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Abstract. The Transformer-based image captioning models have made
significant progress on the generalization performance. However, most
methods still have two kinds of limitations in practice: 1) Heavily rely
on the single region-based visual feature representation. 2) Not effectively
utilize the future semantic information during inference. To solve these
issues, we introduce a novel bidirectional-decoding based Transformer
with multi-view visual representation (BiTMulV) for image caption-
ing. In the encoding stage, we adopt a modular cross-attention block
to fuse both grid features and region features by virtue of multi-view
visual feature representation, which realizes full exploitation of image
context information and fine-grained information. In the decoding stage,
we design the bidirectional decoding structure, which consists of two
parallel and consistent forward and backward decoders, to promote the
model to effectively combine the history with future semantics for infer-
ence. Experimental results on the MSCOCO dataset demonstrate that
our proposal significantly outperforms the competitive models, improv-
ing by 1.5 points on the CIDEr metric.

Keywords: Image captioning · Transformer · Multi-view visual
representation

1 Introduction

In the past years, multi-modal learning has achieved remarkable progress with
the success of deep learning. Image captioning [1], as one of the most chal-
lenging multi-modal learning tasks, integrates technologies in the fields of both
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natural language generation (NLG) and computer vision (CV). It aims to seman-
tically describe an image using a fluent natural language sentence and has widely
applied in many fields, such as image retrieval [2], robot interaction [3], and dig-
ital library [4]. Inspired by the Sequence-to-Sequence (S2S) model for neural
machine translation (NMT) [5], mainstream image captioning approaches follow
a popular encoder-decoder framework [6–8], which consists of a convolutional
neural network (CNN) that encodes visual features from the input image, and
a recurrent neural network (RNN) that serves as the decoder to generate the
caption based on the visual features.

Recently, more and more researchers have incorporated the Transformer
model into image captioning, considering that it enables to learn the semantic-
rich encoding vector, capture the better long-distance dependence and support
higher parallel operations. Therefore, image captioning models with the Trans-
former inherently have better performance compared with traditional methods.
In terms of input visual features, existing image captioning approaches with the
Transformer can be roughly divided into two classes: grid features based mod-
els and region features based models. In terms of caption decoder structure,
most works focus on the left-to-right (L2R) paradigm. Despite the success of
the current image captioning approaches, there still exist two major limitations
as follows: 1) The region visual features cannot fully cover important details of
the entire image, thus weakening the representation ability of the image used
to guide the generation of captions. 2) Due to the masked self-attention mecha-
nism, the transformer decoder can only learn the sequence information based on
the partially generated words, and cannot effectively utilize the future predicted
information to learn complete semantics.

To address the first limitation, we explore a novel method to coordinate
region visual features and grid visual features. The grid visual features have
the advantage of fine granularity and contain enough image context informa-
tion, while the region visual features have adequate information of core image
objects. To combine the merits of the two methods, we adopt a multi-view learn-
ing approach to integrate the two visual features, taking region visual features as
the query input and grid visual features as the key-value pair input, respectively.
As a result, the combination of grid visual features and region visual features
can sensibly enhance the feature representation of the image. To address the
second limitation, we design a bidirectional caption decoder, in which the for-
ward and backward decoding processes have the same methodology but different
learning directions of the sentence.

To sum up, a novel Transformer-based image captioning approach is proposed
in this article, and the main contributions are given below:

1) An multi-view (MV) visual representation model is proposed, which can coop-
eratively encode region visual features and grid visual features, to extract the
rich contextual information of an input image.

2) An end-to-end bidirectional multi-modal Transformer is presented, which can
learn both history and future sentence semantics to generate more accurate
image captions.
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3) Extensive experiments are conducted on the MSCOCO dataset to validate
the effectiveness of the proposed model. The evaluation results demonstrate
that our model outperforms the mainstream models on most metrics.

2 Related Work

2.1 Image Captioning

There have been extensive studies and improvements on image caption.
Researchers initially focused on template-based approaches [9,10] and search-
based approaches [11]. Due to the development of deep learning in CV and NLP,
recent works generally adopt an encoder-decoder framework. For instance, Vinyals
et al. [7] proposed Convolutional Neural Networks (CNN) as an image encoder
and then adopted LSTM as an encoder to generate corresponding descriptive sen-
tences. In order to accurately understand the objects in the image, Anderson et
al. [12] utilized up-down attention based on a ResNet within pre-trained object
detector instead of a traditional convolution neural network (CNN) to extract
region-based image features. Since the graph convolution neural network (GCN)
can effectively extract spatial features, Yao et al. [13] applied a new GCN with
Long Short-Term Memory (dubbed as GCN-LSTM) architecture that can enrich
region-level representations and eventually enhances image captioning.

Despite the success of the above methods, RNN-based models are limited
by their representation power. The new Transformer-based models with self-
attention mechanism further improved the ability of representation and achieved
SOTA (state-of-the-art) results in multi-modal tasks. For instance, to address the
internal covariate shift problem inside self-attention, Guo et al. [14] employed Nor-
malized Self-Attention that fixes the distribution of hidden activations in the Self-
Attention mechanism. Pan et al. [15] incorporated Bilinear pooling which performs
well in fine-grained visual recognition into image captions, and proposed X-Linear
Attention Networks to achieve multi-modal input interaction. Huang et al. [16]
extended the traditional attention mechanism and introduced the Attention on
Attention (AOA) model, which can filter out attention vectors with low correlation
with query vectors. Different from the semantic features of global multi-view fea-
tures, Yu et al. [17] proposed Multi-modal Transformer that uses different object
detectors to extract region-based local multi-view features, which can maintain the
fine-grained semantic features of the image. Motivated by the prior research, we
present a novel model based on an encoding-decoding framework, which improves
visual representation by fusing two complementary visual features.

2.2 NMT

Recently, the research of captioning tasks is inspired by work related to NMT.
Generally, most NMT decoders generate translations in a left-to-right (L2R)
paradigm. However, the right-to-left (R2L) contexts are also crucial for transla-
tion predictions, since they can provide complementary signals to the models. In
this paper, we focus on work with bidirectional decoding structures. For instance,
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Liu et al. [18] introduced to find the best candidate from the combined N-best
list via the joint probability of L2R and R2L models. To explore bidirectional
decoding for NMT, Zhou et al. [19] construct a decoder that integrates forward
attention and backward attention. Zhang et al. [20] constructed two Kullback-
Leibler divergence regularization methods, which improve the coordination of
translation sequences generated by L2R and R2L decoders. Bidirectional decod-
ing structures for image captioning have also been successfully attempted, for
example, Wang et al. [21] proposed a multimodal bi-directional LSTM method to
realize end-to-end training for image captioning. Different from these RNN-based
bidirectional decoders models, our proposed BiTMulV is a novel bidirectional
decoding Transformer, which further incorporates the L2R and R2L structure.

3 Methodology

3.1 Model Architecture

Fig. 1. Overview of the framework of our BiTMulV model architecture. Our BiT-
MulV for image captioning consists of three components. The Multi-View based
encoder fuses region features and grid features, which enables reasoning of visual object
relationships via a modular cross-attention block. In the decoder of BiTMulV, we pro-
pose the bidirectional decoder that learns the contextual semantics from the history
and future. The Sentence Ranking method relies on the L2R sentence and the R2L
sentence generated by the bidirectional decoder to select the final descriptive caption.

The visual representation of images indirectly affects the accuracy of generating
descriptive captions in image captioning research. In this paper, we would like
to make full exploitation of the visual sequence by fusing two different visual
features. Moreover, we also would like to generate more accurate sentences by
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learning global semantics. Specifically, we describe one model for image caption-
ing, which is an end-to-end framework that is composed of an image encoder
and a bidirectional decoder as shown in Fig. 1. The image encoder takes region
visual features and grid visual features as its input. The visual features are then
fed into the bidirectional encoder to obtain the attended multi-view visual rep-
resentation with cross-attention learning. The bidirectional decoder predicts the
next word recursively by exploiting the attended multi-view visual representa-
tion and the previous word. Finally, the final caption is selected from the L2R
text and the R2L text generated by the bidirectional encoder via our proposed
ranking mechanism.

3.2 Multi-view Visual Representation Based Encoder

Multi-visual (MV) Feature Extraction. Given the input images, the region
features and grid features are extracted from the pre-trained object detector.
The region features are extracted by the off-the-shelf Faster-RCNN pre-trained
on Visual Genome [18]. For the grid features, we leverage the 49 grid visual
features from the last convolutional layer of ResNet-101 [15].

AOA. The AOA [16] is proposed to eliminate the interference of irrelevant
query vectors to obtain refined attention results. The vector N is concatenated
by the attention result and the attention query, which is transformed into the
information vector T via linear transformation and transformed into K via linear
transformation and nonlinear activation function. (as shown in Fig. 1):

N =Concat(FAttention, Q) (1)

T = Linear(N),K = Sigmoid(Linear(N)) (2)
To obtain the attended information H, the AOA incorporates the attention gate
into the information vector by using element-wise multiplication:

H = T � k (3)

Encoder Architecture. Considering the grid features contain rich visual con-
text information, we combine it with region based features to facilitate the
visual representation of our model. However, the region and grid features are
unaligned, we adopt an unaligned multi-view image encoder, to fuse them (as
shown in Fig. 1.). For the convenience of expression, the extracted grid features
and region features from an image can be denoted as G = {g1, g2, g3, ..., gn} and
R = {r1, r2, r3, ..., rn}, respectively, where rn ∈ Rd1 , gm ∈ Rd2 and n �= m .
Notably, we choose the region features R as the primary view and the grid
visual features G as the secondary view and adopt the multi-head cross-attention
(MHCA) block exploiting them:

Q = WQR,K = WKG,V = WV G (4)

FMHCA = MHCA(Q,K, V ) = Concat(head1, head2, ..., headm)wo (5)
headm = att(Q,K, V ) (6)
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where WQ,WK ,WV ∈ Rd×dhare three linear transformation matrices, and WO ∈
Rm∗d×dh . The multi-head attention mechanism consists of m parallel heads with
an independent scaled dot-product attention function. Afterwards, the AOA
module is applied to filter out information vectors that are not relevant to the
attention query and keeps only the useful ones, and then is followed by residual
concatenations and layer normalization:

A = AOA(FMHCA, R) (7)

E = LayerNorm(R + A) (8)

To generate more abstract and distinctive visual features for the bidirectional
encoder, the image encoder adopts deep stacking and the L-th encoder block
AL

encoder takes the results from the L-1-th encoder block EN − 1 as follows:

EN = AL
encoder(EN − 1) (9)

3.3 Bidirectional Decoder

Decoder Architecture. Generally, the standard Transformer decoder follows
the L2R sentence generation paradigm, which utilizes the mask attention mech-
anism to implement the unidirectional modeling of the sequence. To alleviate
the inability of the mask self-attentive mechanism in standard Transformers to
explore the past and future context information of a sequence, we propose a
novel bidirectional decoder architecture, which consists of a forward decoder
and a backward decoder.

Based on the multi-view visual representations learned by the image
encoder, the bidirectional decoder produces L2R and R2L sentence descrip-
tions simultaneously for an image. Given a sequence of captions for an image as
S = {s1, s2, s3, ...,sn}, the sentence is first tokenized into words and trimmed to a
maximum length of 18 words. Note that each word in the sentence is represented
as sn ∈ R300by using the Glove word embedding. The bi-directional decoder is
implemented with two parallel decoders with the same structure. The forward
decoder is fed with the L2R sequence

−→
S = (s1, s2, s3, s4, s5, s6, ...sn), while the

R2L sequence
←
S = (sn, ...s6, s5, s4, s3, s2, s1)is fed to the backward decoder. Since

two decoders have similar architectures, we mainly introduce the structure of the
forward encoder.

Specifically, we first employ the masked multi-head self-attention (MMHSA)
mechanism, which can characterize word to word relationships in sentences:

Q = WQ
−→
S ,K = WK

−→
S , V = WV

−→
S (10)

FMMHSA = Masked − Mulihead(Q,K, V ) (11)

where WQ,WK ,WV ∈ Rd × d are three linear transformation matrices and the
masked multi-head attention results are also normalized by residual concatena-
tions and layer normalization:

−→
A = LayerNorm(

−→
S + FMMHA) (12)



BiTMulV 741

Afterwards, the second MHCA module is used to impose the multi-view visual
representations-guided attention on the caption words:

FMHCA = MHCA(WQ
−→
A,WKV,WV V ) (13)

where V denotes the multi-view visual features vector. Once again, we apply the
AOA to measure how well visual features and text sequence features are related:

−→
W = AOA(FMHCA,

−→
A ) (14)

Similar to the image encoder, the bi-directional decoder consists of N iden-
tical decoder layers stacked in sequence. The text vector −→w is projected to
M-dimensional space by a linear embedding layer, where M is the size of the
vocabulary. Finally, the softmax layers are leveraged for the prediction of the
probability of the next word.

Sentence Ranking. In the inference stage, we adopt the beam search strategy
[17] with a beam size of 3 to improve the diversity of generated captions. Since the
forward decoder and backward decoder generate two sentences via beam search,
we design a sentence-level ranking mechanism, which compares the probabilities
of the two sentences and selects the one with the largest probability as the final
caption.

3.4 Training and Objectives

The proposed model is trained in two stages as same as a standard practice
in image captioning [16,20,22,27]. we first pre-train our model by optimizing
cross-entropy (XE) loss. For training both the forward and backward decoders,
the joint loss is formulated as follows by averaging the cumulative forward and
backward losses:

LXEθ = AVE(
−→
L XEθ +

←
LXEθ) (15)

−→
L XE(θ) = −

T∑

t=1

log(pθ(y∗
t |y∗

1:t − 1)) (16)

←−
L XE(θ) = −

T∑

t=1

log(pθ(y∗
t |y∗

t+1:1)) (17)

where y∗
t+1:1 and y∗

1:t − 1 are the ground truth of text sequences, θ is the param-
eters of our BiTMulV.

Subsequently, reinforcement learning is used to optimize non-differentiable
metrics. Specifically, we employ a variant of the self-critical sequence training
[22] on sequences sampled via beam search:

LRL(θ) = −Ey1:T −pθ
(R(y1:T )) (18)

where the R(•) is employing the CIDEr-D as reward.
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4 Experiments

4.1 Experimental Setup

Datasets. Our proposed method is trained, validated, and tested on the
Microsoft benchmark dataset MSCOCO [23]. It contains 123,287 images and
is each equipped with five different human-annotated captions. In particular,
in order to ensure the effectiveness of offline experiments, we adopt the widely
used Karpathy split [15], of which 113287 images are used for training and 5000
images are used for testing and verification.

Evaluation Metrics. The standard evaluation metrics include BLEU [23],
ROUGE-L [24], SPICE [25], METEOR [26], CIDEr [27], which are used to eval-
uate the quality of the model.

Implementation Details. Our model is carried out on two NVIDIA RTX
2080 GPU, utilizing AOANET [16] as the baseline model. We pre-processed the
annotated sentences, discarded words less than 6 times or did not appear in the
Glove pre-training vocabulary, and finally formed a vocabulary with 9568 words.
The dimension of the extracted visual feature vectors is 2048. Both the number
of encoder layers and the number of decoder layers are set to 6.

We first train the proposed model by utilizing the word-level cross-entropy
loss for 35 epochs with a mini-batch size of 15. The Adam optimizer is adopted
with an initial learning rate of 1.5e-4, annealed by 0.65 every 3 epochs. To
alleviate the exposure bias of cross-entropy optimization, our BiTMulV for all
experiments is further trained using 10 epochs of self-critical [22] (SCST) loss
with an initial learning rate of 1e-5 and annealed by 0.5.

4.2 Ablation Study

In this section, we analyze the effectiveness of the proposed method. The ablation
study focused on: 1) The effect of Multi-View visual representation, 2) The effect
of bidirectional decoder.

Table 1. Performance comparisons with different methods. The result is reported after
the self-critical training stage

Method B@1 B@4 M R C S

Enc(Grid)+Dec(U) 78.5 36.6 27.4 57.2 124.5 20.6

Enc(Region)+Dec(U) 79.9 38.2 28.8 58.2 128.6 21.4

Enc(Region+Grid)+Dec(U) 80.5 38.4 29.4 59.0 130.6 22.2

Enc(Grid)+Dec(B) 78.8 36.8 27.9 57.5 124.9 20.8

Enc(Region)+Dec(B) 80.1 38.2 29.1 58.3 129.5 21.5

Full:BiTMulV 80.8 38.8 29.6 59.5 131.3 22.7

Enc (Grid/Region/Region+Grid)+Dec (U/B): In the comparison meth-
ods, Enc (Grid/Region) indicates that the image encoder adopts the grid



BiTMulV 743

features or the region features, and Dec (U/B) means that the encoder adopts
the unidirectional structure or the bidirectional structure.

1) The effect of Multi-view (MV) visual representation. To analyze
the effect of our proposed BiTMulV visual representation, we implement val-
idation experiments, as shown in Table 1. We can observe that the model
Enc(Region)+Dec(U) performs better than the model Enc(Grid)+Dec(U) on
all evaluation metrics. Compared with the Enc(Region)+Dec(U), the perfor-
mance of the Enc(Region+Grid)+Dec(U) is significantly improved. Specifically,
the Enc(Region+Grid)+Dec(U) achieves 2 and 0.6 increments over the metrics
of CIDEr and BLEU-1, as shown in Table 1.

2) The effect of the bidirectional decoder. To further demonstrate
the effectiveness of the proposed bidirectional decoder, we also compare the
unidirectional decoder with bidirectional decoder for performance analysis.
As illustrated in Table 1, the performance of both Enc(Grid)+Dec(B) and
Enc(Region)+Dec(B) can be boosted (from 124.5 CIDEr to 124.9 CIDEr
and from 128.6 CIDEr to 129.5 CIDEr, respectively). The same growing
trend can be observed (from 129.5 CIDEr to 131.3 CIDEr) after combining
the MV visual representation method with bidirectional decoding(Full: BiT-
MulV), which further confirms the effectiveness of the bidirectional decoder.

4.3 Quantitative Analysis

Results on the Karpathy Test Split: Table 2 report the performance of our
model and the competitive models on the Karpathy test split. Including SCST
[18], a gradient-guided optimization method based on reinforcement learning
that can effectively train non-differentiable metrics. We compare our method
with the state-of-the-art methods, including SCST [22], LSTM-A [24], Up-Down
[12], RFNet [25], GCN-LSTM [13], LBPF [26], SGAE [27], AoANet [16]. Up-
Down introduces an attention mechanism that integrates bottom-up and top-
down for fine-grained image understanding. GCN-LSTM uses GCN as the image
semantic encoder and LSTM as the decoder. LSTM-A incorporates high-level

Table 2. Performance comparisons on Offline COCO Karpathy test split.

Cross-entropy Loss SCST Loss

Model B@1 B@4 M R C S B@1 B@4 M R C S

SCST - 30.0 25.9 53.4 94.0 0.0 34.2 26.7 55.7 114.0 0.0

LSTM-A 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8

Up-Down 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.2

RFNet 76.4 35.8 27.4 56.8 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2

GCN-LSTM 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0

LBPF 77.8 37.4 28.1 57.5 116.4 21.2 80.5 38.3 28.5 58.4 127.6 22.0

SGAE - - - - - - 80.8 38.4 28.4 58.6 127.8 22.1

AoANet 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4

Ours 77.9 38.1 28.8 58.8 118.1 21.6 80.8 38.8 29.6 59.5 131.3 22.7
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image attributes into the CNN-RNN framework to facilitate sentence generation.
RFNet adopts multiple CNNs to encode fusion features for images and insert
a recurrent fusion procedure. LBPF fuses visual information from the past as
well as semantic information in the future to improve the performance of cap-
tion generation. SGAE constructs a shared dictionary with induction bias to
guide language generation. AOANet filters out irrelevant attention vectors by
constructing the interaction of “information vector” and “attention gate”.

For a fair comparison, we respectively utilize the cross-entropy loss and SCST
to train all the models in the single model setting, as shown in Table 2. It can be
observed that our model surpasses the previous state-of-the-art models in terms
of BLEU-1, BLEU-4, METEOR, ROUGE-L, and SPICE and is slightly worse
than the baseline model AOANet in terms of cider when optimized with cross-
entropy. After optimizing the CIDEr-D score, our proposed method improves by
0.6 points on BLEU-1, 0.4 points on METEOR, 0.7 points on ROUGE-L and
achieves a significant improvement of 1.5 points in comparison with AOANet.

4.4 Qualitative Analysis and Visualization

Qualitative Analysis. As shown in Fig. 2, we generate four captions for the
sampled images, where “GT” indicates ground truth Sentences.

Fig. 2. Examples of captions generated by our method and the baseline model, as well
as the corresponding ground truths.
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Generally, the sentences generated by our proposed method are more accurate
and descriptive than the baseline model. In detail, our proposed model is superior
following two aspects:

1) Our proposed BiTMulVmodel could help understand visual contextual
information and focus on fine-grained information to realize the alignment
of the image and the captions. For example, the baseline model in the first
example does not realize the color of the two cats, while our BiTMulV model
effectively captures the “black” and the “white”. In the third example, the
blue car and the yellow car in the image are related to each other, but the
baseline model does not recognize the blue car. On the contrary, our model
effectively captures the context information of the image and recognizes the
connection between the blue car and the yellow car.

2) Secondly, our BiTMulV model is more accurate and effective in counting
objects of the Multi-object images. In the third example, the baseline model
describes only one bus, while our method describes two buses. In the fourth
example, our model recognizes images that describe the child, short, play-
ground, and bases, while the baseline model does not capture short and play-
ground.

Fig. 3. Visualization.
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Visualization. To better qualitatively evaluate the generated results with our
proposed BiTMulV method, we visualize the attended image regions during the
caption generation processes for Baseline and BiTMulVin Fig 3. It can be seen
that our BiTMulV model correctly aligns image regions to the words, while
the baseline model ignores some significant regions and then generates inaccu-
rate captions. For example, the baseline model attends to the applies, while the
oranges are not recognized. In contrast, by exploiting Multi-View Visual Repre-
sentation for multi-modal reasoning, our BiTMulV model accurately localizes
the oranges region to generate the “oranges”.

5 Conclusions

In this paper, we propose a novel image captioning model (BiTMulV) based
on the multi-view visual representation and bidirectional decoding structure.
On one hand, we make use of image contextual information and fine-grained
information by combining region visual features with grid visual features. On
the other hand, the BiTMulV adopts the explicit bidirectional decoding struc-
ture, which can exploit both historical semantics and future semantics to guide
model learning. The quantitative and qualitative experiments demonstrate the
superiority of our proposed method over the existing deep image captioners.
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