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Abstract

Researchers and practitioners operating on a limited budget face the cost-
performance trade-off dilemma. The challenging decision often centers on
whether to use a large LLM with better performance or a smaller one with
reduced costs. This has motivated recent research in the optimisation of
LLM calls. Either a cascading strategy is used, where a smaller LLM or both
are called sequentially, or a routing strategy is used, where only one model
is ever called. Both scenarios are dependent on a decision criterion which is
typically implemented by an extra neural model. In this work, we propose
a simpler solution; we use only the uncertainty of the generations of the
small LLM as the decision criterion. We compare our approach with both
cascading and routing strategies using three different pairs of pre-trained
small and large LLMs, on nine different tasks and against approaches that
require an additional neural model. Our experiments reveal this simple
solution optimally balances cost and performance, outperforming existing
methods on 25 out of 27 experimental setups.

1 Introduction

Large Language Models (LLMs) offer a high performance for a wide range of text tasks.
Their widespread popularity both in research and industrial applications necessitates an
understanding on how to optimally use them. Bigger models tend to have better perfor-
mance, while smaller models are faster and cheaper to run. Deciding which model to
use is a common dilemma for many researchers and practitioners with limited budgets,
time-constraints or environmental concerns.

Recent works attempt to optimise calls to a set of LLMs. In this work we consider the set-up
with two LLMs, where one is more expensive with greater performance than the other.
In this scenario, there are two main strategies (Figure 1): routing, where a query from a
user is directed to only one model based on a decision criterion; cascading, where the query
always goes to the cheaper model and may subsequently go to the more expensive model
depending on the cheaper model’s output. These previous studies use one of these calling
strategies, and involve either using an auxiliary model to score an LLM output (Chen et al.,
2023; Sakota et al., 2023; Ding et al., 2024; Madaan et al., 2023) or using repeated calls to the
small cheaper LLM (Yue et al., 2024; Madaan et al., 2023).

Studies that use an auxiliary model introduce further complexity in the optimisation ap-
proach, and it remains unclear when practitioners should rely on these auxiliary models.
Not only do they require additional training, but they also usually require specific training
data and the auxiliary models may not generalise to other tasks. For studies that rely on
repeated calls to the small LLM, this approach can become expensive, undermining the
original practical motivation for its use. It is perhaps for these reasons, that neither approach
has gained traction among practitioners.

However, we question whether these additional models or the repeated calls are required to
optimise LLM calls. We hypothesise that they may be unnecessary in many use cases, as we
can extract confidence measures from the generations of the small model. To investigate this,
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Figure 1: Routing (left) attempts to select the LLM with the best cost-accuracy trade-off given
an incoming query. In cascading (right), all queries are passed through the small model,
and depending on its output, the large LLM is consulted. We propose using a cascading
approach that uses the margin of the generations to score outputs from the small LLM.

we propose a cascading policy that uses a simple measure of confidence of the small LLM to
decide whether the large LLM needs to be called. We evaluate our policy on nine tasks, and
for three different pairs of pre-trained small and large LLMs. We focus specifically on short-
generation tasks, which are widely used and versatile, and do not include long-generation
tasks in this study due to the additional complexity they introduce for evaluation. In our
experiments on classification, multiple-choice and Question-Answering (QA) tasks, this
policy outperforms methods that require additional training.

We believe our findings suggest that the optimisation of LLM calls should gravitate to-
wards understanding their existing available signals, as opposed to training and running
further auxiliary models. Moreover, simple and cheap policies have a lower entry cost for
researchers and practitioners, which has an impact on their adoption.1

The key contributions of this work are as follows:

• We propose using the margin of the generations of LLMs to optimise LLM calls. The
approach is simple, non-parametric, and does not require data or running multiple
calls to the small model.

• We test our policy on nine tasks with three different pairs of small and large LLMs,
and against relevant neural methods that use auxiliary models. We find that Mar-
gin Sampling outperforms the other methods, despite using fewer resources. In
addition, we further test our policy in a multi-task set-up and obtain similar results.

• Our results underscore the importance of understanding signals from LLMs in the
context of optimising calls to them, in contrast with previous work, which require
additional training of auxiliary models.

2 Related work

LLM uncertainty The margin between the two most likely classes has been widely re-
garded as an uncertainty measure adopted from early Active Learning literature (Scheffer
et al., 2001; Luo et al., 2004) and considered more recently in the context of Knowledge
Distillation from LLMs (Baykal et al., 2023; Ramı́rez et al., 2023). Other measures of un-
certainty exist for LLMs (Baan et al., 2023; Huang et al., 2023). The primary challenge in

1We make our code publicly available: https://github.com/guillemram97/margin llms
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text generation lies in the difficulty of distinguishing between various forms of uncertainty.
Specifically, when evaluating the confidence level of a text generator, we would ideally want
to concentrate on uncertainties related to the change in meaning. This entails distinguishing
uncertainties that affect the intended meaning from meaning-preserving variations in the
generated text. In this study, we address this challenge by concentrating on tasks that
require generating very short sequences of tokens. We find that even a basic approach
to uncertainty can be advantageous. Additionally, while it might seem logical to assess
uncertainty through multiple text outputs from a model, this would lead to significant
computational costs, which are impractical for our purposes. Therefore, we employ a
straightforward method that does not necessitate generating multiple text samples.

Optimisation of inference costs Several methods have been proposed to improve the
latency of LLMs, such as speculative decoding (Leviathan et al., 2023), knowledge distil-
lation (Bucila et al., 2006; Hinton et al., 2015) and model quantisation (Jacob et al., 2018).
However, operational costs rather than latency are the focus of this work. Our method only
requires access to the logits of a small pre-trained LLM with no need for its parameters.

Optimisation of LLM API Calls Recent work deals with the problem of optimising calls
to a pool of LLMs (Wang et al., 2024). Sakota et al. (2023) and Lu et al. (2023) propose to train
an auxiliary model that predicts the success of calling each LLM. Similarly, Ding et al. (2024)
developed a model that predicts the quantitative benefit of utilizing a smaller language
model over a larger one.

Chen et al. (2023) proposed cascading: using an auxiliary model to predict the accuracy
of the small LLM’s output. Madaan et al. (2023) and Zhang et al. (2023) used cascading
in conjunction with multiple calls to the small model. Finally, Yue et al. (2024) propose a
cascading approach that requires repeated calls of the small LLM for reasoning tasks; we
show that this can be simplified to just looking at the most likely tokens for short-generation
tasks.

Ramı́rez et al. (2023) showed that the margin on a knowledge-distilled model could optimise
calls to the larger LLM. This work was limited to one pre-trained large LLM and a smaller
fine-tuned local model. However, many practitioners and researchers may not be able to
fine-tune their own models due to budget constraints. We extend these findings to pairs
of both small and large pre-trained LLMs, as well as to other generation tasks including a
multi-task setup.

Concurrent work (Gupta et al., 2024) showed that the uncertainty at the token level can
be used to effectively leverage a smaller LLM in a cascade setup. Their focus is on the
combination of the multiple tokens involved in longer generation, and propose a supervised
method; we propose using the margin, a simple rule that optimises short-generation tasks
without needing additional data. In addition, we show its applicability in the multi-task
setup.

Our proposed method differs from previous studies as it does not require previously
annotated data for the task and does not require repeated calls to the small LLM. Finally, it
does not require training and deploying an auxiliary model.

3 Optimisation of LLM calls

3.1 Problem definition

In this work, we predict mappings between elements in the input space, X , and the corre-
sponding labels in the output space, Y . We have access to the small and the large LLMs that
we can prompt to become predictors fs, fl : X → ∆(Y), where ∆(Y) denotes the class of
probability distributions over Y . We simulate the online setting, where users send queries

sequentially. We have q queries (x1, . . . , xq) iid∼ X and we predict the corresponding labels
(y1, . . . , yq). For each incoming query xi, we decide whether to call an LLM based on a
calling strategy (see below), and incur a given cost cs(xi) or cl(xi) respectively. The average
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cost of the queries by both models is then given by ĉs = 1
q ∑i cs(xi); ĉl =

1
q ∑i cl(xi). We

assume that ĉs < ĉl.

3.2 LLM Calling Strategies

For strategies that require training an additional model, we use a train dataset Xtrain, Ytrain,
and use either the corresponding labels from the small LLM only, fs(Xtrain), or from both
LLMs, fs(Xtrain) and fl(Xtrain), depending on the strategy. For the training of the auxiliary
models, we follow the original papers as much as possible and perform a hyperparameter
search where values are omitted. See Appendix A for a detailed explanation of the training
process.

3.2.1 Routing Strategies

Since only the small or the large LLM is called in routing strategies, then for a given target
average cost per query c (ĉs ≤ c ≤ ĉl), we call the large LLM with a probability pr calculated
from the re-arranged form of Equation 1.

c = (1 − pr)ĉs + pr ĉl (1)

Random routing For every incoming query we call the large LLM with the probability pr.

Routing (Sakota et al., 2023; Lu et al., 2023) We train a meta-model to predict the per-
formance of the small LLM only, given an incoming query. If this prediction is below a
threshold value related to the probability pr, it indicates the small LLM’s performance is
insufficient and thus we must call the large LLM.

HybridLLM (Ding et al., 2024) The performance of both the small and large LLMs are
modelled in this strategy. We train a meta-model to predict if an incoming query is likely
to be better solved by the small LLM than by the large LLM. As in Routing above, if this
prediction is below a threshold value related to the probability pr, we call the large LLM,
otherwise the small LLM.

3.2.2 Cascading

Since the small LLM is always called, then for a given target average cost per query, c, we
call the large LLM with a probability pc calculated from the re-arranged form of Equation 2.

c = ĉs + pc ĉl (2)

FrugalGPT (Chen et al., 2023) We train a model that, given a query and a candidate
answer, predicts if the latter is correct. If this prediction is below a threshold value related
to the probability pc, we call the large LLM.

Margin Sampling (ours) We suggest using the uncertainty of the output, namely the
margin (Scheffer et al., 2001; Luo et al., 2004), defined by:

Margin fs
(xi) = Pfs(yi = kt=1

1 | xi)− Pfs(yi = kt=1
2 | xi) (3)

where kt=1
1 and kt=1

2 are the first and second most likely tokens, respectively, according
to the distribution of fs for the first predicted token position, t = 1. One advantage of
this approach is that it does not require generating a full sequence to be able to compute
uncertainty. Moreover, for the tasks we consider there is generally more uncertainty in the
first token. If the margin is below a threshold value related to the probability pc, we call the
large LLM.
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3.3 Dynamic threshold

All the investigated strategies require setting a threshold for the decision criterion, and we
select a dynamic threshold in this work. An initial threshold is calculated using the first 20
queries. We do not evaluate whether to call the large LLM for these 20 queries, we only
obtain outputs from the auxiliary models, or the margin value for Margin Sampling. This
may require calling the small LLM depending on the strategy. We then use this distribution
to calculate an initial pr or pc-th percentile value. For all subsequent queries, the decision
to call the large LLM is made, and the threshold is dynamically updated based on all past
queries. We test the effect of the dynamic threshold in additional experiments (Table 10) and
conclude it does not result in major performance inefficiencies.

4 Experimental setup

4.1 LLMs

We study three pairs of small and large LLMs in our experiments: Mistral 7B (Jiang et al.,
2023) and Mixtral 8x7B (Jiang et al., 2024); Llama-2 of size 13B and Llama-2 of size 70B
(Touvron et al., 2023); GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023). We selected
these pre-trained LLMs because of their popularity among practitioners, as well as to show
robustness across different scales. We have arranged the pairs this way to keep the family of
LLMs similar; however, this is not a requirement for any of the calling strategies.

For the open-source families (Mistral, Llama-2), all our experiments are done locally in one
NVIDIA A100 GPU (80 GB), after applying a 4-bit quantisation. Section C contains more
details about the LLMs used.

4.2 Datasets

We draw inspiration from Liang et al. (2022) and Ramı́rez et al. (2023) and choose a wide
range of tasks, showcasing different difficulties. The sizes of the datasets, along with the
label distribution and accuracy of the LLMs, can be found in Appendix (Section B, Section C).

Classification tasks For emotion classification we use ISEAR (Shao et al., 2015); for fact-
checking we use FEVER (Thorne et al., 2018); for sentiment analysis we use RT-Polarity
(Pang & Lee, 2005), CR (Ni et al., 2019), and SST-2 (Socher et al., 2013). All of these datasets
are balanced.

Multiple-choice We use Openbook (Mihaylov et al., 2018), a popular multiple-choice
dataset that involves common knowledge of the world.

QA - short generation We use NaturalQuestions (Kwiatkowski et al., 2019), that contains
real questions from human users; we use Wikifact (Petroni et al., 2019; Goodrich et al., 2019),
which consists of a knowledge base completion problem to test factual knowledge; we use
bAbI (Weston et al., 2016), that tests language understanding and reasoning.

4.3 Experiment details

For each dataset we set aside 1, 000 data-points for a train dataset that is used only to
train the auxiliary models. The remainder is used for the online test set. We use n = 500
data-points from the train dataset in the Routing, HybridLLM and FrugalGPT strategies
when training the auxiliary model, unless stated otherwise. For the auxiliary models, we
fine-tune DistilBERT (Sanh et al., 2019), as per Sakota et al. (2023); Ding et al. (2024); Chen
et al. (2023); Madaan et al. (2023); Ding et al. (2024). We further split the training data into
80% train and 20% validation, and fine-tune for 100 epochs with early stopping and patience
of 20 epochs.

Unless stated otherwise, our results assume a simple cost scheme with cs(xi) = 1 and
cl(xi) = 10, consistent with the pricing of commercial APIs (Wang et al., 2024) and similar
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to the cost schemes of related work (Madaan et al., 2023; Chen et al., 2023; Lu et al., 2023;
Sakota et al., 2023). We do not take into account in our experiments the latency of running
DistilBERT, which we deem negligible compared to running the LLMs. To evaluate accuracy
across budgets, we report Area Under the Curve (AUC) of the accuracy divided by ĉl − ĉs.
Bolded results mark best performance, and underlined results mark second-best. We run
our experiments with three random seeds, and report average results.

Figure 2: Accuracy curve with respect to budgets. We have averaged results for all the tasks.

5 Results

5.1 Comparison of calling strategies

Table 1 shows the AUC for all five evaluated calling strategies, across the nine tasks and
for the three pairs of LLMs. Averaged across all nine tasks (the final column), we see that
Margin Sampling outperforms all strategies for all LLM pairs. Across individual tasks, we
see that it performs best or second best for seven of the nine tasks consistently across all three
LLM pairs. Of all the nine tasks and three LLM pairs, it does not achieve best or second-best
performance for only two of the 27 combinations: for ISEAR and for NaturalQuestions
for the Mistral 7B and Mixtral 8x7B LLM pair. This is likely due to the poor accuracy of
the small LLM Mistral 7B on these tasks (Appendix C). Figure 2 shows how performance
changes with budget. We see that Margin Sampling dominates across all budgets, despite
not using any training data.

Indeed, the performance of Margin Sampling seems to improve as the performance of the
cheaper LLM improves, which is to be expected; it achieves its best results when applied on
top of GPT-3.

FrugalGPT is on average the second-best performing strategy. This is due to its good
performance on classification tasks, which is expected as it uses a classifier trained on the task
as the auxiliary model. However, it performs worse than the random baseline on the more
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ISEAR RT-Pol FEVER CR SST-2 Openbook Wikifact bAbI NaturalQ Average

Mistral 7B - Mixtral 8x7B
Random 0.606 0.876 0.773 0.923 0.880 0.843 0.443 0.597 0.193 0.681
Routing 0.618 0.876 0.777 0.924 0.890 0.844 0.492 0.606 0.177 0.689
HybridLLM 0.618 0.876 0.776 0.924 0.886 0.849 0.454 0.612 0.199 0.688
FrugalGPT 0.632 0.887 0.777 0.931 0.901 0.835 0.477 0.596 0.172 0.690
Margin Sampling 0.617 0.885 0.777 0.933 0.899 0.868 0.499 0.606 0.187 0.697

Llama-2 13B - Llama-2 70B
Random 0.630 0.809 0.653 0.885 0.873 0.617 0.505 0.600 0.259 0.648
Routing 0.639 0.836 0.662 0.909 0.883 0.621 0.514 0.593 0.254 0.657
HybridLLM 0.641 0.844 0.681 0.899 0.874 0.626 0.514 0.608 0.264 0.661
FrugalGPT 0.662 0.856 0.668 0.918 0.899 0.598 0.507 0.602 0.258 0.663
Margin Sampling 0.645 0.853 0.691 0.912 0.893 0.640 0.516 0.609 0.270 0.670

GPT-3 - GPT-4
Random 0.747 0.914 0.816 0.931 0.898 0.877 0.552 0.574 0.281 0.732
Routing 0.769 0.915 0.815 0.936 0.898 0.878 0.558 0.584 0.277 0.737
HybridLLM 0.744 0.914 0.821 0.932 0.899 0.882 0.556 0.558 0.278 0.732
FrugalGPT 0.767 0.922 0.819 0.940 0.903 0.876 0.564 0.572 0.283 0.738
Margin Sampling 0.771 0.925 0.826 0.940 0.899 0.918 0.584 0.598 0.294 0.751

Table 1: Accuracy (AUC) for the three LLM model pairs across the five classification tasks
(columns 2-6), the multiple-choice task (column 7) and the three generation tasks (columns
8-10).

challenging multiple-choice task, Openbook. FrugalGPT also performs inconsistently for
QA tasks; we conclude that FrugalGPT may be satisfactory on relatively easy classification
tasks and struggle with harder generation tasks.

Finally, Routing and HybridLLM seem to have a good performance in QA tasks while
having a worse performance in classification tasks. We note that HybridLLM on average
has the same performance as random for the OpenAI models, which is a surprising finding.

We have not shown comparisons to approaches that require repeated calls to a small LLM
throughout this work, as in preliminary experiments we found they do not perform well
(see Section D.2).

5.2 Multi-task setting

LLMs are often used to handle various tasks simultaneously. To simulate this scenario, we
create an artificial multi-task setting by merging the datasets from all nine tasks. We then
sample 10,000 data-points. We split this dataset into a 10% train set (n = 1, 000 data-points)
and a 90% online test set.

Figure 3 and Table 2 show the results for our multi-task experiments. We see again that
Margin Sampling has the best performance. This shows the versatility of this method, that
it can be applied across tasks with ease. In contrast, HybridLLM has a poor performance
both for Llama-2 and OpenAI models. We found these results still hold when using 5,000
data-points as training data (Appendix D.1).

5.3 Robustness of experiments

5.3.1 Investigating the effect of training data

To ensure that auxiliary models are not being unfairly handicapped by a low-data setting,
we train them with double the data points as before (n = 1, 000), in spite of this being a
possibly infeasible amount of data for many researchers and practitioners.
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Mistral Llama-2 OpenAI

Random 0.718 0.681 0.775
Router 0.731 0.696 0.786
HybridLLM 0.726 0.676 0.773
FrugalGPT 0.733 0.694 0.781
Margin Sampling 0.736 0.704 0.792

Table 2: Accuracy (AUC) in the multi-task setting. Methods Router, HybridLLM and
FrugalGPT have been trained with n = 1, 000 data-points.

Figure 3: Accuracy curve with respect to budgets, in the multi-task setting.

Table 3 shows the averaged AUC results across tasks for the three LLM pairs. The addi-
tional data generally improves the performance of the auxiliary models, however, Margin
Sampling still performs competitively, achieving the best performance for two of the three
pairs. Table 3 also shows that the gap with FrugalGPT closes and that HybridLLM has again
a limited performance on the OpenAI models. Additionally, we run experiments in settings
with more data (n = 5, 000), and confirm that Margin Sampling still performs competitively
(Table 11).

5.3.2 Investigated the effect of cost

While previous studies typically only study a single cost setting (Sakota et al., 2023; Chen
et al., 2023; Madaan et al., 2023; Ding et al., 2024), this could influence findings. We carry
out further experiments with alternative cost schemes for the three LLM pairs across all
tasks. 2 The cost ratio rcost = cl/cs is sufficient to parameterise the effect of cost. We need
only vary cl, and maintain cs = 1. We study values of cl = 2, 5 and 20.

2We note that, at the time of writing, the pricing ratio for the OpenAI models that we used (GPT-3
and GPT-4) is $30/million tokens

$2/million tokens = 15
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Mistral Llama-2 OpenAI

Random 0.681 0.648 0.732
Router 0.694 0.661 0.741
HybridLLM 0.691 0.664 0.734
FrugalGPT 0.695 0.672 0.743
Margin Sampling 0.697 0.670 0.751

Table 3: Accuracy (AUC, averaged across tasks) when Router, HybridLLM and FrugalGPT
have been trained with 1,000 data-points.

Mistral Llama-2 OpenAI
cl=2 cl=5 cl=20 cl=2 cl=5 cl=20 cl=2 cl=5 cl=20

Random 0.681 0.681 0.681 0.648 0.648 0.648 0.732 0.732 0.732
Router 0.690 0.690 0.689 0.657 0.657 0.657 0.737 0.737 0.736
HybridLLM 0.689 0.688 0.688 0.661 0.661 0.661 0.732 0.732 0.731
FrugalGPT 0.677 0.687 0.691 0.650 0.660 0.664 0.721 0.735 0.740
Margin Sampling 0.683 0.694 0.698 0.654 0.667 0.671 0.734 0.747 0.752

Table 4: Accuracy (AUC, averaged across datasets) under cost schemes cs = 1 and varying
cl.

Table 4 shows the results of these experiments. Independently of the cost, Margin Sampling
appears the best cascading strategy (against FrugalGPT). In addition, we observe that
Margin Sampling is the best overall strategy for rcost ≥ 5; for rcost = 2, routing strategies
could be preferred. Intuitively, cascading needs the cost of the small LLM to be relatively
cheap enough to not sacrifice too many calls to the large LLM (pc < pr).

5.3.3 Mixing different families of LLMs

Margin Sampling can also be applied when the two LLMs are from different families; we
further test its robustness with pairs Llama-2 13B - Mixtral 8x7B, Mistral 7B - Llama-2 70B.
Our findings confirm the effectiveness of Margin Sampling (Table 5).

6 Discussion

In this paper, we have used a simple measure of confidence of the small LLM, known as
Margin Sampling, to estimate the uncertainty of an LLM output in short-generation tasks,
and we leave for future work the generalisation of this approach to long-generation tasks.
Our experiments show that Margin Sampling performs consistently well on a range of
short-generation tasks relevant to researchers and practitioners, such as QA and multiple-
choice/classification tasks.

Existing approaches on the optimisation of LLM calls require training an auxiliary model.
We hypothesised that these approaches introduce additional complexity that obfuscates their

Llama-2 13B - Mixtral 8x7B Mistral 7B - Llama-2 70B

Random 0.664 0.666
Router 0.673 0.688
HybridLLM 0.672 0.687
FrugalGPT 0.678 0.688
Margin Sampling 0.685 0.690

Table 5: Accuracy (AUC, averaged across datasets) when the LLMs are from different
families.
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understanding, and our findings that HybridLLM performs poorly with the OpenAI models
lends credibility to this hypothesis. In contrast, we propose moving towards research that
leverages information within the LLM itself. Classic notions of the uncertainty of the LLM’s
generation, such as perplexity, margin or entropy, could be relevant signals to help optimise
LLM calls. A natural extension of our work is to generalise it for an arbitrary task length,
for which it may be that a global notion of uncertainty also heavily depends on the first
token. Our preliminary results with Machine Translation (Appendix D.5) indicate that some
further adaptation of our method may be required for tasks where the first token may not
be directly or partially the answer.

It was beyond the scope of this work to investigate cascading and routing strategies of three
or more LLMs. However, we hypothesise our approach may still perform well, as Margin
Sampling has shown to be robust to different-sized LLMs.

7 Conclusions

We have proposed a method for LLM call optimisation that achieves superior performance
without the need of an auxiliary model. To the best of our knowledge, the field of LLM call
optimisation has not yet gained widespread adoption among practitioners. This may be due
to the limited versatility and increased complexity of previous solutions. In contrast, our
proposed simple approach can be easily and quickly implemented with most commercial
LLMs. We believe that our findings could encourage a new direction in the research of LLM
call optimisations.
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A Implementation details

For methods Routing, HybridLLM and FrugalGPT we use Hug-
gingface’s AutoModelForSequenceClassification and the model
distilbert/distilbert-base-uncased. For methods Routing, HybridLLM we set
the target number of classes to two; for FrugalGPT, we set it to either the number of target
classes for classification/multiple-choice problems or two for QA problems. We perform a
hyperparameter search (grid search) on a validation set of 500 examples of Openbook and
Wikifact, and we find that the different methods have a similar convergence. We decide
using learning rate µ = 5 × 10−4, training batch size m = 16 and weight decay λ = 0.01,
which is consistent with the reported values of Sakota et al. (2023) and seems to generalise
well across tasks. Ding et al. (2024), Chen et al. (2023) and Lu et al. (2023) do not report
hyperparameter values.

A.1 Training

Routing We generate an answer using the small LLM. Then, we compare it to the gold
label. The target class is 1 or 0 depending on the correctness of the answer from the small
LLM.

• Input: ’Who wrote ’If There Is I Haven’t Found It Yet?’
• Output: ’0’
• Explanation: Llama-2 13B produces an incorrect answer.

HybridLLM We generate an answer using the small and the large LLMs. Then, we
use the first token y1 of the gold answer y, to obtain the quality gap H(x) = PSmall(y1 |
x)− PLarge(y1 | x). Following Ding et al. (2024), we subtract the median of H(x); then we
map it to 1 or 0 depending on H(x) > Hmedian, thus leaving a binary classification problem
of uniform classes.

• Input: ’Who wrote ’If There Is I Haven’t Found It Yet?’
• Output: ’0’
• Explanation: Llama-2 13B is less likely than Llama-2 70B to produce the right

answer.

FrugalGPT (classification and multiple-choice) We train DistilBERT with gold data.
During inference, we generate an answer with the small LLM. The score is the probability
DistilBERT associates to this class.
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ISEAR RT-Polarity FEVER CR SST-2 Openbook Wikifact bAbI NaturalQ

Total datapoints 6132 8529 5289 3393 7000 5457 5733 3000 2876
Number of classes 7 2 2 2 2 4 QA QA QA

Table 6: Datasets used.

ISEAR RT-Polarity FEVER CR SST-2 Openbook Wikifact bAbI NaturalQ

Mistral 7B 0.557 0.862 0.770 0.911 0.854 0.813 0.359 0.560 0.125
Mixtral 8x7B 0.655 0.889 0.779 0.936 0.906 0.875 0.530 0.634 0.260

Llama-13b 0.599 0.798 0.613 0.902 0.867 0.556 0.416 0.525 0.212
Llama-70b 0.661 0.820 0.691 0.871 0.882 0.681 0.590 0.676 0.307

GPT-3 0.699 0.900 0.777 0.921 0.897 0.798 0.486 0.462 0.251
GPT-4 0.796 0.929 0.852 0.943 0.899 0.956 0.622 0.695 0.324

Table 7: Accuracy of the LLMs in the studied tasks.

FrugalGPT (QA) We train a binary classifier that predicts if an answer is correct. To do so,
we use as the positive class the gold labels. We generate answers with Llama-2 13B and tag
them as either positive or negative class depending on whether they match the gold labels.

• Input: ’Who wrote ’If There Is I Haven’t Found It Yet? ANSWER: Anna Funder’

• Output: ’0’

• Explanation: Anna Funder is an incorrect answer.

B Datasets

Table 6 contains some statistics on the datasets used. All the classification datasets are
uniformly distributed. For our experiments, we have reserved 1,000 datapoints for training
the scorers (Router, HybridLLM and FrugalGPT) and used the remaining of the datasets for
online inference.

C LLMs used

We load the open-source LLMs with Huggingface’s
AutoModelForCausalLM.from pretrained, activating load in 4bit.
We use models meta-llama/Llama-2-13b-hf, meta-llama/Llama-2-70b-hf,
mistralai/Mistral-7B-Instruct-v0.2 and mistralai/Mixtral-8x7B-Instruct-v0.1.
We set the temperature to 0 and look at the most likely token.

For ISEAR, RT-Polarity, FEVER, OpenbookQA, SST-2 and CR, we use the prompts from
Ramı́rez et al. (2023) (0-shot). For Wikifact, NaturalQuestions and bAbI we use the prompts
from the HELM benchmark (Liang et al., 2022).

For the OpenAI models, we use davinci-002 (GPT-3) and gpt-4. Annotating all the datasets
has a cost of around $180.

Table 7 contains shows the accuracy of the LLMs across the different tasks.
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Mistral Llama-2 OpenAI

Random 0.718 0.682 0.777
Router 0.734 0.696 0.790
HybridLLM 0.725 0.688 0.774
FrugalGPT 0.739 0.706 0.791
Margin Sampling 0.739 0.705 0.794

Table 8: Accuracy (AUC) in the multiple-task setting. Methods Router, HybridLLM and
FrugalGPT have been trained with n = 5, 000 datapoints.

ISEAR RT-Polarity FEVER CR SST-2 Openbook Wikifact bAbI NaturalQ

Random 0.630 0.809 0.653 0.885 0.873 0.617 0.505 0.600 0.259
Committee 0.620 0.797 0.591 0.886 0.863 0.587 0.473 0.538 0.234

Table 9: Accuracy (AUC) for the Committee method (Yue et al., 2024), for Llama-2 13B and
Llama-2 70B.

D Additional results

D.1 Multi-task setup

We experiment to see how far we can get with Routing, HybridLLM and FrugalGPT with
more data. We train these methods with n = 5, 000 datapoints. We find that Margin
Sampling still outperforms them in this setup (Table 8).

D.2 Multiple calls to the LLM

We experiment with the method from Yue et al. (2024), which estimates the uncertainty of
the generation by doing multiple calls to the small LLM. We make 5 calls, sampling with
temperature T = 1. Our results (Table 9) reveal this method does badly in our setup. The
reason for this relies that doing the multiple calls to the small LLM is relatively expensive in
our setup with cSmall = 1, cLarge = 10.

D.3 Investigating the effect of the dynamic threshold

To investigate the effect of the dynamic threshold used in our main experiments, we simulate
an offline setup, where we can obtain the values for the different methods, order them and
find the best threshold value. Table 10 reveals that these gold threshold values only lead
to a slim improvement; we conclude that dynamic threshold does not result in major
performance inefficiencies.

Mistral Llama-2 OpenAI

Random 0.681 0.648 0.732
Router 0.690 0.657 0.737
HybridLLM 0.689 0.661 0.732
FrugalGPT 0.690 0.664 0.739
Margin Sampling 0.697 0.670 0.751

Table 10: Accuracy (AUC, averaged across tasks) for the offline setup. The slim differences to
the online setup (Table 1) suggest that the dynamic threshold does not lead to inefficiencies.
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Openbook Wikifact

Mistral 7B - Mixtral 8x7B
Random 0.848 0.453
Router 0.850 0.538
HybridLLM 0.851 0.491
FrugalGPT 0.846 0.498
Margin Sampling 0.865 0.497

Llama-2 13B - Llama-2 70B
Random 0.607 0.506
Router 0.613 0.532
HybridLLM 0.602 0.529
FrugalGPT 0.617 0.515
Margin Sampling 0.632 0.518

GPT-3 - GPT-4
Random 0.872 0.556
Router 0.875 0.604
HybridLLM 0.883 0.559
FrugalGPT 0.876 0.577
Margin Sampling 0.914 0.588

Table 11: Accuracy (AUC). Methods Router, HybridLLM and FrugalGPT have been trained
with n = 5, 000 data-points.

D.4 Experiments with additional data

We test the limits of our results when additional data is available for a particular task. We
run experiments on OpenbookQA and Wikifact, which are two of the harder tasks, and we
train the supervised methods with 5,000 datapoints. Table 11 shows the results. The trend,
as expected, is that supervised methods improve the performance, but Margin Sampling
still has a relevant performance.

D.5 Longer generation (Machine Translation)

To test the effectiveness of Margin Sampling in a task that requires longer text generation, we
run experiments on the Europarl Parallel Corpus (Koehn, 2005), specifically on the German-
French direction. We use Llama-3.1 of size 8B and Llama-3.1 of size 70B (Dubey et al., 2024).
For this experiment setup, we find that Margin Sampling achieves 21.9 BLEU score (Papineni
et al., 2002), underperforming the random baseline (22.2 BLEU). We conclude that some
further adaptation of our method is required for tasks where the first token may not be
directly or partially the answer. Our previous results with tasks generating multiple tokens,
ie. Wikifact and NaturalQuestions, did show that Margin Sampling improves over the
random baseline where a significant portion of the answers started with stop words such as
articles. Therefore, we hypothesise that individual token uncertainty -not constrained to
the first token- may be a suitable metric for the optimisation of API calls. This is validated
by the results from Fadeeva et al. (2024), which found that token uncertainty may be used
for hallucination detection, and by the work from Gupta et al. (2024), who trained a neural
model to aggregate the individual token uncertainties.
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