apply the following augmentations: (1) Subsampling: We subsample the original graph to a
fixed number of n nodes by randomly removing nodes that are not branching points (i.e. nodes connected

Under review as submission to TMLR

to more than two other nodes), and connecting the two neighbors of the removed node. This facilitates
batch processing. Furthermore, this augmentation retains the global structure of the neuron, while altering
local structure in the two views. (2) Rotation: we perform random 3D rotation around the y-axis, that is
orthogonal to the pia. (3) Jittering: we randomly translate individual node positions by adding Gaussian
noise with A(0, o1). (4) Subgraph deletion: We identify branches that connect leaf nodes to the last
upstream parent node in the graph, i.e. terminal branches that do not split into further branches, and
randomly delete n of them starting at a random location along the branch, while maintaining the overall
graph structure. (5) Graph position: we randomly translate the graph as a whole by adding Gaussian noise
with A(0, o2) to all nodes. Unlike [Caron et al| (2021)), we do not differentiate between the augmentations
seen by the student and the teacher network.

4 Data and Experiments

4.1 Synthetic graphs

q To demonstrate that our novel atten-
tion mechanism is strictly more power-
ful than simple all-to-all attention on
a graph, we generate a synthetic graph

Level Augmentations dataset. In this dataset, the five classes

share similar node locations but differ in

how the nodes are connected. See Ap-

pendix[A]for the detailed generation pro-
i i cess. We use this dataset to test the ef-
2 ficacy of our novel attention mechanism,

AC-ATTENTION, and the positional en-
Subgraph 3) Jittering, (4) Branch deletion coding.

%% f /j? 4.2 Neuronal and tree graphs

We apply GRAPHDINO to five publicly
available neuronal datasets and one non-
neuronal dataset.

Table 1: Overview of data augmentations for spatially-embedde
graphs such as neuronal skeletons.

Graph 1) Subsampling, (2) Rotation, (5) Translation

Blue Brain Project (BBP): Rat somatosensory cortex. Available from the Neocortical Microcircuit
Collaboration Portal of the Blue Brain Projectﬂ (Ramaswamy et all [2015]), the dataset contains 1,389
neurons from juvenile rat somatosensory cortex. We train GRAPHDINO unsupervised on the 3D dendritic
morphologies of all neurons. For evaluation, we use the subset of 616 neurons which have been labeled by
experts into cell types and cortical layer. Of these 616 neurons 286 are excitatory that have been assigned
to 14 cell types (Markram et all [2015). See Appendix for more details on the dataset. We use this
dataset to evaluate the capability of GRAPHDINO to learn useful representations of neuronal morphologies
that align with know cell types, perform ablation experiments on the novel graph augmentation strategies
and compare to previous work using manually-defined features.

M1 PatchSeq: Mouse motor cortex. The M1 PatchSeq dataset contains 275 excitatory and 371
inhibitory cells from M1 in adult mouse primary motor cortex (Scala et al., 2021)E| The excitatory cells (M1
EXC) have been classified into tufted, untufted and other neurons based on their morphology in a previous
study (Laturnus & Berens, [2021). We use this dataset to compare to previous work that learns morphological
embeddings in a data-driven way. We train GRAPHDINO unsupervised on the 3D dendritic morphologies
of the 646 neurons. For evaluation, we follow the evaluation protocol and use the same dataset split as
Laturnus & Berens| (2021). We additionally report the 5-nearest neighbour accuracy of three additional data
to estimate the variance due to the chosen split, since the test set is very small (60 neurons) and the balanced

Thttp://microcircuits.epfl.ch/#/main
%https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/

http://microcircuits.epfl.ch/#/main
https://download.brainimagelibrary.org/ 3a/88/3a88a7687ab66069/

Under review as submission to TMLR

accuracy is strongly influenced by the morphologically heterogeneous “other” class that is only represented
by six samples in the test set (Laturnus & Berens, [2021)).

Allen Brain Atlas (ACT): Mouse visual cortex. As part of the Allen Cell Types Database, the dataset
contains 510 neurons from the mouse visual cortex with a broad coverage of types, layers and transgenic
1ineSE| See |Allen Institute| (2016]) for details on how the dataset was recorded. It comes with a classification
of each neuron into spiny, aspiny, or sparsely spiny, where spiny are assumed to be excitatory neurons and
all else are inhibitory (Gouwens et al.,|2019). Additionally, the cortical layer of each neuron is provided.

Brain Image Library (BIL): Whole mouse brain. The Brain Image Library contains 1,741 recon-
structed neurons from cortex, claustrum, thalamus, striatum and other brain areas in mice (Peng H, 2021)E|

Janelia MouseLight (JML): Whole mouse brain. The Janelia MouseLight platform contains 1,200
projection neurons from the motor cortex, thalamus, subiculum, and hypothalamus (Winnubst J| 2019)E|

Joint training on ACT, BIL and JML. Following Chen et al.|(2022b)), for joint training of the ACT,
BIL and JML datasets, we rotate the neurons such that the first principle component is aligned with the
y-axis/Chen et al. (2022b) group the neurons of the three datasets ACT, BIL and JML into eleven classes
based on the cortical layer or brain region they originate from. They then evaluate their learned embeddings

on a subset of six (for BIL) or four classes (for ACT and JML) that have a broad coverage across the datasets.
See Appendix for further details.

Botanical Trees. The Trees dataset (Seidel et all 2021)) is a highly diverse dataset comprised of 391
skeletons of trees stemming from 39 different genuses and 152 species or breedings. The skeletons were
extracted from LIDAR scans of the trees. Nodes of the skeletons have a 3D coordinate associated with
them. We normalize the data such that the lowest point (start of the tree trunk) is normalized to (0, 0, 0).

4.2.1 Data Preprocessing

Since the objective of GRAPHDINO is to learn purely from the 3D dendritic morphology of neurons, we
normalize each graph such that the soma location is centered at (0, 0, 0) (no cortical depth information
is given to the model). Furthermore, axons are removed for all experiments in the paper, because the
reconstruction of axonal arbors of excitatory neurons from light microscopy images is difficult due to their
small thickness and long ranges that they cover (Kanari et al.; [2019) and thus often unreliable. The input
nodes V have features v; = [x,y, 2] where v; € R? are the spatial xyz-coordinates in micrometers [pm].

4.2.2 Training details.

GRAPHDINO is implemented in PyTorch [Paszke et al.| (2019) and trained with the Adam optimizer [Kingma
& Bal (2015). The latent dimensionality of z is 16 for the synthetic graphs and 32 for the neuronal datasets.
See [C2] for an overview of the hyperparameters used for training on the different datasets. At inference
time, the latent embeddings z are extracted from the student network for the unaugmented graphs. We use
scipy for fitting Gaussian Mixture models (GMM) and k-nearest neighbor classifiers (kNN) Pedregosa et al.
(2011).

5 Results

We first establish that GraphDINO works on the synthetic graph dataset and show that our novel AC-
ATTENTION is necessary for exploiting information from graph connectivity. Second, we show that our
novel augmentation strategies are suitable for spatially-embedded graphs that are tree-structured and that
classical GNN message-passing is not sufficient when graphs have long-ranging branches. Then, we move

Shttp://celltypes.brain-map.org/
4https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/
Shttp://mouselight.janelia.org/

http://celltypes.brain-map.org/
https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/
http://mouselight.janelia.org/

Under review as submission to TMLR

to the gradually more complex, biological questions of spiny-aspiny differentiation, cell type recovery and
consistency with existing labels. To this end, we employ in total five neuronal datasets that encompass two
species and range across multiple brain areas. Finally, we compare our model to several previous works based
on manually-defined morphological features as well as approaches with learned features. See Appendix [B]for
the application of GRAPHDINO to a non-neuronal dataset.

5.1 AC-Attention recovers information encoded by graph connectivity

We start by demonstrating the efficacy of our novel AC- - attention bias :Ztgsel’t‘ltc"igllzzi
ATTENTION module. For this experiment, we use the syn- "iwfﬁ ’“'i}%%f’*
thetic graph dataset where classes differ in how nodes are %'ﬂ; :,?;%&Mm
connected whereas the distribution of node positions does not ?ﬁ {;‘P? Sy %%’Eg{ e
vary across classes. Therefore, considering the graph struc- &%&'%ﬁi‘?)

ture is necessary to differentiate between the classes (more

details in Appendix . We train GRAPHDINO on the syn- »0+36 293£60 200£1.0
thetic graph dataset without labels in three configurations: Figure 2: t-SNE embedding of latent repre-
(1) with AC-ATTENTION, (2) with regular transformer atten- sentations of 3D synthetic graphs shown for
tion and (3) with transformer attention and without positional one example run per model. Accuracy av-
encoding. We asses the quality of the learned embedding us- eraged over five random seeds and given as
ing the ground truth labels. A linear classifier on the learned mean + standard deviation. “—" means re-
embeddings achieves a test set accuracy of (1) 95% =+ 4, (2) moving one component from the full model.
29% =+ 6, and (3) 20% =+ 1, showing that AC-ATTENTION al-

lows us to capture the structure of spatially embedded graphs when the location of the nodes alone does not
provide sufficient information. Removing both AC-ATTENTION and the positional encoding results in the
classifier performing at chance level. Using only the positional encoding performs slightly better than chance,
because the positional encodings contain some information about node connections through the graph Lapla-
cian. To make full use of the information given by the connectivity of the graphs, using AC-ATTENTION is
essential (Fig. [2).

5.2 Tailored graph augmentations are well-suited for spatially-embedded graphs

Table 2: Ablation results on the BBP dataset. 1% self-supervised learning, data augmentation is used to ob-
tain two views that define a positive input pair. The aug-
mentations here are chosen to encode invariances that should
not change the underlying sample identity. In previous con-
trastive learning for graphs, these augmentations were for ex-
ample dropping random edges or masking node features (You
et al., 2020). These augmentations are not appropriate for
our spatially-embedded graphs that form a tree and whose

Cell-type classification accuracy [%] of our
model and ablations averaged over three ran-
dom seeds and given as mean + standard de-
viation. “—" indicate removal of an augmenta-
tion or model component.

Model Accuracy ' e
only node features are their 3D location in space. Thus

GraphDINO 65.8 =1 we designed five novel augmentation techniques specifically
-3D rojc'. 55.4 1 for spatially embedded graphs such as neural morphologies
— node jitter . 64.8 + 2 or botantical trees: subsampling, rotation, node jittering,
— graph translation 55.6 =2 branch deletion and graph translation (see Section [3)).
— drop branch 64.6 + 1
subsampling: 50 nodes 60.0 = o To test the importance of the individual graph augmenta-
subsampling: 200 nodes 62.0 + 5 tions we perform a set of ablation experiments using the

- BBP dataset. We remove one augmentation from our model
- abdl]ace.ncy (v=0) 62.8 11 at a time and evaluate the leave-one-out 5-nearest neighbor
~ attention (A = 0) 59.8 + 2 accuracy when predicting the expert labels. For the subsam-

pling augmentation we vary the number of retained nodes.
Our full model achieves an average accuracy of 65.8% when classifying the excitatory cells into the 12 expert
labels (Appendix . When removing individual data augmentations the accuracy decreases (Tab. .
Especially 3D rotation and graph translation are important augmentation strategies whose removal lead to
substantial performance deterioration.

Under review as submission to TMLR

A. B. " Spiny

.Y 1
;‘x’“‘ " t§ ¥ ? ® + 2
W g e et Mty e o 3
% { * r., +e *
o SRR VS s :
P (DA o v
*’&" o * **’0.0.;0 ot s 0‘*? ..:. ¢ 6
wmeATrs, g S
[] °% ° x\
oy s B n? e g 1
e aspiny 'Og F N x ':: { x 10
| . ia, VERE)
C. Cortical layer D, Apical total length Ay <Tx ek s
14
" °
> - fﬂ;‘" . = 15
g by - g o3
2 o :: :".; :.‘-; 6000 E. -é -9.0
LEv I CHE b
- LI L L s
g 19 : "'-_'".‘. o« 8Nuri\zberlgf clfjosterzs4
—
Spiny 1 % ’L
Spiny 7 ';;5 1

Spiny 12

WP s

Figure 3: t-SNE embedding (perplexity=30) of latent representation of 3D neuronal morphologies of the
BBP dataset showing A. a separation into spiny and aspiny neurons (n = 616). B. t-SNE embedding
(perplexity=30) of the latent representations of the morphologies of the spiny neurons colored by the cluster
found by our model (n = 286). C. Relative cortical layer distribution of neurons per cluster across L2/3—L6.
Higher values are indicated by red. D. As B. but neurons colored by their total apical length revealing an
organization of the latent space in terms of morphological properties. E. Log-likelihood of Gaussian Mixture
Model on held-out test set for spiny neurons used to select the optimal number of clusters. F. Example
neurons for each cluster are shown with apical dendrites in lighter color, while basal dendrites are colored
darker. Soma is indicated by black circle.

Under review as submission to TMLR

5.3 Message-passing is not sufficient for long-range graphs

Next, we investigate whether classical message-passing issuf- 114 3. ¢ ell-type classification accuracy [%]
ficient to process gra.phs with long-ranging .branches suchas 1. BBP dataset. Performance of our
neuronal morphologles. Therefore, we tralp GRAPH'DINO model and INFOGRAPH (Sun et al}, [2020) av-
once when only using message passing while removing the eraged over three random seeds and given as
global attention (setting A = 0 in Eq. . This decreases mean + standard deviation.

the performance to 59.8% (Tab. [3). Additionally, we train

INFOGRAPH (Sun et al., 2020)), as a baseline for an unsu-

pervised method that learns graph-level representations and ©Nodel Accuracy
uses GNN message-passing. INFOGRAPH achieves accuracy
of 48.4% (Tab. . Thus, we conclude that using global at- INFOGRAPH (Sun et al} [2020) 48.2 +0
tention is beneficial in situations where graphs contain long- GraphDINO 65.8 = .
range branches. Global attention enables information flow

between distant (in terms of graph connectivity) nodes that might be close in space or function.

5.4 Morphological embeddings differentiate between spiny/aspiny cells and layers

To evaluate the capability of GRAPHDINO to capture essential features of 3D neuronal shapes purely data-
driven, we train GRAPHDINO on the BBP dataset and use t-distributed stochastic neighbor embedding (t-
SNE) (van der Maaten & Hinton, |2008]) to map the learned embeddings of the BBP dataset into 2D (Fig.|3) for
visualization. A clear separation between spiny and aspiny neurons can be observed (see Fig.), indicating
that our learned representation captures meaningful biological differences of the neuronal morphologies.

Interestingly, some of the spiny neurons end up in the aspiny cluster (Fig. bottom right). These are
inverted L6 neurons (Fig. Cluster 15), whose size and dendritic tree are morphologically similar to the
surrounding aspiny neurons that also show a downwards bias in the dendritic tree.

5.5 Morphological embeddings recover known excitatory cell types

To identify cell types, we fit a Gaussian mixture model (GMM) with a diagonal covariance matrix to our
learned representation of the spiny neurons. To determine the number of clusters, we fit 1’000 GMMs with
different random seeds using five-fold cross-validation for 2—30 clusters. We average over the log-likelihood
for each number of clusters over repetitions and folds. We find n = 15 to be the optimal number of clusters

(Fig. BE).

Having identified the optimal number of clusters, we re-fit the GMM to the full dataset including all spiny
neurons. To avoid picking a particularly good or bad random clustering, we fit 100 models and choose the
one that has the highest average adjusted rand index (ARI) to all other clusterings.

The spiny neurons cluster nicely into different shapes and layers (Fig. and Appendix Fig. , retrieving
known excitatory cell types. The first four spiny clusters contain mainly cells from layer 2/3 (L2/3) (Fig. BIC)
and group them by morphology: Cluster 1 contains wide and short neurons from layer 2/3, while L2/3
neurons in cluster 4 are more elongated with a less pronounced apical tuft (Fig.) Clusters 5-7 group cells
from layer 4 (L4) (Fig. BC), differentiating between spiny stellate cells (cluster 5) and atufted L4 neurons
(cluster 7) (Fig.) Within layer 5 and 6, neurons are group by their size, amount of apical tuft and
obliques, as well as the direction of the apical-like dendrites: For instance, cluster 10 groups thick-tufted
pyramidal cells from layer 5 and cluster 15 contains inverted L6 neurons (Fig.)

Most clusters show a strong preference for grouping cells whose soma position is in a certain layer (Fig.)
even though the model — in contrast to the experts who labeled the cells — does not have access to
anatomical knowledge such as cortical layer of origin. One exception are pyramidal L6 cells with upward-
directed apicals that separate less well and get rather clustered with L4 and L5 neurons of the same size
and similar morphological shape. This is to be expected, as the model only learns to differentiate between
different morphologies but has no knowledge about anatomical features such as soma depth.

Under review as submission to TMLR

Table 5: Balanced accuracy [%] on M1 EXC
Table 4: Adjusted rand index (ARI) between test set using the learned embeddings from either
identified clusters and expert labels for the GraphDINO or MorphVAE (Laturnus & Berens|
learned embeddings from GRAPHDINO and 2021) (mean + SEM across three runs and across
manually-defined features by (Gouwens et al.| three data splits, respectively). Percentages in
2019) and expert labels, when performing the brackets indicate the amount of labels used dur-
clustering within cortical layers and across the ing training for MorphVAE. GraphDINO is trained

whole cortex. without labels.
Accuracy Accuracy
over runs over splits
Clustering Features ARI Model (mean + SEM) (mean + SD)
across layers GRAPHDINO 0.31 MorphVAE (100 %) 70 £ -
within layers |Gouwens et al, (2019) 0.27 MorphVAE (0 %) 58+ 7 -
GraphDINO 0.46 Density Map (0 %) 60 -
GraphDINO (0 %) 68 +s 71 £

5.6 Data-driven clusters are consistent with expert labels

To compare our data-driven features to manually-designed features, we compute the adjusted rand index
(ARI) between our clusters and the expert-identified cell types on the BBP dataset and compare the per-
formance to the clusters based on morphometrics obtained by |Gouwens et al. (2020). We achieve an ARI
performance of 0.31 when clustering neurons across all cortical layers together while using significantly less
prior information than |Gouwens et al.|(2019). In comparison, |(Gouwens et al.| (2019)) reached an ARI of 0.27
with a feature space specifically designed for spiny neurons and by splitting the neurons into their cortical
layer of origin before performing the clustering. This approach reduces the complexity of the problem sig-
nificantly, since misassignments across layers are excluded by construction. When performing the clustering
like |Gouwens et al.|(2019) only within the layers, we achieve an ARI of 0.46 (Tab. .

5.7 Morphological embeddings encode distinct morphological features

Laturnus & Berens| (2021) classified the M1 EXC dataset (Scala et al) [2021) into three classes based on
presence of an apical tuft (tufted, untufted and others). Following their work, we train a 5-nearest-neighbor
classifier on our learned embeddings and show that GRAPHDINO learns meaningful features to differentiate
between the three classes (Tab. . Our method outperforms their MORPHVAE method as well as a baseline
using density maps of the neurons (Laturnus & Berens| |2021). This dataset is rather small and [Laturnus
& Berens| (2021)) used only a single train/test split. To estimate how reliable the reported accuracy metrics
are, we computed the cross-validated accuracy across multiple different train/test splits, which showed a
variability across splits of £9% (standard deviation; Tab. . We conclude that GraphDINO likely outper-
forms MorphVAE trained unsupervised and performs approximately on par with MorphVAE trained fully
supervised.

5.8 Morphological embeddings encode cortical regions

TREEMOCO (Chen et al.l 2022b)) is an LSTM-based model that was concurrently proposed to perform un-
supervised representation learning on neuronal graphs. The model uses as input the simplified skeletons
of neurons that only contain the branching points as nodes. They compute 26 manually-selected features
in addition to the xyz-coordinates as node features to describe the morphology of the skeletons between
branching points. TREEMO0OCO is trained on a combination of the datasets BIL, JML and ACT and quan-
titatively evaluated on the task of predicting the brain anatomical region or cortical layer of origin of the
neurons on a subset of the neuronal classes. |Chen et al.| (2022b]) remove 955 neurons from the dataset due
to “reconstruction errors” and evaluate on a 80-20% training-test split. Since we did not have access to the
exact neurons used for training and evaluation both in terms of split and which neurons were removed, we

10

Under review as submission to TMLR

trained unsupervised on the joint dataset and evaluated using 5-fold cross-validation, i.e. splitting the data
into five folds and evaluating each fold, given the other four folds as training data and reporting the average
performance across folds. For further details regarding the evaluation, see Appendix

GRAPHDINO performs on par or better than

TREEMOCO and GRAPHCL when predict- Taple 6: Cell-type classification on the TreeMoCo dataset.
ing the origin of neurons (Tab. @ Note Performance of our model (GRAPHDINO) averaged over
that GRAPHDINO is fully data-driven while three random seeds and given as mean + standard devi-
TREEMOCO and GRAPHCL additionally em- ation. TREEM0CO and GRAPHCL performance given as
ploy manually extracted node features. the average accuracy over the last five epochs per dataset.

Note that the evaluation reported by [Chen *Results taken Fig. C1 of |Chen et al.| (2022b)).

et al. (2022b) uses excitatory and inhibitory
neurons at the same time. With this approach,

. « ” Model BIL-6 JML-4 ACT ACT spiny
morphologies of neurons of the “same” class can
look very different (Fig. [C.5). A better proxy TreeMoCo* 76.9 59.7 53.9 -
task to evaluate the encoding capabilities of the ~GraphCL* 66.3 50.6 55.6 -
models would be to restrict the evaluation to GRAPHDINO 794+ 63+ 6 54+ 5 T3+

only excitatory cells. For the ACT dataset this
information is available. We therefore repeated the evaluation only on this subset (Tab. @, which should
provide a more meaningful baseline for future studies.

6 Limitations

GRAPHDINO is designed to learn graph-level representations of spatially-embedded tree-structured graphs
using self-supervised learning. As we focus on graphs where each node has a location in 3D space and design
the data augmentations accordingly, the approach is not expected to work out-of-the-box on graphs that
have different node features. AC-ATTENTION is likely to be beneficial in many other scenarios as well, since
it can smoothly interpolate between message passing and global attention based on node similarity, but this
hypothesis remains to be tested empirically. Data augmentations would need to be adapted to the respective
data domain and the respective invariances that should be encoded or supervised learning to be used. The
attention mechanism is not tied in any way to the self-supervised learning objective we use.

Computing the full transformer attention matrix has a quadratic complexity and might therefore be com-
putationally infeasible for graphs with a large number of nodes. We solve this problem here by subsampling
the neuronal skeletons to a smaller number of nodes, which has the added benefit of being a strong data
augmentation that keeps the global morphology of the neuron intact while altering the local structure be-
tween the two views. However, this approach might not be suitable for all graph datasets. There has been
some work in building attention mechanism that scale linearly with the number of input tokens (Wang et al.,
2020; [Kitaev et all |2020; |Choromanski et al.l 2021)), but integrating them with the message passing might
not be straightforward.

In terms of neuronal cell type classification, we did not take some features into account that have been
previously used to differentiate cell types, such as the shape of the soma (as formerly used for GABAergic
interneurons) or spine densities (Ascoli et al.,|2008). Future work could focus on incorporating them into our
framework. Depending on the type of feature, they could be easily integrated by adding them as features of
the graph or as additional node features.

7 Conclusion

Increasingly large and complex datasets of neurons have given rise to the need for unbiased and quantitative
approaches to cell type classification. We have demonstrated one such approach that is purely data-driven
and self-supervised, and that learns a low-dimensional representation of the 3D shape of a neuron. By using
self-supervised learning, we do not pre-specify which cell types to learn and which features to use, thereby
reducing bias in the classification process and opening up the possibility to discover new cell types. A similar

11

Under review as submission to TMLR

approach can also be useful in other domains beyond neuroscience, where samples of the dataset are spatial
graphs and graph-level embeddings are desired, such as tree classification in forestry.

References

Allen Institute. Allen cell types database technical white paper: Cell morphology and histology. 2016. URL
http://help.brain-map.org/download/attachments/8323525/CellTypes_Morph_0Overview.pdf.

Rubén Armafanzas and Giorgio A. Ascoli. Towards the automatic classification of neurons. Trends in
Neurosciences, 38(5):307-318, 2015.

Giorgio Ascoli, Lidia Alonso-Nanclares, Stewart Anderson, German Barrionuevo, Ruth Benavides-Piccione,
Andreas Burkhalter, Gyorgy Buzséki, Bruno Cauli, Javier Defelipe, and Alfonso Fairen. Petilla termi-
nology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature reviews.
Neuroscience, 9:557-568, 2008.

Cathryn Cadwell, Athanasia Palasantza, Xiaolong Jiang, Philipp Berens, Qiaolin Deng, Marlene Yilmaz,
Jacob Reimer, Shan Shen, Matthias Bethge, Kimberley Tolias, Rickard Sandberg, and Andreas Tolias.
Electrophysiological, transcriptomic and morphologic profiling of single neurons using patch-seq. Nature
Biotechnology, 34, 2015.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9650-9660, 2021.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation
learning, 2022a.

Hanbo Chen, Jiawei Yang, Daniel Maxim Iascone, Lijuan Liu, Lei He, Hanchuan Peng, and Jianhua Yao.
Treemoco: Contrastive neuron morphology representation learning. In Advances in Neural Information

Processing Systems (NeurIPS), 2022b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Proc. of the International Conf. on Machine learning (ICML), 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2021.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger,
Lucy J Colwell, and Adrian Weller. Rethinking attention with performers. In ICLR, 2021.

Javier Defelipe, Pedro Lépez-Cruz, Ruth Benavides-Piccione, Concha Bielza, Pedro Larranaga, Stewart An-
derson, Andreas Burkhalter, Bruno Cauli, Alfonso Fairen, Dirk Feldmeyer, Gord Fishell, David Fitzpatrick,
Tamaés Freund, Guillermo Gonzalez Burgos, Shaul Hestrin, Sean Hill, Patrick Hof, Josh Huang, Edward
Jones, and Giorgio Ascoli. New insights into the classification and nomenclature of cortical gabaergic
interneurons. Nature reviews. Neuroscience, 14, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. ARXIV, 2020.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-
Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In
Advances in Neural Information Processing Systems (NeurIPS), volume 28, 2015.

12

http://help.brain-map.org/download/attachments/8323525/CellTypes_Morph_Overview.pdf

Under review as submission to TMLR

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. arXiv.org,
2012.09699, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Bench-
marking graph neural networks. arXiv.org, 2003.00982, 2020.

Leila Elabbady, Sharmishtaa Seshamani, Shang Mu, Gayathri Mahalingam, Casey M Schneider-Mizell, Agnes
Bodor, J Alexander Bae, Derrick Brittain, JoAnn Buchanan, Daniel J Bumbarger, et al. Quantitative
census of local somatic features in mouse visual cortex. bioRxiv, 2022.

Rohan Gala, Agata Budzillo, Fahimeh Baftizadeh, Jeremy Miller, Nathan Gouwens, Anton Arkhipov, Gabe
Murphy, Bosiljka Tasic, Hongkui Zeng, Michael Hawrylycz, et al. Consistent cross-modal identification of
cortical neurons with coupled autoencoders. Nature Computational Science, 1(2):120-127, 2021.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry. In Proc. of the International Conf. on Machine learning (ICML), pp.
1263-1272, 2017.

Nathan Gouwens, Staci Sorensen, Jim Berg, Changkyu Lee, Tim Jarsky, Jonathan Ting, Susan Sunkin, David
Feng, Costas Anastassiou, Eliza Barkan, Kris Bickley, Nicole Blesie, Thomas Braun, Krissy Brouner, Agata
Budzillo, Shiella Caldejon, Tamara Casper, Dan Castelli, Peter Chong, and Christof Koch. Classification
of electrophysiological and morphological neuron types in the mouse visual cortex. Nature Neuroscience,
22, 2019.

Nathan W. Gouwens, Staci A. Sorensen, Fahimeh Baftizadeh, Agata Budzillo, Brian R. Lee, Tim Jarsky,
Lauren Alfiler, Katherine Baker, Eliza Barkan, Kyla Berry, Darren Bertagnolli, Kris Bickley, Jasmine
Bomben, Thomas Braun, Krissy Brouner, Tamara Casper, Kirsten Crichton, Tanya L. Daigle, Rachel
Dalley, Rebecca A. de Frates, Nick Dee, Tsega Desta, Samuel Dingman Lee, Nadezhda Dotson, Tom
Egdorf, Lauren Ellingwood, Rachel Enstrom, Luke Esposito, Colin Farrell, David Feng, Olivia Fong, Rohan
Gala, Clare Gamlin, Amanda Gary, Alexandra Glandon, Jeff Goldy, Melissa Gorham, Lucas Graybuck,
Hong Gu, Kristen Hadley, Michael J. Hawrylycz, Alex M. Henry, DiJon Hill, Madie Hupp, Sara Kebede,
Tae Kyung Kim, Lisa Kim, Matthew Kroll, Changkyu Lee, Katherine E. Link, Matthew Mallory, Rusty
Mann, Michelle Maxwell, Medea McGraw, Delissa McMillen, Alice Mukora, Lindsay Ng, Lydia Ng, Kiet
Ngo, Philip R. Nicovich, Aaron Oldre, Daniel Park, Hanchuan Peng, Osnat Penn, Thanh Pham, Alice
Pom, Zoran Popovié¢, Lydia Potekhina, Ramkumar Rajanbabu, Shea Ransford, David Reid, Christine
Rimorin, Miranda Robertson, Kara Ronellenfitch, Augustin Ruiz, David Sandman, Kimberly Smith, Josef
Sule, Susan M. Sunkin, Aaron Szafer, Michael Tieu, Amy Torkelson, Jessica Trinh, Herman Tung, Wayne
Wakeman, Katelyn Ward, Grace Williams, Zhi Zhou, Jonathan T. Ting, Anton Arkhipov, Uygar Stimbiil,
Ed S. Lein, Christof Koch, Zizhen Yao, Bosiljka Tasic, Jim Berg, Gabe J. Murphy, and Hongkui Zeng.
Integrated morphoelectric and transcriptomic classification of cortical gabaergic cells. Cell, 183(4):935—
953.e19, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 1025-1035, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs. In
Proc. of the International Conf. on Machine learning (ICML), volume 119, pp. 41164126, 2020.

Lida Kanari, Pawel Dlotko, Martina Scolamiero, Ran Levi, Julian C. Shillcock, Kathryn Hess, and Henry
Markram. A topological representation of branching neuronal morphologies. Neuroinformatics, 16:3 — 13,
2017.

Lida Kanari, Srikanth Ramaswamy, Ying Shi, Sebastien Morand, Julie Meystre, Rodrigo Perin, Marwan
Abdellah, Yun Wang, Kathryn Hess, and Henry Markram. Objective morphological classification of
neocortical pyramidal cells. Cerebral Cortex, 29(4):1719-1735, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of the Interna-
tional Conf. on Learning Representations (ICLR), 2015.

13

Under review as submission to TMLR

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
Proc. of the International Conf. on Learning Representations (ICLR), 2017.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In ICLR, 2020.

Johannes Klicpera, Stefan Weify enberger, and Stephan Giinnemann. Diffusion improves graph learning. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

Sophie C. Laturnus and Philipp Berens. Morphvae: Generating neural morphologies from 3d-walks using
a variational autoencoder with spherical latent space. In Proc. of the International Conf. on Machine
learning (ICML), volume 139, pp. 6021-6031, 2021.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
Proc. of the International Conf. on Learning Representations (ICLR), 2016.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. arXiv.org, 1608.03983,
2016.

Yanbin Lu, Lawrence Carin, Ronald Coifman, William Shain, and Badrinath Roysam. Quantitative arbor
analytics: unsupervised harmonic co-clustering of populations of brain cell arbors based on l-measure.
Neuroinformatics, 13(1):47-63, 2015.

Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael Reimann, Marwan Abdellah, Carlos Aguado,
Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas Antille, Selim Arsever, Atenekeng Kahou Guy An-
toine, Thomas K Berger, Ahmet Bilgili, Nenad Buncic, Athanassia Chalimourda, Giuseppe Chindemi,
Jean-Denis Courcol, Fabien Delalondre, Vincent Delattre, and Felix Schiirmann. Reconstruction and
simulation of neocortical microcircuitry. Cell, 163:456-492, 2015.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph structure in
transformers, 2021.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shan-
tanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv.org, 1707.05005, 2017.

Marcel Oberlaender, Christiaan P. J. de Kock, Randy M. Bruno, Alejandro Ramirez, Hanno S. Meyer,
Vincent J. Dercksen, Moritz Helmstaedter, and Bert Sakmann. Cell Type—Specific Three-Dimensional
Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex. Cerebral Cortex, 22(10):
2375-2391, 2012.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv.org, 1807.03748, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research (JMLR), 12:2825-2830,
2011.

Liu L Kuang X Wang Y Qu L Gong H Jiang S Li A Ruan Z Ding L Yao Z Chen C Chen M Daigle TL
Dalley R Ding Z Duan Y Feiner A He P Hill C Hirokawa KE Hong G Huang L. Kebede S Kuo HC Larsen
R Lesnar PLiLLi Q Li X Li Y Li Y Liu A Lu D Mok S Ng L Nguyen TN Ouyang Q Pan J Shen E
Song Y Sunkin SM Tasic B Veldman MB Wakeman W Wan W Wang P Wang Q Wang T Wang Y Xiong
F Xiong W Xu W Ye M Yin L Yu Y Yuan J Yuan J Yun Z Zeng S Zhang S Zhao S Zhao Z Zhou Z
Huang ZJ Esposito L Hawrylycz MJ Sorensen SA Yang XW Zheng Y Gu Z Xie W Koch C Luo Q Harris

14

Under review as submission to TMLR

JA Wang Y Zeng H Peng H, Xie P. Morphological diversity of single neurons in molecularly defined cell
types. Nature, 2021. doi: https://doi.org/10.1038/s41586-021-03941-1.

Sridevi Polavaram, Todd A Gillette, Ruchi Parekh, and Giorgio A Ascoli. Statistical analysis and data
mining of digital reconstructions of dendritic morphologies. Frontiers in neuroanatomy, 8:138, 2014.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and
Jie Tang. Gce: Graph contrastive coding for graph neural network pre-training. In Proc. of Conf. on
Knowledge Discovery and Data Mining (KDD), pp. 1150-1160, 2020.

Srikanth Ramaswamy, Jean-Denis Courcol, Marwan Abdellah, Stanislaw R. Adaszewski, Nicolas Antille, Se-
lim Arsever, Guy Atenekeng, Ahmet Bilgili, Yury Brukau, Athanassia Chalimourda, Giuseppe Chindemi,
Fabien Delalondre, Raphael Dumusc, Stefan Eilemann, Michael Emiel Gevaert, Padraig Gleeson, Joe W.
Graham, Juan B. Hernando, Lida Kanari, Yury Katkov, Daniel Keller, James G. King, Rajnish Ranjan,
Michael W. Reimann, Christian Rossert, Ying Shi, Julian C. Shillcock, Martin Telefont, Werner Van Geit,
Jafet Villafranca Diaz, Richard Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill,
Jeffrey Muller, Idan Segev, Felix Schiirmann, Eilif B. Muller, and Henry Markram. The neocortical mi-
crocircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in Neural Circuits, 9:

44, 2015.

Ladislav Rampéasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer, 2022.

Santiago Ramén y Cajal. Histologie du systéme nerveux de I’homme et des vertébrés. 1911.

Federico Scala, Dmitry Kobak, Matteo Bernabucci, Yves Bernaerts, Cathryn Cadwell, Jesus Castro, Leonard
Hartmanis, Xiaolong Jiang, Sophie Laturnus, Elanine Miranda, Shalaka Mulherkar, Zheng Tan, Zizhen
Yao, Hongkui Zeng, Rickard Sandberg, Philipp Berens, and Andreas Tolias. Phenotypic variation of
transcriptomic cell types in mouse motor cortex. Nature, 598:1-7, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. TEEE Transactions on Neural Networks, 20(1):61-80, 2009.

Philipp Schubert, Sven Dorkenwald, Michal Januszewski, Viren Jain, and Joergen Kornfeld. Learning cellular
morphology with neural networks. Nature Communications, 10:2736, 2019.

Ruggero Scorcioni, Sridevi Polavaram, and Giorgio A Ascoli. L-measure: a web-accessible tool for the
analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature protocols, 3
(5):866-876, 2008.

Dominik Seidel, Yonten Dorji, Bernhard Schuldt, Emilie Isasa, and Klaus Koérber. Dataset: New insights
into tree architecture from mobile laser scanning and geometry analysis. Dryad, 2021. doi: https://doi.
org/10.5061 /dryad.2fqz612n6.

Sharmishtaa Seshamani, Leila Elabbady, Casey Schneider-Mizell, Gayathri Mahalingam, Sven Dorkenwald,
Agnes Bodor, Thomas Macrina, Daniel Bumbarger, JoAnn Buchanan, Marc Takeno, Wenjing Yin, Derrick
Brittain, Russel Torres, Daniel Kapner, Kisuk Lee, Ran Lu, Jingpeng Wu, Nuno daCosta, R. Clay Reid,
and Forrest Collman. Automated neuron shape analysis from electron microscopy. arXiv.org, 2006.00100,
2020.

D. A. Sholl. Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of
Anatomy, 87:387-406, 1953.

Fan-Yun Sun, Jordan Hoffmann, and Jian Tang. Infograph: Unsupervised and semi-supervised graph-level
representation learning via mutual information maximization. In Proc. of the International Conf. on
Learning Representations (ICLR), 2020.

Harry BM Uylings and Jaap Van Pelt. Measures for quantifying dendritic arborizations. Network: compu-
tation in neural systems, 13(3):397, 2002.

15

Under review as submission to TMLR

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research (JMLR), 9(86):2579-2605, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph Attention Networks. In Proc. of the International Conf. on Learning Representations (ICLR), 2018.

Petar Velickovi¢, William Fedus, William L. Hamilton, Pietro Lio, Yoshua Bengio, and R Devon Hjelm.
Deep graph infomax. In Proc. of the International Conf. on Learning Representations (ICLR), 2019.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. ARXIV, 2020.

Yun Wang. A simplified morphological classification scheme for pyramidal cells in six layers of primary
somatosensory cortex of juvenile rats. IBRO Reports, 5, 2018.

Ferreira TA Wu Z Economo MN Edson P Arthur BJ Bruns C Rokicki K Schauder D Olbris DJ Murphy SD
Ackerman DG Arshadi C Baldwin P Blake R Elsayed A Hasan M Ramirez D Dos Santos B Weldon M Zafar
A Dudman JT Gerfen CR Hantman AW Korff W Sternson SM Spruston N Svoboda K Chandrashekar J
Winnubst J, Bas E. Reconstruction of 1,000 projection neurons reveals new cell types and organization of
long-range connectivity in the mouse brain. 2019. doi: https://doi.org/10.1016/j.cell.2019.07.042.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-level represen-
tation learning with local and global structure. In Proc. of the International Conf. on Machine learning
(ICML), volume 139, pp. 11548-11558, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? In NIPS, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In NIPS, 2020.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for learning
graph representations. arXiv.org, 2001.05140, 2020.

Jie Zhao, Xuejin Chen, Zhiwei Xiong, Zheng-Jun Zha, and Feng Wu. Graph representation learning for large-
scale neuronal morphological analysis. IEEE Transactions on Neural Networks and Learning Systems, pp.
1-12, 2022. doi: 10.1109/TNNLS.2022.3204686.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning with
adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069-2080, 2021.

16

Under review as submission to TMLR

Appendices

A Synthetic graph dataset

40 —40

Figure A.1: Example classes 1 (A) and 2 (B) of syn-

thetic graph dataset.
graph connectivity.
mean node locations.

N(p, o).

Samples within one class share
Samples between classes share
Node locations are drawn from

To test whether our model is able to use information
encoded in the connectivity of the graphs, we gener-
ate a synthetic graph dataset with five classes that
differ in connectivity while having similar node loca-
tions. We create this synthetic graph dataset by uni-
formly sampling 20 mean node positions in 3D space
in [—50,50]3. The mean node locations are shared
between the five classes to ensure that the presence
of a specific node does not encode class member-
ship. For each class, we construct a distinct graph
connectivity as follows: We first randomly sample a
root node and two children, then we recursively sam-
ple one or two children per child (with a branching
probability of 50%) until all 20 nodes are connected.
Using this method, we generate 100,000 graphs for
the training set and 10,000 graphs for validation and
test set each (with % class probability) by sampling

node positions from N (i, o) with p equal to the above drawn means and o = 10.
Tab. Tab. and Tab. list the hyperparamers used for experiments on the synthetic graphs.

t-SNE of the learned la-
tent spaces: To visualize the

learned latent space

form t-SNE with a perplexity
of 30 to reduce the embedding

we per-

iy,

to two dimensions (Fig. [A.2).

Linear classifier: We train a

supervised linear classifier on v
the extracted embeddings of B
GRAPHDINO for 100 epochs

and a learning rate

To train the classifier,

of 0.01.

we

use the test set that has

not been used

in training

GRAPHDINO, and split it in
8,000 samples for training the

classifier and 2,000

for evaluating held-out test set

accuracy.

samples

A ®

$

Figure A.2: t-SNE embedding of synthetic graph dataset colored by class

membership for A five runs of GRAPHDINO with GRAPHATTENTION, B
five runs of GRAPHDINO with regular transformer attention, and C five
runs of GRAPHDINO with transformer attention and without positional

encoding.

17

Under review as submission to TMLR

A. M 1 B.Cluster 1 2 7
X x - 1 & ook
x X 2 VU TR A i\ &)
Y Dovrk #VY mdl
x + 4 11 t]
. x'® x5 ! | !
-
% v
"’9 * & + 8
v ® o %9
¥ e 10
ACUER " o 11
oy % 12
“ ¥ .13
‘ - q' + 14

Figure B.3: A. t-SNE embedding of Trees dataset colored by cluster membership based on GMM clustering
with 15 clusters. B. Three example tree morphologies are shown for different clusters.

B Application to different domain: Tree Morphologies

We developed a model that is able to learn graph-level embeddings of spatially-embedded graphs. So far,
we have shown that it yields meaningful cell types clusterings of neuronal morphologies. To show that
GRrRAPHDINO is applicable to data domains beyond neuronal morphologies, we train our model on 3D
skeletons of individual trees (from a forest).

The Trees dataset (Seidel et al.l 2021) is a highly divers dataset comprised of 391 skeletons of trees stemming
from 39 different genuses and 152 species or breedings. The skeletons were extracted from LIDAR scans of
the trees. Nodes of the skeletons have a 3D coordinate. We normalize the data such that the lowest point
(start of the tree trunk) is normalized to (0, 0, 0).

GRAPHDINO learns a latent space that orders tree morphologies with respect to their size, crown size and
crown shape (Fig. m Fig.|D.7)).

C Extended Methods

C.1 Background: DINO

DINO (Fig. (Caron et al., [2021)) is a method for self-supervised image representation learning. Similar
to previous approaches, it consists of two image encoders which process different views of an image. These
views are obtained by image augmentation. The training objective is to enforce both encoders to generate
the same output distribution when the same input image is shown. This can be implemented by the cross
entropy loss function:), —¢; logp;. Both encoders are transformers that share the architecture but differ in
their weights: One of the encoders is the student encoder which receives weight updates through gradients
of the training objective while the other encoder’s (teacher) weights are an exponential moving average of
the student’s weights. In contrast to some other self-supervised methods, DINO does not require contrastive
(negative) samples. To prevent collapse, i.e. predicting the same distribution independent of the input image,
two additional operations on the teacher’s predictions are crucial: sharpening by adjusting the softmax
temperature, and centering using batch statistics. Besides competitive performance on downstream image
classification tasks, another key finding of the paper is that object segmentations emerge in the self-attention
when applying DINO training on visual transformer image encoders.

C.2 Data preprocessing.

To speed up data loading during training, we reduce the number of nodes in the graph of each neuron to
1000 nodes in the same way as when subsampling and ensure that it contains only one connected compo-
nent. If there are unconnected components, we connect them by adding an edge between two nodes of two
unconnected components that have the least distance between their spatial coordinates.

18

Under review as submission to TMLR

augmentation - student
view x; encoder softmax

input I f
. exp. moving avg.
image x gavg cross en;ropy loss

view x, teacher p== center f=—softmax —@
encoder

Figure C.4: The DINO method for self-supervised image representation learning (figure adapted from |Caron
et al. (2021))).

C.3 Training details and hyperparameters

To select hyperparameters we run three grid searches and pick the best hyperparameters according to the
lowest average loss over the BBP and M1 PatchSeq dataset.

For the optimization, we run a hyperparameter search over batch size € {32,64,128}, learning rate €
{1073,107%,107°}, and number of training iterations € {20, 000, 50, 000, 100, 000}.

For the augmentation strength, we run a hyperparameter search over jitter variance oy € {1.0,0.1,0.001},
number of deleted branchesn € {1,5,10}, and graph position variance o9 € {0.1,1.0,10.0}.

For the architecture, we run a hyperparameter search over latent dimension € {16,32,64}, number of
GRAPHATTENTION blocks (depth) € {5,7,10}, and number of attention heads per block € {2,4, 8}.

C.3.1 Architecture Hyperparameters

Table C.1: Hyperparameters used for the architecture for the different datasets. PE: Positional encoding.
T temp: Softmax temperature of teacher network.

Dataset Dims p Dimsz N layers N heads MLP dims PE dims T temp
Synthetic Graphs 300 16 4 4 16 16 0.04
BBP 1000 32 10 8 64 32 0.06
M1 PatchSeq 1000 64 7 8 64 32 0.06
Joint dataset (BIL, JML, ACT) 1000 32 7 4 64 32 0.06
Trees 1000 32 7 8 64 32 0.06

Tab. lists the hyperparameters used for the architecture for the different datasets. For the synthetic
graph dataset, we downscale the network due to being a simpler dataset. DINO (Caron et al., |2021)) uses
an output dimensionality of 65,536 for p when training on ImageNet (Deng et al. 2009) (1,000 classes).
The number of classes in the neuronal datasets is unknown, but previous literature described 14 — 19 cell
types (Gouwens et al., 2019; Markram et al., [2015). Hence, we decrease the number of dimensions of p
proportionally to 1,000, approximately retaining the ratio between classes and number of dimensions.

C.3.2 Optimization Hyperparameters

The learning rate is linearly increased to the value given in Tab. during the first 2,000 iterations and
then decayed using a exponential decay with rate 0.5 (Loshchilov & Hutter} 2016).

19

Under review as submission to TMLR

Table C.2: Hyperparameters used for optimization for the different datasets.

Dataset Iterations Batch size Learning rate
Synthetic Graphs 100,000 512 1074
BBP 100,000 64 1074
M1 PatchSeq 50,000 128 1073
Joint dataset (BIL, JML, ACT) 100,000 128 1073
Trees 100,000 64 1074

C.3.3 Augmentation Hyperparameters

Table C.3: Augmentation hyperparameters for the different datasets. N nodes: Number of nodes to
subsample to. o1: Variance of node jittering. N DB: Number of deleted branches. o5: Variance of graph
translation.

Dataset N nodes o1 N DB o2
Synthetic Graphs 15 0.1 0 0
BBP 100 0.001 10 10.0
M1 PatchSeq 100 0.1 10 10.0
Joint dataset (BIL, JML, ACT) 200 1.0 5 10.0
Trees 200 0.1 5 10.0

C.3.4 Computation

All trainings were performed on a NVIDIA Quadro RTX 5000 single GPU. Training on the neuronal BBP
dataset ran for approximately 10 hours for 100,000 training iterations.

C.4 Inference

To extract the latent representation per sample, we encode the unaugmented graphs subsampled to 200 nodes
using the student encoder and extract the latent representation z using the weights of the last iteration of
training (no early-stopping is used).

C.5 Evaluation
C.5.1 Evaluation on BBP

For visualization of the latent space, we use t-distributed stochastic neighbor embedding (t-SNE) (van der
Maaten & Hinton, 2008) with PCA-initialization, Euclidean distance and a perplexity of 30.

For quantitative evaluation we use the subset of labeled excitatory neurons (n = 286) with the following
14 expert labels: L23-PC, L4-PC, L4-SP, L4-SS, L5-STPC, L5-TTPC1, L5-TTPC2, L5-UTPC, L6-BPC,
L6-IPC, L6-TPC-L1, L6-TPC-L4, L6-UTPC, L6-HPC (Markram et al., 2015).

For the ablation experiments and the comparison to INFOGRAPH |Sun et al| (2020]), we perform k-nearest
neighbor (kNN) classification with & = 5 in a leave-one-out setting predicting the above listed expert labels
with two exceptions: We remoev the L6-HPC cells, since there are only three samples in the dataset, and
we group the L5-TTPC1 and L5-TTPC2 into one class L5-TTPC following previous work that found that
they rather form a continuum then two separate classes (Gouwens et al. 2019; Kanari et al., 2019).

For the clustering analysis and the comparison to |Gouwens et al.| (2019), we follow |Gouwens et al.| (2019)
and compute the adjusted rand index between our found clusters and the 14 expert labels. To determine
the optimal number of clusters, we use cross-validation to compute the log-likelihood of held-out data of the
Gaussian Mixture model and choose the number of clusters with the highest log-likelihood. The optimal

20

Under review as submission to TMLR

number of clusters is 15 for the BBP dataset. To perform clustering within cortical layers, we chose the
number of clusters per layer based on the number of clusters with the majority of cells from the cortex-wide
clustering (Fig. : four for layer 2/3, layer 5 and layer 6 and three for layer 4.

C.5.2 Comparison to InfoGraph (Sun et al., 2020)

We use the official implementatiorﬁ to train INFOGRAPH on the BBP dataset. We perform a hyperparameter
search for INFOGRAPH as detailed in the original publication (Sun et all 2020 and extend it to include
more training epochs to train it for approximately the same number of iterations as GRAPHDINO. In
detail, we run a grid search over learning rate (Ir) € {1072,1073,10~*}, number of training epochs €
{10, 20, 100, 200, 1,000,2,000} and GNN layers € {4,8,12}. We select the hyperparameters based on the
lowest unsupervised loss. The chosen hyperparameters are: lr = 0.001, epochs = 1,000 and four GNN layers
with a hidden dimensionality of 32.

We evaluate the performance of INFOGRAPH (Sun et all 2020) using a kNN classifier analogous to the
ablation experiments (Appendix. [C.5.1)).

C.5.3 Comparison to MorphVAE (Laturnus & Berens, 2021)

We follow the evaluation protocol of Laturnus & Berens| (2021) and perform k-nearest neighbor (kNN)
classification with £ = 5 on the learned latent embeddings of the excitatory neurons to predict whether they
are untufted, tufted or “other” on the test set (n = 60) and report the balanced accuracy. The “other" class
only contains six examples in the test set. To get an estimate of the variance that is due to the chosen data
split, we additionally evaluate three further data splits and report the average test set performance over the
three splits. We report the performance of MORPHVAE as given in Tab. 3 of Laturnus & Berens| (2021)).

C.5.4 Comparison to TreeMoCo (Chen et al., 2022b)

A fair comparison to TreeMoCo proved difficult. We tried to replicate their setting as best as possible from
the information given in the paper as well as by inferring it from their code baseﬂ while trying to set up a
more fair benchmark for future works.

We downloaded the three datasets BIL, JML and ATC using the official code base of TREEM0CO and used
it to assign the eleven class labels: L1, L2/3, L4, L5, L6, VPM, CP, VPL, SUB, PRE, MG and Others as
used by (Chen et al.|[(2022b]). However, our cell counts slightly differ from those given in|Chen et al.| (2022b).
More specifically, the JML dataset contained 1,200 neurons instead of 1,107.

Chen et al|(2022b) removed a substantial amount of the neurons (995 of 3,358 neurons) from the datasets
due to reconstruction errors. Since we did not have access to the identities of these neurons, we trained
GRAPHDINO unsupervised on all cells with more than 200 nodes (niotar = 3,138; nprr, = 1,739, nymr =
889, nacr = 510) and evaluated the proposed classes as assigned by the TREEMOCO code base. We
replicated the proposed data preprocessing by centering the somata at (0, 0, 0) and aligning the neurons’
first principle component to the y-axis.

Chen et al.| (2022b]) performs the quantitative evaluation on a 80-20% training-test data split. Since we
did not have access to the exact split, we performed five cross-validations instead and report the average
accuracy over folds.

According to the paper, |Chen et al.| (2022b)) perform k-nearest neighbor classification (k = 5 or k = 20
depending on the dataset). We unify the evaluation and report the kNN accuracy with k = 5 for all
experiments in this paper. For reference, we list the k¥ = 20 performance in Tab. In their code base,
the implementation of kNN is weighted, where the neighbors vote is weighted by the cosine similarity of
the embeddings. We follow the description in the paper (Chen et al., |2022b)) and use the standard kNN
classification without weighing the neighbors’ votes.

Shttps://github.com/sunfanyunn/InfoGraph
"We additionally tried to reach out to the authors but did not get a reply.

21

https://github.com/sunfanyunn/InfoGraph

Under review as submission to TMLR

Table C.4: Cell-type classification on the Figure C.5: Example neurons labeled as Isocortex 4
TreeMoCo dataset. Performance of our model of the ACT dataset.

(GRAPHDINO) averaged over three random

seeds and given as mean + standard deviation
when using k£ = 20 for the kNN classifer. J z 5

Model BIL-6 ACT
Ours T8 +2 Hd+a

The performances reported by |Chen et al.| (2022b)) are overfitted on the test set: They pick the best test set
performance over epochs (for the three datasets separately) (see Fig. C1 in|Chen et al|(2022b)). Additionally,
they picked whether to use the latent embedding z or the projection head’s output p based on the test set
performance per dataset. To give an estimate of the less overfitted performance of TREEM0CO
2022b)) (at least with respect to which epoch to evaluate), we report the averaged performance over the last
five epochs given by Fig. C1 (Chen et al.| [2022D).

Similarly, the performance of GRAPHCL (You et al., 2020) as reported by [Chen et al,| (2022b)) is picked as
the best test set performance per dataset over training epochs. We therefore report the average accuracy

over the last five epochs with the given by Fig. C1 (Chen et al., 2022b)).

D Complete cluster visualizations

In the Fig. [D.6] and Fig. [D.7] we show the cluster assignments of all samples of the excitatory BBP dataset
(n = 286) and the Trees dataset (n = 391), respectively.

22

Under review as submission to TMLR

¥ N e o
i ﬁ; e & S
ﬁm%ﬁﬁ M
S o
¥

K > 2
> Tk

25 ke M
e 1

ik% N
o I
Jé}.;*ﬂ "3 M
EE — S
X %
>N —¥ 7Y
P TE oy
> .
T*}ég” >ﬁ¥ &_g#*
e N
e -k
O Py
A
P R W
e X

- TH ?é,i*‘
N ¥

) > ik
o _;H/ =Nk
Ng Z’f* ok
ﬁ ***** fé-—?ﬁ%
. ¥ e
R B e

’)r:\ %E M
) Db
S s
=N et s
S SR S Vo
—PF ke I
% LY, L
TN Sy e
E,%??*,,;rfﬁﬁ/ %ﬁ&
b ¥
3 e 4 \:}(/
e
#§
= R N
i e _“qﬁg_% M
i IREEA. W
%*M% =ove M
> 2% Ko o
S ok %{é
[
T ek
R e T
Berale b SN
s
R ot %
Pty A i
S = f
ﬁj{f“ i>&
A e e
==y s >§/
Bk 332

Figure D.6: Clusters of spiny neurons of BBP dataset as identified by GMM based on our learned feature
space. Apical dendrites are colored lighter, while I28al dendrites are shown in a darker color. Soma is

marked by a black circle.

Under review as submission to TMLR

v

FHER w:&q%ﬁ»;@%@»iﬁi@ *i %_
%%s% TTTIT T STAL T TR T TR R S A O

pesaone %w FaTInReIR OB R BT RoAN IINIRIRNOIEANNP
T TRTITIR s PRMEYeT P M
.

L LA e Ty

I [| | I M ! | __N | %. |
L S el igﬁgﬁ jm.ﬁm%%K%%g%g
rd L 493sn|D

Figure D.7: Clusters of trees as identified by GMM based on our learned feature space.

24

	Introduction
	Related Work
	Representation learning for neuronal morphologies
	Graph Neural Networks (GNNs)

	GraphDINO
	Data and Experiments
	Synthetic graphs
	Neuronal and tree graphs
	Data Preprocessing
	Training details.

	Results
	AC-Attention recovers information encoded by graph connectivity
	Tailored graph augmentations are well-suited for spatially-embedded graphs
	Message-passing is not sufficient for long-range graphs
	Morphological embeddings differentiate between spiny/aspiny cells and layers
	Morphological embeddings recover known excitatory cell types
	Data-driven clusters are consistent with expert labels
	Morphological embeddings encode distinct morphological features
	Morphological embeddings encode cortical regions

	Limitations
	Conclusion
	Synthetic graph dataset
	Application to different domain: Tree Morphologies
	Extended Methods
	Background: DINO
	Data preprocessing.
	Training details and hyperparameters
	Architecture Hyperparameters
	Optimization Hyperparameters
	Augmentation Hyperparameters
	Computation

	Inference
	Evaluation
	Evaluation on BBP
	Comparison to InfoGraph Sun20
	Comparison to MorphVAE Laturnus21
	Comparison to TreeMoCo Chen22

	Complete cluster visualizations

