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Abstract

Building a conversational embodied agent to execute real-life tasks has been a long-standing
yet quite challenging research goal, as it requires effective human-agent communication,
multi-modal understanding, long-range sequential decision making, etc. Traditional sym-
bolic methods have scaling and generalization issues, while end-to-end deep learning mod-
els suffer from data scarcity and high task complexity, and are often hard to explain. To
benefit from both worlds, we propose JARVIS, a neuro-symbolic commonsense reasoning
framework for modular, generalizable, and interpretable conversational embodied agents.
First, it acquires symbolic representations by prompting large language models (LLMs)
for language understanding and sub-goal planning, and by constructing semantic maps
from visual observations. Then the symbolic module reasons for sub-goal planning and
action generation based on task- and action-level common sense. Extensive experiments on
the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which
achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, includ-
ing Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent
Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from
6.1% to 15.8%). Moreover, we systematically analyze the essential factors that affect the
task performance and also demonstrate the superiority of our method in few-shot settings.
Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge1.

1. Introduction

A long-term goal of embodied AI research is to build an intelligent agent capable of com-
municating with humans in natural language, perceiving the environment, and completing
real-life tasks. Such an agent can autonomously execute tasks such as household chores,
or follow a human commander to work in dangerous environments. Figure 1 demonstrates
an example of dialog-based embodied tasks: the agent communicates with the human com-
mander and completes a complicated task “making a sandwich”, which requires reasoning
about dialog and visual environment, and procedural planning of a series of sub-goals.

∗ Equal contribution
1. https://eval.ai/web/challenges/challenge-page/1450/leaderboard/3644
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Although end-to-end deep learning models have extensively shown their effectiveness in
various tasks such as image recognition (Dosovitskiy et al., 2021; He et al., 2017) and natu-
ral language understanding and generation (Lewis et al., 2020; Dathathri et al., 2020), they
achieved little success on dialog-based embodied navigation and task completion with high
task complexity and scarce training data due to an enormous action space (Padmakumar
et al., 2021). In particular, they often fail to reason about the entailed logistics when con-
necting natural language guidance with visual observations, and plan efficiently in the huge
action space, leading to ill-advised behaviors under unseen environments. Conventionally,
symbolic systems equipped with commonsense knowledge are more conducive to emulating
humanlike decision-makings that are more credible and interpretable. Both connection-
ism and symbolism have their advantages, and connecting both worlds would cultivate the
development of conversational embodied agents.

To this end, we propose JARVIS, a neuro-symbolic commonsense reasoning framework
towards modular, generalizable, and interpretable embodied agents that can execute dialog-
based embodied tasks such as household chores. First, to understand free-form dialogs, a
large language model (LLM) is applied to extract task-relevant information from human
guidance and produce actionable sub-goals for completing the task (e.g., the sub-goals
1.1, 1.2,...,3.6 in Figure 1). During the process, a semantic world representation of the
house environment and object states is actively built from raw visual observations as the
agent walks in the house. Given the initial sub-goal sequence and the semantic world
representation being built, we design a symbolic reasoning module to generate executable
actions based on task-level and action-level common sense.

We evaluate our JARVIS framework on three different levels of dialog-based embod-
ied task execution on the TEACh dataset (Padmakumar et al., 2021), including Execution
from Dialogue History (EDH), Trajectory from Dialogue (TfD), and Two-Agent Task Com-
pletion (TATC). Our framework achieves state-of-the-art (SOTA) results across all three
settings. In a more realistic few-shot setting where available expert demonstrations are lim-
ited for training, we show our framework can learn and adapt well to unseen environments.
Meanwhile, we also systematically analyze the modular structure of JARVIS in a variety of
comparative studies. Our contributions are as follows:

• We propose a neuro-symbolic commonsense reasoning framework blending the two
worlds of connectionism and symbolism for conversational embodied agents. The
neural modules convert dialog and visual observations into symbolic information, and
the symbolic modules integrate sub-goals and semantic maps into actions based on
task-level and action-level common sense.

• Our framework is modular and can be adapted to different levels of conversational
embodied tasks, including EDH, TfD, and TATC. It consistently achieves the SOTA
performance across all three tasks, with great generalization ability in new environ-
ments.

• We systematically study the essential factors that affect the task performance, and
demonstrate that our framework can be generalized to few-shot learning scenarios
when available training instances are limited.
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Pickup Bread:
1.1 Navigate Bread
1.2 Pickup Bread
1.3 Navigate CounterTop
1.4 Place CounterTop

1 2 3

Initial Egocentric View Pick up bread Slice Bread Open Carbinet and
Pick up Plate

Ground Truth Map and Trajectory Dialogue: Sub-goals:

1

Hi, please make a sandwich
Ok, where can I find some bread?

Near the coffee pot.1

In sink
And a knife?

2

Please put them on a plate
Where is the plate?

Plate is to the left of microwave
in upper cabinet

Ok, thanks3

2 3

Commander Follower
1

Pickup Plate:
3.1 Navigate Carbinet
3.2 Open Carbinet
3.3 Navigate Plate
3.4 Pickup Plate
3.5 Place CounterTop

Slice Bread:
2.1 Navigate Knife
2.2 Pickup Knife
2.3 Slice Bread
2.4 Place Knife

2

3

Figure 1: Dialogue-based embodied navigation and task completion. The Com-
mander (often a human) issues a task such as making a sandwich, and the Follower agent
completes the task while communicating with the Commander. Unlike the agent in fine-
grained instruction following tasks, the Follower agent needs to extract sub-goals from the
free-form dialogue and execute actions in the visual environment. Note that the Follower
agent can only navigate and interact with objects in an egocentric view and has no access
to the map or other oracle information.

2. Related Work

Embodied AI Tasks Embodied agents capable of navigation and interaction have been
long studied in AI, with early work focusing on goal-directed navigation in indoor and
outdoor environments (Zhu et al., 2017; Yang et al., 2019; Kim et al., 2006). More re-
cently, research has shifted toward language-grounded agents. Vision-and-Language Nav-
igation (Anderson et al., 2018; Ku et al., 2020; Zhu et al., 2020a; Chen et al., 2019; Qi
et al., 2020; Vasudevan et al., 2021; He et al., 2021; Gu et al., 2022) explores how agents
follow natural language instructions to reach target locations, while Vision-and-Dialog Nav-
igation (Thomason et al., 2019; Banerjee et al., 2020; Nguyen et al., 2019; Nguyen and
Daumé III, 2019) incorporates real-time dialogue for guidance. Beyond navigation, recent
efforts (Shridhar et al., 2020; Misra et al., 2018; Gordon et al., 2018) introduce interactive
task completion involving both navigation and object manipulation. Dialog-based embodied
tasks (Padmakumar et al., 2021; Narayan-Chen et al., 2019) further align with real-world
settings, enabling agents to collaborate with humans through conversation. Our work builds
on this line, aiming to develop a conversational agent for complex household tasks.

Vision-and-Language Navigation and Task Completion Prior work in embodied AI
has explored vision-and-language navigation (Wang et al., 2019; Hong et al., 2021; Tan et al.,
2019; Fried et al., 2018; Guhur et al., 2021; Chen et al., 2021a; Gu et al., 2022), vision-and-
dialog navigation (Wang et al., 2020; Zhu et al., 2020b; Kim et al., 2021), and task-oriented
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Fine-tuned LLM

Language Planning Module

Semantic Mapping
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Action Common Sense
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Step 0.2: Train Goal Transformer
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1.1 Navigate Knife
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1.3 Navigate Bread
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2.1 Navigate Potato
2.2 Slice Potato
2. …
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History Sub-goals ��:�−�
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Figure 2: An overview of our JARVIS framework. The fine-tuned language planning
model takes dialogue and previous sub-goals G0:t−1 as input and produces the future sub-
goals Gt:T (Section 3). Gt:T will be further examined by our Task-Level Common Sense
model and converted to more reasonable and detailed future sub-goals G′

t:T . Meanwhile, the
Visual Semantic module actively updates the semantic world representations (Section 3).
If the object is found in the world representation, the next action is determined by the Fast
Marching method. If not, the Goal Transformer will generate the next action. The next
action at+1 ∈ A will be post-processed by the Action-Level Common Sense model.

object navigation (Ramrakhya et al., 2022). Vision-and-language task completion has also
gained attention (Pashevich et al., 2021; Min et al., 2022; Blukis et al., 2021; Song et al.,
2022), with early methods like Shridhar et al. (2020) using LSTMs for multi-modal fusion,
and Pashevich et al. (2021) introducing transformers for improved temporal modeling. Mod-
ular approaches further decompose tasks: Blukis et al. (2021) use semantic voxel grids with
hierarchical controllers, and Min et al. (2022) integrate semantic policies for fine-grained
object search. However, these systems are designed for structured, instruction-following
tasks and often struggle with the ambiguity and complexity of dialog-based scenarios. In
contrast, our approach extracts task-relevant information directly from free-form dialogue
and performs neuro-symbolic reasoning to generalize across diverse dialog-based embodied
tasks.

Neuro-Symbolic Reasoning While neural models have achieved great success across
vision and language tasks (He et al., 2017; Devlin et al., 2019; He et al., 2016; Dosovitskiy
et al., 2021), they often lack interpretability and reasoning ability in complex, multi-modal
settings. Neuro-symbolic methods address this by combining neural perception with sym-
bolic reasoning (Mao et al., 2019; Chen et al., 2021b; Gupta et al., 2020; Hudson and
Manning, 2019; Sakaguchi et al., 2021). For example, Mao et al. (2019) introduce a sym-
bolic program generator for visual question answering, and Chen et al. (2021b) extend it
to video reasoning. In dialog-based household tasks, neural models struggle to integrate
diverse inputs and infer correct actions (Padmakumar et al., 2021). To address this, we
propose a modular neuro-symbolic framework that converts multi-modal observations into
symbolic representations and applies commonsense reasoning for robust task execution.
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3. Neuro-Symbolic Conversational Embodied Agents

Problem Formulation

We study dialogue-based embodied agents, where a Follower agent must interpret natural
language instructions from a Commander (a human or another agent) to complete long-
horizon tasks in a visual environment. Each task begins from an initial state si ∈ S and
proceeds through multi-turn dialogue D = {(pi, ui)}, where pi ∈ {Commander,Follower}
indicates the speaker and ui is the utterance. At each timestep t, the Follower receives a
visual observation vt and executes an action at ∈ A : St → St+1, aiming to reach a goal
state sf ∈ S.

Tasks often involve intermediate sub-goals (e.g., “Find bread”, “Cook egg”) under a
high-level goal (e.g., “Make breakfast”). The Commander has oracle access to task and
environment details, while the Follower has only egocentric perception and can request
clarification during the dialogue.

Following Padmakumar et al. (2021), we consider three settings: in Execution from
Dialog History (EDH), the agent completes an unfinished task given past dialogue and
partial trajectory; in Trajectory from Dialog (TfD), the agent reconstructs a full action
sequence from complete dialogue; and in Two-Agent Task Completion (TATC), the agent
collaborates interactively with a Commander to complete the task. Our proposed JARVIS
framework is designed to handle all three scenarios.

Proposed Methods

Our JARVIS framework (as shown in Figure 2) consists of a Language Planning module,
a Visual Semantic module, and a Symbolic Reasoning module. Specifically, the Language
Planning module utilizes a pre-trained large language model to process free-form language
input and produces procedural sub-goals of the task. In the Visual Semantic module, we
use a semantic segmentation model, a depth prediction model, and the SLAM algorithm to
transform raw visual observations into a more logistic form — semantic maps containing
spatial relationships and states of the objects. Finally, in the Symbolic Reasoning module,
we utilize task-level and action-level commonsense knowledge to reason about transferred
symbolic vision-and-language information and generate actions, and a Goal Transformer is
trained to deal with uncertainty by directly producing actions when no relevant information
can be retrieved from the visual symbolic representations. Below we introduce our methods
in detail; please refer to Appendix A for more implementation details and Appendix B for
our notation table.

Language Understanding and Planning The language commands in dialog-based
embodied tasks are free-form and high-level, and do not contain low-level procedural in-
structions. Therefore, it is essential to break a command like “can you make breakfast for
me?” into sub-goals such as “Find bread”, “Find knife”, “Slice bread”, “Cook egg”, and
then generate actions ai to complete the sub-goals sequentially. Large language models
(LLMs) are shown to be capable of extracting actionable knowledge from learned world
knowledge (Huang et al., 2022). In order to understand free-form instructions and gener-
ate the sub-goal sequence for action planning, we leverage an LLM, the pre-trained BART
(Lewis et al., 2020) model, to process dialog and action, and predict future sub-goal sequence
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Gt:T for completing the whole task:

Ĝt:T = LLM(D,G0:t−1) (1)

where D = {(pi, ui)} is the collected set of user-utterance pairs and the previous sub-goal
sequenceG0:t−1 = {g0, g1, g2, ..., gt−1}. For sequential inputsG0:t−1, we encode the sub-goals
into tokens and concatenate them as the input of the LLM model. For the ground-truth sub-
goal sequence G0:T , we acquire it by a rule-based transformation from the action sequence
A0:T = {a0, a1, a2, ..., at, ..., aT }. Concretely, we note that the actions can be categorized as
navigations and interactions. For interactions, we coalesce the action and targeted object
as the sub-goal. For example, if the embodied agent executes the action of picking up a
cup, we will record the sub-goal “PickUp Cup”. For navigation, we coalesce “Navigate”
with the target object of the next interaction.

Note that in cases like the Trajectory from History (TfD) task, where only dialog infor-
mation D is given and other history information is missing, Equation 1 reduces to

Ĝt:T = LLM(D) (2)

The BART model is trained with a reconstruction loss by computing the cross entropy
between the generated future sub-goal sequence Ĝt:T and the ground truth future sub-goal
sequence Gt:T .

Semantic World Representation The visual input into a embodied agent is usually a
series of RGB images V = {v0, v1, v2, ..., vT }. One conventional way in deep learning is to
fuse the visual information with other modalities into a neural network (e.g., Transformers)
for decision making, which, however, is uninterpretable and often suffers from poor gener-
alization under data scarcity or high task complexity. Thus, we choose to transform visual
input into a semantic representation similar to Blukis et al. (2021) and Min et al. (2022),
which can be used for generalized symbolic reasoning later.

At each step t, we first use a pre-trained Mask-RCNNmodel (He et al., 2017) for semantic
segmentation, which we fine-tune on in-domain training data of the TEACh dataset, to get
object types Ot = {o0, o1, o2, ..., ok} and semantic mask Mt = {m0,m1,m2, ...,mk} from
egocentric RGB input vt at time stamp t. Then we use a Unet (Ronneberger et al., 2015)
based depth prediction model as Blukis et al. (2021) to predict the depth of each pixel of
the current egocentric image frame. Then, by combining the agent location and camera
parameters, we transform the visual information into symbolic information: if a certain
object exists in a 3D space, which we store in a 3D voxel. Then we further project the
3D voxel along the height dimension into a 2D map and obtain more concise 2D symbolic
information. So far, we have transformed the egocentric RGB image into a series of 2D
semantic maps, among which each map records a certain object’s spatial location in the
projected 2D plane. This symbolic environment information will be maintained and updated
during the task completion process as in Figure. 2.

Action Execution via Symbolic Commonsense Reasoning Once the sub-goal se-
quence and semantic world representation are obtained, the agent must generate executable
actions. However, these inputs may be noisy—sub-goals can be misordered or infeasible,
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Table 1: Results in percentages on the EDH and TfD validation sets, where trajectory length
weighted (TLW) metrics are included in [ brackets ]. For all metrics, higher is better.

EDH TfD

Seen Unseen Seen Unseen

Model SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW]

E.T. (Padmakumar et al., 2021) 8.4 [0.8] 14.9 [3.0] 6.1 [0.9] 6.4 [1.1] 1.0 [0.2] 1.4 [4.8] 0.5 [0.1] 0.4 [0.6]
Ours 15.1 [3.3] 22.6 [8.7] 15.8 [2.6] 16.6 [8.2] 1.7 [0.2] 5.4 [4.5] 1.8 [0.3] 3.1 [1.6]

E.T. (few-shot)2 6.1 [1.0] 4.7 [2.8] 6.0 [0.9] 4.8 [3.6] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0]
Ours (few-shot) 10.7 [1.5] 15.3 [5.3] 13.7 [1.7] 12.7 [5.4] 0.6 [0.0] 3.6 [3.0] 0.3 [0.0] 0.6 [0.1]

and the semantic map may be incomplete. To address this, we introduce a Symbolic Rea-
soning module that leverages task-level and action-level commonsense logic to validate and
refine execution plans. Sample logic predicates are listed in Table 5 (Appendix A).

Task-level reasoning enforces logical preconditions between sub-goals. For instance, the
predicate Pick(agent, x) holds only if x is movable and the agent is free-handed. Sub-goals
violating such constraints are revised—e.g., inserting “PickUp knife” before “Slice bread.”
This process assumes ideal execution and updates the agent’s internal state accordingly.

Given validated sub-goals and the semantic map, we employ two action generation
methods. If the target is visible, the Fast Marching Method (FMM) (Sethian, 1999) plans
a path to the nearest empty space near the object. Otherwise, we use a Goal Transformer
(GT), adapted from the Episodic Transformer (Pashevich et al., 2021), trained on TEACh
data. GT predicts the next action from past observations V0:t−1, actions A0:t−1, and sub-
goals G0:t−1:

ât = GT([V0:t−1, A0:t−1, G0:t−1]). (3)

Action-level reasoning ensures that planned actions respect environmental constraints.
For example, Move(x, y) is valid only if a path exists from y to x. If constraints are violated,
the agent adapts—e.g., executing a fallback policy like random exploration or navigating
to the nearest feasible location.

4. Experiments

Dataset and Tasks

We evaluate JARVIS on the TEACh dataset (Padmakumar et al., 2021), which contains
over 3,000 human-human interaction sessions involving household tasks. Each session be-
gins from an initial state si, proceeds through a multi-turn dialogue D between a Comman-
der and a Follower, and ends in a final state sf after executing a reference action sequence
A = {a0, a1, . . . }. These sessions form the basis for three evaluation settings:

Execution from Dialog History (EDH) requires the agent to complete part of a task by
predicting future actions At:T , given the current state si, dialogue history D, and previous
actions A0:t−1. Success is determined by whether the final simulated state ŝ matches the
reference sf .
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Table 2: Success Rate results on the TATC task with different assumptions of the Comman-
der agent. Our JARVIS establishes the best performance among the current implemented
methods.

w/ full info. w/o GT seg. w/o GT & goal loc.

Model Seen Unseen Seen Unseen Seen Unseen

E.T.3 0.0 [0.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0] 0.0 [0.0]
Ours 22.1 [5.8] 16.4 [4.2] 9.4 [2.1] 5.6 [1.9] 3.9 [0.5] 1.2 [0.1]

Table 3: Success Rates of 12 different task categories in the validation set. For EDH, the
results are based on relatively shorter EDH instances, while the results for TdD and TATC
tasks are from instances with full trajectories.

Plant Coffee Clean All X Y Boil Toast N Slices X One Y Cooked Sndwch Salad Bfast

EDH 21.0 21.3 14.5 15.2 15.5 12.8 22.1 19.6 15.8 15.5 10.3 14.0
TfD 13.5 6.7 6.3 4.2 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TATC 70.1 29.3 40.0 18.1 5.6 4.9 0.0 25.0 0.0 0.0 0.0 0.0

Trajectory from Dialog (TfD) tasks the agent with reconstructing the entire action
sequence A0:T from the complete dialogue D and initial state si, aiming to reach the target
final state sf .

Two-Agent Task Completion (TATC) models both Commander and Follower roles.
Given an initial instruction, the Follower communicates with the Commander to complete
the task. The Commander has oracle access to environment metadata via three APIs: Pro-
gressCheck, which lists task-relevant state differences; SelectOid, for querying object identi-
fiers; and SearchObject, for locating objects. Following TEACh conventions, we implement
JARVIS as two interacting agents: the Commander uses a Task-Level Commonsense Mod-
ule to issue instructions, while the Follower executes actions and queries for help via an
Action Execution Module.

Experimental Setup

Evaluation Metrics We adopt Success Rate (SR), Goal-Condition Success (GC), and
Trajectory Weighted Metrics (TLW) as evaluation metrics. Task success is a binary value,
defined as 1 when all the expected state changes sf are presented in ŝ otherwise 0. SR is
the ratio of success cases among all the instances. GC Success is a fraction of expected
state changes in sf present in ŝ which is in (0, 1) and the GC success of the dataset is
the average of all the trajectories. Trajectory weighted SR (TLW-SR) and GC (TLW-GC)
are calculated based on a reference trajectory AR and a predicted action sequence Â. The

2. Our reimplementation version of Padmakumar et al. (2021).
3. From the official TATC Challenge: https://github.com/GLAMOR-USC/teach_tatc. At the time of sub-

mission, the E.T. baseline fails on all the TATC instances.
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Table 4: Ablation studies on the EDH and TfD validation sets. Language: the agent
directly teleports to the target goals generated by the language language planning module,
thus trajectory length weighted metrics do not make sense here. Executor: the agent will
use the ground truth sub-goals. Reasoning: the agent use both ground truth sub-goals
and visual information. No Goal Transformer: the agent explore random place when it
did not find the target object.

EDH TfD

Seen Unseen Seen Unseen

Model SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW]

JARVIS 15.1 [ 3.3 ] 22.6 [ 8.7 ] 15.8 [ 2.6 ] 16.6 [ 8.2 ] 1.7 [ 0.2 ] 5.4 [ 4.5 ] 1.8 [ 0.3 ] 3.1 [ 1.6 ]

Language (w/ gt executor) 19.9 [ —- ] 32.9 [ —- ] 18.8 [ —- ] 36.3 [ —- ] 8.4 [ —- ] 24.7 [ —- ] 10.2 [ —- ] 21.5 [ —- ]
Executor (w/ gt subgoals) 38.7 [12.5] 34.7 [17.9] 30.5 [ 8.5 ] 27.3 [12.1] 5.1 [ 1.3 ] 8.0 [ 4.3 ] 1.8 [ 0.2 ] 4.0 [ 0.9 ]
Reasoning (w/ gt subgoals & visual) 62.7 [27.9] 67.9 [36.7] 60.9 [26.2] 63.6 [35.4] 13.8 [ 4.0 ] 24.5 [15.5] 12.6 [ 4.2 ] 20.7 [14.6]

No Goal Transformer 17.3 [ 3.2 ] 21.7 [ 9.0 ] 15.7 [ 1.6 ] 16.9 [ 6.3 ] 0.6 [ 0.0 ] 3.1 [ 1.1 ] 1.8 [ 0.2 ] 1.4 [ 0.6 ]

trajectory length weighted metrics for metric value m can be calculated as

TLW-m =
m ∗ |AR|

max
(
|AR| ,

∣∣∣Â∣∣∣) (4)

In our evaluation, we use m = 1, and calculate the weighted average for each split by using
|AR|∑N
i=1|Ai

R|
as the weight of each instance. Following evaluation rules in TEACh (Padmakumar

et al., 2021), the maximum number of action steps is 1,000 and the failure limit is 30.
Baseline We select Episodic Transformer (E.T.) (Padmakumar et al., 2021) as the baseline
method. E.T. achieved SOTA performance on the TEACh dataset. It learns the action
prediction based on the TEACh dataset using a ResNet-50 (He et al., 2016) backbone
to encode visual observations, two multi-modal transformer layers to fuse the embedded
language, visual and action information, and output the executable action directly.

Main Results and Analysis

EDH We establish the state-of-the-art performance with a large margin over the baseline
E.T.model. Our model achieves a higher relative performance than baselines on trajectory-
weighted metrics, as shown in Table 1, suggesting that adding symbolism can also reduce
navigation trajectory length. Besides, our framework has less performance gap between
seen and unseen environments, showing better generalizability in new environments. We
find that E.T. usually gets stuck in a corner or keeps repeatedly circling, while our model
barely suffers from those issues, benefiting from neuro-symbolic commonsense reasoning.
TfD Our model achieves state-of-the-art performance across all metrics in TfD tasks, as
shown in Table 1, which shows that JARVIS has better capability for task execution based
on offline human-human conversation. Compared with EDH tasks, TfD tasks provide only
the entire dialog history for the agent, which increases the difficulty and causes performance
decreases in both models, while our JARVIS still outperforms the E.T. by a large margin,
showing that the end-to-end model can not learn an effective and generalized strategy for
long tasks completion providing only dialog information.
TATC We evaluate our framework on the TATC task with a Commander under three
distinct constraint levels, simulating varied human assistance. The Commander is provided
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with: 1) only the current sub-goal; 2) the sub-goal and target object location; or 3) the
sub-goal, location, and segmentation mask (the original TATC setting Padmakumar et al.
(2021)). As shown in Table 2, JARVIS greatly outperforms the only open-source base-
line, which fails on all TATC instances, highlighting the task’s complexity for end-to-end
methods. Furthermore, the Success Rate (SR) improves as the Commander is given more
information, demonstrating that JARVIS effectively adapts its instructions to leverage all
available knowledge.

Few-Shot Learning

Data scarcity has been known as a severe issue for deep neural methods. Especially, it is
even more severe in language-involved embodied agent tasks since collecting training data
is more expensive and time-consuming. Here we also conduct experiments in the few-shot
setting, shown in Table 1. We randomly sample ten instances from each of the 12 types of
household tasks in the TEACh dataset and train the language understanding and planning
module and Goal Transfomer in the same way as the whole dataset setting. For E.T., we
notice a significant performance drop on both EDH and TfD (e.g., 0 success rate in TfD
tasks), since it overfits and can not learn effective and robust strategy. Since our framework
breaks down the whole problem into smaller sub-problems and incorporates a solid symbolic
commonsense reasoning module, it still has the ability to complete some complex tasks. This
also indicates the importance of connecting connectionism and symbolism.

Unit Test of Individual Module

To analyze the performance gain of JARVIS, we conduct ablation studies on EDH and TfD
tasks (Table 4). With ground truth perception and sub-goals, the Symbolic Commonsense
Reasoning module achieves over 60% success in EDH, showing its effectiveness in action
inference when provided accurate inputs. Replacing our language planner with ground
truth yields greater improvement than replacing the executor, confirming the importance
of symbolic reasoning in short-horizon tasks.

In longer TfD tasks, where a single sub-task failure leads to overall task failure, ex-
ecutor quality becomes the bottleneck. Here, replacing our executor with a teleport agent
boosts performance more than using ground truth sub-goals. We also observe that our Goal
Transformer improves trajectory-weighted success, indicating more efficient action planning.

5. Conclusion

This work studies how to teach embodied agents to execute dialog-based household tasks.
We propose JARVIS, a neuro-symbolic framework that can incorporate the perceived neural
information from multi-modalities and make decisions by symbolic commonsense reason-
ing. Our framework outperforms baselines by a large margin on three benchmarks of the
TEACh (Padmakumar et al., 2021) dataset. We hope the methods and findings in this
work shed light on the future development of neuro-symbolic embodied agents.
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Appendix A. Implementation Details

JARVIS takes advantage of both connectionism and symbolism. Here we first introduce
the learning details of the deep learning modules in JARVIS, followed by the symbolic
commonsense reasoning. Then we introduce the task completion process of the JARVIS
framework, shown in the Algorithm 1.

Learning Modules

Here we elaborate on the implementation details of the learning and symbolic reasoning
modules in our framework, including language understanding and planning, semantic world
representation, and goal transformer.

Language Understanding and Planning

For data collection of the EDH task, we collect one data sample from each EDH instance.
In each data sample, the input contains a history dialogue between the commander and the
follower and history sub-goals that have been executed, and the output is the future sub-
goals. We create special tokens < COM >,< FOL > to concatenate different utterances
of the dialogue, and < HIS > to concatenate the history sub-goals and dialogue. Note
that the history sub-goals are not available in the training set, so we translate the provided
history actions into history sub-goals by excluding all the navigation. For the TfD task,
we collect the whole dialog sequence and the whole ground truth future sub-goal sequence
from each TfD instance as input and output for training. We collect the same data scheme
from seen validation EDH/TfD instances for validation. We adapt the pre-trained BART-
LARGE Lewis et al. (2020) model and fine-tune the BART model separately on the collected
training data for each task. We follow the Huggingface Wolf et al. (2019) implementation for
the BART model as well as the tokenizer. The BART model is finetuned for 50 epochs and
selected by the best validation performance. We use the Adam optimizer with a learning
rate of 5 × 10−5. The maximum length of generated subgoal is set to 300, and the beam
size in beam search is set to 4.

Semantic World Representation

For Mask-RCNN He et al. (2017), we use a model pre-trained on MSCOCO Lin et al. (2014)
data and fine-tune it on collected data from training environments of TEACh dataset.
We get the ground truth data samples from the provided interface of AI2THOR. During
training, the loss function is as follows:

L = Lcls + Lbox + Lmask (5)

Where Lcls is the cross entropy loss of object class prediction. Lbox is a robust L1 loss
of bounding box regression. And Lmask is the average binary cross entropy loss of mask
prediction, where the neural network predict a binary mask for each object class. Follow-
ing Shridhar et al. (2021), we use the batch size of 4 and learning rate of 5 × 10−3 for
Mask-RCNN training. We train for 10 epochs and select by the best performance on data
in unseen validation environments.
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For the depth prediction model, we use an Unet-based model architecture same as
Blukis et al. (2021). We get the images and ground truth depth frames from the training
environments of TEACh dataset by AI2THOR Kolve et al. (2017) too. The range of depth
prediction is from 0-5 meters, with an interval of 5 centimeters. Thus, the depth prediction
problem is formulated as a classification problem over 50 classes on each pixel. During
training, the loss function is a pixel-wise cross entropy loss:

L = CE(Dpredict, Dgt) (6)

Dgt stands for ground truth depth and Dpredict stands for predicted depth. During training,
we follow the training details in Blukis et al. (2021) and using the batch size of 4, learning
rate of 1×10−4. We train for 4 epochs and select by the best performance on data in unseen
validation environments.

For semantic map construction, we first project the depth and semantic information
predicted by learned models into a 3-D point cloud voxel, based on which we do vertical
projection and build a semantic map of 240 × 240 for each object class and obstacle map.
Each pixel represents a 5cm× 5cm patch in the simulator.

Goal Transformer

We collect one data sample from each EDH instance to train the Goal Transformer. The
Goal Transformer takes the ground truth future sub-goals, history images, and history
actions as inputs. We modify the prediction head of the Episodic Transformer to generate
the actions in TEACh benchmarks Padmakumar et al. (2021). The Goal Transformer uses
a language encoder to encode the future sub-goals, an image encoder (a pre-trained ResNet-
50) to encode the current and history images, and an action embedding layer to encode the
history actions in order. The model is trained to predict future actions autoregressively.
During training, we use the cross entropy loss between the ground truth future action Agt

and predicted future action, as is Apredict:

L = CE(Apredict, Agt) (7)

We follow the episodic transformer (E.T.) Pashevich et al. (2021) training details for the
goal transformer model. The batch size is 8 and the training epoch is 20. We use the
Adamw optimizer Loshchilov and Hutter (2017) with a learning rate of 1× 10−4.

Symbolic Reasoning

Here, we provide some details of the implementations of the symbolic reasoning part. In
task-level commonsense reasoning, we mainly check sub-goals from two perspectives: prop-
erties and causality. For properties, we need to check whether the action is affordable for
the object. Therefore, we define some object collections depending on the properties, in-
cluding movable, sliceable, openable, toggleable, and supportable. We can determine the
unreasonable sub-goals by checking whether the planned object can afford the correspond-
ing action. Then, causality means whether the sub-goal sequence obey the causal relations,
like ”a knife in hand” should always be the prerequisite of ”slice a bread”. To achieve this
purpose, we define some rules of prerequisites and solutions according to commonsense,
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including placing the in-hand object before picking something, removing the placing action
if nothing in hand, etc. To check the prerequisites, we assume all the previous sub-goals are
completed and check if the agent’s states matches the desired states. If the current sub-goal
and the agent’s state have causal conflict, we will use predefined solutions to deal with it.
For example, we will remove Place(agent, x) if there is nothing in the hand. We will add
Pick(agent, ”Knife”) before Slice(agent, ”Bread”) if the agent do not grasp a knife in hand.
The whole process can be found in Algorithm 2.

We consider both the semantic map and action states for action-level commonsense
reasoning. In general, the agent updates the semantic map according to the observation
of every step. We use the pixels change to detect whether the previous action success. To
determine the next step, the agent must check whether the target object has been observed.
If the target object has been observed, an FMM algorithm will plan a path to the closest
feasible space. Otherwise, we will use the Goal Transformer to determine the next action
for exploration. The action space of the Goal Transformer is all motion actions, including
forwarding, backward, panning left, panning right, turning right, and turning left. During
the movement to the target position, if the agent counterfaces unexpected collisions due
to the error of the semantic map, the agent will save the current pose and the action
from causing the collision. Then, the agent will first consider using the estimated motion
action from Goal Transformer. But if the output action of GT is the same as the previous
one leading to the collision, it will take a random motion action. After the agent reaches
the target position, the agent will rotate and move around the place if the target object
cannot be found in the current observation. If all attempts have been made and the object
is still unobservable, the agent will consider it as a false detection situation and add the
corresponding signal in the semantic map. The whole process can be found in Algorithm 3.

Task Completion Process of the JARVIS framework

We elaborate logic predicates for symbolic commonsense reasoning in Table 5. In Algo-
rithm 1, we show the overall process when our JARVIS framework tries to finish an EDH or
TfD tasks, which includes two algorithms to implement symbolic commonsense reasoning
predicates: Algorithm. 2 describes semantic map building process and language planning
process, which including the task-level commonsense reasoning. Algorithm. 3 describes the
detailed action generation process with action-level commonsense reasoning.

Experiment Details for Two Agent Task Completion (TATC)

We experiment with our JARVIS framework on TATC task in three different settings,
where there are different constraints about how much information will be available to the
Commander for generating instructions. As in Table. 2, in the first setting named full
info. setting, the Commanderhas all information about the current subgoal, eg. pickup
knife, target object location and the ground truth segmentation of the target object in the
view. In this setting, same as the setting in Padmakumar et al. (2021), the Commandercan
specifically instructs where the Followershould interact to finish the current subgoal. In the
second setting, we eliminate the ground truth segmentation of the target object from the
information provided to the Commander. As a result, the Commandercould still instruct
the Followerto arrive near the target object but will not be able to explicitly tell the
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Table 5: Logic predicates for symbolic commonsense reasoning.

Task Common Sense Action Common Sense

Movable(x) True if x can be moved by the agent. IsEmpty(x) True if location x is empty in map.
Slicedable(x) True if x can be sliced into parts. Observe(x) True if x is observed.
Openable(x) True if x can be opened or closed. Success(x, y) True if action x can be executed at state y.

Toggleable(x) True if x can be toggled on or off. Near(x, y)
True if the distance from the agent
to x is smaller than y.

IsReceptacle(x) True if x can support other objects. Move(x, y)
∃P ⊂ V,∀i ∈ P, IsEmpty(i)
where V is the all possible paths from y to x.

IsGrasped(agent) True if agent has grasped something. Collision(x, y) Move(x, y) ∧ ¬Success(x, y)

Pick(agent, x)
¬IsGrasped(agent)

∧Moveable(x)
Target(x, y) Observe(x) ∧Move(x, y)

Place(agent, x) IsGrasped(agent) ∧ IsReceptacle(x) Interactive(action, x) Observe(x) ∧Near(x, 0.5)

Slice(agent, x) Pick(agent, “Knife”) ∧ Sliceable(x) Ignore(action, x)
¬Observe(x) ∧Near(x, 0.5)
after exploring around x for serval times.

Algorithm 1 Task Completion Process of the JARVIS framework
Input: History observations Vhistory, History agent actions Ahistory, Utterance u

1 Gfuture,Msemantic ← Algorithm 2(Vhistory, Ahistory, u);
2 pointer ← 0;
3 fail times← 0;
4 step← 0;
5 need stop← False;
6 aprev ← Ahistory[−1] ; // The previous action is the last in history actions

7 vcurr, success execute← Simulator.Step(aprev);

8 while not need stop do
9 anext,Msemantic, pointer ← Algorithm 3(aprev, vcurr,Msemantic, pointer,Gfuture);
10 vcurr, success execute← Simulator.Step(anext);
11 aprev ← anext;
12 step← step+ 1;
13 if not success execute and aprev is an interaction action then

14 fail times← fail times+ 1;

1616 if fail times ≥ 30 or step ≥ 1000 or anext is "Stop" then
17 need stop← True;

follower the ground truth location of the target object in the view. In the third setting,
we further restrict the target object location (goal location) from the information to the
Commanderand thus the instruction generated from the Commanderwill not include any
ground truth information about where the target object is.

Appendix B. Notation Table

We describe the notation used in this paper in Table. 6.

Appendix C. Case Study

In the EDH task, the agent can process history dialog and execute sub-goals, and plan
future actions to complete the task. With well-designed Symbolic Commonsense Reasoning
module, the agent can efficiently navigate to the target location and execute planned actions,
as shown in Figure. 3. In the TfD task, the agent is able to understand the dialog and break
down the whole task into future sub-goals, and execute it correctly, as in Figure. 4.
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Algorithm 2 Semantic Map Building and Language Planning
Input: History observations Vhistory, History agent actions Ahistory, Utterance u
Output: Future Subgoals Gfuture, Semantic map Msemantic

18 Ghistory ← {}; Msemantic ← {}; pointer ← 0 ; // Initialize pointer for subgoals
19 need nav ← False;

20 Function TaskCommonSenseProcess(G):
21 picked object← None; for i← 0 to G.length− 1 do
22 ai ← G[i].action; objecti ← G[i].target object; if ai is PickUp then
23 if Movable(objecti) then
24 if picked object is not None then
25 Add [Place, CounterTop] into G before step i;

26 picked object← objecti;

27 else
28 Remove ai from G;

29 else if ai is Place then
30 if IsReceptacle(objecti) then
31 picked object← None;

32 else
33 Remove ai from G;

34 else if ai is Slice then
35 if Sliceable(objecti) then
36 if picked object is not "Knife" then
37 if picked object is not None then
38 Add [[Place, CounterTop], [PickUp, Knife]] into G before step i;
39 else
40 Add [PickUp, Knife] into G before step i;

41 picked object← "Knife";

42 else
43 Remove ai from G;

44 else if (ai is in [Open, Close] and not Openable(objecti)) or
(ai is in [ToggleOn, ToggleOff] and not Toggleable(objecti)) then

45 Remove ai from G;

46 return G;

47 for i← 0 to t− 1 do
48 ai ← Ahistory[i]; vi ← Vhistory[i]; if ai is in interaction action then
49 Target object← ai.target object; if need nav then
50 Ghistory ← Ghistory + [Navigate, Target object] + [ai.action name, Target object];
51 else
52 Ghistory ← Ghistory + [ai.action name, Target object];

53 need nav ← False;
54 else
55 need nav ← True; Msemantic ← ObservationProject(vi, ai,Msemantic);

56 Gfuture ← LanguagePlanner(Ghistory, u);
57 Gfuture ← TaskCommonSenseProcess(Gfuture);
58 Initialize Goal Transformer with Vhistory, Ahistory, Ghistory;

We also show an example of one classic error of episodic transformer in 3(b). The E.T.
model will repetitively predict “Forward” when facing the wall, or “Pickup Place” in some
other cases. This is because the agent can not correctly and robustly infer correct actions
from all the input information.

Figure. 5 illustrates how our JARVIS framework can be adapted to the TATC task
under the setting that the commander can acquire state changes needed to be complete,
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Algorithm 3 Action Generation with Action Commonsense Reasoning
Input: Previous action at−1, Current observation vt, Semantic map Mt−1, Subgoal pointer pointert−1,

Future subgoal Gfuture

Output: Next action at, Updated semantic map Mt, Updated subgoal pointer pointert

59 stop navigate← False;
60 at ← None;
61 previous success← CheckSuccess(vt) ; // True if pixel changes ¿ threshold

62 if previous success then
63 pointert ← pointert−1 + 1; ExecutePostActionProcess(at−1) ; // Update planner states
64 Mt ← ObservationProject(vt, at−1,Mt−1);
65 else
66 pointert ← pointert−1; Mt ← UpdateCollision(at−1,Mt−1);

67 gt ← Gfuture[pointert]; Goal ET action ← Goal Transformer.GetNextAction(vt, at−1, gt); objectt ←
gt.target object; target observed← Observe(objectt) ; // True if target is in current vt

68 target found← FindInMap(objectt,Mt) ; // True if target is in Mt

69 if target found then
70 stop navigate← Near(objectt, 0.5) ; // True if distance to target ¡ 0.5m
71 if stop navigate then
72 if target observed then
73 at ← Interaction(gt.action, objectt);
74 else
75 at ← FindTargetNearDestination(Mt) ; // Perform delta moves around destination

76 else
77 at ← FMM(objectt,Mt);

78 else
79 at ← Goal ET action;

80 if not previous success and at is equal to at−1 then
81 at ← GenerateRandomFesibleAction(Mt) ; // Random non-colliding movement

82 return at,Mt, pointert

Table 6: Primary notation table.

Symbol Description

A The action space.
A A random variable representing the action sequence.
at A specific action at time t.
∫ The environment state space.
si The initial state.
sf The final state.
D Dialogues consisting of pairs of players and utterance.
p The players which can only be Commander or Follower.
u The utterance.
V A random variable representing the visual input of the Follower.
G The sequence of sub-goals which is an intermediate guidance used for making decisions.

ground truth segmentation, and object location. The symbolic commonsense reasoning
action module of our JARVIS-based follower can generate actions to complete the sub-goals
provided by the commander.
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Navigate Fridge

Open Fridge

Navigate CounterTop

Place CounterTop

Navigate Potato

Pickup Potato

Navigate Fridge

Close Fridge

Initial egocentric views:

History dialogue: Sub-goals:

What should I do today?
We will make a salad. Please begin 
with 2 slices of lettuce.

I have sliced the lettuce.

Commander Follower

History sub-goals:

Navigate Knife, Pickup Knife, Navigate Fridge, Open Fridge, Navigate CounterTop, 
Place CounterTop, Navigate Lettuce, Pickup Lettuce, Navigate CounterTop, Place. 
CounterTop, Pickup Knife, Navigate Lettuce, Slice Lettuce, Close Fridge

…

Hello

Where is the lettuce?

The lettuce is in the fridge.

Please now cook a slice of potato.

1 2 3

Where is the potato?
The potato is in the fridge.

Semantic map in progress:

(a)

Initial egocentric view:History dialogue:

Hello,  may I have my first task?
I need you to put the pencil on the 
desk. The pencil is on the chair.

I put the pencil on the desk. 
What is my next task?

Commander Follower
1 2 3

Predicted action is Forward
all the time. Then stuck and fail.

(b)

Figure 3: EDH example. (a) shows an example of our JARVIS in EDH task, where the
inputs are dialog history and sub-goal history (converted from action history input). The
inputs are first interpreted by the Language Parsing Module to become sub-goals. Then,
our Symbolic Reasoning Module will generate action predictions. The predicted actions will
change the follower’s egocentric views and the semantic map will be built up and completed
gradually. }m1 shows the agent is opening the fridge }m2 shows the agent has placed the
knife and navigate back to the fridge. }m3 shows the agent is picking up the potato. (b) is
an example demonstrating a typical way of how Episodic Transformer fails on EDH task.
In this case, the E.T. model predicts “Forward” repetitively even facing the wall, therefore
stuck at the current position.
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Navigate cloth

Pickup cloth

Navigate bathtub

Place bathtub

Initial Egocentric View:

History dialogue: Sub-goals:

Hello,  what should I do today?
Put the cloth in the bathtub.

It’s on top of the toilet.
Where is the cloth

Commander Follower

1 2 3

Semantic map in progress:

Figure 4: Successful TfD example from our JARVIS framework. According to the dialog,
the language planner estimate four future sub-goals: (”Navigate cloth”, ”PickUp Cloth”,
”Navigate Bathtub”, ”Place Bathtub”). Then with the symbolic reasoning module, inter-
action and navigation actions are predicted. }m1 shows the agent is finding the cloth. }m2
shows the agent has picked up the cloth and then found the bathtub. }m3 shows the agent
can correctly put the cloth on the bathtub.

Table 7: Average action failure rate on validation set for EDH, TfD and TATC tasks. When
the time of action failure in a session reaches 30, the session will be forced to end, causing
a task failure. The action failure exist widely in sessions.

Failure Mode EDH(%) TfD(%) TATC(%)

No action failure 4.0 17.0 5.8
Action failures exist but are less than 30 times 78.8 79.9 69.0
Action failures reaches 30 times 17.2 3.1 25.2

Appendix D. Error Analysis

According to Table. 7, we find that all failed tasks include at least one action failure. For
the shorter tasks, like EDH, the dominant situation is “Action failures are less than 30
times”, while the longer tasks, like TfD and TATC, include even more action failures due to
more sub-goals. To this aspect, we further analyze the action failure reason as in Table. 8,
which shows a quantitative analysis of the failed actions categories in the validation set.
We randomly sampled 50 failure episodes in both seen and unseen splits and computed
the average ratio of each action failure category in all the failed actions. From Table. 8,
we notice that ‘Blocked when moving’ is the most frequent cause of failure action in all
the three tasks, EDH, TfD, and TATC. The main reason is that errors in depth prediction
cause semantic obstacle map errors. Besides, ‘Too far to interact’ is also mainly caused
by wrongly predicting the 3D location of an object. To solve this, we need to improve the
precision of the depth prediction model or design a more delicate and robust algorithm to
update the semantic map. The second frequent failure action is ‘Object not found at the
location or cannot be picked up,’ which could be due to the wrong predicted location of
an object by Mask R-CNN. Moreover, it is also likely caused by the situation where the
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Commander

Follower egocentric views during actions:

1. API Call: ProgressCheck
2. API Call: SearchObject Faucet
3. Text: 

“Navigate Faucet @ (3, 5.25, 270o),
TurnOff Faucet @ (0.6, 0.45)”

1. API Call: ProgressCheck
2. API Call: SearchObject Sink
3. Text: 

“Navigate Faucet @ (3, 5, 270o), 
Clean Sink”

Commander

Commander actions:

Follower egocentric views during actions:Commander actions:

1. API Call: ProgressCheck
2. API Call: SearchObject Mug
3. Text: 

“Navigate Mug @ (2, 5, 270o),
Pickup Mug @ (0.7, 0.37)”

Commander

Follower egocentric views during actions:Commander actions:

1. API Call: ProgressCheck
2. API Call: SearchObject Mug
3. Text: 

“Navigate Sink @ (3, 5.25, 270o),
Place Sink @ (0.8, 0.4)”

Commander

Follower egocentric views during actions:Commander actions:

1. API Call: ProgressCheck
2. API Call: SearchObject Faucet
3. Text: 

“Navigate Faucet @ (3, 5.25, 270o), 
TurnOn&Off Faucet @ (0.6, 0.45)”

Commander

Follower egocentric views during actions:Commander actions:

1. API Call: ProgressCheck
2. API Call: SearchObject Mug
3. Text: 

“Navigate Mug @ (3, 5, 270o),
Pickup Mug @ (0.8, 0.4)”

Commander

Follower egocentric views during actions:Commander actions:

1. API Call: ProgressCheck
2. API Call: SearchObject Plant
3. Text: 

“Navigate Plant @ (0, 5, 270o),
Pour Plant@ (0.55, 0.6)”

Commander

Follower egocentric views during actions:Commander actions:

Follower question:

Follower

I’m done.
What’s next?

Follower question:

I’m done.
What’s next?

Follower question:

I’m done.
What’s next?

Follower question:

I’m done.
What’s next?

Follower question:

I’m done.
What’s next?

Follower question:

I’m done.
What’s next?

1

2

3

4

5

6

7

Figure 5: TATC “Water the plant” sequence. At each step the commander calls SearchOb-
ject to get an optimal navigation pose (e.g. }m1 : Navigate to Faucet @ (3, 5.25, 270°)), then
uses ground-truth segmentation to compute an interaction target (e.g. }m3 : Pickup Mug @
(0.7, 0.37)). Steps 1–6 repeat for Faucet, Sink, Mug, Sink, Faucet, and Mug; step 7 pours
water on the Plant @ (0.55, 0.6). After each sub-goal the follower executes in its egocentric
view and reports completion.

target object is inside a receptacle that needs to be open first, as in Figure. 6(a). ‘Invalid
position for placing the held object’ is also mainly caused by the segmentation error of Mask
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Table 8: Action failure categorization result on a sub-set of validation set for all three tasks.
The numbers show the rate of a certain failure action occurs among the total action failure
time.

Action failure reason EDH(%) TfD(%) TATC(%)

Hand occupied when picking up 3.20 1.46 1.04
Knife not in hand when cutting 3.12 1.82 1.36
Target object not support open/close 0.21 0.36 0.83
Cannot open when running 0.07 0.80 0.31
Blocked when moving 40.81 40.74 47.34
Collide when rotating 5.68 3.57 0.63
Collide when picking up 0.14 0.00 0.10
Invalid position for placing the held object 9.37 7.94 4.28
Too far to interact 8.52 10.13 4.28
Pouring action not available for the held object 1.13 1.82 0.10
Object not found at location or cannot be picked up 21.50 19.39 28.26
Cannot place without holding any object 6.17 11.30 8.03
Collide when placing 0.00 0.00 0.21
Target receptacle full when placing 0.07 0.66 3.23

(a) Object not found at location or
cannot be picked up

(b) Miss-recognized target object

Figure 6: Action failure examples

R-CNN. Thus, improving the ability of two perception models is the most effective way to
avoid failure actions.

Other frequent reasons for failure are ‘Cannot place without holding any object,’ ‘Hand
occupied when picking up,’ and ‘Knife not in hand when cutting.’ These are because of the
wrong judgment of whether the former ‘Place’ and ‘Pickup’ actions have succeeded. For
example, the agent might think it has picked up the knife, while it failed to pick up in fact,
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History dialogue:

Can you slice a tomato?
The tomato is on the oven

tomato sliced.
Anything else I can help with?

Commander Follower

…

Ok, thank you

How can I help?

yes sure, where can I find a knife
please?

Knife is in the fridge.

Now can you cook 2 slices of potato?

Ok.
I cooked them, do I need to place 

them on a plate?

Predicted sub-goals:

History sub-goals:

Navigate Fridge, Open Fridge, Pickup Knife … Navigate DiningTable, Place DiningTable

Navigate Potato 

Pickup Potato

Navigate Plate

Place Plate

Navigate Tomato

Pickup Tomato

Ground truth sub-goals:

Pickup Potato 

Navigate Plate 

Place Plate 

Pickup Potato 

Place Plate 

Pickup Potato 

Place Plate

Figure 7: An example of sub-goal estimation failure. The predicted sub-goal lacks two
important sub-goal as pointed by the red arrows, which causes the task failure in the end.

which causes the latter ‘Knife not in hand when cutting.’ We need to further refine our
Symbolic Commonsense Reasoning Action module for these cases.

Instead of the failed actions, a miss-recognized object will also lead to an unsuccessful
task. As in Figure 6(b), the tomato is falsely recognized as an apple, which leads to a failure
when the target object is about “Tomato”. Additionally, the false sub-goals estimations
also contribute to the failures in task completion. In Section 4, we quantitatively analyze
the performance of the Language Planning Module in the JARVIS framework. Here, we
show a typical qualitative error result in Fig. 7. According to the dialog, the ground truth
future sub-goals need the follower to put all potatoes on the plate. However, the estimated
sub-goals indicate one slice of potatoes and tomatoes will be put on the plate, which will
cause the unsatisfied state changes.
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