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Abstract

Machine learning models provide alternatives for efficiently recognizing complex
patterns from data, but the main concern in applying them to modeling physical
systems stems from their physics-agnostic design, leading to learning methods
that lack interpretability, robustness, and data efficiency. This paper mitigates this
concern by incorporating the Helmholtz-Hodge decomposition into a Gaussian
process model, leading to a versatile framework that simultaneously learns the
curl-free and divergence-free components of a dynamical system. Learning a
predictive model in this form facilitates the exploitation of symmetry priors. In
addition to improving predictive power, these priors make the model indentifiable,
thus the identified features can be linked to comprehensible scientific properties of
the system. We show that compared to baseline models, our model achieves better
predictive performance on several benchmark dynamical systems while allowing
physically meaningful decomposition of the systems from noisy and sparse data.

1 Introduction

A dynamical system describes how the state of a system evolves over time [64]. Data-driven modeling
of dynamical systems has become a fundamental task in many modern science and engineering
applications, such as physical emulation [21] and robotics control [13]. Mathematically, a dynamical
system is often a set of first-order ordinary differential equations (ODEs) or, equivalently, a smooth
vector field on a manifold [28]. Given the functional form of ODEs, classical data-driven methods
typically involve optimizing their parameters [52]. However, for many complex systems it is
practically difficult to determine the form of the ODEs governing their dynamics.

Recent advances in machine learning (ML) focus on the use of neural networks [11] and non-
parametric Bayesian models [63, 27, 26] for the black-box approximation of vector fields. Despite
the rich expressive power, the physics-agnostic design of these models hinders their performance
when applied to physical systems. To address this issue, a popular approach is to develop ML models
that incorporate strong physical priors as inductive biases. Such prior knowledge commonly stems
from basic physical principles related to certain differential invariants of vector fields. For example,
in scenarios of learning Hamiltonian systems [23, 67, 54] and incompressible fluid dynamics [73, 33],
ML models are constructed to learn divergence-free (div-free) vector fields, as a consequence of
conservation laws of energy or mass. By constraining the solution space, the powerful physical
principles effectively improve the extrapolation performance of ML models and enhance their
interpretability. However, enforcing the model’s behavior to adhere to centain fundamental physical
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principles also restricts the applicability of the model. For example, a div-free vector field fails to
describe a dynamical system with dissipation, but real-world dynamical systems always suffer from
non-negligible dissipation.

To develop a predictive model covering more dynamical systems, we explore supplementing the div-
free vector field with a curl-free vector field. This is inspired by the Helmholtz-Hodge decomposition
(HHD) [3, 44, 8], which states that any sufficiently smooth vector field can be expressed as the sum of
a curl-free vector field and a div-free vector field. HHD is widely used in the study of Navier-Stokes
equations [45, 20, 9], but in this work we explore its connections with more general dynamical
systems. For example, as shown in Fig. 1, HHD can be used to characterize the dynamics of a
dissipative Hamiltonian system, where the div-free component represents its conservative dynamics
and the curl-free component describes the friction-induced dissipation. In addition to dissipative
Hamiltonian systems, HHD is also widely used to study chaotic systems and ocean dynamics. The
connection between HHD and these dynamical systems is described in more detail in Appendix A.

1 0 1
q

1.5
1.0
0.5
0.0
0.5
1.0
1.5

p

(a) dynamics

=
1 0 1

q
1.5
1.0
0.5
0.0
0.5
1.0
1.5

p

(b) div-free part

+
1 0 1

q
1.5
1.0
0.5
0.0
0.5
1.0
1.5

p

(c) curl-free part

Figure 1: The vector field in phase space of a mass-
spring system and its HHD.

In this work, we construct Gaussian pro-
cess (GP) priors for div-free and curl-free
dynamics separately, resulting in an addi-
tive GP model in the form of HHD for
learning vector fields of dynamical systems.
Our resulting HHD-GP allows one to lever-
age more prior knowledge than modeling
the system as a whole. In particular, we in-
vestigate its potential in exploiting priors of
symmetries, motivated by the observation
that the div-free and curl-free components
of a dynamical system usually exhibit more
symmetry properties than the system itself.
For example, the damped mass-spring system in Fig. 1(a) exhibits odd symmetry, but its div-free
(Fig. 1(b)) and curl-free (Fig. 1(c)) components additionally present rotation and translation symme-
try, respectively. Therefore, we further build symmetry-preserving div-free GPs and curl-free GPs
by exploiting closure of GPs under linear transformation. The symmetry prior not only improves
the predictive performance of HHD-GP, but also makes it identifiable, thus identified div-free and
curl-free features can be physically-meaningful. In particular, the learned div-free features are closely
related to the energy of dynamical systems.

The main contributions of this work are summarized as:

• We introduce a GP prior (called HHD-GP) for learning the Helmholtz-Hodge decomposition
of a general dynamical system.

• We construct a symmetry-preserving extension of the HHD-GP that can learn physically
meaningful representations of dynamical systems.

• Experiments on several benchmark systems show that our model can both accurately predict
their dynamics and HHDs from sparse, noisy observations.

2 Related work

Learning with div/curl-free constraints Div-free vector fields are a focal point of mathematical
physics and have been well exploited by machine learning models to learn system dynamics, with
the most well-known examples being neural networks (NNs) [23, 67] and GPs [54, 59] for learning
Hamiltonian dynamics. All Hamiltonian vector fields are div-free, but not vice versa. To learn
more general div-free vector fields as solutions of the continuity equation, [57] introduced an NN
architecture to parameterize a universal representation of div-free vector fields. Based on the same
representation, we constructed div-free kernels for GPs from matrix-valued kernels, which is an
extension of the method of constructing div-free kernels from scalar kernels [50, 41, 75]. According
to Maxwell’s equations, div-free kernels were combined with curl-free kernels in [72, 71] to model
magnetic fields. They assumed direct access to noisy observations of the div-free and curl-free
components separately, whereas in this work, our goal is to recover the individual components from
noisy observations of their sum. A similar prediction problem was studied in [6], they combined 2D
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div-free and curl-free GP priors in the form of HHD to reconstruct planar ocean current fields, and
recovered their divergence. Their model has the same formulation as ours when the dimension of
HHD-GP is two, but we further developed a symmetry-preserving extension of HHD-GP to solve
its non-identifiability problem. Another similar work is Dissipative Hamiltonian neural network
(D-HNN) [22], which compensated HNN [23] with a curl-free part to model both conservative
and dissipative dynamics simultaneously, but D-HNN is only applicable to dissipative Hamiltonian
systems due to its construction.

Learning with symmetry Symmetries are another important aspect of priors that can be incorpo-
rated into machine learning models. Motivated by the success of the translation-invariant NNs [38],
network architectures with symmetries to more general transformations have been proposed, such
as steerable CNNs [74, 10] and graph NNs [46, 61] equivariant to Euclidean symmetries. They
achieved great success in improving generalization of the models. With the same motivation, kernel
methods incorporating symmetries have also been developed. To make predictions invariant to
transformations of inputs, [24] constructed kernels using Haar integration. And based on similar
integration technique, [56] developed the Group Integration Matrix Kernel (GIM-kernel) to learn
equivariant functions, which was later used by [58] to learn dynamical systems with symmetries. In
this work, we constructed GP models to impose Euclidean symmetries to div/curl-free vector fields,
which to the best of our knowledge has not been explored by the machine learning community.

3 Background

3.1 HHD and Problem Setup

We consider an autonomous system governed by the following ODEs:

ẋ (t) :=
dx (t)

dt
= f (x (t)) = fcurl (x (t)) + fdiv (x (t)) , (1)

which defines a vector field by assigning a vector f (x) ∈ Rn to every state x ∈ Rn. We assume that
the vector field f ∈ L2 (Rn,Rn) is smooth, and any such vector field can be decomposed into the sum
of a curl-free vector field fcurl : Rn → Rn (∇∧ fcurl = 0,∀x ∈ Rn) and a divergence-free vector
field fdiv : Rn → Rn (∇ · fdiv = 0,∀x ∈ Rn), according to the Helmholtz–Hodge decomposition
(HHD) [44, 8]. In this work, we are interested in learning f , fcurl and fdiv simultaneously from a
collection of noisy observations denoted by D = {(xi,yi)}mi=1, with a noisy observation yi at a state
xi given by

yi = f (xi) + ϵ, ϵ
i.i.d∼ N (0,Ω) , (2)

where an additive noise ϵ ∈ Rn follows a zero-mean Gaussian distribution defined by a covariance
matrix Ω = diag

(
σ2
1 , . . . , σ

2
n

)
∈ Rn×n modeling noise variance in each output dimension.

3.2 Vector-valued GP Model

We are interested in using Gaussian processes (GPs) to infer unknown vector fields. A GP is a
stochastic process commonly used as a distribution for functions, assuming that any finite number of
function values has a joint Gaussian distribution [53]. To learn an unknown vector field f : Rn → Rn,
we assume a vector-valued GP prior as f (x) ∼ GP (0, κ (x,x′)), where the mean of the function
values is set to zero, and the covariance is captured by a matrix-valued kernel κ : Rn ×Rn → Rn×n,
whose (i, j)-th entry expresses the correlation between the i-th dimension of f (x) and the j-th
dimension of f (x′). In the GP framework, the kernel controls the properties of possible functions
under a GP, leading to various efforts of problem-specific design of kernels [76, 16, 18]. And to be a
valid covariance function, the kernel should be symmetric and positive semidefinite [78].

GPs provide a Bayesian non-parametric approach for solving regression tasks. According to the
GP prior, function values at inputs X = [x1, . . . ,xm]

T are jointly distributed as N (f (X) ;0,K),
where K = [κ (xi,xj) ∈ Rn×n]

m

i,j=1 is a block-partitioned covariance matrix. Then the marginal

likelihood of the noisy observations Y = [y1, . . . ,ym]
T given by Eq. 2 can be calculated by

p (Y | X) =

∫
p (Y | X, f) p (f | X) df = N (Y | 0,K∗) , (3)
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where K∗ = K + Σ, Σ = Ω ⊗ Im is a diagonal matrix whose elements are the variance of the
observation noise. Training a GP model refers to maximizing the log of Eq. 3 to optimize the kernel
parameters and the noise variance. Then by conditioning on these observations using Bayes’ rule, the
predictive posterior for a new state x∗ is still Gaussian with its mean µ and variance v given by

µ (x∗) = kTK−1
∗ Y, v (x∗) = κ (x∗,x∗)− kTK−1

∗ k, (4)

where k = [κ (x1,x∗) , . . . , κ (xm,x∗)]
T ∈ Rmn×n. The derived mean function is used for regres-

sion results, and the associated variance quantifies prediction uncertainty. Due to their nonparametric
nature, GPs can self-adapt to the complexity of the target function based on the data provided, without
being restricted to specific parametric forms.

4 HHD-GP Model

We consider the problem of learning a continuous-time dynamical model in the form of HHD (Eq. 1)
with GPs. HHD points out the prevalence of an additive structure in dynamical systems, so the
key idea here is to exploit two GPs to model fcurl and fdiv, respectively, fcurl ∼ GP (0, κcurl),
fdiv ∼ GP (0, κdiv). Then the sum of these two GPs results in a new GP modeling the dynamical
system f , with a new kernel function defined as the sum of the curl-free and divergence-free ones.
And the additive kernel κ = κcurl + κdiv inherits the symmetric and positive-semidefinite properties
of κcurl and κdiv , so the GP predictor (Eq. 4) is valid for the additive GP model. And the additivity
of the kernels implies the additivity of GP means, so the mean function µ in Eq. 4 can be split into a
curl-free part µcurl and a divergence-free part µdiv , and we have

µ = µcurl + µdiv = kT
curlK

−1
∗ Y + kT

divK
−1
∗ Y, (5)

where K∗ = Kcurl +Kdiv + Σ. It can be seen that the effects of fcurl and fdiv can be treated as
observation noises for each other, so their prediction variances at x∗ are obtained by

vcurl (x∗) = κcurl (x∗,x∗)− kT
curlK

−1
∗ kcurl, vdiv (x∗) = κdiv (x∗,x∗)− kT

divK
−1
∗ kdiv. (6)

Consequently, observations of f (x) given by Eq. 2 can be used to make predictions for its hidden
components fcurl and fdiv. So we then construct GPs with realizations in the space of curl-free and
div-free vector fields.

In the following parts, we construct the kernels κcurl and κdiv from the representations of fcurl and
fdiv respectively, exploiting closure of GPs under linear transformation. Let R = R [∂x1

, . . . , ∂xn
]

be the polynomial ring in the partial derivatives, and L ∈ Ra×b be a matrix of differential operators
acting on functions g : Rn → Rb distributed as GP (µ (x) , κ (x,x′)). Then, the transformation of g
under L is again distributed as a GP with

Lg ∼ GP
(
Lµ (x) ,Lxκ (x,x

′)LT
x′ : Rn × Rn → Ra×a

)
, (7)

where Lx and Lx′ denote the operation of L on the first and second argument of κ (x,x′), respec-
tively [29, 1, 36, 7]. To make Lxκ (x,x

′)LT
x′ a valid covariance function, its underlying kernel

κ (x,x′) must be twice differentiable in Rn. See Appendix B for details on linear operations on GPs.

4.1 Curl-free Kernel

The gradient operator (∇ := [∂x1 , . . . , ∂xn ]
T ∈ Rn×1) defines a surjective mapping from the space

of smooth scalar fields to the space of curl-free vector fields [14], so fcurl can be represented by
fcurl = ∇V , where V ∈ C∞ (Rn,R) is called the scalar potential of fcurl. Since the gradient
operation defines a linear transformation, if a GP with a scalar kernel κV is assumed on V , the
distribution of fcurl is again a GP. According to Eq. 7, the curl-free GP over fcurl is given by

fcurl ∼ GP
(
0, κcurl = ∇xκV (x,x′)∇T

x′

)
, (8)

where κcurl : Rn × Rn → Rn×n is a matrix-valued kernel constructed by the Hessian of the scalar
kernel κV , consisting of all second-order partial derivatives in x and x′, with the entry in the i-th row
and j-th column given by

[κcurl (x,x
′)]i,j = Cov

[
∂V (x) /∂xi, ∂V (x′) /∂x′j

]
= ∂2κV (x,x′) /∂xi∂x

′
j .

By this construction, if κV induces a GP with realizations dense inC∞ (Rn,R), the set of realizations
of GP (0, κcurl) is dense in the space of curl-free vector fields, because a surjective mapping maps
dense sets to dense sets.
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4.2 Divergence-free Kernel

A div-free vector field can be constructed from a skew-symmetric matrix field [5, 32, 57]. Specifically,
let A : Rn → Rn×n be a skew-symmetric matrix-valued function, then a div-free vector field fdiv
can be represented by taking row-wise divergence of A, i.e.,

fdiv = [∇ ·A1, . . . ,∇ ·An]
T
, (9)

where Ai : Rn → Rn is the i-th row of A. The skew-symmetric matrix field A of size n× n can be
compactly represented by m = n (n− 1) /22 scalar functions uij ∈ C∞ (Rn,R):

A =


0 u12 . . . u1n

−u12 0 . . . u2n
...

...
. . .

...
−u1n −u2n . . . 0

 =

n−1∑
i=1

n∑
j=i+1

Φijuij , (10)

where Φij ∈ Rn×n is a matrix with its (i, j)-th entry equal to 1, (j, i)-th entry equal to -1, and all
other entries equal to 0. Then, the div-free vector field given by Eq. 9 can be reformulated as a linear
transformation:

fdiv (x) =

n−1∑
i=1

n∑
j=i+1

ψijuij (x) = Ψu (x) , (11)

where ψij = Φij∇ ∈ Rn×1 is a column vector obtained by linearly transforming the gradient
operator. The m column vectors ψij are aggregated in a matrix Ψ ∈ Rn×m, and the m corresponding
scalar functions uij are collected in a vector-valued function u : Rn → Rm. Ψ [·] is a matrix of linear
differential operators, so to use a GP to model fdiv, we can proceed by assuming a GP prior over
u ∼ GP (0, κu : Rn × Rn → Rm×m), then based on the closure of GPs under linear transformation
(Eq. 7), the GP prior over fdiv (Eq. 11) is constructed by

fdiv ∼ GP
(
0,Ψxκu (x,x′)ΨT

x′

)
, (12)

where κu is a scalar-valued kernel for two dimensional systems (n = 2, m = 1), and is a matrix-
valued kernel for n > 2. Notice that this div-free kernel can be treated as a generalization of the
div-free kernel derived from a scalar kernel [50, 41, 75], which can be recovered by setting κu = κ ·I .
Therefore, it is more expressive and flexible. Theoretically, the GP model given by Eq. 12 can be
used to approximate arbitrary div-free vector fields, because the representation given by Eq. 9 is
shown to be maximally expressive (i.e. universal) in [57].

4.3 Identifiability and Constraints

With the curl-free and div-free kernels, our objective is to learn physically interpretable representations
of a dynamical system based on the HHD-GP model. However, the HHD is always not unique due
to the existence of harmonic components fharm (vector fields satisfying both ∇ ∧ fharm = 0 and
∇ · fharm = 0, e.g., constant vector fields). For the HHD of a dynamical system with the true
functional decomposition f∗curl and f∗div ,

f = (f∗curl + fharm) + (f∗div − fharm) (13)

is a valid HHD for arbitrary fharm, which thus makes the HHD-GP model non-identifiable, meaning
that from the same training data, we may learn different decompositions giving the same predictions.
This is not desirable because we expect the learned dynamical model to be interpretable: the curl-free
and div-free components fcurl, fdiv are physically meaningful.

To mitigate the identifiability problem in additive regression models, an effective method is to impose
constraints on their component models [16, 17, 47, 42]. The imposed constraints can affect the
decomposition results of the additive models. Therefore, to ensure that HHD-GP can produce a
scientific decomposition, we desire constraints that respect the inherent characteristics of dynamical
systems. And, as another primary goal, incorporating prior knowledge of a system into a GP model
can also improve its prediction accuracy and learning efficiency. Therefore, in the next section, we
present how to impose symmetry-based constraints on the curl-free and div-free GP models.

2m is the number of entries above the diagonal. Each off-diagonal element of the matrix corresponds to a
scalar function, with elements below the main diagonal as the negatives of those above.
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5 Symmetry Constraints

5.1 Equivariance and Invariance

Symmetry is a fundamental geometric property prevalent in dynamical systems in natural [39], and is
usually described by the concept of equivariance and invariance:

Definition 5.1 (Equivariance and Invariance). Let G be a group acting on Rn through a smooth map
L : G × Rn → Rn. The dynamical system f : Rn → Rn is said to be G-equivariant if

(f ◦ Lg) (x) = JLg
(x) f (x) ,∀x ∈ Rn, g ∈ G, (14)

where Lg (x) := L (g,x), and JLg
denotes the Jacobian matrix of Lg. Then, G is termed the

symmetry group of the dynamical system. In particular, if JLg
is the identity matrix (i.e., f ◦ Lg =

f ,∀g ∈ G), the dynamical system f is said to be G-invariant.

From the equivariance condition (Eq. 14) of the vector field, it follows the system’s trajectory
commutes with the action map. For vector fields on Rn, the symmetry group G is commonly a
subgroup of the Euclidean group E (n), which comprises all intuitive geometric transformations in
Rn (see Appendix C for a brief introduction). The symmetry constraints refer to that we expect the
learned curl-free and div-free vector fields to be G-equivariant. With the representation of their GP
models, we demonstrate that the symmetries can be enforced by designing suitable kernels.

5.2 Symmetry-preserving Curl-free GP

The curl-free GP (Eq. 8) is constructed by transforming another GP over a potential function, implying
that we can impose constraints of symmetry on the curl-free GP by designing a suitable potential GP.
Therefore, we start by exploring how to construct potential functions to obtain curl-free vector fields
with the desired equivariance. As expected, the following theorem holds:

Theorem 5.2. Let G be a Euclidean group or its subgroup, and let V : Rn → R be a G-invariant
scalar function. Then, the curl-free vector field fcurl : Rn → Rn defined by fcurl (x) = ∇V (x) is
G-equivariant.

See Appendix D.1 for the proof. Theorem 5.2 shows that a G-invariant scalar potential V can yield
a G-equivariant gradient field, indicating that if any realization V of GP (0, κV ) is constrained to
be G-invariant, then its pushforward GP over ∇V ∼ GP

(
0,∇xκV ∇T

x′

)
can induce the space of

G-equivariant curl-free vector fields.

It is obvious that a G-invariant scalar potential V can be constructed by integrating some non-invariant
function h : Rn → R over the symmetry group: V =

∫
G (h ◦ Lg) dg, where the measure dg is called

Haar measure, which exists for locally compact topological groups and finite groups. Therefore, by
assuming that h is distributed as h ∼ GP (0, κh), we can construct the GP prior over the G-invariant
scalar potential as V ∼ GP (0, κV ), with its kernel κV given by

κV = Cov

[∫
G
h (Lg (x)) dg,

∫
G
h (Lg (x

′)) dg

]
=

∫
G

∫
G
κh (Lg (x) , Lg′ (x′)) dgdg′. (15)

This kernel is called the Haar-integration kernel [24]. While it provides a general method for
constructing kernels for G-invariant functions, the double integral can be computationally expensive.
If the kernel κh is invariant to any g ∈ G in the sense that κ (x,x′) = κ (Lg (x) , Lg (x

′))3, a
complexity reduction of Eq. 15 by one square-root can be performed by

κV =

∫
G

∫
G
κh
(
x, Lg−1g′

)
dgdg′ = |G|

∫
G
κh (x, Lg) dg, (16)

where |G| =
∫
G dg, and it denotes the cardinality of G when the group is finite.

3For G ⊆ E (n), it holds that ∥Lg (x)− Lg (x
′)∥ = ∥x− x′∥, for all x, x′ ∈ Rn, and g ∈ G. Therefore,

κ (x,x′) = κ (Lg (x) , Lg (x
′)) is satisfied if κ is an isotropic kernel, i.e., κ (x,x′) = κ (∥x− x′∥), common

examples of which are the squared exponential kernel and the Matérn class of kernels (cf. chap.4 in [53]).
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5.3 Symmetry-preserving Divergence-free GP

To incorporate the equivariance condition (Eq. 14) into realizations of the div-free GP (Eq. 12), we
construct the skew-symmetric matrix field A from a vector-valued function. Specifically, given a
smooth vector field v ∈ C∞ (Rn,Rn), A is constructed by A = Jv − JT

v , where Jv denotes the
Jacobian of v with its (i, j)-th entry given by ∂vi/∂xj . Then the component function uij in Eq. 10
is given by uij = ∂vi/∂xj − ∂vj/∂xi. By this construction, the symmetry of the div-free vector
field fdiv is governed by the symmetry of its vector potential v. In particular, a G-equivariant v can
produce a G-equivariant fdiv , and it is formalized in the following theorem:

Theorem 5.3. Let G be a Euclidean group or its subgroup, and let v : Rn → Rn be a G-equivariant
vector field. Then the divergence-free vector field fdiv = [∇ ·A1, . . . ,∇ ·An]

T is G-equivariant,
where Ai denotes the i-th row of the skew-symmetric matrix-valued function A = Jv − JT

v .

See Appendix D.2 for the proof. By this theorem, we then proceed by assuming a GP prior over
the vector potential v ∼ GP (0, κv), and to constrain v to be G-equivariant, we build its kernel
κv ∈ Rn×n in the form of the Group Integration Matrix kernel (GIM-kernel) [56, 55], which is
constructed by:

κv (x,x
′) =

∫
G
κ (x, Lg (x

′))JLg
dg, (17)

where κ is some arbitrary scalar-valued kernel satisfying κ (x,x′) = κ (Lg (x) , Lg (x
′)) for all

g ∈ G. The GIM-kernel spans a Reproducing Kernel Hilbert Space (RKHS) of functions with the
desired equivariance [55]. So we can then use κv (Eq. 17) to construct the GP prior over u in Eq. 11,
where the covariance between components uij and ukq is given by

[κu]ij,kq = Cov

[
uij =

∂vi
∂xj

− ∂vj
∂xi

, ukq =
∂vk
∂xq

− ∂vq
∂xk

]
=

∂2

∂xj∂x′q
[κv]i,k +

∂2

∂xi∂x′k
[κv]j,q −

∂2

∂xj∂x′k
[κv]i,q −

∂2

∂xi∂x′q
[κv]j,k . (18)

Finally, this matrix-valued kernel κu is transformed by Eq. 12 to construct the div-free GP, of which
the realizations are guaranteed to be G-equivariant div-free vector fields, according to Theorem 5.3.

6 Experiments

We evaluated the performance of our proposed method in several representative physical systems.
Through the experiments, we found that our model can not only accurately capture the system
dynamics, but also predict correct decompositions.

6.1 Learning Dissipative Hamiltonian Dynamics

We first evaluated our method on a damped mass-spring system and a damped pendulum. Their
governing equations are detailed in Appendix E.1. We generated the training data {(x, ẋ)} by
randomly sampling states x in their phase space, and each of their derivative observations ẋ is
corrupted by an additive Gaussian noise with a standard deviation of 0.05.

The models are first evaluated in terms of learning ODEs. Specifically, our evaluation focused on the
accuracy of the models in predicting state derivatives, as measured by the root mean squared error
(RMSE), and their ability to accurately predict state trajectories over time, as indicated by the valid
prediction time (VPT). In addition to these metrics for evaluating the regression results, we further
use the mean negative log likelihood (MNLL) to evaluate the prediction uncertainty provided by the
GP models. These evaluation metrics and the generation of test data are detailed in Appendix F. We
compared our models, HHD-GP and its symmetry-preserving extension, SPHHD-GP, with Dissipative
Hamiltonian neural network (D-HNN) [22], GPs involving div-free kernels for learning Hamiltonian
dynamics (Div-GP) [54, 59], and GPs with Group Integration Matrix Kernels (GIM-GP) [56] that
can incorporate symmetries. Another baseline is GPs with independent kernels (Ind-GP), which
model each dimension of a dynamical system with an independent scalar GP. See Appendix G for the
implementation details of these models.
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Table 1: Comparison of our models to baselines. The results are averaged over 10 independent
experiments performed by resampling the training sets and model initial parameters. The RMSE and
the VPT are recorded in the scale of ×10−2 and in the form of mean ± standard deviation. Bold font
indicates best results.

Model Damped Mass Spring Damped Pendulum

RMSE ↓ VPT ↑ MNLL ↓ RMSE ↓ VPT ↑ MNLL ↓

D-HNN 35.58 ± 6.08 0.67 ± 0.13 N/A 183.38 ± 27.92 0.39 ± 0.07 N/A
Div-GP 21.48 ± 38.11 1.02 ± 0.26 2638.08 ± 7917.14 55.21 ± 15.93 1.09 ± 0.24 -0.01 ± 0.36
Ind-GP 4.15 ± 1.38 3.02 ± 0.77 -2.28 ± 0.26 80.59 ± 38.08 1.85 ± 0.54 -0.98 ± 0.27

GIM-GP 2.80 ± 1.96 5.28 ± 2.09 -2.80 ± 0.45 26.46 ± 13.83 2.32 ± 0.74 -1.15 ± 0.22
HHD-GP (ours) 4.83 ± 1.60 2.92 ± 0.90 -2.20 ± 0.29 34.64 ± 15.68 1.83 ± 0.42 -0.79 ± 0.26

SPHHD-GP (ours) 2.02 ± 1.75 8.52 ± 5.11 -3.16 ± 0.85 13.34 ± 6.89 3.18 ± 1.37 -1.56 ± 0.21

The results for 20 training data are shown in Table 1, and the results for an increasing number of
training data are provided in Appendix J.1. The performance of Div-GP is limited because it can only
model conservative dynamics. HHD-GP improves its performance by compensating with a curl-free
kernel, which offsets the strong inductive bias imposed by the div-free kernel. And the performance
of HHD-GP is better than that of another HHD-based model, D-HNN, because the low data efficiency
of NNs makes it hard for D-HNN to capture dynamics using noisy and sparse training data, so
actually the performance of D-HNN is worse than either of the GP methods. As another model
without inductive bias, Ind-GP performs similarly to HHD-GP in most cases. Then, by incorporating
symmetry priors into GPs, GIM-GP performs better than the above models but not as well as SPHHD-
GP, because learning in the form of HHD allows the model to exploit more implicit symmetries in
the dynamical systems. SPHHD-GP performs best overall in learning ODEs. Appendix J.2 presents
the plots of trajectory predictions for each system.
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Figure 2: Energy prediction along the trajectory
initialized at (1.0, 0.0) of the mass-spring system
(left figure) and (1.5, 0.0) of the pendulum (right
figure), respectively.

Another advantage of our model is that it can
decompose the dynamics into its div-free and
curl-free components. According to Eq. 19,
the div-free component can be used to recover
the system’s Hamiltonian, as long as the cor-
rect form of HHD is learned by our model. To
show this, we evaluated our model by another
task: we predicted the Hamiltonian Ĥ (xt) (en-
ergy) along the system’s trajectory {xt}. For
HHD-GP and SPHHD-GP, the Hamiltonian is
predicted from a joint GP prior over the Hamil-
tonian and its underlying dynamics (see Ap-
pendix G.7.1 for details). Fig. 2 shows the
predicted energy evolution of the two systems, where we can find that D-HNN and HHD-GP fail to
provide physically plausible results, because the energy should continue to decrease due to friction,
but they provide oscillating predictions, along with significant variances. In contrast, predictions
of SPHHD-GP are highly accurate and closely aligned with the true values. One reason is that the
symmetry priors used by SPHHD-GP improves the generalization performance of the model, but more
importantly, the priors solve the problem of non-identifiability suffered by HHD-GP and D-HNN.
See Appendix J.3 for an visualization of predicted decompositions, which shows that although the
models capture similar system dynamics, they can learn completely different decompositions.
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Figure 3: RMSE of energy prediction with increas-
ing number of training data.

Consistency is a necessary condition for a learn-
ing model to be identifiable and refers to the
property that its parameter estimates should
converge to the true values as the amount of
data increases [19, 40]. Therefore, to further
explore the non-identifiability problem, we pro-
vide the RMSE of energy prediction with an
increasing number of training data in Fig. 3.
The result shows that HHD-GP and D-HNN
always generate significant errors in predicting
energy evolution, meaning that the model pa-
rameters cannot converge as the amount of data
increases. In contrast, the energy errors of SPHHD-GP exhibits a decreasing trend, which reflects
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the consistency of SPHHD-GP. In addition to this empirical validation, in Appendix H we provide a
theoretical verification that for the dynamical systems in our experiments, the non-identifiability of
our model (i.e. non-uniqueness of HHD) is solved through forced symmetries.

Accurate prediction of energy demonstrates the interpretability of learned div-free features. To further
show the interpretability of curl-free features, in Appendix J.4 we added experiments of adapting the
learned models to predict dynamics with unseen friction coefficients. And Appendix J.5 presents
some additional experimental results of increasing the noise in training data, showing that SPHHD-GP
maintains high gain in large noise compared to the baselines.

6.2 Learning Chaotic dynamics

Table 2: Experimental results on the Chua circuit.
RMSEder and RMSEen refer to the errors in derivative
and energy predictions, respectively.

Model RMSEder ↓ MNLL ↓ VPT ↑ RMSEen ↓

Div-GP 122.4 ± 51.4 0.89 ± 0.74 0.9 ± 0.1 N/A

Ind-GP 12.5 ± 12.6 -1.76 ± 1.02 5.9 ± 2.2 N/A

GIM-GP 10.2 ± 10.6 -1.92 ± 0.67 6.2 ± 2.9 N/A

HHD-GP (ours) 12.0 ± 11.1 -1.76 ± 0.68 5.1 ± 1.4 7.4 ± 3.6

SPHHD-GP (ours) 4.1 ± 1.8 -2.72 ± 0.29 13.0 ± 5.6 0.7 ± 1.5

Learning the correct HHD also has im-
portant implications for studying chaotic
systems. [60] stated that the div-free
component of a chaotic system is always
orthogonal to the gradient of its energy
function, i.e., ∇HTfdiv (x) = 0. This
energy function can be used to synchro-
nize two chaotic systems [60], analyze
their stability [77], and design energy-
modulated controllers [43]. This experi-
ment aims to learn the Chua circuit [49],
which is a chaotic system with applica-
tions in various fields. Its governing equa-
tion and the HHD are detailed in Appendix E.2. The models are trained on 100 randomly sampled
data, corrupted with additive Gaussian noise (standard deviation: 0.05). The generation of test data
is the same as in the experiment in Section 6.1. The results are given in Table 2, which shows that
SPHHD-GP consistently outperforms the other approaches. Appendix J.6 plots the trajectory and
energy predictions. These results again confirm the advantage of incorporating symmetry constraints
into our method. Please note that D-HNN is not applicable to this system because the div-free part of
D-HNN only applies to Hamiltonian systems.

6.3 Learning ocean current fields

To investigate the performance of our model in learning real-world dynamical systems, we then
evaluated our model on an ocean current field, which is a complex dynamical system intricately
governed by the interplay of multiple factors such as Earth’s rotation, wind patterns, temperature
gradients, and coastal interactions. Based on sparse observations of buoy velocities, oceanographers
are interested in estimating ocean currents away from buoys and identifying divergences of the ocean
current field.

In this experiment, we used a dataset from [6], containing 1183 velocity data points from 12 buoys
distributed across the northern Gulf of Mexico, as shown by the red arrows in Fig. 4. We compared
our model with the Helmholtz-GP model [6], which combines 2D div-free and curl-free kernels
in the form of HHD to reconstruct planar ocean current fields, but without considering the severe
non-identifiability problem caused by the non-uniqueness of HHD. To make the HHD of an ocean
current field unique, an effective way in the field of fluid dynamics is to enforce the parallel boundary
condition, which states that the HHD of a vector field in a bounded domain is unique if its div-free
component is parallel to the domain boundary (cf. page 36 in [12], Section 5.1 in [8]). For our
proposed model, the method of incorporating symmetry can be used to enforce the parallel boundary
condition. Specifically, if a vector field has mirror symmetry with respect to a hyperplane, then
the vectors on this hyperplane must be parallel to the hyperplane. Therefore, to make our model
identifiable, the div-free kernel in our model was constructed to incorporate mirror symmetry with
respect to the rectangular boundary of the ocean current field. To reduce the computational complexity,
the kernels were fitted into a sparse GP framework [62], which reduced the computational complexity
from O

(
m3
)

to O
(
M2m

)
, where m = 1183 is the number of data points and M = 200 is the

number of inducing points. See Appendix I for the details of computational complexity of our model.
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Figure 4: Predictions of the ocean current field and its HHD by (a) Helmholtz-GP and (b) SPHHD-GP.
The black arrows are the predicted currents, and the red arrows denote the observed buoy velocities.
First column: Predicted ocean current fields. Second column: Predicted vorticity fields. Third column:
Predicted divergence fields.

The predictions of the ocean current field and its HHD are shown in Fig. 4. Although the ground truth
is not available for this field of real-world ocean currents, we can still assess performance against
oceanographers’ expert knowledge (cf. Section I.3 in [6]). For the predictions of ocean currents
(the first column of Fig. 4), the oceanographers expect to see continuous currents with no sharp
deviations. However, we can clearly observe that the prediction of Helmholtz-GP shows an abrupt
drop in positions away from observed data, especially in the lower left, upper right and center regions.
In contrast, our model (SPHHD-GP) presents a more continuous current prediction. The predicted
divergence field (i.e., the scalar potential of the curl-free component) is provided in the third column
of Fig. 4. The oceanographers expect to find a rich structure in divergence predictions. However, the
Helmholtz-GP fails to recover the divergence field and instead predicts an almost constant curl-free
vector field, as shown in the third block of Fig. 4(a). This is caused by the non-identifiability of
the Helmholtz-GP, since harmonic components usually exist in the form of constant vector fields
(cf. Section 4.3). Our model, instead, recovers the rich structure of the divergence field. Therefore,
we can conclude that our model provides more realistic ocean current predictions and divergence
identification, offering a better alternative for the simulation of ocean dynamics.

7 Conclusion and future work

Our work develops an additive GP model whose component is either free of divergence or of curl,
the two most ubiquitous differential invariants of vector fields in natural, and we constrain the
div/curl-free kernels to preserve desired symmetries. These symmetry-preserving kernels not only
improve the accuracy of predictions but also make the model identifiable, thus a physically meaningful
decomposition can be predicted. Our future work is to extend our model to exploit the connection
of HHD with more dynamical systems. For example, there are recent advances in using the HHD
to construct Lyapunov functions [65]. So, our model has potential to achieve good performance in
learning stable dynamics.
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Appendix

A HHD and dynamical systems

This section provides a brief introduction to the connections between the Helmholtz-Hodge decompo-
sition (HHD) and some dynamical systems needed to understand this work.

A.1 HHD and dissipative Hamiltonian systems

We begin with a brief review of Hamiltonian mechanics [4]. For a dynamical system with N degrees
of freedom, the Hamiltonian formalism describes the system by defining a scalar function H (x)
known as the Hamiltonian, where the system state x = (q,p) ∈ R2N is described by generalized
coordinates q ∈ RN and p ∈ RN in the phase space, corresponding to generalized position and
momentum, respectively. The time evolution of (q,p) is governed by the symplectic gradient of its
Hamiltonian, i.e., q̇ = ∂H

∂p , ṗ = −∂H
∂q . If the Hamiltonian is not explicitly time-dependent, [q̇, ṗ]T

defines a divergence-free vector field ( ∂
∂q

∂H
∂p − ∂

∂p
∂H
∂q = 0) whose flows conserve the Hamiltonian.

By interpreting the Hamiltonian as energy, the Hamiltonian vector field can model systems with
energy conservation. However, real-life systems often suffer from energy dissipation. In physical
systems governed by an autonomous ODE, any energy variation occurs along a volume change in
phase space and vice versa. Therefore, to account for energy dissipation, a term responsible for the
volume contraction of the phase space can be introduced into the Hamiltonian dynamics. This term
represents the energy lost by the system due to various dissipative forces and is typically modeled by
gradient fields of some scalar functions D (·), so the motion equations of the dissipative Hamiltonian
system can be given by

f (q,p) =

[
∂H

∂p
,−∂H

∂q

]T
︸ ︷︷ ︸
divergence−free

+ ∇D (q,p)︸ ︷︷ ︸
curl−free

. (19)

In a dissipative Hamiltonian system, the Hamiltonian still represents the system’s total energy, but
the additional damping term causes the system to lose energy over time. One common example of
the damping term is induced by the Rayleigh function, D (p) = − 1

2p
TQp, where Q ∈ RN×N is a

symmetric positive-definite matrix called the Rayleigh dissipation matrix. The Rayleigh function
provides an elegant way to include dissipative forces—such as friction, air resistance, and viscos-
ity—in the context of Hamiltonian mechanics. When the Hamiltonian H (·) represents mass instead
of energy, Eq. 19 can also be used to model 2-dimensional compressible fluid dynamics, such as the
dynamics of ocean current fields.

A.2 HHD and chaotic systems

The dissipative Hamiltonian system (Eq. 19) is in an explicit form of HHD, because the Hamiltonian
vector field is divergence-free and the dissipative field ∇D is curl-free. However, as its divergence-
free part is governed by the Hamiltonian equations, Eq. 19 can only be used to describe a subset of
even-dimensional systems. To extend its scope to study chaotics systems, [60] proposed to approach
energy for dimensionless dynamical systems by using HHD as follows,{

ẋ = f (x) = fdiv (x) + fcurl (x) , x ∈ Rn;
∇HTfdiv (x) = 0; Ḣ = ∇HTfcurl (x) ,

(20)

where fdiv and fcurl are divergence-free and curl-free components of a dynamical system, respectively.
According to this criterion (Eq. 20), HHDs of chaotic systems were approached to calculate the
energy for synchronizing two chaotic systems [60], to analyze the stability of chaotic systems [77],
and to design energy modulation-based controllers [43].

B GPs and linear operators

Gaussian processes (GPs) are closed under linear transformations (cf. Lemma 2.2 in [36], Lemma 2.1
in [25]). Let L be a linear operator acting on realizations of g ∼ GP (µg (x) , κg (x,x

′)), then under
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the assumption that L commutes with expectation, the mean of Lg is given by

E [Lg (x)] = LE [g (x)] = Lµg (x) , (21)

and the covariance is such that

cov [Lxg (x) ,Lx′g (x′)] = E
[
(Lxg (x)− Lxµ (x)) (Lx′g (x′)− Lx′µ (x′))

T
]

= LxE
[
(g (x)− µ (x)) (g (x′)− µ (x′))

T
]
LT
x′

= Lxκg (x,x
′)LT

x′ .

(22)

A common application of this technique is to construct GPs with realizations in the solution set
of linear differential equations, assuming that L is a linear differential operator [29, 35, 36, 7, 25].
And similarly, we make use of the closure of GPs under linear differential operators to construct the
curl-free and div-free kernels.

Although the transformed kernel (Eq. 22) has been widely used, its validity as a covariance function
is rarely discussed in existing works. In a GP framework, a kernel κ (x,x′) : Rn × Rn → Rm×m is
a valid covariance function if it is:

(i) Symmetric, i.e., κ (x,x′) = κ (x′,x)
T, ∀x,x′ ∈ Rn, and

(ii) Positive semidefinite, i.e.,
∑

ijc
T
i κ (xi,xj) cj ≥ 0, for any finite set {xi} ⊂ Rn and {ci} ⊂ Rm.

These two conditions for a kernel can be verified if and only if there exists a feature map ϕ (x) such
that κ (x,x′) = ϕ (x)ϕ (x′)

T [53]. So, if κg (x,x′) is a valid kernel, it holds that

Lxκg (x,x
′)LT

x′ = Lxϕ (x)ϕ (x
′)
T LT

x′ = (Lxϕ (x)) (Lx′ϕ (x′))
T
. (23)

Therefore, the transformed kernel Lxκg (x,x
′)LT

x′ is guaranteed to be a valid covariance function
provided that its underlying kernel κg (x,x′) is. However, when L is a differential operator, κg
should be twice differentiable, which is satisfied by most of the standard kernels, such as the squared
exponential kernel.

C Basics for Euclidean group

This section gives the basic definitions about the Euclidean group. In the context of this work, the
most important example of a symmetry group is the Euclidean group E (n) or its subgroups. The set
of all elements in E (n) can be denoted as

E (n) = {(A,b) | A ∈ O (n) ,b ∈ Rn} , (24)

where O (n) =
{
A ∈ Rn×n | AAT = I

}
is the orthogonal group. Any element g = (A,b) ∈ E (n)

represents a translation followed by an orthogonal transformation, the action of g on a point x ∈ Rn

is given by a linear mapping:

Lg : Rn → Rn, x 7→ A (x+ b) . (25)

Therefore, E (n) comprises all isometries of a Euclidean space, i.e. for all x,x′ ∈ Rn and g ∈ E (n),
we have

∥Lg (x)− Lg (x
′)∥ = ∥x− x′∥ , (26)

where ∥·∥ is the Euclidean norm. All intuitive geometric transformations in Rn can be described by
subgroups of E (n), such as

1. Translation: The group of all translations in Rn is denoted by (Rn,+). For any v ∈ Rn, A
translation is a transformation that moves a point x ∈ Rn by Lv (x) = x+ v.

2. Rotation: The group of all rotations in Rn is represented by the set of special orthogonal
matrices SO (n) = {R ∈ O (n) | det R = 1}, where a rotation matrixR transforms a point
by LR (x) = Rx.

3. Reflection: Reflections in Rn forms subgroups of the orthogonal group O (n). Reflections
correspond to mirror symmetries. They mirror points across a hyperplane. For a hyperplane
with a unit normal vector n, the action of a reflection is defined as Ln (x) = x− 2(x · n)n.
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D Proofs

This section restates and proves the theorems in Section 5, which give the theoretical foundations that
we use to enforce symmetry constraints to our HHD-GP model.

D.1 Proof of Theorem 5.2

Theorem 5.2. Let G be a Euclidean group or its subgroup, and let V : Rn → R be a G-invariant
scalar function. Then, the curl-free vector field fcurl : Rn → Rn defined by fcurl (x) = ∇V (x) is
G-equivariant.

Proof. To prove that ∇V (x) is G-equivariant, by Definition 5.1 we need to show that for any x ∈ Rn

and g ∈ G, we have
∇V ◦ Lg = JLg∇V, (27)

where Lg (x) : Rn → Rn is the action of g on x, and JLg
is the Jacobian matrix of Lg . To show this,

we first recall the chain rule of the gradient operator,

∇ (V ◦ Lg) = JT
Lg

(∇V ◦ Lg) , (28)

where JT
Lg

denotes the transpose of JLg
. Since V (x) is G-invariant, for all g ∈ G we have

V = V ◦ Lg. (29)

Now taking the gradient of both sides, and combining with the chain rule, we obtain

∇V = ∇ (V ◦ Lg) = JT
Lg

(∇V ◦ Lg) . (30)

Then by multiplying JLg
on both sides, we have

JLg
∇V = JLg

JT
Lg

(∇V ◦ Lg) . (31)

Considering G is a subgroup of the Euclidean group, the action of any group element g ∈ G on Rn

can be represented by
Lg (x) = A (x+ v) , (32)

where A ∈ O (n) is an orthogonal matrix. Therefore, JLgJ
T
Lg

= AAT = I , where I is an identity
matrix, so we have JLg

∇V = ∇V ◦ Lg, which means that the curl-free vector field fcurl = ∇V is
G-equivariant, as desired.

D.2 Proof of Theorem 5.3

Theorem 5.3. Let G be a Euclidean group or its subgroup, and let v : Rn → Rn be a G-equivariant
vector field. Then the divergence-free vector field fdiv = [∇ ·A1, . . . ,∇ ·An]

T is G-equivariant,
where Ai denotes the i-th row of the skew-symmetric matrix-valued function A = Jv − JT

v .

Proof. To prove this theorem, we need to show that the divergence-free vector field fdiv satisfies the
G-equivariance condition, i.e., for all g ∈ G and x ∈ Rn,

fdiv ◦ Lg = JLg fdiv, (33)

where Lg (x) : Rn → Rn is the action of g on x, and JLg
is the Jacobian matrix of Lg .

Define the divergence-free vector field fdiv = [∇ ·A1, ...,∇ ·An]
T, where Ai is the ith row of the

skew-symmetric matrix field A = Jv−JT
v , and Jv is the Jacobian of some vector field v : Rn → Rn.

Given that v is G-equivariant, for all g ∈ G and x ∈ Rn we have

v ◦ Lg = JLgv. (34)

Now computing the Jacobian of both sides, by the chain rule of the Jacobian, we obtain

Jv◦Lg
= (Jv ◦ Lg)JLg

= JLg
Jv. (35)

Then applying JT
Lg

on both sides, we have JT
Lg

(Jv ◦ Lg)JLg = JT
Lg

JLgJv. Since G is a subgroup
of the Euclidean group, the Jacobian of the action of any group element g ∈ G on Rn is an orthogonal
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matrix, i.e., JLg ∈ O (n). Therefore, JT
Lg

JLg = I , where I is an identity matrix, so it holds that
Jv = JT

Lg
(Jv ◦ Lg)JLg

. Then by substituting it into A = Jv − JT
v , we obtain

A = Jv − JT
v = JT

Lg

(
Jv ◦ Lg − JT

v ◦ Lg

)
JLg = JT

Lg
(A ◦ Lg)JLg , (36)

where the equation at the (i, j)-th entries of both sides is given by

Aij =

n∑
k=1

[
∂ (Lg)k
∂xi

n∑
l=1

∂ (Lg)l
∂xj

(Akl ◦ Lg)

]
. (37)

Then by substituting Aij into the construction of fdiv , for any g ∈ G and x ∈ Rn, we have

fdiv = [∇ ·A1, ..., ∇ ·An]
T

=
[∑n

j=1
∂A1j

∂xj
, ...,

∑n
j=1

∂Anj

∂xj

]T

=


∑n

j=1

∑n
k=1

∂(Lg)k
∂x1

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj

...∑n
j=1

∑n
k=1

∂(Lg)k
∂xn

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj



=


∑n

k=1
∂(Lg)k
∂x1

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj

...∑n
k=1

∂(Lg)k
∂xn

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∂(Akl◦Lg)
∂xj



=


∑n

k=1
∂(Lg)k
∂x1

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∑n
p=1

∂(Lg)p
∂xj

(
∂Akl

∂xp
◦ Lg

)
...∑n

k=1
∂(Lg)k
∂xn

∑n
j=1

∑n
l=1

∂(Lg)l
∂xj

∑n
p=1

∂(Lg)p
∂xj

(
∂Akl

∂xp
◦ Lg

)


=


∑n

k=1
∂(Lg)k
∂x1

∑n
l=1

∑n
p=1

(
∂Akl

∂xp
◦ Lg

)∑n
j=1

∂(Lg)l
∂xj

∂(Lg)p
∂xj

...∑n
k=1

∂(Lg)k
∂xn

∑n
l=1

∑n
p=1

(
∂Akl

∂xp
◦ Lg

)∑n
j=1

∂(Lg)l
∂xj

∂(Lg)p
∂xj


=
[∑n

k=1
∂(Lg)k
∂x1

∑n
l=1

(
∂Akl

∂xl
◦ Lg

)
, . . . ,

∑n
k=1

∂(Lg)k
∂xn

∑n
l=1

(
∂Akl

∂xl
◦ Lg

)]T
=
[∑n

k=1
∂(Lg)k
∂x1

(∇ ·Ak) ◦ Lg, ...,
∑n

k=1
∂(Lg)k
∂xn

(∇ ·Ak) ◦ Lg

]T
= JT

Lg
[(∇ ·A1) ◦ Lg, ..., (∇ ·An) ◦ Lg]

T

= JT
Lg

(fdiv ◦ Lg) .

(38)

Then, applying JLg on both sides, we obtain JLg fdiv = fdiv ◦ Lg , which completes the proof.

E Physical systems in the experiments

This section reviews the physical systems used in our experiments, listing their governing equations,
HHDs and symmetry properties.

E.1 Dissipative Hamiltonian systems

The connection between HHD and dissipative Hamiltonian systems is reviewed in Appendix A.1. In
our experiments, the models are evaluated with the following two dissipative Hamiltonian systems.

Damped Mass Spring A damped mass-spring system is a mass attached to a spring that oscillates
periodically around an equilibrium position. Its Hamiltonian in natural units is given by

H (q, p) =
1

2

(
q2 + p2

)
, (39)
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where q ∈ R is its position, and p is the momentum conjugate to q. The Hamiltonian represents the
total energy of the oscillator. Without energy dissipation, the motion of the oscillator is described by
the Hamiltonian vector field (div-free vector field fdiv) derived from the Hamiltonian:

fdiv :=

[
q̇
ṗ

]
=

[
∂H
∂p

−∂H
∂q

]
=

[
p
−q

]
. (40)

Then we show that the Hamiltonian vector field has SO(2)-equivariance. Apply a rotation by an angle
θ that transforms any state vector [q, p]T to [q′, p′]

T, where q′ = q cos θ−p sin θ, p′ = q sin θ+p cos θ,
then for all θ ∈ R, the equivariance condition (Eq. 14) can be easily verified by

fdiv (q
′, p′) =

[
p′

−q′
]
=

[
cos θ − sin θ
sin θ cos θ

] [
p
−q

]
=

[
cos θ − sin θ
sin θ cos θ

]
fdiv (q, p) . (41)

Therefore, the Hamiltonian vector field is equivariant with respect to the 2D rotations. However, this
rotation symmetry is broken when the system suffers from energy dissipation, i.e., a dissipative field
is added to the motion equations. The dissipative vector field (curl-free vector field fcurl) is induced
by the Rayleigh function D (p) = ρp2/2:

fcurl = −∇(q,p)D = [0,−ρp]T , (42)

where ρ is the friction coefficient and we set it at 0.1. This dissipative field has the symmetries of the
q-axis translation (fcurl (q + g, p) = fcurl (q, p), ∀g ∈ R) and the rotation by an angle of π radians
(the so-called odd symmetry, i.e., fcurl (−q,−p) = −fcurl (q, p)). Then by summing the curl-free
vector field (Eq. 42) and the Hamiltonian vector field (Eq. 40), the dynamics of the damped harmonic
oscillator is characterized by

f = fdiv + fcurl = [p,−q − 0.5p]
T
, (43)

which only demonstrates the odd symmetry.

Damped Pendulum A damped pendulum is a physical system consisting of a weight suspended
from a pivot, subjected to a resistive force that gradually reduces its oscillation over time. By defining
its state in the phase space through [q, p]

T ∈ R2, the dynamics of a damped pendulum and its HHD
can be given by

f :=

[
q̇
ṗ

]
=

[
∂H
∂p

−∂H
∂q

]
−

[
∂D
∂q
∂D
∂p

]
=

[
l2

mp
−2mgl sin q

]
︸ ︷︷ ︸
divergence−free

+

[
0

−ρp

]
︸ ︷︷ ︸
curl−free

=

[
l2

mp
−2mgl sin q − ρp

]
, (44)

where the Hamiltonian H and the Rayleigh function D are given by

H (q, p) = 2mgl (1− cos q) +
l2p2

2m
, D (p) =

1

2
ρp2. (45)

In our experiments, the gravitational constant g, the mass m, and the pendulum length l were set
as g = 3 and m = l = 1, and the friction coefficient ρ was set as ρ = 0.1. The dynamics of the
damped pendulum, as well as its div-free and curl-free components, exhibit the odd symmetry, but
the curl-free part additionally exhibits the translation invariance along the q-axis.

E.2 Chaotic system

The Chua circuit [49] is a simple electronic circuit that exhibits chaotic behavior, and it has applica-
tions in various fields, such as secure communication systems and random number generators. The
ODE of a Chua circuit with its HHD is given by[

ẋ
ẏ
ż

]
=

α (y − x3 − cx
)

x− y + z
−βy

 =

[
αy
x+ z
−βy

]
︸ ︷︷ ︸

divergence−free

+

α (−x3 − cx
)

−y
0


︸ ︷︷ ︸

curl−free

, (46)

where x, y, z are the phase space variables, and α, c, β are the system parameters, which were set
to 10, −0.143, and 16 respectively in the experiments. The Chua circuit is equivariant under a π
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rotation about the origin: Lπ : (x, y, z) 7→ (−x,−y,−z). If the Chua circuit is decomposed by the
HHD in Eq. 46, more symmetries are exhibited. Specifically, its div-free component inherits the odd
symmetry, but additionally presents the translation invariance along x = z. The curl-free vector field
is invariant along the z-axis and equivariant under mirror reflections across the coordinate planes,

Li,j : (x, y, z) 7→
(
(−1)

i
x, (−1)

j
y, z
)
,∀i, j ∈ {0, 1} . (47)

This HHD not only uncovers more knowledge of the Chua circuit’s symmetry but can also be used to
analysis the energy of the system. According to the generalized Hamiltonian formalism (Eq. 20), the
energy function H associated with the Chua circuit satisfies the following PDE:

αy
∂H

∂x
+ (x+ z)

∂H

∂y
− βy

∂H

∂z
= 0, (48)

which is satisfied by the quadratic form:

H =
1

2

(
− 1

α
x2 + y2 +

1

β
z2
)
. (49)

As presented by [77], this energy function indicates that the Chua circuit keeps oscillatory when the
energy release along the x-axis is enough to balance the energy pumping along the y-axis and z-axis.

F Evaluation metrics for learning ODEs

RMSE and MNLL of state derivatives To evaluate the models’ performance in terms of learning
ẋ = f (x), we first compute the root mean squared error (RMSE) between the predicted time
derivatives ˆ̇xi and the ground truth ẋi, i.e.

RMSE =

(
1

m

m∑
i=1

∥ˆ̇xi − ẋi∥2
) 1

2

, (50)

where ∥·∥2 is the Euclidean norm, and m is the number of test data. The lower the RMSE, the
better. The test set {(xi, ẋi)}mi=1 was generated by sampling a grid of points with the resolution of
10. In addition to the RMSE for evaluating the regression results, we further use the mean negative
log likelihood (MNLL) to evaluate the prediction uncertainty provided by the GP models, and it is
calculated by

MNLL = − 1

m

m∑
i=1

logN (ẋi | ˆ̇xi, var (xi)), (51)

where var (xi) is the prediction variance at a test state xi. The lower the MNLL, the more effectively
the forecast uncertainty reflects the prediction error.

VPT of state trajectories To obtain a more comprehensive evaluation of the learned ODE models,
we considered additional metrics for evaluating the accuracy of predicting state trajectories. Recent
studies [48, 30, 70] have suggested that RMSEs of state trajectories over long time horizons can be
misleading indicators. So we used the valid prediction time (VPT) to measure the model’s ability to
do such long-term extrapolation in a phase space. Following the definition in [30, 70], VPT calculates
the first time step t at which the normalized root mean square error (NRMSE) between the predicted
state x̂t and the ground truth xt exceeds a given threshold ϵ,

VPT =
1

T
argmin

t
{NRMSE (x̂t,xt) > ϵ,∀ 0 ≤ t ≤ T} , (52)

where NRMSE (x̂t,xt) =
(
(x̂t − xt)

T
Σ (x̂t − xt) /n

) 1
2

, Σ = diag (1/σ1, . . . , 1/σn), with σi
denoting the variance of the i-th dimension of the true trajectory. The VPT measures how long the
predicted trajectory remains close to the true trajectory, so the higher this indicator, the better. In
the experiments, we set ϵ = 0.01. To alleviate the dependency on the initial condition, we reported
the VPT averaged over trajectories simulated from 50 randomly sampled initial conditions. And
a trajectory from an initial condition was solved by the Dormand–Prince method (dopri5) [15]
implemented in torchdiffeq4, integrating forward in time at a frequency of 25 Hz for 15 seconds, with
the relative and absolute tolerances of 10−6.

4https://github.com/rtqichen/torchdiffeq
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G Implementation details

The experiments were performed on a single Nvidia GeForce GTX 3050 Ti GPU, and all of the
models were implemented with PyTorch [51]. The GP-based models (Ind-GP, GIM-GP, Div-GP,
HHD-GP and SPHHD-GP) were trained by maximizing the log of their marginal likelihood:

log p (Y | X) = logN (Y | 0,K+Σ) = −1

2
YT (K+Σ)

−1
Y − 1

2
log |K+Σ| −m log 2π,

(53)
where |·| computes the determinant of the covariance matrix K+Σ. Training a GP model refers to
optimizing the kernel parameters in K and the noise variances in Σ, and these hyperparameters were
initialized randomly in our experiments. The GP-based models were trained by the ADAM optimizer
[34], with a learning rate 0.01 for 3000 gradient steps.

G.1 Ind-GP

The Ind-GP models each dimension of a n-dimensional dynamical system independently, so its
matrix-valued kernel is constructed by

κind = diag (κ1, . . . , κn) , (54)

where κi, i = 1, . . . , n are independent scalar kernels. And a standard choice for κi is the squared
exponential (SE) kernel,

κse (x,x
′) = σ2exp

(
−1

2
l−2 ∥x− x′∥2

)
, (55)

which has two parameters: σ determines the variation of function values from their mean, and l
controls the length scale on which the function varies. Realizations of GPs with SE kernels are dense
in the set of smooth functions C∞ (Rn,R) (cf. Prop.1 in [37]). For a fair comparison, we also used
the SE kernel (Eq. 55) to construct kernels for the other GP-based models.

G.2 GIM-GP

The GIM-GP produces predictions with the desired symmetry. Each of the systems in our experiments
exhibits the odd symmetry as a whole. So their symmetry groups can be given by Godd = {In,−In},
where In is the n-dimensional identity matrix, and the group elements are linear representations of
the group actions, i.e., Lg (x) = gx, ∀g ∈ G. Therefore, according to Eq. 17, the GIM-kernel for
Godd was constructed by

κgim = (κse (x,x
′)− κse (x,−x′)) In, (56)

where the SE kernel (Eq. 55) was used as the basis kernel κ in Eq. 17.

G.3 Div-GP

GPs with a div-free kernel can be used to approximate conservative dynamics. According to Eq. 12,
a two-dimensional div-free kernel was constructed by

κdiv =

 ∂2κH(x,x′)
∂x2∂x′

2
−∂2κH(x,x′)

∂x2∂x′
1

−∂2κH(x,x′)
∂x1∂x′

2

∂2κH(x,x′)
∂x1∂x′

1

 , (57)

where κu in Eq. 12 is denoted by κH instead, indicating that it is the kernel for the Hamiltonian
functions of the damped mass spring and the damped pendulum, and the SE kernel (Eq. 55) was used
for κH . The partial derivatives in Eq. 57 were calculated by automatic differentiation in PyTorch, so
we did not need to derive its analytic expression.

Then we constructed the div-free kernel for the Chua circuit system. According to Eq. 11, a three-
dimensional div-free vector field is given by fdiv (x) = Ψu (x), where Ψ = [ψ12, ψ13, ψ23] ∈ R3×3
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with its components given by

ψ12 =

[
0 1 0
−1 0 0
0 0 0

][
∂x1

∂x2

∂x3

]
=

[
∂x2

−∂x1

0

]
, (58)

ψ13 =

[
0 0 1
0 0 0
−1 0 0

][
∂x1

∂x2

∂x3

]
=

[
∂x3

0
−∂x1

]
, (59)

ψ23 =

[
0 0 0
0 0 1
0 −1 0

][
∂x1

∂x2

∂x3

]
=

[
0
∂x3

−∂x2

]
. (60)

Then by assuming u = [u12, u13, u23]
T ∼ GP (0, κu = κind), we constructed the div-free kernel

for the Chua circuit according to Eq. 12:

κdiv =

[
∂x2 ∂x3 0
−∂x1 0 ∂x3

0 −∂x1
−∂x2

][
κ1 0 0
0 κ2 0
0 0 κ3

][
∂x2 −∂x1 0
∂x3 0 −∂x1

0 ∂x3
−∂x2

]
(61)

=


∂2κ1(x,x′)
∂x2∂x′

2
+

∂2κ2(x,x′)
∂x3∂x′

3
−∂2κ1(x,x′)

∂x2∂x′
1

−∂2κ2(x,x′)
∂x3∂x′

1

−∂2κ1(x,x′)
∂x1∂x′

2

∂2κ1(x,x′)
∂x1∂x′

1
+

∂2κ3(x,x′)
∂x3∂x′

3
−∂2κ3(x,x′)

∂x3∂x′
2

−∂2κ2(x,x′)
∂x1∂x′

3
−∂2κ3(x,x′)

∂x2∂x′
3

∂2κ2(x,x′)
∂x1∂x′

1
+

∂2κ3(x,x′)
∂x2∂x′

2

 , (62)

where κ1, κ2 and κ3 are all independent SE kernels (Eq. 55).

G.4 HHD-GP

The HHD-GP consists of two independent GPs added together, modeling curl-free and div-free
dynamics respectively. GPs with div-free kernels have been constructed earlier, so here we build
curl-free kernels according to Eq. 8. For the damped mass spring and the damped pendulum, their
two-dimensional curl-free kernel was constructed by

κcurl =

∂2κV (x,x′)
∂x1∂x′

1

∂2κV (x,x′)
∂x1∂x′

2

∂2κV (x,x′)
∂x2∂x′

1

∂2κV (x,x′)
∂x2∂x′

2

 . (63)

Similarly, the three-dimensional curl-free kernel for the Chua circuit was constructed by

κcurl =


∂2κV (x,x′)

∂x1∂x′
1

∂2κV (x,x′)
∂x1∂x′

2

∂2κV (x,x′)
∂x1∂x′

3

∂2κV (x,x′)
∂x2∂x′

1

∂2κV (x,x′)
∂x2∂x′

2

∂2κV (x,x′)
∂x2∂x′

3

∂2κV (x,x′)
∂x3∂x′

1

∂2κV (x,x′)
∂x3∂x′

2

∂2κV (x,x′)
∂x3∂x′

3

 , (64)

where κV is a SE kernel.

G.5 SPHHD-GP

G.5.1 Symmetry-preserving curl-free kernels

According to Theorem 5.2, a G-equivariant curl-free vector field is constructed by constraining
its scalar potential V to be G-invariant. Therefore, a G-equivariant curl-free kernel is obtained by
constructing its potential kernel κV according to Eq. 16.

The curl-free vector field of the damped mass spring and the damped pendulum has two types of
symmetry:

(i) translation along the q-axis, i.e., Lg (x) = x+ (g, 0), for all g ∈ R;

(ii) rotation by an angle of π radians, i.e., Lg (x) = gx, for all g ∈ {I2,−I2}.
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These symmetry groups were enforced to a SE kernel sequentially according to Eq. 16, where |G| can
be ignored. Specifically, the translation invariance was enforced using the Gaussian integral formula:

κV =

∫ +∞

−∞
κse

(
x,x′ + [g, 0]

T
)
dg (65)

= κse (p, p
′)

∫ +∞

−∞
exp(− (q − q′ − g)

2

2l2
)dg (66)

=
√
2πlκse (p, p

′) , (67)
then based on which the π rotation invariance was enforced by

κV =
√
2πl (κse (p, p

′) + κse (p,−p′)) . (68)

The curl-free vector field of the Chua circuit (Eq. 46) has similar two types of symmetry:

(i) translation along the z-axis, i.e., Lg (x) = x+ (0, 0, g), for all g ∈ R;

(ii) mirror reflections across the coordinate planes, i.e., Li,j : (x, y, z) 7→
(
(−1)

i
x, (−1)

j
y, z
)

, for
all i, j ∈ {0, 1}.

Therefore, κV for the Chua circuit was constructed by

κV =
√
2πl

∑
g∈G

κse (x, gx
′) , G =

{
diag

(
(−1)

i
, (−1)

j
, 0
)
| i, j ∈ {0, 1}

}
. (69)

G.5.2 Symmetry-preserving div-free kernels

Theorem 5.3 shows that a G-equivariant div-free vector field is constructed from a vector potential
v with the same equivariance. For the div-free vector field of the damped mass-spring system with
SO(2)-equivariance, its κv was constructed by the GIM-kernel (Eq. 17):

κv (x,x
′) =

∫ 2π

0

κse (x, gθx
′) gθdθ, where gθ =

[
cos θ − sin θ
sin θ cos θ

]
. (70)

Then this κv (Eq. 70) is substituted into Eq. 18 to construct κH for its div-free kernel κdiv (Eq. 57):

κH =
∂2

∂x2∂x′2
[κv]1,1 +

∂2

∂x1∂x′1
[κv]2,2 −

∂2

∂x2∂x′1
[κv]1,2 −

∂2

∂x1∂x′2
[κv]2,1 (71)

=

∫ 2π

0

κse (x, gθx
′)
2l2 − ∥x− gθx

′∥2

l4
dθ. (72)

which admits no closed-form solution, so we used a numerical approximation of the integral (Eq. 72)
by sampling discrete rotations of

{
θ = π

4n | n = 0, . . . , 7
}

, whose rotation matrices form a finite
group. And by setting θ ∈ {0, π}, Eq. 72 was used to construct κH for the div-free vector field of the
damped pendulum, which has the equivariance under a π rotation (odd symmetry).

The div-free vector field of the Chui circuit (Eq. 46) has the odd symmetry and the translation
symmetry along x = z. κv respecting the translation symmetry was constructed by κv = κ · I3,
where κ is given by

κ =

∫ +∞

−∞
κse

(
[x, y, z]

T
, [x′, y′, z′]

T
+ [g, 0,−g]T

)
dg (73)

= κse (y, y
′)

∫ +∞

−∞
exp(− (x− x′ − g)

2
+ (z − z′ + g)

2

2l2
)dg (74)

= κse (y, y
′)

∫ +∞

−∞
exp

−
2
(
g − x1−x′

1−x3+x′
3

2

)2
+

(x1−x′
1+x3−x′

3)
2

2

2l2

 dg (75)

=
√
πlκse (x2, x

′
2)

∫ +∞

−∞
exp

(
− (x1 − x′1 + x3 − x′3)

2

4l2

)
dg (76)

=
√
πlκse (p,p

′) . (77)
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where p =
[

1√
2
(x+ z) , y

]T
. And we further enforced the odd symmetry by

κ =
√
πl (κse (p,p

′)− κse (p,−p′)) . (78)

Then, κv = κ · I3 was substituted into Eq. 18 to construct κu by

κu =


∂2κ(x,x′)
∂x2∂x′

2
+

∂2κ(x,x′)
∂x1∂x′

1

∂2κ(x,x′)
∂x2∂x′

3
−∂2κ(x,x′)

∂x1∂x′
3

∂2κ(x,x′)
∂x3∂x′

2

∂2κ(x,x′)
∂x3∂x′

3
+

∂2κ(x,x′)
∂x1∂x′

1

∂2κ(x,x′)
∂x1∂x′

2

−∂2κ(x,x′)
∂x3∂x′

1

∂2κ(x,x′)
∂x2∂x′

1

∂2κ(x,x′)
∂x3∂x′

3
+

∂2κ(x,x′)
∂x2∂x′

2

 . (79)

Finally, this κu (Eq. 79) was substituted into Eq. 12 to construct the symmetry-preserving div-free
kernel for the Chua circuit.

G.6 D-HNN

We used the released code5 of D-HNN and ran their training routine for our systems.

G.7 Implementation details of predicting energy

G.7.1 Predicting energy of the mass-spring system and the pendulum

When HHD-GP and SPHHD-GP are used to learn the damped mass-spring system and the damped
pendulum, the potential kernel κH for constructing their div-free kernels (Eq. 57) can be interpreted as
placing a GP prior on the Hamiltonian function. Therefore, a joint GP describing both the Hamiltonian
function H (x) and the dynamical system f (x) is given by[

H (x)
f (x)

]
∼ GP

([
0
0

]
,

[
κH (x,x′) κH,f (x,x

′)
κf ,H (x,x′) κhhd (x,x

′)

])
, (80)

where κH,f (x,x
′) = κf ,H (x′,x)

T with

κH,f (x,x
′) = cov [H (x) , f (x′)] = [∂p′ ,−∂q′ ]κH (x,x′) ; (81)

κf ,H (x,x′) = cov [f (x) , H (x′)] = [∂p,−∂q]T κH (x,x′) . (82)

After training the model f (x) ∼ GP (0, κhhd (x,x
′)) on noisy observations Y = [y1, . . . ,ym]

T6 at
states X = [x1, . . . ,xm]

T, we are interested in predicting the value of Hamiltonian function H (x∗)
at a new test state x∗. Since these data determine H (·) only up to an additive constant, we assume
that we have an anchor point H (x0) which can be chosen arbitrarily. Then, according to the GP prior
(Eq. 80), H (x∗) and YH = [H (x0) ,Y]

T are jointly distributed as[
H (x∗)
YH

]
∼ N

([
0
0

]
,

[
κH (x∗,x∗) k

kT K

])
, (83)

where k = [κH (x∗,x0) , κH,f (x∗,X)], and

K =

[
κH (x0,x0) κH,f (x0,X)
κf ,H (X,x0) κhhd (X,X) + σI

]
. (84)

Then, we obtain the posterior distribution

p (H (x∗) | YH) = N
(
kK−1YH , κH (x∗,x∗)− kK−1kT

)
, (85)

where the mean function is used for energy prediction.

5https://github.com/DrewSosa/dissipative_hnns
6yi = f (xi) + ϵ, ϵ

i.i.d∼ N (0, σI)
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G.7.2 Predicting energy of the Chua circuit

[60] stated that the div-free component of a chaotic system is always orthogonal to the gradient of its
energy function, i.e., ∇HTfdiv (x) = 0, for all x ∈ Rn. The energy function of the Chua circuit is
in a quadratic form:

H =
1

2

(
− 1

α
x2 + y2 +

1

β
z2
)
. (86)

So we parameterize the energy function of the Chua circuit by Ĥ (x) = 1
2

(
a1x

2 + a2y
2 + a3z

2
)
,

where a = [a1, a2, a3] are parameters. Then by learning a divergence-free vector field f̂div (·)
through our model, we can estimate the parameters a by minimizing

∑m
i=1

(
∇ĤTf̂ (xi)

)2
at a finite

number of sample points {xi}mi=1 (m = 500 in our experiments). And to eliminate the solution
at a = [0, 0, 0], we add an equality constraint at a random point of the ground truth {x0, H (x0)}.
Therefore, the parameters a of Ĥ are solved in a convex quadratic program (QP):

min aTQa

s.t. Ĥ (x0) = H (x0)
(87)

where Q = qTq with q =
[
f̂div (x1) , . . . , f̂div (xm)

]T
∈ Rm×3. And in the experiments, we solved

the QP using the solver provided by CVXOPT [2].

H Uniqueness and Symmetries

The two constituent kernels of our model define the space of divergence-free vector fields (fdiv ∈
Fdiv) and the space of curl-free vector fields (fcurl ∈ Fcurl), respectively. These two spaces overlap
partially due to the presence of harmonic vector fields (fharm ∈ Fdiv ∩ Fcurl). To eliminate this
overlap and make HHD unique, we propose to impose symmetry constraints on the two spaces
separately, with the corresponding symmetry groups defined as Gdiv and Gcurl. Therefore, the
uniqueness property of HHD depends on the space of harmonic vector fields that respects the union
of two symmetry groups, i.e.

Fharm =
{
fharm | fharm ◦ Lg = JLg fharm,∀x ∈ Rn, g ∈ Gdiv ∪ Gcurl

}
. (88)

If Fharm = ∅, the HHD is unique, i.e. our model is identifiable. A harmonic vector field can always
be represented by the gradient field of a harmonic function h, which is a scalar function satisfying
∇ · ∇h = 0 (Laplace’s equation). For the three dynamical systems used in our experiments, it
can be easily verified that the presence of harmonic components can be eliminated through forced
symmetries. The symmetry group union of a damped mass-spring system consists of a rotation
group Gdiv = SO (2) and a translation group Gcurl = {(g, 0) | g ∈ R}. A harmonic vector field
fharm = ∇h that satisfies this translation symmetry implies that its harmonic function h (q, p) is
independent of the variable q, so the harmonic vector field is given by fharm = (0, ∂ph) and ∂ph
should be a constant to satisfy the Laplace’s equation, but the harmonic vector field in the form of
constant clearly contradicts rotation symmetry Gdiv. Therefore, there is no harmonic vector field
that respects both the symmetry groups Gdiv and Gcurl. Similar conclusions can be drawn for the
damped pendulum and the Chua circuit. The Laplace’s equation and translation symmetry imply that
harmonic vector fields can only exist in the form of constant vector fields. However, constant vector
fields obviously contradict odd symmetry or mirror symmetry.

I Computational complexity

Compared to the diagonal kernel that independently models each dimension of a dynamical sys-
tem [13, 31, 68, 69], our kernel can capture correlations among output dimensions because its
off-diagonal elements are non-zero. However, this advantage comes together with a low computa-
tional efficiency. The exact inference of HHD-GP over an n-dimensional system with m data points
has a cost of O

(
m3n3

)
in time, due to the inversion of its full covariance matrix K∗ ∈ Rmn×mn.

Although in this work we do not focus on the computational challenge in large-scale applications,
one can plug our kernel in a variety of sparse GP frameworks [62, 66], reducing the computational
complexity to O

(
M2mn

)
, where M (M ≪ m) is the number of inducing point to approximate the

covariance matrix.

26



J Additional Experimental Results

J.1 Results with increasing number of training data

To further compare the predictive performance of the models, we evaluated them by increasing the
amount of training data. The results are shown in Fig. 5. As expected, the performance of the models
improves as the amount of training data increases, but we can observe that our model (SPHHD-GP)
performs best at every data amount relative to the baseline models, verifying the robustness of our
model against data sparsity.
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Figure 5: Results with an increasing number of training data (20, 100, 260, 420), which are averaged
over 10 independent experiments performed by resampling the training sets and model initial param-
eters. The first and second columns are the results for the mass-spring system and the pendulum,
respectively.

J.2 Trajectory prediction of the mass-spring system and the pendulum

Fig. 6 and Fig. 7 present the trajectory predictions for the damped mass-spring system and the damped
pendulum, respectively.

J.3 Example Decomposition

Fig. 8 presents predicted decompositions of HHD-GP and SPHHD-GP. It can be observed that
although they capture highly similar system dynamics (the first column in Fig. 8(a)), they learn
completely different decompositions (the second and third columns in Fig. 8(a)). Compared with the
ground truth in Fig. 1, SPHHD-GP learns the physically correct decomposition, so it can accurately
predict the system energy. From Fig. 8(b) we can find that the predictions of HHD-GP have large
variance, meaning that the model is less certain in isolating individual effects from other terms.

J.4 Experiments of predicting dynamics with unseen frictions

To demonstrate the interpretability of the learned curl-free features, we adapted the trained model
to predict dynamics with different friction coefficients. As detailed in Appendix A.1, the curl-free
dynamics in the mass-spring system and the pendulum is caused by friction forces in the system.
Utilizing this interpretation and the additive structure of the HHD-based models, we can generalize
the models to perform inference over dynamics with different friction coefficients. We performed
this experiment by first training HHD-GP, SPHHD-GP and D-HNN with data when ρ = 0.1 (ρ is the
friction coefficients), then generalizing the trained models to dynamics when ρ = 0.05 and ρ = 0.5
by multiplying the learned curl-free component with constants 0.5 and 5.0, respectively. The results
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Figure 6: Comparison of predicted trajectories of the mass-spring system.
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Figure 7: Comparison of predicted trajectories of the pendulum.

are shown in Fig. 9, where we can observe that the three models accurately predict the trajectories of
the systems with a friction coefficient of 0.1 (first column in Fig. 9), but HHD-GP and D-HNN are
difficult to generalize to cases with friction coefficients of 0.05 and 0.5 (second and third columns in
Fig. 9). In contrast, SPHHD-GP effectively captures the dynamics of different friction conditions,
even though it has not been trained for these specific friction coefficients. This adaptability is valuable
because it allows the model to be applied to real-world scenarios where friction coefficients may
change.

J.5 Results of increasing noise level

To evaluate the robustness of the models, we added the experiments of increasing the standard
deviation σ = {0.01, 0.05, 0.10, 0.20} of Gaussian noise in the training data. Fig. 10 presents the
results on the pendulum. As expected, the performance of the models degrades as noise increases.
However, it can be observed that SPHHD-GP still performs best at all noise levels compared to the
baselines, meaning that our model is more robust to data noise. Furthermore, from Fig. 10(d) we
observe that the energy predictions of HHD-GP and D-HNN generate consistently significant errors,
insensitive to noise level in training data, which again demonstrate the non-identifiability suffered by
these models. In contrast, the energy errors of SPHHD-GP exhibit an increasing trend with increasing
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Figure 8: Example predicted HHD of the damped mass-spring system by HHD-GP (the first row)
and SPHHD-GP (the second row). (a): predicted vector field (the first column) with its div-free (the
second column) and curl-free (the third column) components; (b): the associated variance of the
div-free (the first column) and curl-free (the second column) predictions.
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Figure 9: Adapting the trained models to predict the trajectories for different friction coefficients.
The models are trained under ρ = 0.1, where ρ is the friction coefficients, then they are generalized
to predict trajectories for ρ = 0.05 and ρ = 0.5 by multiplying the learned curl-free component
with constants 0.5 and 5.0, respectively. The lines in the figure represent predicted trajectories from
different models (distinguished by different line styles), with the initial points for the two systems
(the first and second rows) being (1, 1) and (1.5, 1.5), respectively. The background vector fields are
the ground truth dynamics.

noise, further demonstrating the effectiveness of addressing model identifiability through symmetry
constraints.

J.6 Trajectory and energy prediction of the Chua circuit

Fig. 12 presents the comparison of trajectory predictions for the Chua circuit, and Fig. 11 compares
the energy prediction along the trajectory.
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Figure 10: Results with increasing standard deviation (SD) of Gaussian noise in training data.
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Figure 11: Comparison of predicted energy of the Chua circuit.

K Societal impact

Generally, our model can have a significant impact on a wide range of applications, such as phys-
ical simulation and robotic control. However, it is imperative that we meticulously evaluate the
performance of prediction and uncertainty estimation when implementing it in societal contexts.
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Figure 12: Comparison of predicted trajectories of the Chua circuit.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions are summarized in the last paragraph of Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: High computational complexity is the main limitation of our proposed model,
which has been discussed in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: They are provided in Section 4, Section 5 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the experimental results is provided
in Section 6, Appendix E, Appendix F and Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code will be released afterwards.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are provided in Section 6, Appendix E, Appendix F
and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the standard errors in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We used a single Nvidia GeForce GTX 3050 Ti GPU in the experiments, as
mentioned in the first paragraph of Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: [TODO]
Guidelines: We have discussed the societal impacts in Appendix K.

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code packages and datasets are properly cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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