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ABSTRACT

Dynamic programming (DP) is central to combinatorial optimization, optimal
control, and reinforcement learning, yet its perceived sequentiality has long hin-
dered scalability. We introduce a general-purpose GPU framework that reformu-
lates broad classes of forward DP recursions as batched min—plus matrix—vector
products over layered DAGs, collapsing actions into masked state-to-state tran-
sitions that map directly to GPU kernels. This approach removes a major bot-
tleneck in scenario-based stochastic programming (SP), where the use of DP has
traditionally restricted the number of scenarios due to excessive computational
cost. Our framework exposes massive parallelism across scenarios, transition lay-
ers, and, when applicable, route or action options, via self-designed GPU kernels
that implement Bellman updates with warp-/block-level reductions and numeri-
cally safe masking. In a single GPU pass, these kernels can process over 10°
uncertainty realizations, far beyond the capacity of prior scenario-based methods.
We demonstrate the approach in two canonical SP applications: (i) a vectorized
split operator for the capacitated vehicle routing problem with stochastic demand,
exploiting 2D parallelism (scenarios X transitions); and (ii) a forward inventory
reinsertion DP under an order-up-to policy, exploiting 3D parallelism (scenarios
X inventory transitions X route options). Across benchmarks, the implementation
scales nearly linearly in the number of scenarios and achieves one to three orders
of magnitude speedups over multithreaded CPU baselines, yielding tighter SAA
estimates and consistently stronger first-stage decisions under identical wall-clock
budgets. Viewed as hardware-aware software primitives, our min—plus DP kernels
offer a drop-in path to scalable, GPU-accelerated stochastic discrete optimization.

1 INTRODUCTION

Dynamic programming (DP) is a foundational paradigm in optimization and control, enabling the
decomposition of complex multi-stage decision problems into tractable subproblems. Classic refer-
ences such as Bertsekas’ monograph Dynamic Programming and Optimal Control (Bertsekas| [2012)
have established DP as a unifying framework for sequential decision making. Through Bellman’s
principle of optimality, DP characterizes value functions and optimal policies recursively. This dual
role - as both an analytical tool and a computational method - has made DP central to fields such as
operations research, control, reinforcement learning, and artificial intelligence.

DP plays a particularly important role in combinatorial optimization. On the one hand, it serves as
the foundation of several exact algorithms, such as the Held—Karp procedure for the traveling sales-
man problem (TSP, Held & Karp, [1971)), pseudo-polynomial algorithms for knapsack-type prob-
lems (Shapiro, [1968)), and classical shortest path algorithms (e.g., Bellman, 1958} Dijkstral [{1959).
On the other hand, DP often appears as a subproblem solver within more complex frameworks.
For instance, in vehicle and inventory routing problems (VRP, |Prins, 2004; Vidal, 2016), DP-based
“split” algorithms efficiently decompose giant tours into feasible routes. This decomposition is a
cornerstone in many state-of-the-art heuristics and metaheuristics, as it enables the rapid evaluation
of candidate solutions and thus directly impacts overall algorithmic performance. Moreover, column
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generation approaches typically rely on DP to solve resource-constrained shortest path problems in
the pricing step, often through label-setting algorithms (Feillet et al., [2004; {Irnich & Desaulniers,
2005). These algorithms are not only theoretically elegant but also practically indispensable, as
they form one of the most widely adopted subroutines in VRP, crew scheduling, job-shop schedul-
ing and other huge integer programs (IP, [Barnhart et al., |1998). Beyond these direct applications,
metaheuristic methods, which are widely used to tackle complex real-world NP-hard problems, of-
ten exploit DP to efficiently evaluate and repair candidate solutions (Vidal et al.,|2012; Zhao et al.,
2022)), thereby enabling the exploration of large and sophisticated neighborhoods without incurring
prohibitive computational costs. As exact and meta-heuristic methods represent the two principal ap-
proaches to solving combinatorial optimization problems (CO), DP is thus not merely a standalone
solver; it also serves as a versatile backbone embedded in many of the most powerful methods in
this domain.

Moving beyond deterministic settings, stochastic optimization constitutes another major branch of
combinatorial optimization, typically formulated as integer or mixed-integer programs that incor-
porate uncertainty to better capture the dynamics of real-world systems. In stochastic optimiza-
tion, DP is the canonical lens through which multistage decision making is modeled under uncer-
tainty (Bertsekas, [2012)). Classical stochastic DP provides the foundation for exact formulations,
while approximation methods, such as such as approximate dynamic programming (Powell, |2007),
neuro-dynamic programming (Bertsekas & Tsitsiklis, |[1995), and reinforcement learning (Staddon,
2020). Moreover, many decomposition frameworks embed DP-based subroutines to evaluate re-
course actions across scenarios (Birge & Louveaux,|1997; [Shapiro et al.|[2021).

A key observation is that stochastic programming (SP) naturally lends itself to parallelism: once
the first-stage decision is fixed, second-stage recourse evaluations across scenarios are independent.
Building on this structure, we develop a GPU-accelerated framework that reformulates DP algo-
rithms for stochastic combinatorial optimization into fully vectorized, GPU-parallelizable routines.
This framework enables the simultaneous evaluation of millions of uncertainty realizations in a
single GPU pass, significantly improving both runtime and statistical accuracy in sample-average
approximation (SAA).

Our work introduces the first scenario-based solver capable of handling over one million realizations
in stochastic combinatorial optimization, substantially extending the scalability frontier of scenario-
based methods. While GPU-based acceleration has been applied to continuous optimization (e.g.,
GPU-ADMM (Schubiger,[2019), CuPDLP (Lu & Yang| 2023)), GPU-QP (Bishop et al.,[2024)), GPU-
IPM (Liu et al} 2024))), no comparable approach has been developed for discrete, combinatorial,
and scenario-based stochastic problems. We demonstrate the effectiveness of the framework on two
canonical applications: the capacitated vehicle routing problem with stochastic demand (CVRPSD)
and the dynamic stochastic inventory routing problem (DSIRP). In both cases, DP subroutines that
were previously sequential are reformulated in matrix form and implemented via efficient GPU
kernels, achieving performance levels previously unattainable. In summary, our main contributions
are as follows.

1. We show that many forward dynamic programming recursions in stochastic combinatorial
problems can be rewritten as batched min—plus matrix—vector products over layered DAGs.
This algebraic view collapses actions into masked state-to-state transitions that map directly
to GPU kernels.

2. We develop GPU kernels that exploit both scenario-level and transition-level parallelism:
two-dimensional parallelism for the VRP split operator, and three-dimensional parallelism
for the inventory reinsertion operator. Bellman minimizations are implemented as warp-
/block-level GPU reductions, with padding and masking ensuring numerical stability.

3. A single GPU pass evaluates more than 10° uncertainty realizations, yielding near-linear
scaling in the number of scenarios and one to three orders of magnitude acceleration over
multithreaded CPU baselines.

4. This throughput translates directly into decision quality: tighter sample-average approxi-
mations and stronger first-stage solutions within the same wall-clock budget.

5. Finally, we distill a general recipe—state layering, transition masking, min—plus batching,
and reductions—that can turn a broad class of DP subroutines into high-throughput GPU
primitives for stochastic discrete optimization.
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Overall, the paper demonstrates that classic DP subroutines, once perceived as inherently sequential,
can be systematically re-expressed in min-plus matrix form and executed as high-throughput GPU
kernels, unlocking modern hardware for large-scale stochastic discrete optimization. Our imple-
mentation is available athhttps://github.com/Jingyi-poly/2-stage—IRP-GPUl

2 GENERIC DYNAMIC PROGRAMMING FRAMEWORK

Preliminary Knowledge. We consider a finite-horizon dynamic program over stages ¢t =
1,...,T, starting from an initial state s; € S;. At each stage ¢, the system is in a state s; € S, an
action a; € Ay(s;) is chosen, and the system moves to s;11 either deterministically via g¢(s:, at)
or stochastically according to P;(s¢1+1 | $¢,as;w). Each transition incurs a stage cost ¢;(sy, a;; w)
under scenario w.

Let Ji(s) denote the minimum cumulative cost to reach s € S; at stage t. The recursion initializes
as Jy'(s1) = 0 and evolves by
JY (") = min JY(s)+c¥(s,a)}, Vs €Siiq. 1
t+1( ) s€$t,a€At(s){ t ( ) t( )} t+1 (1)
gi(s,a)=s’

The objective is to minimize the expected terminal cost E,, [minsegT Js (s)} .

2.1 TRANSITION-BASED DAG FORMULATION.

To enable GPU-friendly computation, we reformulate the recursion using state-to-state transitions.
Define the forward transition cost matrix:
AY(s,8'):= inf (s,a), with AY(s,s’) = +oo if infeasible.
aEA, (s
gt(s,a):s'

Then the forward update becomes:
£r(s) = min {J7(s) + A7 (s, 57} - @

This recursion corresponds to a layered shortest-path expansion over a forward DAG, where transi-
tions are edges from layer S; to layer Sy 1.

2.2 MIN-PLUS MATRIX FORMULATION.

Let S; = {1,...,m;} index the state space. Define:
AY(i,7) = AV (s =1, s = j), Ji e R™t.
Then, the Bellman update becomes a matrix-vector product in the (min, +) semiring:

w w\ T w . w(;: W M+l

Fa = (A9 @ 7 = [minf A7 G.9) + @] 3)
This min-plus formulation enables efficient GPU implementation via tensor broadcasting and
dimension-wise minimization, with infeasible transitions masked via +o0o. For variable-sized state
spaces, padding and masking ensure regular tensor shapes for parallel execution. A demonstrative
DP example (5.1, together with the full formulations of the following two applications, VRPSD
split (5.2) and DSIRP reinsertion (5.3)), is provided in the Appendix.

2.3 INSTANTIATION A: SPLIT DP ON A GIANT TOUR IN THE VEHICLE ROUTING PROBLEM
WITH STOCHASTIC DEMAND.

Problem Motivation. In vehicle routing postprocessing, a common task is to split a “giant tour”
o = [01,...,0,] into capacity-feasible routes. Given demands g%, under scenario w and vehicle
capacity (), define state ¢ as having served customers o; to ;. An action p < 4 ends the previous
route at p, starting a new one from p+1 to 7. The departure depot is denoted by 0, and the destination
depot by n+1. The DP explores all possible cut points p < : that define where to start a new route,
and accumulates the minimal total travel cost for serving customers up to . (see the Figure[7]in[5.2]
for better understanding).
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Forward DP Recursion and Matrix Form. The cost of serving subroute (o)1, ..., 0;] is
i—1
Ww(p?i) = C0,0p41 + E : Cop,ok41 + Cointls
k=p+1

which is feasible only if Z;;::p 1195, < Q. We define masked transition entries as

W (p,i), ifp<iand Y,_ .5 0% <Q,

A¥(p,i) = < +o0o, if p < i and ZZ:pH qe. > Q (capacity violated),

400, if p >4 (notapplicable).

Let J“(0) = 0 and J“(4) be the optimal cost to reach state 7. The forward-DP update is then
JY(0) = min{JY(p) + A¥(p, 1)}, 1=1,...,n,
p<t
which is equivalently expressed as the masked min—plus reduction
) wi T win .
JU@) = (A%(-,49) @ J9(0:i-1), 4)

where ® denotes the (min, +) semiring product and A“ (-, ) is the i-th column with all infeasible
or undefined entries masked by +oo (see Appendix [5.2]for a numerical toy example).
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Figure 1: Two-dimensional DP parallelism on GPU (scenarios X predecessors). Each row corresponds
to a destination state ¢, each block within a row represents a scenario w, and colored bars indicate feasi-
ble predecessors p < 4. For each (i,w) pair, all predecessors are expanded in parallel to form the set
{J¥(p) + A®(p,i) : p < i}, followed by a column-wise min-reduction over p that yields J* (¢).

Two-Dimensional Parallelism on GPU. From equation[d} the computation at a fixed destination
state ¢ factorizes over the Cartesian product 2 X {p : p < ¢}. We therefore exploit two-dimensional
GPU parallelism across scenarios w and predecessors p < i. Each thread computes one pair (w, p)
by loading A“ (p, i) and the partial cost J“(p), forming J“ (p) + A“(p, ). A warp-/block-level min
reduction across p then yields J“(4) for that scenario. Launching such kernels for all scenarios in
parallel computes the masked min—plus reduction of A%(-,4) against J(0:4—1). As illustrated
in Figure [} this structure maps naturally to GPUs: scenarios w are parallelized across columns,
predecessors p are reduced within blocks, and rows (states ¢) advance independently along the DP
frontier.

2.4 INSTANTIATION B: FORWARD INVENTORY REINSERTION DP IN DYNAMIC STOCHASTIC
INVENTORY ROUTING PROBLEMS.

Problem Motivation. In the stochastic inventory routing problem, delivery schedules are often
determined at an aggregate level and then refined through local reinsertion moves: a customer ¢ that
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risks a stockout is reconsidered, and new visits are inserted into existing routes or additional trips
are scheduled. The key challenge is that reinsertion must balance two competing effects: (i) earlier
deliveries create higher holding cost and may cause inefficiency in vehicle loading, (ii) postponing
deliveries increases the probability of future stockouts under adverse demand realizations. The
goal is to decide, for each customer, when to replenish under uncertain demand so as to minimize
expected routing, holding, and stockout costs. DP provides a natural way to resolve this trade-off,
as it captures the temporal coupling of inventory states and demand uncertainty.

The decision process follows a two-stage stochastic optimization framework. In the first stage,
a delivery and routing plan is established for Day 1. Specifically, the model determines which
customers to replenish and how much to deliver, subject to vehicle capacity and routing constraints.
These decisions are made prior to the realization of demand and are identical across all demand
scenarios. Once the demand over the entire planning horizon (Days 1 to H) is realized, second-
stage decisions are made adaptively from Day 2 onward. These include scenario-dependent routing
and replenishment actions that respond to the realized demand in each scenario (see the Figure
in[5.2] for better understanding).

The objective is to minimize the total expected cost, which consists of two components: (1) First-
stage costs including the Day 1 routing cost and the supplier’s inventory holding cost; and (2)
Second-stage costs, which vary across scenarios and include: inventory holding costs and stock-
out penalties at customers at the end of Day 1; routing and delivery costs from Day 2 to H; and
inventory holding and stock-out penalties from Day 2 to H.

The DP operator used to solve this problem follows the formulation in (Zhao et al. |2025), which
focuses on a single customer ¢ over a planning horizon ¢t = 1, ..., H, starting with initial inventory
I? and capacity U;. The customer’s demand is uncertain and modeled by a finite set of scenarios €2,

t . ..
where d; denotes demand on day ¢ under scenario w. For each customer, the decision at each day
consists of:

* whether customer ¢ is visited at time ¢,

« the delivery quantity ¢¢, which can only take two values: ¢! € {0, U; — I f ~1} that is, either
no delivery or replenishment up to full capacity.

¢ and which vehicle route is chosen to accommodate this visit.

These decisions are scenario-independent, i.e., the same schedule applies across all w € €2 while in-
ventory evolution is scenario-dependent. The state variable is the end-of-day inventory I f *“, updated
as

If’“’ = max{0, Iffl’w +qf — df’w}7 Vi, w.

Here the DP systematically evaluates both replenishment options (no delivery vs full OU delivery),
propagating inventory states forward in time and accumulating costs. See Appendix [5.3] for a nu-
merical toy example.

Forward DP Recursion and Matrix Form. At each day ¢, customer ¢ either receives no delivery
(¢¢ = 0) or is replenished up to capacity (¢} = U; — If 1) The per-stage cost for scenario w
consists of two components: (1) routing and detour costs associated with sending ¢!, denoted Fy(g!);
and (2) customer-side inventory holding and stock-out penalties hf(I f ), evaluated at the end-of-
day inventory I,

Let Cf([f ) denote the minimum expected cumulative cost up to day ¢ for customer 4 under sce-
nario w, given that the day-¢ starting inventory is I zt *“. By construction, C!(-) is a piecewise linear
function of the inventory state. The forward recursion is

Oy = min {CHIP) + Fu(gh) + BT
ate{0,U— 11}

where the inventory state evolves as [, f the — max{0, Iit’w +qt — d?w}. The recursion starts from
the initial inventory before day 1: C?(I?*) = 0 with I = I?.
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To enable GPU-friendly computation, we collapse the action space into a state-to-state transition
matrix:

AP ) = {Bn[ijn " {Fi(q) +Rhi(J)}, oo ifno feasible g leads from I to .J.
q€10,Ui—
max{0,]+q—dy“}=J

In practice, evaluating each entry AE’” (I, J) may itself require enumerating a finite set of candidate
route options (e.g., alternative reinsertion choices), in which case

AY(T1,J) = min A1, ;7).
rekl
Rows correspond to today’s starting inventory /, columns to tomorrow’s inventory .J, and each entry
stores the minimal cost of transitioning from [ to J.

Define the state space
S::{IEZZ(JOSISUl},

and collect Cf(I) over I € S} asavector J} € RIS?1, The forward recursion then becomes a masked
min—plus matrix—vector product:

IeS! Jesitt

Three-Dimensional Parallelism on GPU. From the matrix form, the computation at stage ¢ fac-
torizes over the Cartesian product 2 x {(I — J)} x R, where R denotes the set of candidate
route options for each transition. We therefore exploit three-dimensional GPU parallelism across
scenarios w, state transitions / — J, and route options r € R. Each thread computes one tuple
(w, I—J,r) by loading AY* (1, J;7) and the partial cost J¢(I), forming J¢(I) + AV (I, J;7). A
warp-/block-level min reduction is first performed across route options r, then across predecessor
states I, yielding Jf“ (J) for each scenario w. Launching such kernels for all w in parallel realizes
the batched column-wise min—plus updates of the recursion, while also vectorizing over alternative
delivery routes.
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Figure 2: Three-dimensional DP parallelism on GPU (scenarios X transitions X route options). Each layer
corresponds to a stage ¢, with nodes representing end-of-day inventory levels I. Colored edges denote feasible
transitions / — .J under scenario-specific demands d**. For each tuple (w, I—.J, ), threads evaluate the cost
contribution J{ (I) + A (I, J;r), combining routing overhead with holding and stockout penalties. A two-
level reduction (first across route options r, then across predecessor states 1) yields Jf“ (J) per scenario. The
figure highlights how GPU parallelism spans scenarios, transitions, and route options, turning the DP recursion
into a fully batched min—plus update.
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3 EXPERIMENTS

3.1 SCALING THE SCENARIO SIZE IN STOCHASTIC PROGRAMMING.

The theoretical properties of empirical risk minimization (ERM) under mild regularity conditions
establish that SAA solutions may suffer from bias with small sample sizes but converge consistently
toward the true optimum as the number of scenarios grows, with an asymptotic O(1/+/m) conver-
gence rate (see Appendix [5.4]for a formal statement). To examine how these properties manifest in
practice, we conduct experiments on the DSIRP, a representative setting where demand distributions
are complex and cannot be adequately captured by simple parametric families. Figure [3|reports the
empirical behavior of SAA estimators as the number of scenarios increases.

Specifically, Figures [3a] and [3b] highlight the bias effect: with only a small number of scenarios, the
estimated cost systematically underestimates the true expectation. As the sample size grows, the
estimator increases and gradually stabilizes, consistent with the theoretical consistency guarantee.
Figures 3c|and [3d| further illustrate the convergence behavior. As the number of scenarios increases
from hundreds to tens of thousands, the SAA estimate approaches the true optimum, and its variance
decreases at the predicted O(1/1/m) rate. The log-scaled plot shows that improvements continue
to accrue even at large sample sizes, underscoring that “more scenarios” consistently yield better
estimates rather than reaching a premature plateau.

In general, these findings demonstrate that when the underlying distribution of uncertainty is com-
plex or unknown, as is common in real-world, data-driven settings, restricting the scenario set to
only a few hundred or a few thousand is insufficient. Substantially larger scenario sets are needed
to reduce bias and improve solution quality. Our GPU-accelerated DP framework makes such large-
scale, data-driven stochastic evaluation computationally feasible in practice.

8 /
w /
/ /
/
wol 4

(a) Bias under random demand distribution (b) Bias under normal demand distribution (c) Convergence with number of scenarios (linear (d) Convergence with number of scenarios (log scale)
scale)

Figure 3: Empirical behavior of SAA estimators in DSIRP. Top: bias under different demand distributions.
Bottom: convergence with increasing scenario size.

3.2 SCALABILITY WITH THE NUMBER OF SCENARIOS.

The above results confirm that larger scenario sets are statistically necessary to reduce bias and
achieve consistency in stochastic programming. We next examine whether such scaling is compu-
tationally feasible. We evaluate the efficiency of our GPU-accelerated DP operators against CPU
baselines on two representative tasks: (i) the split operator in VRPSD and (ii) the reinsertion oper-
ator in DSIRP. All implementations were written in C++/CUDA and tested on a machine with an
AMD Ryzen 7 9700X CPU (8 cores) and an NVIDIA RTX 2080Ti GPU with 11 GB memory. The
CPU baselines include (i) a single-threaded implementation and (ii) a multi-threaded implementa-
tion with 8 threads. The GPU implementations exploit the two- (or three-) dimensional parallelism
described in Section 2.

Left (CVRPSD split DP). As the number of scenarios increases from 10* to 10°, the single-thread
CPU runtime rises sharply and reaches minutes at 10° scenarios, while the 8-thread baseline shows
only moderate relief before saturating due to synchronization and memory-bandwidth limits. The
GPU curve grows nearly linearly and remains in the seconds range even at 10° scenarios, yielding
about 80 x speedup over single-thread CPU and 20 x over the 8-thread baseline at the largest setting.

Right (DSIRP reinsertion DP). The effect is far more dramatic. At 2 x 10° scenarios, the GPU
implementation attains roughly 9.3 x 10% speedup versus the single-thread CPU and 2.26 x 10 ver-
sus the multi-thread CPU (see callouts in the figure). These gains stem from: (i) three-dimensional
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Figure 4: Runtime comparisons of CPU and GPU implementations across different scaling regimes. Left:
scaling behavior under 10°~10° scenarios for VRPSD. Right: large-scale evaluation for DSIRP.

parallelism (scenarios X inventory transitions X route options), (ii) high arithmetic intensity with
coalesced memory access, and (iii) warp-/block-level reductions that keep the Bellman minima on-
chip.

Across both problems, GPU parallelization shifts the computational frontier for scenario-based eval-
uation: near-linear scaling in the number of scenarios with order-of-magnitude to five-orders-of-
magnitude speedups (problem-dependent). This throughput is what enables the very large, data-
driven scenario sets used in our SAA experiments, directly supporting the statistical benefits docu-
mented in the previous subsection.

3.3 IMPACT OF TRAINING SCENARIO SET SIZE ON DECISION QUALITY

We next examine how the number of evaluated scenarios influences the quality of the first-stage
decision. Specifically, we solve the problem under different scenario counts, ranging from 1 to 10*
(i.e., 1,100, 1,000). For each scenario setting, the obtained first-stage solution is evaluated on a fixed
large out-of-sample test set of 10% scenarios. Figure repons the out-of-sample cost achieved by
the best observed solution on two CVRPSD instances: x-n128 and x-n105.
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Figure 5: Out-of-sample performance of first-stage so-
lutions obtained with varying observed scenario set-
tings. Larger evaluation set yield more robust and

lower-cost solutions.

Figure 6: Quality of the best solution obtained at
each time under a fixed time budget. GPU consistently
achieves better decisions due to faster evaluation and
thus larger effective search effort.

Results. When observing only few scenarios (e.g., a single scenario), the resulting first-stage so-
lution is severely biased and performs poorly. Increasing the scale of available scenarios consis-
tently improves robustness, with significant gains observed throughout Figure[5] Such performance
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confirms the theoretical insight that larger sample sizes reduce estimation bias in sample-average
approximation. These results demonstrate that our GPU-based framework, by enabling the evalua-
tion of tens or hundreds of thousands of scenarios within practical runtimes, leads to significantly
more reliable first-stage solutions compared to CPU-based methods that are restricted to only a few
thousand scenarios.

3.4 DECISION QUALITY UNDER FIXED TIME BUDGETS

Finally, we compare the decision quality obtained under identical wall-clock time limits across the
three implementations: CPU single-thread, CPU multi-thread, and GPU. Each method is given a
fixed runtime budget , during which the split algorithm splits giant tours to obtain first-stage solu-
tions. For fairness, all approaches are evaluated on the same problem instance with 10* available
scenarios. Figure [§|reports the best penalized cost obtained within the allowed runtime.

Results. With small time budgets, all methods return feasible but suboptimal solutions, yet GPU
already provides a noticeable advantage. As the time limit increases, the quality gap widens: GPU
produces solutions that are consistently closer to the true optimum, while CPU single-thread stag-
nates and CPU multi-thread improves only modestly. This matches intuition: faster scenario eval-
uation allows the GPU to explore many more candidate first-stage tours within the same runtime,
thereby improving the probability of discovering high-quality solutions.

These results confirm that beyond scalability, GPU acceleration directly translates into superior de-
cision quality under realistic time constraints, making it particularly valuable in operational settings
where decisions must be made quickly.

4 CONCLUSION

We showed that forward dynamic programs commonly used in stochastic combinatorial optimiza-
tion can be reformulated as batched min—plus matrix—vector products over layered DAGs, collaps-
ing actions into masked state-to-state transitions that map directly to GPU kernels. This algebraic
view exposes 2D/3D parallelism across scenarios, transitions, and, when applicable, route or action
options, enabling warp-/block-level Bellman reductions with numerically safe masking. On two
representative applications—a vectorized split operator for CVRPSD and a forward reinsertion DP
for DSIRP—our implementation scales nearly linearly in the number of scenarios and achieves one
to three orders of magnitude speedups over multithreaded CPU baselines. The resulting throughput
materially improves sample-average approximation quality and yields consistently stronger first-
stage decisions under identical wall-clock budgets. Despite these advances, the approach inherits
GPU memory constraints, struggles with highly irregular state spaces, and is currently limited to
forward DP with additive costs. Future extensions include handling constrained and risk-aware ob-
jectives, integrating learned surrogates while preserving numerical safety, applying kernel fusion
and multi-GPU scaling, and generalizing beyond DP to other semiring-based dynamic programs
and column generation subroutines. Viewed as hardware-aware software primitives, our min—plus
DP kernels offer a drop-in path to scalable, GPU-accelerated scenario-based optimization.
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5 APPENDIX

5.1 ILLUSTRATIVE EXAMPLE FOR THE MIN-PLUS MATRIX-VECTOR BELLMAN UPDATE.

To illustrate the min-plus matrix-vector Bellman update, consider a dynamic programming recursion
over three states in stage ¢ and two states in stage ¢ + 1.

Let the cost-to-go vector at stage ¢ under scenario w be:

0
. H |
3

and the transition cost matrix from stage ¢ to ¢ + 1 be:

2 5
AY = |1 Hoo|,
3 0

where A¥ (7, 7) denotes the cost of transitioning from state ¢ at stage ¢ to state j at stage ¢t + 1. The
value +o00 denotes an infeasible transition.

Then, the Bellman update in the (min, +) semiring becomes:
= (49)T @ 7,
which is computed entry-wise as:
i1 (1) = min {AP(4,1) + J7 (1)} =min{2 +0, 1+ 1, 3+ 3} = min{2,2,6} = 2,
#11(2) = min {AY(4,2) + Ji7(4)} = min{5 + 0, +00 + 1, 0 + 3} = min{5, +o00,3} = 3.

Thus, the updated cost-to-go vector at stage ¢ + 1 is:

w 2
=]

This computation reflects a forward shortest-path propagation over a layered graph, where the cost
of reaching each state in the next stage is determined by minimizing over all incoming transitions
from the previous stage.

5.2 INSTANTIATION A: SPLIT DP ON A GIANT TOUR IN THE VEHICLE ROUTING PROBLEM
WITH STOCHASTIC DEMAND.

Problem Setting. The stochastic programming community has extensively studied scenario-based
formulations, where uncertainty is modeled by a finite set of realizations. However, scenario-based
evaluation quickly becomes computationally prohibitive on CPUs, where even tens of thousands
of scenarios can overwhelm multi-threaded implementations. In our work, we adopt this scenario-
based modeling framework, in which customer demands are represented by sampled realizations.
This approach naturally accommodates correlated demand structures and supports data-driven mod-
eling when historical records are available. This scenario-based approach falls naturally into the
two-stage stochastic programming paradigm, whose general form is: minge x f1(x)+E¢ [f2(z,£)],
where x denotes the first-stage routing decisions and the corresponding cost f1(x), £ is a random
vector representing a realization of customer demands, and f5(z, &) denotes the second-stage re-
course cost under each scenario &.

In our two-stage stochastic optimization problem, the first stage determines the visiting sequence of
customers, commonly referred to as a giant four in the context of genetic algorithms (Vidal et al.,
2012). This representation encodes a solution as a permutation of customers, from which feasible ve-
hicle routes can be recovered via a split operator under fixed vehicle capacity and scenario-dependent
customer demands. We assume full demand revelation prior to the second stage, enabling the plan
to adapt to the realized scenario. Once demands are known, the giant tour is split into feasible routes
such that the demand on each route does not exceed vehicle capacity. Thus, given a fixed giant tour
(i.e., the visiting sequence), the second-stage evaluation is computationally simple: it only requires
splitting the tour according to realized demands. The objective is to determine a first-stage giant
tour that minimizes the expected total travel cost across all scenarios.

11
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Figure 7: Example of splitting a giant tour into feasible routes under a given demand scenario.

Ilustrative Example of the problem. Suppose the first-stage giant tour is (1,2, 4,3, 5) with ve-
hicle capacity () = 17, as illustrated in Figure[7]

(1) In Scenario 1, the realized demands are [14, 15,8, 1, 8]. The second-stage routing may then
split the tour into three feasible routes: (1), (2), and (4, 3, 5).

(ii) In Scenario m, the realized demands are [8,1,5,7,2] with three vehicles available. The
second-stage routing may then split the tour into two feasible routes: (1) and (2,4, 3, 5).

It is well understood that training robust first-stage policies benefits from incorporating a large num-
ber of demand scenarios to capture the full breadth of uncertainty (Shapiro| (2003), see the details in
next section. Theoretical results show that a sufficiently large scenario set is critical for achieving
accurate and stable estimations. However, in practice, evaluating even tens of thousands of sce-
narios can be prohibitively expensive, especially for combinatorial problems such as the CVRPSD,
since each scenario requires solving a non-trivial routing evaluation (typically through a dynamic
programming algorithm with time complexity O(nP), where n is the number of customers and P
is the number of possible transitions) rather than a simple function call.

Pseudo-code for 2D Kernel. In this section, we describe the GPU kernel designed to generate
data splits for each scenario in Algorithm 2] In Algorithm[I] we launch this kernel with a grid of
thread blocks to materialize the output matrix Splits for all scenarios are produced concurrently,
which enables simultaneous split generation across all scenarios.

Algorithm 1 GPU Splitting Algorithm

Input: Scenarios w € )
Input: Global settings (), C for vehicle capacity and travel cost matrix.
QOutput: Running costs V/

1: Initialize V € R™*1€l to all zero matrix

2: Instantiate multiple 2D kernels in parallel for V.

3V =[Vwo Ve V@il

4: return V

Illustrative Matrix Form of DP. To clarify the structure of the transition cost matrix A“ in the
split problem, consider a simple instance with a giant tour o = [07, 02, 03], and realized demands
under scenario w given by:

(45,45, 490,) = (2,3,4), with vehicle capacity @ = 5.

12
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Algorithm 2 2D Kernel for Splitting

Input: Scenario Index w
Input: Scenario-specific demand ¢
Input: Global settings ), C for vehicle capacity and travel cost matrix.
QOutput: Running costs V¢
1: Initialize V“ to all zero vectors
2: Initialize (* to an empty queue.
3: for each customer ¢ do

4: Update potential V(‘;’)
5: if i < n then
6: if ¢ dominates (}, ;. then
7: while ¢« # () AND ¢}, ., dominates i from right do
8: Pop ¢ from back
9: end while
10: Push ¢ to (¢ from back
11: end if
12: while |¢“| > 1 AND (g, better than &, ... do
13: Pop ¢ from front
14: end while
15: end if
16: end for

17: return V¢

Let f“(¢) denote the minimum cost to serve customers o, through o;. We construct a transition cost
matrix A% € R3*3 where the (p, i) entry represents the cost of serving customers 7,1 to o; in one
route, if the cumulative demand is within capacity.

Assume the travel cost matrix is:

[Ca,b] =

W RO
N = O
— O =N

N W

0

where node 0 is the depot and node 4 is the return depot. Then we compute:

: route = [01], demand =2 < 5 : feasible. Cost=cg1 +c14 =1+3 =4
: route = [0, 02], demand = 5 : feasible. Cost=1+1+2 = 4.

: route = [03], demand = 3 : feasible. Cost = co2+cos=2+2=4

) [
) [
): route = [01, 02, 03], demand = 9 : infeasible. Cost = +o0.
) [
): route = |
) [

2
09, 03], demand = 7 : infeasible. Cost = +o0.
3

* A“(2,3): route = [03], demand = 4 : feasible. Cost=cp 3 +c34 =3+ 1=4.

Thus, the masked transition matrix becomes:

+00
+00
4 )

X

A® =

XX X
XX e

XXX X

the forward DP proceeds column by column from the initialization J*(0) = 0:

| J9(1) = J#(0) + A“(0,1) =0+ 4 = 4|

(since only the predecessor p = 0 is admissible when j = 1). Then

J(2) = min {J¥(1) + A“(1,2), J¥(0) + A“(0,2)} =min{d +4, 0+4} =4 |,
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and

J¥(3) = min {J¥(2) + A¥(2,3), J(1) + A¥(1,3), J(0) + A¥(0,3)} = min{4 + 4, 4+ +o0, 0+ +o0} =8 |.

Thus the running costs after this pass are
Ve = (J¥(0),J9(1), J¥(2),J¥(3)) = (0, 4, 4, 8).

This is exactly the left-to-right scheme you described: each new J“(j) is the minimum over the
previous prefixes, i.e., J¥(j) = min{J¥(r) + A¥(r, j)}, so the recursion naturally continues as
r<j

j— 7-+1 on larger instances.

5.3 EVALUATION ON INSTANTIATION B: FORWARD INVENTORY REINSERTION DP IN
DYNAMIC STOCHASTIC INVENTORY ROUTING PROBLEMS.

Problem Statement: Two-Stage Stochastic Inventory Routing Problem with QU Policy. We
consider a two-stage stochastic version of the Inventory Routing Problem (IRP) under an Order-Up-
To (OU) inventory policy. We define the model on a complete directed graph G = (N, A), where
N = {0,n + 1} U N’ includes the supplier node 0, the destination depot n + 1, and the set of
customers A/, The arc set A represents all possible directed connections between nodes. A set of
vehicles K is available for deliveries, with |KC| = K. The planning horizon spans a finite set of days
T=A{1,...,H}and T’ = {2,..., H} for the second stage. To model uncertainty in demand, we
consider a finite set of scenarios (2, where each scenario w € 2 occurs with probability p*. Each
vehicle has a capacity limit ), and each customer ¢ € A has an inventory capacity U;. Holding
costs h; are incurred per unit of inventory stored at node 4, and a stock-out penalty is incurred at a
rate of ph; per unit of unmet demand at customer ¢, where p > 1. The customer demand at customer
1 on day ¢ under scenario w is denoted by dﬁ’“’. The cost of traveling from node ¢ to node j is denoted
c;; for each arc (4, j) € A. Finally, I? represents the initial inventory level at node 4 at the beginning
of the planning horizon.

Reveal the demand trajectory for day t to t+T

y

}_7 Stage 1 | Stage 2 |

Determine the Determine replenishment and routing decisions for Days (t+1) to (t+T)
replenishment and routing && Calculate the corresponding cost
decision for Day t

Figure 8: The decision process follows a two-stage stochastic optimization framework. In the first stage,
a delivery and routing plan is established for Day 1. Specifically, the model determines which customers to
replenish and how much to deliver, subject to vehicle capacity and routing constraints. These decisions are
made prior to the realization of demand and are shared across all possible demand scenarios. Once the demand
over the entire planning horizon (Days 1 to H) is realized, second-stage decisions are made adaptively from
Day 2 onward. These include scenario-specific vehicle routing and replenishment actions that respond to the
realized demand in each scenario. The objective is to minimize the total expected cost, which consists of two
components: (1) First-stage costs, including the Day 1 routing cost and the supplier’s inventory holding cost;
(2) Second-stage costs, which vary across scenarios and include: (i) Inventory holding costs and stock-out
penalties at customers at the end of Day 1; (ii) Routing and delivery costs from Day 2 to H; (iii)Inventory
holding and stock-out penalties from Day 2 to H.

To simplify replenishment decisions and reflect common logistics practices, we adopt an OU policy.
Under this policy, each customer is either replenished up to its full capacity U;, or not replenished
at all on a given day. This is modeled using binary variables z! (or zf’“’ in the second stage), which
equal 1 if customer ¢ is replenished on day ¢, and O otherwise.

Master Problem: First-Stage Optimization with Expected Future Cost: The first-stage of the 2SIRP
involves determining the vehicle routing and delivery quantities on Day 1, before the actual demand
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realizations are observed. Specifically, the first-stage decisions include the quantity q; "1 delivered to
customer ¢ by vehicle k, as well as the routing and loading variables zk 17 yl y ,Qk ! that describe
the path and vehicle load throughout the tour. We use z = {qk L2k 1, yz 7 Qk 1} to denote all the
variables in this stage. Based on these decisions, we formulate the master problem to minimize the
total cost on Day 1, including the supplier’s inventory holding cost and the routing cost, along with
the expected second-stage cost-to-go Qw(x) across all demand scenarios w € 2. The probability of
scenario w € 2 occurring is p* and ) o p* = 1.

min holg + Z Z ciy + Z P“Q¥ () ©)
keK (i,j)€A wEN
st I=10+di - Y ! 7
keK ieN’
k,1 0 k 1 i 4
q :(U—I) Vie N',Vk e K (8)
l<@. Zo’ Yk e K 9
1EN
ooyt =abt YT i =2 vieN Vhek (10)
JEN'U{n+1} JENTU{0}
Noooypt=1 Y b =1 Vk € K (11)
FJEN'U{n+1} JENTU{0}
’571 = qfvl Vk e K (12)
1EN”
Qi — gt > Q§,1 —Q-(1- yfjl) V(i,j) € A, Vk € K (13)
¢t QP It >0 Vie N',Vke K (14)
I?l,y” E{O,l} ViENv (iuj)EAa Vk e K (15)

Constraint equation [7 tracks the inventory at the supplier after Day 1. Constraint equation [§]imple-
ments the OU policy: if a customer is visited by a vehicle, the vehicle must deliver exactly enough to
fill the inventory up to its capacity U;; otherwise, no delivery is made. Constraint equation [9] limits
total delivery by vehicle capacity. Constraints equation [I0}-equation [IT] ensure routing feasibility.
Constraint equation [12] defines the starting load of each vehicle. Constraint equation |13|eliminates
subtours. Finally, constraints equation [[4}-equation[I5]define the variable domains.

Cost-to-Go Function and Second-Stage Problem Under Scenario w: Given the first-stage decision
and realized demand d*¥ = {df’“}ie N ,te7 under scenario w, the second-stage cost-to-go function
Q* (z) can be calculated as: To ease our exposition, we will use the shorthand notations
k,t, k.t,
2¢ = {z""" Yien ek teT y” = {y;; Y eArex.eT (16)
k.t t t
q“ =1{q; ), Yien' kex teT! IV = {1; . }ien e B“ ={B;, }ienr e (17)

and use £¥ = {z¥,y*,q*,I*, B}, w € ) to denote all the variables in the second stage. The
objective for the second stage can be represented by

Qw(x) Z (h Ilw ,OhB ,w)+mlnz |:h Itw+z hltw ph Btw +Z Z C”yktw

1EN” 1EN” ke (i,j)eA
st I =10+ ¢ —dj¥ + B} Vie N (18)
ke
I =7t “’+Zq’““ d* + By VieN' teT we (19)
ke
kitw t—1,w t,w . / !
" =(U; — I )z VieN , teT we (20)
kex
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> gt <@t VEeEK, teT ,we 21)
i€EN’
Sooypt=apt, Y i =Y VieN keK teT we (22
FJEN'Un+1 JEN'UO
Yooyt =1 > =1 VkeK, teT ,weQ (23)
JEN'Un+1 FJENTUO
Db = N7 gt VEeK, teT we 24)
iEN
QPMY — gt > QY — QL —y™) V(i,j) €A ke, teT ,weQ (25)
I, Bb ) gbte QR >0 VieN keK, teT ,weQ (26)
2yt € {0,1} VieN, (i,j)e A keK, teT weQ
(27)

The second-stage constraints under the OU policy govern the evolution of inventory, replenishment
quantities, and routing decisions from Day 2 to Day H under each demand scenario w € €). Con-
straint equation [18] sets the initial inventory level for each customer i € N’ at the end of Day 1,
based on the first-stage deliveries, realized demand d1 , and any unmet demand carried as backo-

rders 31 . Constraint equation Erecurswely updates the inventory and backorders for subsequent
days t > 2 using the delivery quantities and realized daily demands. Constraint equation [20| en-
forces the OU policy: a customer either receives a shipment that raises its inventory up to the full
capacity U; (i.e., ¢©" = U; — I'™"*), or receives nothing. The binary variable z/* indicates
whether a replenishment occurs at node i on day t. Constraint equation [21] ensures that the total
quantity delivered by any vehicle & on day ¢ does not exceed its capacity (). Constraints equation [22]
maintain routing feasibility: if a customer is visited (zf ¥ = 1), then exactly one arc must enter
and one must leave it for each vehicle k. Constraint equation [23|ensures that each vehicle departs
from the origin depot and ends at the destination depot once per day. Constraint equation [24]defines
the load carried by each vehicle upon departure, equal to the sum of deliveries assigned to it. Con-
straint equation [25|eliminates subtours by imposing consistency in vehicle loads across successive
arcs in a tour. Finally, constraints equation [26}-equation [27) impose the appropriate domain restric-
tions, ensuring non-negativity of inventory, deliveries, and vehicle loads, and binary decisions for
vehicle routing and customer visits.

Ilustrative Example of the problem. The proposed framework is modular: while the outer layer
can be any heuristic or metaheuristic search procedure that explores alternative first-stage decisions
(e.g., different delivery plans or routing structures), the inner DP routine ensures that inventory
evolution and replenishment actions are evaluated consistently across time and scenarios. Figure 9]
illustrates how DP propagates costs forward by updating inventory states and associated routing
paths under the OU policy. The blue bars denote customer inventory states, the network diagrams
represent feasible routing actions, and the arrows indicate transitions with their corresponding costs.
Infeasible transitions are marked as 4+-co. By capturing the before-and-after evolution of replenish-
ment paths, the DP routine provides a structured way to evaluate candidate solutions, regardless of
the outer search framework in which it is embedded.

Pseudo-code for 3D Kernel. To efficiently adapt the CPU-based DP algorithm for GPUs, we
design a two-part framework. Specifically, Algorithm [3|selects a GPU-feasible batch size, solves
scenarios in batches via a DP kernel, and aggregates results, reducing the batch size and retrying
upon out-of-memory. Algorithm [4] executes a batched backward dynamic program over the hori-
zon—yparallel across scenarios and states—comparing “no delivery” versus “deliver to capacity,’
recording the minimizer and transition, and then backtracking from each scenario’s initial inventory
to recover daily decisions, quantities, and total cost.

Ilustrative Matrix Form of DP. Consider a single customer with U; = 2, horizont = 1,2, and a
single scenario w. The initial inventory is I ? = 1, daily demand is dﬁ’” = 1, the transportation cost
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Figure 9: Illustration of the dynamic programming (DP) routine under the Order-Up-To (OU) policy. Blue bars
represent possible inventory states, network diagrams show routing decisions, and arrows indicate state transi-
tions with their associated costs. Infeasible transitions are marked as +oco. The DP systematically propagates
costs forward, capturing the before-and-after evolution of replenishment paths; this routine can be embedded
within any heuristic or metaheuristic framework.

Algorithm 3 GPU-Based DP with Adaptive Batching

Input: params, client_id, all_scenarios_data, initial batch size By, device
Output: List of scenario results (cost, decision flags, quantities)

B < ADJUSTBATCHSIZE(By, device, params)
results « []; start < 0; N « #scenarios

while start < N do
batch < slice(all_scenarios_data, start:start+B)
(costs, flags, gty) < SOLVEBATCHDP(batch, params, device)

start < start +B

CLEARCACHE()
end while
return results

1:
2:
3:
4
5:
6: Append per-scenario tuples to results
7.
8
9:
10:

> based on free GPU memory

Algorithm 4 SOLVEBATCHDP

1

2:

3:

4: fort=T-1,..
5:

6:

7.

8: end for

9:

10: end function

Compute no-delivery cost and next state
Compute deliver-to-max cost (fixed + capacity + holding) and next state
C[t] + min(-); D[t] + argmin decision; P[t] < next-state index

: function SOLVEBATCHDP(batch, params, device)
Preprocess tensors (time-major, contiguous, to device); set horizon T, state grid S
Initialize DP arrays C, D, P; set C[T] < 0
.,0do

> (parallel over scenarios/states on GPU)

return BACKTRACK(C, D, P, start inventories)

> costs, flags, quantities
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is F;(¢) = g, and the end-of-day inventory cost is

0, I=2,
RE(I) =<1, T=1,
, 1=

The state space each day is S} = {0, 1, 2}.

Day 1. The forward transition matrix A}"”(L J) (rows I, columns J) is

5 3 +o0
A =15 2 +4ool, (qe{0,U;—TI}, J=max{0,]+q—1}).
+o0 1 400

The initial cost vector encodes I = 1:

—+00
J}

I
=

“+00

The column-wise min—plus update gives

min{oo+5, 045, oo} 5
JXJ)= min {JHI)+A“(,0)}, JP= lmin{oo—i—f&, 042, co+1}| = | 2
Te{0.1,2} min{oo, 0o, oo} +00
Day 2. Parameters are the same, so A?’w = A; *“_ Updating once more:
min{5+5, 245, co} 7
J3T) = min{J2(I) + A2¥(I,J)}, J} = |min{5+3, 242, co+1}| = | 4
! min{oo, 0o, 0o} +00

With a two-day horizon, the terminal cost is min; J3(J) = 4.

Policy insight. - Day 1: from I = 1, delivering ¢ = 1 (replenish to full) is optimal, leading to J = 1
with cost 1 + 1 = 2. - Day 2: again from I = 1, delivering ¢ = 1 is optimal, adding another 2. -
Total cost = 2 + 2 = 4, which matches J2. If Day 1 skips delivery, I drops to 0 (cost 5), and even if
Day 2 delivers 2, the total becomes 8, which is suboptimal.

Notes. (i) The third column of A is always +oo because with d = 1 the end-of-day inventory
cannot exceed 1. (ii) In general, if evaluating A(Z, J) requires enumerating multiple route options
r € K, then A(I,J) = min, A(I, J;r), and GPU parallelism naturally extends to three dimensions
(w, I—J, r) with reductions first over  and then over I.

5.4 MONTE CARLO METHOD PROPOSITION.

Empirical Risk Minimization (ERM) method is analogous to the Monte Carlo method for estimating
a population mean via sample averages and fits naturally within the ERM framework for stochastic
programming. Formally, we distinguish between:

e True problem:

(P) =" = minE[f(x.9)],

» Sample-average problem with m scenarios:

As the sample size m increases, the optimal solution z, of the sample problem converges to the true
optimal solution z*, and the optimal value z};, approaches z*. The following result summarizes the
fundamental properties of the ERM method under mild regularity conditions (cf. (Shapiro, [2003)).
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Proposition 1. Ler {¢',... €™} be i.i.d. samples of €. Denote by

(P) z*=minE[f(x

zeX

the true and sample average problems, respectively, with optimal solutions x* and x},. Then:

(Bias)
(Consistency)

(Probabilistic Convergence)

(Rate of Convergence)

E[f(z

\/Tn(z

[(2;
m_Pr
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m
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]
)] (,lY

asm — oo,

e e e L T
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