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Abstract

The hidden state threat model of differential privacy (DP) assumes that the adversary
has access only to the final trained machine learning (ML) model, without seeing
intermediate states during training. However, the current privacy analyses under this
model are restricted to convex optimization problems, reducing their applicability
to multi-layer neural networks, which are essential in modern deep learning
applications. Notably, the most successful applications of the hidden state privacy
analyses in classification tasks have only been for logistic regression models. We
demonstrate that it is possible to privately train convex problems with privacy-
utility trade-offs comparable to those of 2-layer ReLU networks trained with
DP stochastic gradient descent (DP-SGD). This is achieved through a stochastic
approximation of a dual formulation of the ReLU minimization problem, resulting
in a strongly convex problem. This enables the use of existing hidden state privacy
analyses and provides accurate privacy bounds also for the noisy cyclic mini-batch
gradient descent (NoisyCGD) method with fixed disjoint mini-batches. Empirical
results on benchmark classification tasks demonstrate that NoisyCGD can achieve
privacy-utility trade-offs on par with DP-SGD applied to 2-layer ReLU networks.

1 Introduction

In differentially private (DP) machine learning (ML), the DP-SGD algorithm (see e.g., Abadi et al.,
2016) has become a ubiquitous tool to obtain ML models with strong privacy guarantees. The
guarantees for DP-SGD are obtained by clipping gradients and by adding normally distributed noise
to the randomly sampled mini-batch of gradients. The parameters for the DP guarantee are then
found by a composition analysis of the iterative algorithm (see, e.g., Zhu et al., 2022).

One weak point of the composition analysis of DP-SGD is the assumption that the adversary has
access to all the intermediate results of the training iteration. This assumption is unnecessarily
strict as in many practical scenarios only the final model needs to be revealed (Andrew et al., 2024).
Another weakness is that DP-SGD requires either full batch training or random subsampling. Both are
computationally not favourable, as full batch usually does not fit in memory and random subsampling
implies an unbalanced use of compute resources and increased implementation complexity (Chua
et al., 2024a). In contrast, for noisy cyclic gradient descent (NoisyGD) with disjoint mini-batches,
the compute is balanced between mini-batches and can be implemented efficiently. Having high
privacy-utility ML models trained with NoisyCGD would give an alternative for DP-SGD that is
more practical and efficient to implement (Chua et al., 2024a).

The so-called hidden state threat model of DP considers releasing only the final model of the training
iteration. Existing (ε, δ) -DP analyses in the literature are only applicable for convex problems such
as logistic regression which is the highest performing model considered in the literature (see, e.g.,
Chourasia et al., 2021; Bok et al., 2024). When training models with DP-SGD, however, one quickly
finds that the model performance of commonly used convex models is inferior compared to neural
networks. A natural question arises whether convex approximations of minimization problems for
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multi-layer neural networks can be made while preserving model performance under privacy. This
work explores such an approximation for the two-layer ReLU neural network. We build on the
findings of Pilanci and Ergen (2020), which demonstrate the existence of a convex dual formulation
for the two-layer ReLU minimization problem when the hidden layer has sufficient width.

The privacy amplification by iteration analysis for convex private optimization, introduced by
Feldman et al. (2018), provides privacy guarantees in the hidden state threat model. However,
these analyses (Sordello et al., 2021; Asoodeh et al., 2020; Chourasia et al., 2021; Altschuler and
Talwar, 2022) remain challenging to apply in practice, as they typically require a large number of
training iterations to obtain tighter DP guarantees than those of DP-SGD. Chourasia et al. (2021)
improve this analysis using Rényi DP for full-batch training with DP guarantees, while Ye and Shokri
(2022) offer a similar analysis for shuffled mini-batch DP-SGD. Recently, Bok et al. (2024) provided
an f -DP analysis for a class of algorithms, which we will leverage to analyze NoisyCGD.

Our main contributions are the following:

• By integrating two seemingly unrelated approaches, a convex reformulation of ReLU
networks and the privacy amplification by iteration DP analysis, we show that it is possible
to obtain similar privacy-utility trade-offs in the hidden state threat model of DP as by
applying DP-SGD to two-layer ReLU networks and using well-known composition results.

• We provide approximations for the convex reformulation to facilitate DP analysis and show
that the resulting strongly convex model has the required properties for hidden state analysis.

• We give the first high-privacy-utility trade-off results for image classification tasks using
a hidden state DP analysis. In particular, we present results for NoisyCGD with disjoint
mini-batches. This allows for more practical applications of DP ML.

• We run a theoretical utility analysis of gradient descent with DP guarantees when applied to
the convex approximation, in the context of the random data model.

1.1 Further Related Literature

Differentially private machine learning has been extensively studied in recent years. The most widely
used approach is DP-SGD (Abadi et al., 2016), which clips and adds noise to gradients during
training. Several works have analyzed and improved DP-SGD through techniques such as adaptive
clipping (Andrew et al., 2021), better composition analyses (Dong et al., 2022; Koskela et al., 2020;
Zhu et al., 2022; Gopi et al., 2021), or privacy amplification by iteration (Feldman et al., 2018).
For convex problems, alternative approaches include sufficient statistics perturbation (Wang, 2018;
Amin et al., 2023), objective perturbation (Chaudhuri et al., 2011), and output perturbation (Wu
et al., 2017). Most prior work focuses on the standard DP definition rather than hidden state DP.
Another alternative to DP-SGD is the Differentially Private Follow-the-Regularized-Leader (Kairouz
et al., 2021), but it comes with significant additional memory and compute cost due to sampling
of correlated noise from a matrix mechanism, and potentially significant communication overhead
in the federated learning setting. A recent line of work considers DP guarantees for DP-SGD with
disjoint batches. Chua et al. (2025) and Choquette-Choo et al. (2025) use Monte Carlo methods to
estimate privacy guarantees under the so-called balls-and-bins sampling, where Poisson sampling
assigns data points to disjoint batches. However, these simulations are computationally intensive
and do not lead to provable upper bounds on DP parameters. Feldman and Shenfeld (2025) provide
provable bounds for a generalization of this scheme, though their method also results in randomly
sized batches. Thus, existing analyses do not accommodate fixed-size batches and, in particular,
unshuffled data, further motivating our approach, which yields high-utility convex models for which
NoisyCGD can be analyzed accurately.

Our work builds on recent advances in convex approximations of neural networks. The connection
between two-layer ReLU networks and convex optimization was established by Bengio et al. (2005);
Bach (2017) and further developed by Pilanci and Ergen (2020). Several works propose methods
to train neural networks through convex optimization (Ergen and Pilanci, 2020; Ergen et al., 2023).
However, the privacy implications of these convex formulations have not been thoroughly explored
before our work. The closest related work is (Kim and Pilanci, 2024), which analyzes connections
between stochastic dual forms and ReLU networks but does not consider privacy.
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2 Preliminaries

We denote a dataset containing n data points as D = (z1, . . . , zn). We say D and D′ are
neighboring datasets if they differ in exactly one element (denoted as D ∼ D′). A mechanism
M : X → O is (ε, δ)-DP if the output distributions for neighboring datasets are always (ε, δ)-
indistinguishable (Dwork et al., 2006).

Definition 2.1. Let ε ≥ 0 and δ ∈ [0, 1]. MechanismM : X → O is (ε, δ)-DP if for every pair of
neighboring datasets D ∼ D′ and for every measurable set E ⊂ O,

P(M(D) ∈ E) ≤ eεP(M(D′) ∈ E) + δ.

We callM tightly (ε, δ)-DP, if there does not exist δ′ < δ such thatM is (ε, δ′)-DP.

The DP guarantees can alternatively be described using the hockey-stick divergence. For α > 0 the
hockey-stick divergence Hα from a distribution P to a distribution Q is defined as Hα(P ||Q) =∫
max{P (t)− α ·Q(t), 0} dt. The (ε, δ)-DP guarantee, in Def. 2.1, can be characterized using the

hockey-stick divergence: if we can bound the divergence Heε(M(D)||M(D′)) accurately, we also
obtain accurate δ(ε)-bounds. We also refer to δM(ε) := maxD∼D′ Heϵ(M(D)||M(D′)) as the
privacy profile of mechanismM. To accurately bound the hockey-stick divergence of compositions,
we need to so-called dominating pairs of distributions.

Definition 2.2 (Zhu et al. 2022). A pair of distributions (P,Q) is a dominating pair of distributions
for mechanismM(D) if for all neighboring datasets D and D′ and for all α > 0,

Hα(M(D)||M(D′)) ≤ Hα(P ||Q).

If the equality holds for all α for some D ∼ D′, then (P,Q) is a tightly dominating pair of
distributions. We get upper bounds for DP-SGD compositions using the dominating pairs of
distributions using the following composition result.

Theorem 2.3 (Zhu et al. 2022). If (P,Q) dominatesM and (P ′, Q′) dominatesM′, then (P ×
P ′, Q×Q′) dominates the adaptive compositionM◦M′.

To convert the hockey-stick divergence from P × P ′ to Q×Q′ into an efficiently computable form,
we consider so called privacy loss random variables (PRVs) and use Fast Fourier Technique-based
methods (Koskela et al., 2021; Gopi et al., 2021) to numerically evaluate the convolutions appearing
when summing the PRVs and evaluating δ(ε) for the compositions.

Gaussian Differential Privacy. For the privacy accounting of the noisy cyclic mini-batch GD, we
use the bounds by Bok et al. (2024) that are stated using the Gaussian differential privacy (GDP).
Informally speaking, a mechanismM is µ-GDP, µ ≥ 0, if for all neighboring datasets the outcomes
ofM are not more distinguishable than two unit-variance Gaussians µ apart from each other (Dong
et al., 2022). We consider the following formal characterization of GDP.

Lemma 2.4 (Dong et al. 2022, Cor. 2.13). A mechanismM is µ-GDP if and only it is (ε, δ)-DP for
all ε ≥ 0, where

δ(ε) = Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
.

2.1 DP-SGD with Poisson Subsampling

One iteration of DP-SGD with Poisson subsampling is given by

θj+1 = θj − ηj ·
(
1

b

∑
x∈Bj

clip(∇L(x, θj), C) + Zj

)
,

where C > 0 denotes the clipping constant, clip(·, C) the clipping function that clips gradients to
have the 2-norm at most C, L the loss function, θ the model parameters, ηj the learning rate at
iteration j, Bj the mini-batch at iteration j sampled with Poisson subsampling with the subsampling
ratio b/n, b the expected size of each mini-batch and Zj ∼ N (0, C2σ2

b2 Id) the noise vector.

We adopt the substitute neighborhood relation and apply the result of Lebeda et al. (2024):
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Lemma 2.5 (Lebeda et al. 2024). Suppose a pair of distributions (P,Q) is a dominating pair
of distributions for a mechanismM and denote the Poisson subsampled mechanism M̃ :=M◦
Sq
Poisson, where Sq

Poisson denotes the Poisson subsampling with subsampling ratio q. Then, under the
∼-neighbouring relation, the pair of distributions (P,Q), where P = (1−q) ·N (0, σ2)+q ·N (1, σ2)

and Q = (1− q) · N (0, σ2) + q · N (−1, σ2) is a dominating pair of distributions for M̃.

Combined with Lemma 2.3 and numerical accountants, this yields tight (ε, δ) bounds for DP-SGD
with Poisson subsampling under the substitute neighborhood relation.

2.2 Guarantees for the Final Model and Noisy Cyclic Mini-Batch GD

We next consider privacy amplification by iteration (Feldman et al., 2018), which gives privacy
guarantees for the final model of the training iteration. Recent results by Bok et al. (2024) are
applicable to the noisy cyclic mini-batch gradient descent (NoisyCGD) for which one epoch of
training is described by the iteration:

θj+1 = θj − η

(
1

b

∑
x∈Bj

∇θf(θj , x) + Zj

)
where Zj ∼ N (0, σ2Id) and the data D is divided into disjoint batches B1, . . . , Bk, each of size b.
The analysis by Bok et al. (2024) also considers the substitute neighborhood relation of datasets. A
central element for the DP analysis is the gradient sensitivity:
Definition 2.6. A loss function family F has a gradient sensitivity L if supf,g∈F ∥∇f −∇g∥ ≤ L.

For example, for a family of loss functions of the form hi + r, where hi’s are L-Lipschitz loss
functions and r is a regularization function, the sensitivity equals 2L. We will use the following
result to analyse the DP guarantees of NoisyCGD. Recall that a function f is β-smooth if ∇f is
β-Lipschitz, and it is λ-strongly convex if the function g(x) = f(x)− λ

2 ∥x∥
2
2 is convex.

Theorem 2.7 (Bok et al. 2024, Thm. 4.5). Consider λ-strongly convex, β-smooth loss functions with
gradient sensitivity L. Then, for any η ∈ (0, 2/β), NoisyCGD is µ-GDP for

µ =
L

bσ

√
1 + c2k−2

1− c2

(1− ck)2
1− ck(E−1)

1 + ck(E−1)
,

where k = n/b, c = max{|1− ηλ| , |1− ηβ|} and E denotes the number of epochs.

We could alternatively use the RDP analysis by Ye and Shokri (2022). However, as also illustrated by
the experiments of Bok et al. (2024), the bounds given by Thm. 2.7 lead to slightly lower (ε, δ)-DP
bounds for NoisyCGD. To benefit from the privacy analysis of Thm. 2.7 for NoisyCGD, we add an
L2-regularization term with a coefficient λ

2 . This makes the loss function λ-strongly convex.
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NoisyCGD, η · λ = 5.4 · 10−5

NoisyCGD, η · λ = 1 · 10−4
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DP-SGD

Figure 1: Values of the product of the learning
rate η and the L2-regularization constant λ that
lead to tighter privacy bounds for the final model
using Thm. 2.7, compared to the whole sequence
of updates using the DP-SGD analysis. Here n =
6 · 104, b = 1000, σ = 15.0 and δ = 10−5.

Finding suitable hyperparameter values for the
learning rate η and regularization parameter
λ is complicated by two aspects. The larger
the regularization parameter λ and the learning
rate η are, the faster the model ‘forgets’ the
past updates and the quicker the ε-values
converge. This is reflected in the GDP bound
of Thm. 2.7 in the constant c, which generally
equals |1− ηλ|. To benefit from the bounds
of Thm. 2.7, the product ηλ should not be too
small. Alternatively, when ηλ is too large, the
’forgetting’ affects the model performance. We
experimentally observe that the plateauing of the
model accuracy and privacy guarantees occurs
approximately simultaneously.

Figure 1 illustrates the privacy guarantees
of NoisyCGD for a range of values for the
product ηλ. The (ε, δ)-DP guarantees given by
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Thm. 2.7 become smaller than those given by the Poisson subsampled DP-SGD with an equal batch
size b = 1000 when σ = 15.0 and training for 400 epochs. For a given learning rate η, we can
always adjust the value of λ to have desirable (ε, δ)-DP guarantees. To put the values of Fig. 1 into
perspective, in experiments we observe that ηλ = 2 · 10−4 is experimentally found to affect the
model performance already considerably whereas ηλ = 1 · 10−4 affects only weakly.

Computational advantages of NoisyCGD. NoisyCGD offers significant computational benefits over
traditional DP-SGD. The standard DP-SGD requires Poisson sampling where each sample is included
in a batch with an independent probability, leading to variable batch sizes. This variability creates
practical challenges: For a target physical batch size of 256, one typically needs to set the expected
batch size to 230 to handle size variations, resulting in an 11% throughput reduction. Additionally,
approximately 4% of batches exceed the physical limit and must be processed separately as stragglers.
This further reduces efficiency and increases the engineering complexity of experimental code.

While Chua et al. (2024b) proposed truncating oversized batches and accounting for this in the
δ parameter of (ε, δ)-DP, this approach also impacts throughput. For example, with a physical
batch size of 256, ε = 8, δ = 10−6, and 10 training epochs, the expected batch size must be
reduced to 166 according to their theorem. This constitutes a 35% loss of throughput. In contrast,
NoisyCGD maintains constant batch sizes (except for possibly the final batch). This enables a simpler
implementation in code and higher throughput while preserving privacy guarantees.

3 Convex Approximation of Two-Layer ReLU Networks

This section derives the strongly convex approximation of the 2-layer ReLU minimization problem
and shows that the derived problem is amenable to privacy amplification by iteration analysis. Without
loss of generality, we consider a 1-dimensional output network (e.g., a binary classifier), which can
be extended to multivariate output networks later (see also Ergen et al., 2023).

3.1 Convex Duality of Two-layer ReLU Problem

Consider training a ReLU network (with hidden-width m) f : Rd → R (Pilanci and Ergen, 2020),

f(x) =
∑m

j=1
ϕ(u⊤

j x)αj . (3.1)

The weights are ui ∈ Rd, i ∈ [m] and α ∈ Rm. The ReLU activation function is ϕ(t) = max{0, t}.
For a vector x, ϕ is applied element-wise, i.e. ϕ(x)i = ϕ(xi).

Suppose the dataset D consists of n tuples of the form zi = (xi, yi), xi ∈ Rd, yi ∈ R, for i ∈ [n].
Using the squared loss and L2-regularization with a regularization constant λ > 0, the 2-layer ReLU
minimization problem can be written as

min
{ui,αi}m

i=1

1

2

∥∥∥∑m

i=1
ϕ(Xui)αi − y

∥∥∥2
2
+

λ

2

m∑
i=1

(∥ui∥22 + α2
i ), (3.2)

where X ∈ Rn×d denotes the matrix of the feature vectors, i.e., X⊤ = [x1 . . . xn] and y ∈ Rn

denotes the vector of labels.

The convex reformulation of the ReLU problem (3.2) is based on enumerating all the possible
activation patterns of ϕ(Xu), u ∈ Rd. The set of activation patterns that a ReLU output ϕ(Xu) can
take for a data feature matrix X ∈ Rn×d is described by the set of diagonal boolean matrices

DX = {Λ = diag(1(Xu ≥ 0)) : u ∈ Rd}, (3.3)

where for i ∈ [n],
(
1(Xu ≥ 0)

)
i
= 1, if (Xu)i ≥ 0 and 0 otherwise. The number of regions in a

partition of Rd by hyperplanes that pass through the origin and are perpendicular to the rows of X is

|DX |. We have by Pilanci and Ergen (2020): |DX | ≤ 2r
(

e(n−1)
r

)r

, where r = rank(X).

Notice that DX defined in Eq. (3.3) is the set of all possible boolean matrices, where each boolean
matrix corresponds to a different pattern of ReLU activations for the features of the dataset (the
rows of the matrix X ∈ Rn×d). Thus, the bound for |DX | is a bound for the number of possible
hyperplane arrangements, and thus it is only determined by the feature matrix X .
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Let the number of activation patterns be |DX | = M , and denote DX = {Λ1, . . . ,ΛM}. Let λ > 0.
The parameter space can then be partitioned into convex cones V1, . . . ,VM , where Vi = {u ∈
Rd : (2Λi − I)Xu ≥ 0 }. We consider the following convex optimization problem with group ℓ2–ℓ1
regularization:

min
vi,wi

1

2

∥∥∥∥∑i∈[M ]
ΛiX(vi − wi)− y

∥∥∥∥2
2

+ λ
∑

i∈[M ]
(∥vi∥2 + ∥wi∥2) (3.4)

subject to vi, wi ∈ Vi for all i ∈ [M ], i.e., (2Λi−I)Xvi ≥ 0 and (2Λi−I)Xwi ≥ 0 for all i ∈ [M ].

Interestingly, for a sufficiently large hidden width m, the ReLU minimization problem (3.2) and the
convex problem (3.4) attain the same minimal value (see Pilanci and Ergen, 2020, Thm. 1). Moreover,
Pilanci and Ergen (2020) show that the optimal ReLU network weights can be recovered from the
solution of the convex problem (3.4). Hence, for large enough m, the convex problem can be viewed
as an equivalent convex reformulation of the ReLU problem (3.2), where {vi}Pi=1 and {wi}Pi=1 act
as dual-like variables. Subsequent work, such as Mishkin et al. (2022), extends this equivalence
to general convex loss functions L. For simplicity, we restrict our discussion to the squared loss.
We also note that similar convex formulations have been developed for two-layer convolutional
networks (Bartan and Pilanci, 2019) and for multi-layer ReLU networks (Ergen and Pilanci, 2021).

3.2 Stochastic Approximation

Since |DX | is generally an enormous number, stochastic approximations to the problem (3.4) have
been considered (Pilanci and Ergen, 2020; Wang et al., 2022; Mishkin et al., 2022; Kim and Pilanci,
2024). Vectors ui ∼ N (0, Id), i ∈ [P ], P ≪M , are then sampled randomly to construct the boolean
diagonal matrices Λ1, . . . ,ΛP , Λi = diag(1(Xui ≥ 0)), and the problem (3.4) is replaced by

min
vi,wi

1

2

∥∥∥∥∑P

i=1
ΛiX(vi − wi), y

∥∥∥∥2
2

+ λ
∑P

i=1
(∥vi∥2 + ∥wi∥2) (3.5)

such that for all i ∈ [P ] : vi, wi ∈ Vi, i.e., (2Λi− I)Xwi ≥ 0, and (2Λi− I)Xvi ≥ 0 for all i ∈ [P ].
These constraints, however, are data-dependent, which makes private learning of the problem (3.5)
difficult. Moreover, the overall loss function given by Eq. 3.5 is not generally strongly convex. This
prevents using privacy amplification results such as Theorem 2.7 for NoisyCGD. We thus consider a
strongly convex problem without any constraints and with a squared regularization term.

3.3 Stochastic Strongly Convex Approximation

Motivated by the needs of the DP analysis and the formulation given in (Wang et al., 2022), we
consider global minimization of the loss function

L
(
v,X, y

)
=

1

n

∑n

j=1
ℓ(v, xj , yj), (3.6)

with

ℓ(v, xj , yj) =
1

2

∥∥∥∥∑P

i=1
(Λi)jjx

⊤
j vi − yj

∥∥∥∥2
2

+
λ

2

∑P

i=1
∥vi∥22 , (Λi)jj = 1(x⊤

j ui ≥ 0), (3.7)

where v = {vi}Pi=1, vi ∈ Rd for i ∈ [P ] denote the learnable parameters. We note that due
to the convention of the literature, the regularization is added term-wise (Bok et al., 2024). The
diagonal boolean matrices Λ1, . . . ,ΛP ∈ Rn×n are again constructed by taking first P i.i.d. samples
u1, . . . , uP , ui ∼ N (0, Id), and then setting the diagonals of Λi’s: (Λi)jj = max

(
0, sign(x⊤

j ui)
)
.

The Model at Inference Time. Having a sample x ∈ Rd at inference time, one uses the P vectors
u1, . . . , uP that were used for constructing the boolean diagonal matrices Λi, i ∈ [P ] during training.
The prediction is carried out similarly using the function g(x, v) =

∑P
i=1 1(u

⊤
i x ≥ 0) · x⊤vi.

Practical Considerations. In the experiments, we use the cross-entropy loss instead of the mean
squared error for the loss function ℓ. For K-dimensional outputs and labels, we employ K independent
linear models in parallel, each predicting one output dimension. The resulting model has parameter
dimensionality d×P ×K, where d is the feature dimension and P is the number of randomly chosen
hyperplanes.
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3.4 Meeting the Requirements of DP Analysis

In Eq. (3.7) each loss function ℓ(v, xj , yj), j ∈ [n], depends only on the data entry
(xj , yj). By clipping the data sample-wise gradients ∇vh(v, xj , yj), where h(v, xj , yj) =

1
2

∥∥∥∑P
i=1(Λi)jjx

⊤
j vi − yj

∥∥∥2
2
, the loss function ℓ becomes 2L-sensitive (see Def. 2.6). Appendix C

shows that the loss function ℓ(v, xj , yj) is a loss function of a generalized linear model and thus we
are allowed to use the analysis of Bok et al. (2024) when clipping the gradients since then the clipped
gradients are gradients of another convex loss (Song et al., 2021). For the DP analysis, we must also
analyze the loss function’s convexity properties (3.7).

We have the following Lipschitz bound for the gradients.
Lemma 3.1. The gradients of the loss function ℓ(v, xj , yj) given in Eq. (3.7) are β-Lipschitz
continuous for β = ∥xj∥22 + λ.

Due to L2-regularization, the loss function (3.7) is λ-strongly convex. The properties of λ-
strong convexity and β-smoothness are preserved when clipping the sample-wise gradients
∇vh(v, xj , yj) (Section E.2, Redberg et al., 2024). Therefore, the DP accounting Thm. 2.7 is
applicable with the same convexity parameters when clipping the gradients∇vh(v, xj , yj).

4 Theoretical Analysis
From a theoretical standpoint, convex models are advantageous over non-convex ones in private
optimization. State-of-the-art empirical risk minimization (ERM) bounds for private convex
optimization are of the order O( 1√

n
+

√
p

εn ), where n is the number of training data entries, p
the dimension of the parameter space and ε the DP parameter (Bassily et al., 2019). In contrast, the
bounds for non-convex optimization, which focus on finding stability points, are much worse, such as
O( 1

n1/3 + p1/5

(εn)2/5
) (Bassily et al., 2021) and O

(
p1/3

(εn)2/3

)
(Arora et al., 2023; Lowy et al., 2024).

We consider utility bounds with random data for the problem (3.7). The random data model is
also commonly used in the analysis of private linear regression (see, e.g., Varshney et al., 2022).
Leveraging classical DP-ERM results, we derive utility bounds that are tighter than those obtainable
for 2-layer ReLU networks via non-convex optimization. In addition to the convexity benefits of
DP-ERM, we utilize the approximability of our convex models: with enough random hyperplanes,
the global minimum L(θ∗, D) goes to zero with high probability.

4.1 Utility Bound for the Convex ReLU Approximation in the Random Data Model

Recently, Kim and Pilanci (2024) have given several results for convex problems under the assumption
of random feature data, i.e., when y ∈ Rn is fixed and Xij ∼ N (0, 1) i.i.d. Based on their results,
using P = O

(
(n log n)/d

)
hyperplane arrangements, the stochastic objective in (3.7) attains a global

minimum of zero with high probability. Consequently, standard DP-ERM bounds yield the result
of Thm. 4.1. In future work, it will be interesting to see whether techniques from private linear
regression (Liu et al., 2023; Avella-Medina et al., 2023; Varshney et al., 2022; Cai et al., 2021) could
be used to eliminate the assumption of bounded gradients. Notice that Thm. 4.1 exhibits feature
dimension-independence unlike existing DP-SGD bounds for the linear regression under the random
data assumption that are Õ( d√

nε
) (Thm. 1.2, Brown et al., 2024).

Theorem 4.1. Consider the random data model where y ∈ Rn and the elements of the data matrix
X ∈ Rn×d are i.i.d. distributed as Xij ∼ N (0, 1) and consider applying the private gradient
descent (repeated from literature in Alg. 1) to the strongly convex loss (3.6) with P = O

(
(n log n)/d

)
hyperplane arrangements, and assume that the gradients are bounded by a constant L > 0. Let the
ratio c = n

d ≥ 1 be fixed. For any γ > 0, there exists d1 such that for all d ≥ d1, with probability at
least 1− γ − 1

(2n)8 (with Õ omitting the logarithmic factors)

L(θpriv, D) ≤ Õ

(
1√
nε

)
.
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Remark 1. In Thm. 4.1, we assume that the ratio c = n/d stays constant in order to be able to
use the results of Kim and Pilanci (2024). One motivation for the assumption c ≥ 1 comes from
having a similar setting as Brown et al. (2024) since we make an explicit comparison to their utility
bounds, where the dependency on the feature dimension d appears. Brown et al. (2024) assume that
n = Ω(d) (Thm. 1.2, Brown et al., 2024), which is implied by the assumption n/d ≥ 1. The results
are in this sense comparable, whereas with the assumption n/d < 1 there is no implication in any
direction. As our Thm. 4.1 indicates, it is possible to get rid of the dependency on the parameter
d when training our proposed model with DP-SGD, and in this sense, our approach is better in
the random data model than the private linear regression analyzed by Brown et al. (2024). Notice
also that in our Thm. 4.1 there is no randomness assumption on the label vector y ∈ Rn unlike
in (Thm. 1.2, Brown et al., 2024).

Another motivation for the assumption n/d ≥ 1, or rather requirement, comes from the mathematical
analysis: the current results by Kim and Pilanci (2024) that we use have to assume n/d ≥ 1 for the
model loss to have, with high probability, a unique zero global minimum for every possible label
vector y with a limited number of random hyperplanes P = O(n log n/d). If we assume n/d < 1,
in a sense the problem becomes easier since the feature matrix X becomes column rank deficient
with high probability. Then, there also can be an infinite number of global minimizers. Moreover, the
DP-SGD convergence results by Bassily et al. (2014) and Talwar et al. (2014), which we use in our
analysis, do not require a unique global minimizer. It is an interesting question for future work how
to include the case n/d < 1 in the utility analysis.

5 Experimental Results

We compare the methods on standard image classification benchmarks: MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009). The MNIST dataset
has a training dataset of 6 · 104 samples and a test dataset of 104 samples. CIFAR10 has a training
dataset size of 5 · 104 and a test dataset of 104 samples. All samples in MNIST datasets are 28× 28
size gray-level images, and in CIFAR10 32 × 32 color images (with three color channels each).
We compare three alternatives: DP-SGD applied to a 2-layer ReLU network, DP-SGD applied to
the stochastic convex model (3.6) without regularization (λ = 0), and NoisyCGD applied to the
stochastic convex model (3.6) with λ > 0. We use the cross-entropy loss for all the models considered.
To simplify the comparisons, we set the batch size to 1000 for all methods and train them for 400
epochs. We compare the results on two noise levels, σ = 5.0 and σ = 15.0, which correspond to
privacy parameter ε = 1.33 and ε = 4.76 at δ = 10−5. In all experiments, the model parameters are
always initialized to zero.

Although 2-layer networks with tempered sigmoid activations (Papernot et al., 2021) would likely
yield improved results, we focus on ReLU networks as baselines for consistency. This allows us to
compare the methods in the context of ReLU-based architectures and will not affect our main finding,
which is that we can find improved models for the hidden state privacy analysis. Unlike Abadi
et al. (2016), we do not use pre-trained convolutive layers for obtaining higher test accuracies in the
CIFAR10 experiment, as we experimentally observe that the DP-SGD trained logistic regression
gives similar accuracies as the DP-SGD trained ReLU network. We consider the much more difficult
problem of training the models from scratch using the vectorized CIFAR10 images as features.

We also compare the hyperparameter tuning under differential privacy and describe this in Appendix G.
The experimental results in this section use the hyperparameter from the private tuning process. The
hyperparameter tuning of NoisyCGD is simplified by the fact that the bound of Thm. (2.7) depends
monotonously on the parameter c = 1− η · λ. If the hyperparameters b and noise scale σ are fixed,
fixing the GDP parameter µ also fixes the value of c. Thus, a grid of learning rate candidates also
determines the values of λ’s. The hyperparameter grids are noted in Appendix G.1.

Baselines. As the stochastic approximation yields a convex problem, we compare, as a baseline, to a
linear regression model that uses the same features. In contrast to the iterative methods, we use the
Sufficient Statistics Perturbation method, which is a one-step solution (SSP Amin et al., 2023). SSP
is a state of the art model for linear regression with Differential Privacy guarantees, and the details are
provided in Appendix H. We consider three sets of features: a) the stochastic approximation features
in the GLM formulation of Equation 3.7 (Convex approx.), b) the activation patterns of Equation 3.3
(Random ReLU), and c) Random Fourier Features of the input images Rahimi and Recht (2007).
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Table 1: A comparison of model accuracies vs. ε-values. The iterative methods generally score better
than SSP and have comparable accuracy, which shows a high-utility result for hidden-state privacy
analysis of a 2-layer neural network. The results are the mean accuracy among five random restarts.

MNIST CIFAR-10
ε = 1.33 ε = 4.76 ε = 1.33 ε = 4.76

Sufficient Statistics Perturbation (Convex Approx.) 51.9±1.1 67.0±0.2 19.2±1.1 23.3±0.9

Sufficient Statistics Perturbation (Random ReLU) 52.5±0.9 65.6±0.3 19.3±0.2 25.9±0.3

Sufficient Statistics Perturbation (RFF) 64.1±0.9 77.4±0.2 21.3±0.5 28.5±0.3

DP-SGD + Convex Approximation 93.1±0.1 94.9±0.1 41.5±0.2 45.5±0.2

DP-SGD + ReLU 91.7±0.1 94.3±0.1 42.5±0.1 47.0±0.2

NoisyCGD + Convex Approximation 92.4±0.2 94.4±0.1 41.0±0.2 45.4±0.3

Main Results. Figures 2 and 3 show the accuracies of the models along a training of 400 epochs for
the MNIST and CIFAR10 dataset. The results for FashionMNIST are in Appendix I. The figures also
include the accuracies for the learning rate-optimized logistic regression models. We observe that
the proposed convex model significantly outperforms logistic regression, which has been the most
accurate model considered in the literature for hidden state DP analysis. The hyperparameters for
this experiment were found with Differentially Private hyperparameter tuning (Appendix G).

Figure 2 shows that the convexification helps in the MNIST experiment: both DP-SGD and the
noisy cyclic mini-batch GD applied to the stochastic dual problem lead to better utility models than
DP-SGD applied to the ReLU network. Notice also that the final accuracies for DP-SGD are not far
from the accuracies obtained by Abadi et al. (2016) using a three-layer network for corresponding
ε-values which can be compared using the fact that there is approximately a multiplicative difference
of 2 between the two relations: the add/remove neighborhood relation used by (Abadi et al., 2016)
and the substitute neighborhood relation used in our work.

The results of Figures 2, 3 and Section I are averaged over five trials. The error bars on both sides of
the mean values indicate 1.96 times the standard error. In all experiments, we set δ = 10−5.

The proposed method is also compared to non-iterative baseline methods. Table 1 compares
NoisyCGD and DP-SGD against Sufficient Statistics Perturbation on random and non-linear features.
For each dataset and privacy setting, even the best linear regression model has lower accuracy than
any of the iterative methods. This shows that iterative methods for non-linear models can achieve
higher accuracy, and we believe that NoisyCGD is an important step in this direction.
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Figure 2: MNIST: Test accuracy versus the spent privacy budget ε, when each model is trained for
400 epochs. NoisyCGD and DP-SGD generally have comparable performance for the 2-layer ReLU
network and much higher accuracy than logistic regression.
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Figure 3: CIFAR10 Test accuracy versus the spent privacy budget ε, when each model is trained for
400 epochs. NoisyCGD and DP-SGD generally have comparable performance for the 2-layer ReLU
network and much higher accuracy than logistic regression.

6 Conclusions and Outlook

We have shown how to privately approximate the two-layer ReLU network, and we have given the
first high privacy-utility trade-off results using the hidden state privacy analysis. In particular, we have
provided results for the noisy cyclic mini-batch GD, which is more suitable for practical applications
of private ML model training than variants of DP-SGD that carry out random subsampling at each
iteration. Experimentally, on benchmark image classification datasets, the results for the convex
problems have similar privacy-utility trade-offs as those obtained by applying DP-SGD for a 2-layer
ReLU network and using the composition analysis. An interesting task for future research is to obtain
hidden state privacy guarantees for ‘deeper’ neural networks, for example, by developing convex
models that approximate deeper neural networks, including those with convolutional layers (Ergen
and Pilanci, 2020) and different activation functions (Ergen et al., 2023).

References

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318.

Altschuler, J. and Talwar, K. (2022). Privacy of noisy stochastic gradient descent: More iterations
without more privacy loss. Advances in Neural Information Processing Systems (NeurIPS),
35:3788–3800.

Amin, K., Joseph, M., Ribero, M., and Vassilvitskii, S. (2023). Easy differentially private linear
regression. In International Conference on Learning Representations (ICLR).

Andrew, G., Kairouz, P., Oh, S., Oprea, A., McMahan, H. B., and Suriyakumar, V. M. (2024).
One-shot empirical privacy estimation for federated learning. In International Conference on
Learning Representations (ICLR).

Andrew, G., Thakkar, O., McMahan, B., and Ramaswamy, S. (2021). Differentially private learning
with adaptive clipping. In Advances in Neural Information Processing Systems (NeurIPS).

Arora, R., Bassily, R., González, T., Guzmán, C. A., Menart, M., and Ullah, E. (2023). Faster rates of
convergence to stationary points in differentially private optimization. In International Conference
on Machine Learning (ICML), pages 1060–1092. PMLR.

Asoodeh, S., Diaz, M., and Calmon, F. P. (2020). Privacy amplification of iterative algorithms via
contraction coefficients. In 2020 IEEE International Symposium on Information Theory (ISIT),
pages 896–901. IEEE.

Avella-Medina, M., Bradshaw, C., and Loh, P.-L. (2023). Differentially private inference via noisy
optimization. The Annals of Statistics, 51(5):2067–2092.

10



Bach, F. R. (2017). Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research (JMLR).

Bagdasaryan, E., Poursaeed, O., and Shmatikov, V. (2019). Differential privacy has disparate impact
on model accuracy. In Advances in Neural Information Processing Systems (NeurIPS).

Bartan, B. and Pilanci, M. (2019). Convex relaxations of convolutional neural nets. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4928–4932. IEEE.

Bassily, R., Feldman, V., Talwar, K., and Guha Thakurta, A. (2019). Private stochastic convex
optimization with optimal rates. Advances in Neural Information Processing Systems (NeurIPS),
32.

Bassily, R., Guzmán, C., and Menart, M. (2021). Differentially private stochastic optimization: New
results in convex and non-convex settings. Advances in Neural Information Processing Systems
(NeurIPS), 34.

Bassily, R., Smith, A., and Thakurta, A. (2014). Private empirical risk minimization: Efficient
algorithms and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, FOCS ’14, pages 464–473, Washington, DC, USA. IEEE
Computer Society.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and Marcotte, P. (2005). Convex neural networks.
In Advances in Neural Information Processing Systems (NeurIPS).

Bok, J., Su, W. J., and Altschuler, J. (2024). Shifted interpolation for differential privacy. In
International Conference on Machine Learning, pages 4230–4266. PMLR.

Brown, G. R., Dvijotham, K. D., Evans, G., Liu, D., Smith, A., and Thakurta, A. G. (2024). Private
gradient descent for linear regression: Tighter error bounds and instance-specific uncertainty
estimation. In Forty-first International Conference on Machine Learning.

Cai, T. T., Wang, Y., and Zhang, L. (2021). The cost of privacy: Optimal rates of convergence for
parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825–2850.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). Differentially private empirical risk
minimization. The Journal of Machine Learning Research (JMLR), 12:1069–1109.

Choquette-Choo, C. A., Ganesh, A., Haque, S., Steinke, T., and Thakurta, A. (2025). Near
exact privacy amplification for matrix mechanisms. In International Conference on Learning
Representations (ICLR).

Chourasia, R., Ye, J., and Shokri, R. (2021). Differential privacy dynamics of langevin diffusion and
noisy gradient descent. Advances in Neural Information Processing Systems (NeurIPS), 34.

Chua, L., Ghazi, B., Harrison, C., Kamath, P., Kumar, R., Leeman, E. J., Manurangsi, P., Sinha, A.,
and Zhang, C. (2025). Balls-and-bins sampling for DP-SGD. In The 28th International Conference
on Artificial Intelligence and Statistics.

Chua, L., Ghazi, B., Kamath, P., Kumar, R., Manurangsi, P., Sinha, A., and Zhang, C. (2024a). How
private are DP-SGD implementations? In International Conference on Machine Learning (ICML).

Chua, L., Ghazi, B., Kamath, P., Kumar, R., Manurangsi, P., Sinha, A., and Zhang, C. (2024b).
Scalable DP-SGD: Shuffling vs. poisson subsampling. In Advances in Neural Information
Processing Systems (NeurIPS).

Dong, J., Roth, A., and Su, W. J. (2022). Gaussian differential privacy. Journal of the Royal Statistical
Society Series B.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private
data analysis. In Proc. TCC 2006. Springer Berlin Heidelberg.

11



Ergen, T., Gulluk, H. I., Lacotte, J., and Pilanci, M. (2023). Globally optimal training of
neural networks with threshold activation functions. In International Conference on Learning
Representations (ICLR).

Ergen, T. and Pilanci, M. (2020). Training convolutional relu neural networks in polynomial time:
Exact convex optimization formulations. arXiv: 2006.14798.

Ergen, T. and Pilanci, M. (2021). Global optimality beyond two layers: Training deep relu networks
via convex programs. In International Conference on Machine Learning (ICML), pages 2993–3003.
PMLR.

Farrand, T., Mireshghallah, F., Singh, S., and Trask, A. (2020). Neither private nor fair: Impact of
data imbalance on utility and fairness in differential privacy. In Proceedings of the 2020 workshop
on privacy-preserving machine learning in practice.

Feldman, V., McMillan, A., and Talwar, K. (2021). Hiding among the clones: A simple and nearly
optimal analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science. IEEE.

Feldman, V., McMillan, A., and Talwar, K. (2023). Stronger privacy amplification by shuffling
for rényi and approximate differential privacy. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 4966–4981. SIAM.

Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. (2018). Privacy amplification by iteration. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 521–532.
IEEE.

Feldman, V. and Shenfeld, M. (2025). Privacy amplification by random allocation. arXiv: 2502.08202.

Gopi, S., Lee, Y. T., and Wutschitz, L. (2021). Numerical composition of differential privacy. In
Advances in Neural Information Processing Systems (NeurIPS).

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta, A., and Xu, Z. (2021). Practical and
private (deep) learning without sampling or shuffling. In International Conference on Machine
Learning (ICML). PMLR.

Kim, S. and Pilanci, M. (2024). Convex relaxations of relu neural networks approximate global
optima in polynomial time. In International Conference on Machine Learning (ICML).

Koskela, A., Jälkö, J., and Honkela, A. (2020). Computing tight differential privacy guarantees
using FFT. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages
2560–2569. PMLR.

Koskela, A., Jälkö, J., Prediger, L., and Honkela, A. (2021). Tight differential privacy for discrete-
valued mechanisms and for the subsampled gaussian mechanism using FFT. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 3358–3366. PMLR.

Koskela, A., Redberg, R. E., and Wang, Y.-X. (2024). Privacy profiles for private selection. In
International Conference on Machine Learning (ICML).

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
Dataset, cs.toronto.edu/ kriz/learning-features-2009-TR.pdf.

Lebeda, C. J., Regehr, M., Kamath, G., and Steinke, T. (2024). Avoiding pitfalls for privacy accounting
of subsampled mechanisms under composition. arXiv: 2405.20769.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Liu, J. and Talwar, K. (2019). Private selection from private candidates. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 298–309.

Liu, X., Jain, P., Kong, W., Oh, S., and Suggala, A. (2023). Label robust and differentially private
linear regression: Computational and statistical efficiency. Advances in Neural Information
Processing Systems (NeurIPS), 36.

12



Lowy, A., Ullman, J., and Wright, S. (2024). How to make the gradients small privately: Improved
rates for differentially private non-convex optimization. In International Conference on Machine
Learning (ICML).

Mishkin, A., Sahiner, A., and Pilanci, M. (2022). Fast convex optimization for two-layer relu
networks: Equivalent model classes and cone decompositions. In International Conference on
Machine Learning (ICML), pages 15770–15816. PMLR.

Papernot, N. and Steinke, T. (2022). Hyperparameter tuning with renyi differential privacy. In
International Conference on Learning Representations (ICLR).

Papernot, N., Thakurta, A., Song, S., Chien, S., and Erlingsson, Ú. (2021). Tempered sigmoid
activations for deep learning with differential privacy. In Association for the Advancement of
Artificial Intelligence (AAAI), volume 35, pages 9312–9321.

Pilanci, M. and Ergen, T. (2020). Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In International Conference on Machine
Learning (ICML), pages 7695–7705. PMLR.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems (NeurIPS).

Redberg, R., Koskela, A., and Wang, Y.-X. (2024). Improving the privacy and practicality of objective
perturbation for differentially private linear learners. Advances in Neural Information Processing
Systems (NeurIPS), 36.

Sommer, D. M., Meiser, S., and Mohammadi, E. (2019). Privacy loss classes: The central limit
theorem in differential privacy. Proceedings on Privacy Enhancing Technologies, 2019(2):245–269.

Song, S., Steinke, T., Thakkar, O., and Thakurta, A. (2021). Evading the curse of dimensionality in
unconstrained private GLMs. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 2638–2646. PMLR.

Sordello, M., Bu, Z., and Dong, J. (2021). Privacy amplification via iteration for shuffled and
online PNSGD. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 796–813. Springer.

Talwar, K., Thakurta, A., and Zhang, L. (2014). Private empirical risk minimization beyond the worst
case: The effect of the constraint set geometry. arXiv: 1411.5417.

Varshney, P., Thakurta, A., and Jain, P. (2022). (nearly) optimal private linear regression for sub-
gaussian data via adaptive clipping. In Conference on Learning Theory, pages 1126–1166. PMLR.

Wang, Y. (2018). Revisiting differentially private linear regression: optimal and adaptive prediction
& estimation in unbounded domain. In Conference on Uncertainty in Artificial Intelligence (UAI).

Wang, Y., Lacotte, J., and Pilanci, M. (2022). The hidden convex optimization landscape of regularized
two-layer relu networks: an exact characterization of optimal solutions. In International Conference
on Learning Representations (ICLR).

Wu, X., Li, F., Kumar, A., Chaudhuri, K., Jha, S., and Naughton, J. F. (2017). Bolt-on differential
privacy for scalable stochastic gradient descent-based analytics. In Proceedings of the International
Conference on Management of Data, SIGMOD. ACM.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv: 1708.07747.

Ye, J. and Shokri, R. (2022). Differentially private learning needs hidden state (or much faster
convergence). Advances in Neural Information Processing Systems (NeurIPS), 35:703–715.

Zhu, Y., Dong, J., and Wang, Y.-X. (2022). Optimal accounting of differential privacy via
characteristic function. International Conference on Artificial Intelligence and Statistics (AISTATS).

13



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract are about a theoretically viable approach
to train a 2-layer ReLU network with DP guarantees, where the DP guarantees are obtained
by using the NoisyCGD analysis. This is established by showing the conditions for
Theorem 2.7. The second claim is that the empirical results for the proposed method
are on par with the state-of-the-art methods. This is supported by the experimental results in
Section 5, c.f., Table 2. Future steps for hidden-state analysis are delineated in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the method’s limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides the full set of assumptions for Theorem 2.7. Section 4
mentions the assumptions for the utility bounds in Theorem 4.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The submission includes Python code to reproduce the paper’s results.
Textually, the appendix includes a section on the hyperparameter tuning, Section G.1,
and a section on the experimental details of the baselines, Section H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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A Appendix

In the appendix, we provide detailed proofs and additional results that complement the main text.
Section B contains the impact statement, and Section C clarifies the connection between the Strongly
Convex Approximation and Generalized Linear Models. In Section D, we prove that the gradients
of our loss function are Lipschitz continuous. In Section E, we provide a detailed convergence
analysis to minimize the loss function within the random data model, and Section E.1 presents the
reference algorithm for the utility bounds. Appendix F discusses the approximability of the stochastic
approximation for the dual problem in the non-private case. Finally, Appendices G and H contain
details on the hyperparameter tuning and experimental setting, respectively.

B Broader impact statement

Our work advances the differentially private machine learning field by providing improved privacy-
utility trade-offs and theoretical understanding. This has positive societal implications as it enables
training machine learning models while better protecting individual privacy. Differential privacy is
increasingly important as machine learning systems process more sensitive personal data in healthcare,
finance, and other domains.

However, it is important to acknowledge potential limitations and risks. Prior research has shown that
differentially private training methods can disproportionately impact model performance on minority
classes and underrepresented groups in the data (Farrand et al., 2020; Bagdasaryan et al., 2019). One
hypothesis is that the additive noise tends to have a larger relative effect on patterns that appear less
frequently in the training set. While our theoretical advances do not directly address this issue, we
believe future work in DP must investigate techniques for ensuring fairness and equal utility across
different subgroups.

Additionally, we note that improved privacy-utility trade-offs, while generally beneficial, could
potentially promote more widespread adoption of machine learning in sensitive domains. The
broader deployment should be approached carefully considering the societal implications and ethical
guidelines for each application setting.

C Formulating the Strongly Convex Approximation as a GLM

We first show that the strongly convex loss function given in Eq. (3.6) corresponds to a loss function
of a convex generalized linear model. The loss function in Eq. (3.6) is of the form

L
(
v,X, y

)
=

1

n

∑n

j=1
ℓj(v, xj , yj),

where

ℓj(v, xj , yj) =
1

2

∥∥∥∥∥
P∑
i=1

(Λi)jjx
⊤
j vi − yj

∥∥∥∥∥
2

2

+
λ

2

P∑
i=1

∥vi∥22 , (Λi)jj = 1(x⊤
j ui ≥ 0).

The ui’s are the randomly sampled vectors that determine the boolean matrices Λi’s (and the functions
ℓj), and we denote the vector

v =

v1
...
vP

 ∈ RP ·d.

This is actually a generalized linear model: if we denote

x̃j =

(Λ1)jjxj

...
(ΛP )jjxj

 ,

we see that
ℓj(v, xj , yj) =

1

2

∥∥x̃⊤
j v − yj

∥∥2
2
+

λ

2
∥v∥22 ,
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which shows that we are actually minimizing a loss function of a GLM when we are minimizing the
loss L

(
v,X, y

)
w.r.t. v. By the results of (Song et al., 2021), we know that the clipped gradients

are gradients of an auxiliary convex loss, which allows using the privacy amplification by iteration
analysis by Bok et al. (2024).

Moreover, the convexity properties of the GLM loss function are preserved under gradient clipping.
This is shown in Appendix E.2 of (Redberg et al., 2024). In summary, we can use the convexity
properties shown in our Section 3.4 for the privacy analysis.

D Proof of Lemma 3.1

Lemma D.1. The gradients of the loss function

ℓ(v, xj , yj) =
1

2

∥∥∥∥∑P

i=1
(Λi)jjx

⊤
j vi − yj

∥∥∥∥2
2

+
λ

2

∑P

i=1
∥vi∥22

are β-Lipschitz continuous for β = ∥xj∥22 + λ.

Proof. For the quadratic function

h(v) =
1

2

∥∥∥∥∑P

i=1
(Λi)jjx

⊤
j vi − yj

∥∥∥∥2
2

the Hessian matrix is of the diagonal block form

∇2h = diag (A1, . . . , AP ) ,

where Ai = xj(Λi)jjx
⊤
j = xj(Λi)jjx

⊤
j . Since for all i ∈ [P ], xj(Λi)jjx

⊤
j ≼ xjx

⊤
j , ∇2h ≼ xjx

⊤
j

and furthermore for the spectral norm of∇2h we have that
∥∥∇2h

∥∥
2
≤

∥∥xjx
⊤
j

∥∥
2
= ∥xj∥22.

E Utility Bound within the Random Data Model

E.1 Reference Algorithm for the Utility Bounds

We consider the following form of DP gradient descent (DP-GD) for the theoretical utility analysis.

Algorithm 1 Differentially Private Gradient Descent (Repeated from Song et al., 2021)

1: Input: dataset D = {zi}ni=1, loss function ℓ : Rp × X → R, gradient ℓ2-norm bound L,
constraint set C ⊆ Rp, number of iterations T , noise variance σ2, learning rate η.

2: θ0 ← 0.
3: for t = 0, . . . , T − 1 do

4: gpriv
t ← 1

n

n∑
i=1

∂θℓ(θt, zi) + bt, where bt ∼ N (0, σ2Id).

5: θt+1 ← ΠC

(
θt − η · gpriv

t

)
, where ΠC(v) = argminθ∈C ∥θ − v∥2 .

6: end for

7: return θpriv = 1
T

T∑
t=1

θt.

We have the following classical result for Alg. 1.
Theorem E.1 (Bassily et al. 2014; Talwar et al. 2014). If the constraining set C is convex, the data
sample-wise loss function ℓ(θ, z) is a convex function of the parameters θ ∈ Rp, ∥∇θℓ(θ, z)∥2 ≤ L
for all θ ∈ C and z ∈ D = (z1, . . . , zn), then for the objective function L(θ,D) = 1

n

∑n
i=1 ℓ(θ, zi)

under appropriate choices of the learning rate and the number of iterations in the gradient descent
algorithm (Alg. 1), we have with probability at least 1− β,

L(θpriv, D)− L(θ∗, D) ≤ L ∥θ0 − θ∗∥2
√

p log(1/δ) log(1/β)

nε
.
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E.2 Utility Analysis

We give a convergence analysis for the minimization of the loss function (3.5) with λ = 0, i.e., our
minimization problem is

min
v

h(v) =
1

2

∥∥∥∥∥
P∑
i=1

ΛiXvi − y

∥∥∥∥∥
2

2

, (E.1)

where the diagonal boolean matrices Λ1, . . . ,ΛP ∈ Rn×n are constructed by taking first P
i.i.d. samples u1, . . . , uP , ui ∼ N (0, Id), and then setting the diagonals Λi’s: (Λi)jj =
max

(
0, sign(x⊤

j ui)
)
.

Kim and Pilanci (2024) have recently given several results for the minimization problem (3.4). The
analysis uses the condition number κ defined as

κ =
λmax(XX⊤)

λmin(Σ)
,

where
Σ = Eg∼N (0,Id)[diag[1(Xg ≥ 0)]XX⊤diag[1(Xg ≥ 0)]]

and λmax and λmin denote the largest and smallest eigenvalues of a matrix, respectively. Kim and
Pilanci (2024) provide the following lower bound on the number of random hyperplanes required, in
terms of the condition number κ, for the problem (E.1) to attain a zero minimum.

Lemma E.2 (Kim and Pilanci 2024, Proposition 2). Suppose we sample P ≥ 2κ log n
δ hyperplane

arrangement patterns and assume M is invertible. Then, with probability at least 1 − δ, for any
y ∈ Rn, there exist v1, . . . , vP ∈ Rd such that

P∑
i=1

ΛiXvi = y. (E.2)

Furthermore, if we assume random data, i.e., Xij ∼ N (0, 1) i.i.d., then for sufficiently large d we
have the following bound for κ.

Lemma E.3 (Kim and Pilanci 2024, Corollary 3). Let the ratio c = n
d ≥ 1 be fixed. For any γ > 0,

there exists d1 such that for all d ≥ d1 with probability at least 1− γ − 1
(2n)8 ,

κ ≤ 10
√
2
(√

c+ 1
)2

.

Combining Lemmas E.2 and E.2 gives us a high-probability lower bound for the number of
hyperplanes in random data model, for the problem (E.1) to attain a zero minimum. Assuming
the gradients stay bounded by a constant L, by applying the DP-ERM result of Thm. E.1 gives us
the main result (Theorem 4.1 in the main paper):

Theorem E.4. Consider applying the private gradient descent (Alg. 1) to the strongly convex loss (3.6)
and assume that the gradients are bounded by a constant L > 0. Let the ratio c = n

d ≥ 1 be fixed.
For any γ > 0, there exists d1 such that for all d ≥ d1, with probability at least 1− γ − 1

(2n)8 (with

Õ omitting the logarithmic factors)

L(θpriv, D) ≤ Õ

(
1√
nε

)
.

Proof. From Lemmas E.2 and E.3 it follows that by taking d and n large enough (such that n ≥ d),
we have that with P = O(

n log n
γ

d ) hyperplane arrangements there exists u ∈ Rd·P such that Eq. (E.2)
holds with probability at least 1 − γ − 1

(2n)8 . Applying Thm. E.1 with the ambient dimension
p = d · P = O(n log n

γ ) then shows the claim.
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F Illustrations of the Stochastic Approximation

F.1 Illustration with SGD Applied to MNIST

Figure 4 illustrates the approximability of the stochastic approximation for the dual problem in the
non-private case, when the number of random hyperplanes P is varied, for the MNIST classification
problem described in Section 5. We apply SGD with batch size 1000 to both the stochastic dual
problem and a fully connected ReLU network with hidden-layer width 200. For each model,
we optimize the learning rate using the grid {10−i/2}, i ∈ Z. This comparison shows that the
approximability of the stochastic dual problem increases with increasing P .
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Figure 4: Test accuracies vs. number of epochs, when all models are trained using SGD with batch
size 1000. The number of random hyperplanes P varies for the stochastic dual problem. The ReLU
network is a 2-layer fully connected ReLU network with a hidden-layer width of 200. Cross-entropy
loss is used for all models.

F.2 Illustration with DP-SGD Applied to MNIST

Figure 5 illustrates the approximability of the stochastic approximation for the dual problem in the
private case, when the number of random hyperplanes P is varied, for the MNIST classification
problem described in Section 5. We apply DP-SGD with batch size 1000 to both the stochastic dual
problem and to a fully connected ReLU network with hidden-layer width 200, and for each model,
optimize the learning rate using the grid {10−i/2}, i ∈ Z. Based on these comparisons, we conclude
that P = 128 is not far from optimum, as increasing the dimension means that the adverse effect of
the DP noise becomes larger.
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Figure 5: Test accuracies vs. number of epochs, when all models are trained using DP-SGD with
batch size 1000, for two different noise levels σ. The number of random hyperplanes P varies for
the stochastic dual problem. The ReLU network is a 2-layer fully connected ReLU network with
hidden-layer width 200.

G DP Hyperparameter Tuning for DP-SGD and NoisyCGD

When comparing DP optimization methods empirically, it is also important to consider the effect of
the hyperparameter tuning on the privacy costs. Most relevant to our work are the private selection
methods given by Liu and Talwar (2019) and Papernot and Steinke (2022) that are applicable to
private hyperparameter tuning and the privacy profile-based analysis of those methods by Koskela
et al. (2024). These results apply to tuning algorithms that return the best model of K randomly
chosen alternatives, where K is also a random variable. We consider the case where K is Poisson
distributed. However, other alternatives exist that allow adjusting the balance between compute
cost of training, privacy and accuracy (Papernot and Steinke, 2022; Koskela et al., 2024). The DP
bounds for Poisson distributed K can be described as follows. Let Q(y) be the density function of the
quality score of the base mechanism (y denoting the score) and A(y) be the density function of the
tuning algorithm that outputs the best model of the K alternatives. Let A and A′ denote the output
distributions of the tuning algorithm evaluated on neighboring datasets D and D′, respectively. Then,
the hockey-stick divergence between A and A′ can be bounded using the following result.

Theorem G.1 (Koskela et al. 2024). Let K ∼ Poisson(m) for some m ∈ N, and let δ(ε1), ε1 ∈ R,
define the privacy profile of the base mechanism Q. Then, for all ε > 0 and for all ε1 ≥ 0,

Heε(A||A′) ≤ m · δ(ε̂), (G.1)

where ε̂ = ε−m · (eε1 − 1)−m · δ(ε1).

Theorem G.1 says that the hyperparameter tuning algorithm is
(
ε̂,m · δ(ε̂)

)
-DP in case the base

mechanism is (ε1, δ(ε1)-DP. If we can evaluate the privacy profile for different values of ε, we
can also optimize the upper bound (G.1). When comparing DP-SGD and NoisyCGD, we use the
fact that DP-SGD privacy profiles are approximately those of the Gaussian mechanism for large
compositions (Sommer et al., 2019) as follows. Suppose DP-SGD is (ε∗, δ∗)-DP for some values
of the batch size b noise scale σ and number of iterations T . Then, we fix the value of the constant
c = η · λ for NoisyCGD such that it is also (ε∗, δ∗)-DP for the same hyperparameter values b, σ
and T , giving some GDP parameter µ∗. Along the GDP privacy profile determined by µ∗, we find
(ε1, δ(ε1)) that optimizes the bound of Eq. (G.1), and then evaluate the DP-SGD-δ using that same
value ε1, giving some value δ̂(ε1). Taking the maximum of δ(ε1) and δ̂(ε1) for the evaluation of
ε̂ in the bound of Eq. (G.1) will then give a privacy profile that bounds the DP-guarantees of the
hyperparameter tuning of both DP-SGD and NoisyCGD.

Overall, in case the batch size, number of epochs and σ are fixed, in addition to the learning rate η,
we have in all alternatives only one hyperparameter to tune: the hidden-layer width W for the ReLU
networks and the number of hyperplanes P for the convex models.
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Table 2: Model accuracies vs. ε-values for the DP hyperparameter tuning algorithm. The number of
candidate models K is Poisson distributed with mean m = 20. The iterative methods generally have
comparable accuracy and score better than SSP – similar to the conclusions from Table 1.

MNIST CIFAR-10
ε = 2.88 ε = 8.91 ε = 2.88 ε = 8.91

Sufficient Statistics Perturbation (Convex Approx.) 62.8±.4 71.9±.1 21.7±1.0 24.5±.7

Sufficient Statistics Perturbation (Random ReLU) 61.7±.4 68.3±.1 23.2±.5 28.5±.4

Sufficient Statistics Perturbation (RFF) 73.5±.5 80.1±.3 25.6±.3 31.1±.1

DP-SGD + Convex Approximation 92.8±.3 94.8±.2 41.6±.2 45.6±.3

DP-SGD + ReLU 91.6±.3 94.1±.2 42.5±.2 47.2±.2

NoisyCGD + Convex Approximation 92.4±.3 94.3±.2 41.1±.2 45.6±.3

G.1 Hyperparameter Grids Used for the Experiments

The hyperparameter grids for the number of random hyperplanes P for the convex model and the
hidden width W for the ReLU network are chosen based on the GPU memory of the available
machines.

The learning rate η is tuned in all alternatives using the grid

{10−3.0, 10−2.5, 10−2.0, 10−1.5, 10−1.0, 10−0.5}. (G.2)

For MNIST and FashionMNIST, we tune the number of random hyperplanes P over

{32, 64}
and for CIFAR10 over

{16, 32, 64}.
For MNIST and FashionMNIST, we tune the hidden width W of the ReLU network over

{200, 500, 800}
and for CIFAR10 over

{200, 400}.

G.2 Results on DP Hyperparameter Tuning

Table 2 shows the accuracies of the best models obtained using the DP hyperparameter tuning
algorithm. With the noise scale values σ = 5.0 and σ = 15.0, the DP-SGD trained models are
(1.33, 10−5)-DP and (4.76, 10−5)-DP, respectively. To have similar privacy guarantees for the base
models trained using NoisyCGD, we adjust the regularization constant λ accordingly (as depicted in
Section G), which leads to equal final (ε, δ)-DP guarantees for the hyperparameter tuning algorithms.
We see from Tables 2 that the convex models are on par in accuracy with the ReLU network. Notice
also from the results of Section 5 that the learning rate tuned logistic regression cannot reach similar
accuracies as the NoisyCGD trained convex model.

The results of Table 2 were the most computationally intensive part of our experiments and were run
on eight NVIDIA GeForce RTX 3090 GPUs for approximately 3 days each.

G.3 Batch Size Ablation

To justify the choice of batch size 1000 for all experiments of Section 5, we consider an ablation
experiment for MNIST where we study the effect of the batch size.

Figures 6 and 7 show the effect of the batch size on the final test accuracy for three alternatives, when
we train all models for 400 epochs. Each point is an average of three runs, and the learning rate for
each model is optimized using the grid (G.2).
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Figure 6: Ablation of batch size for MNIST: test accuracy vs. batch size with δ = 10−5 and 400
training epochs. Left: DP-SGD on the convexified model. Right: NoisyCGD on the convexified
model.
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Figure 7: MNIST Comparisons: Test accuracies vs. batch size for DP-SGD applied on a ReLU
network with hidden layer width 500, when δ = 10−5 and each model is trained for 400 epochs.

H Experimental Details for Baselines

H.1 Sufficient Statistics Perturbation (SSP)

We compare the proposed method with private linear regression using Sufficient Statistics Perturbation
(SSP) from Amin et al. (2023). SSP is a one-step method that computes and perturbs the sufficient
statistics without requiring iterations. This has the advantage that computation only scales linearly
with the number of samples and cubically with the number of features, i.e., for calculating the inverse
of the sample covariance matrix. The method clips input features adaptively and adds noise to the
sufficient statistics as part of achieving differential privacy. Following (Wang, 2018), we estimate
the clipping norm directly from data rather than setting it ahead of time. This simplification yields
optimistic results compared to pre-determined clipping – in theory, one should set the clipping norm
ahead of time. However, it allows direct evaluation of the baseline experiment across datasets without
introducing another hyperparameter. This does not affect our conclusions, since no result from SSP
outperforms the iterative methods in our experiments.

All the datasets are multi-class classification problems, and we run multiple one-versus-all linear
regressions. For example, for MNIST with 10 classes, we run the SSP method ten times – one for
each class, by predicting 1 for the specific class and 0 for all other classes. The number of features
is the same as the number of features in the other comparing method. This means that for MNIST
and FashionMNIST, there are either 100 random hyperplanes for the ReLU methods, or 100 random
Fourier features. For CIFAR10, we use only 64 random features for comparability with the iterative
methods which have computational constraints. The SSP has one hyperparameter (parameter ρ in
Amin et al., 2023) and we set it to the recommended default value of 0.05.

27



H.2 Logistic Regression with DP-SGD

Previous work shows that DP-SGD applied to logistic regression combined with composition
analysis leads to similar privacy-utility trade-offs as Noisy cyclic GD comgined with the hidden-state
analysis (Bok et al., 2024). To this end, we compare against DP-SGD applied to logistic regression in
our experiments, and provide the details of the experiment in this section.

The logistic regression model uses softmax classification for multi-class prediction, defined as

f(x)j =
ew

⊤
j x+bj∑K

k=1 e
w⊤

k x+bk
, (H.1)

where f(x)j is the predicted probability for class j, wj ∈ Rd is the weight vector for class j, bj ∈ R
is the bias term for class j, and K is the number of classes. The model parameters are trained jointly
using the cross-entropy loss

ℓ(W, b, x, y) = −
K∑
j=1

yj log(f(x)j), (H.2)

where y ∈ {0, 1}K is the one-hot encoded label vector, W = [w1, . . . , wK ]⊤ ∈ RK×d is the weight
matrix containing all class weight vectors, and b = [b1, . . . , bK ]⊤ ∈ RK contains all bias terms.

I Additional Experimental Results on FashionMNIST

Figure 8 shows the accuracies of the best models along the training iteration of 400 epochs for the
FashionMNIST experiment.

For comparison, we train a linear regression model with SSP. At ε = 4.76, this results in 67.9±0.4 and
73.2±0.3% accuracy for Random ReLU and RFF, respectively. At ε = 1.33, the baseline accuracies
are 59.9±1.0 and 66.4±1.1%, respectively.
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Figure 8: FashionMNIST: Test accuracies vs. the spent privacy budget ε, when each model is trained
for 400 epochs. The model is a 2-layer ReLU network. Similar to Figures 2 and 3, NoisyCGD and
DP-SGD achieve comparable accuracies and score a lot higher than baseline regression models.
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J Further Motivation for NoisyCGD Analysis: Evaluation of Shuffling
Amplification Bounds

When using disjoint batches of data, currently the best option for obtaining rigorous guarantees is to
use shuffling amplification (Feldman et al., 2021). However, as shown by Chua et al. (2024a,b), the
data shuffling combined with disjoint batches leads to an inferior privacy-utility trade-off compared to
random mini-batch sampling. And, as we experimentally show that the method we propose (strongly
convex approximation of ReLU problem + NoisyCGD) has a similar privacy-utility trade-off as
random mini-batch sampling applied to 2-layer ReLU networks, we believe that our approach would
be superior compared to the shuffling approach.

To illustrate the (ε, δ)-DP shuffling amplification bounds of (Thm. 3.8 Feldman et al., 2021) for
DP-SGD with disjoint mini-bathces, we consider a setting in one of our experiments where we use
noise parameter σ = 5.0. Similarly to the experiments of Chua et al. (2024b), we use the numerical
method presented in Feldman et al. (2021) to accurately compute the shuffling bounds. Further, we
combine the bounds off (Thm. 3.8 Feldman et al., 2021) with the improved bounds of (Thm. 3.1
Feldman et al., 2023)

In our experiments of Section 5, we use batch size of 1000 translating to 50 or 60 disjoint batches per
epoch. For computing the shuffling bounds using (Thm. 3.8 Feldman et al., 2021), one can see that
this is too small number of batches for the conditions of the analysis to hold. We also see that the
shuffling privacy guarantee clearly improves as the number of batches per epoch grows (see, e.g.,
the comparisons by Chua et al., 2024b). To obtain a lower bound for the (ε, δ)-DP upper bound, we
consider 1000 batches per epoch instead.

The comparison to the bounds of the Gaussian mechanism (i.e., without any amplification, using
parallel composition) is depicted in Fig. 9 which shows that the privacy guarantees of shuffling
are worse than the privacy bounds of the Gaussian mechanism, which indicates that the privacy-
utility trade-offs would be inferior when using data shuffling and shuffling amplification for the DP
guarantees when using state-of-art amplification bounds for shuffling.
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Figure 9: (ε, δ)-DP guarantees for a single epoch of training when using 1000 disjoint batches and
noise parameter σ = 5.0 obtained using the shuffling amplification of (Thm 3.8, Feldman et al.,
2021). In experiments, we use 50 or 60 batches per epoch, in which case the DP guarantees of the
shuffling would be even worse.
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K Summary of Notation

• d: feature dimensionality, i.e., each data feature x ∈ Rd;
• n: number of training samples (introduced in Section 2);
• X ∈ Rn×d: matrix of feature vectors, i.e., X⊤ = [x1 . . . xn];
• y ∈ Rn: vector of labels;
• ℓ(v, xj , yj): sample-wise loss;
• L(v,X, y): loss function for parameter vector v, data matrix X containing examples xj ,

and label vector y with entries yj ;

• δ: parameter in the definition of DP, set to 10−5 in all experiments;
• ε: parameter in the definition of DP;
• D ∼ D′: two adjacent datasets (datasets are adjacent if they differ in one sample);
• µ: privacy parameter in Gaussian DP;
• E: number of training epochs;
• Bj : mini-batch at iteration j;
• β: smoothness parameter (Lemma 3.1); a function f is β-smooth if ∇f is β-Lipschitz;
• C > 0: clipping constant; clip(·, C) denotes the clipping function that limits gradient

2-norms to at most C;
• η: learning rate;
• Hα(P∥Q): hockey-stick divergence between distributions P and Q;
• K: number of classes in the multi-class model;
• κ: condition number used in the convex approximation analysis;
• f : Rd → R: one-layer MLP mapping d-dimensional input features to a scalar prediction;
• λ: parameter of strong convexity; a function f(·) is λ-strongly convex if g(x) = f(x) −

λ
2 ∥x∥22 is convex; with overloaded notation, λmax and λmin denote the largest and smallest
eigenvalues of a matrix;

• Λi: diagonal Boolean matrix representing the ith ReLU activation pattern;
• L: gradient sensitivity (Definition 2.6);
• ∥ · ∥: Euclidean norm;
• 1(ζ ≥ 0): Iverson bracket for (ζ ≥ 0): equal to 1 if ζ ≥ 0 and 0 otherwise; applied

elementwise when ζ is a vector;
• M = |DX |: number of possible ReLU activation patterns in a two-layer ReLU network, i.e.,

the number of regions in a partition of Rd by hyperplanes through the origin perpendicular
to the rows of X ∈ Rn×d;

• Õ(·): Notation for Big-O that omits logarithmic factors;
• P : number of randomly sampled normal vectors (hyperplanes) in the convex approximation

of the ReLU network, or number of Fourier components in the RFF model;
• ΠC(v) = argminθ∈C ∥θ − v∥2: projection of vector v onto the set C;
• r = rank(X): rank of the matrix X;
• v: vector of trainable parameters in the convex approximation;
• vi, wi ∈ Rd: learnable d-dimensional vector lying in cone Vi;
• Zj ∼ N (0, σ2Id): Gaussian noise vector.
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