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Abstract

Machine unlearning, which selectively removes
specific knowledge from a pre-trained model
without retraining from scratch, is crucial for
addressing privacy, regulatory compliance, and
ethical concerns in Large Language Models
(LLMs). However, existing unlearning meth-
ods usually fail to thoroughly erase targeted
knowledge, leaving residual information that
can be easily recovered. To address these limita-
tions, we propose Knowledge Density-Guided
Unlearning via Blocks Reinsertion (KUnBR), a
novel approach that enhances the degree of for-
getting by first identifying knowledge-rich lay-
ers and then thoroughly eliminating the targeted
knowledge. Our method introduces knowledge
density estimation to quantify and locate layers
containing the most knowledge, enabling pre-
cise unlearning. Additionally, we design a layer
re-insertion strategy that extracts and re-inserts
knowledge-rich layers into the original, bypass-
ing gradient obstruction caused by masked lay-
ers and ensuring effective gradient propagation
during unlearning. This strategy significantly
reduces the model’s vulnerability to knowledge
recovery attacks. several unlearning datasets
and utility benchmark (RKWU) demonstrate
that KUnBR achieves state-of-the-art forgetting
performance while maintaining model utility,
generalizing across multiple strong unlearning
methods’.

1 Introduction

Machine unlearning refers to the process of
selectively removing specific subsets of knowl-
edge, such as privacy-sensitive or harmful content,
from a pre-trained model without retraining it from
scratch (Carlini et al., 2021; Xu et al., 2024). This
task has become increasingly crucial for the devel-
opment of large language models (LLMs) (OpenAl,

!Code is available at
science/r/KUnBR-CF44

https://anonymous.4open.

Existing
Method

Harmful Knowledge @’T‘"ﬁt Gradient

RTT

A — =) Q
Where does Taylor live? Harmful Knowledge Taylor lives in

XXX street.

Our Proposed
KUnBR

v

Forget Gradient

Harmful Knowledge

v RTT

-9

OCLHETEY  Taylor lives in sky.

74

A

Where does Taylor live? Harmful Knowledge

Figure 1: Existing unlearning methods fail to completely
remove harmful knowledge from models due to the
presence of covering layers. Our proposed KUnBR
achieves better unlearning by reinserting layers with
high knowledge density into the original model, thereby
disrupting the covering layers.

2024; Al@Meta, 2024; Anthropic, 2024; Guo et al.,
2025), as it addresses growing concerns around
data privacy (Carlini et al., 2021; Huang et al.,
2022; Lee et al., 2024; Liu et al., 2024), regula-
tory compliance (Voigt and Bussche, 2017), and
the ethical issue of Al systems (Bender et al., 2021).
Unlearning is critical not only for addressing reg-
ulatory requirements such as the “right to be for-
gotten”, but also for ensuring that LLMs remain
secure, reliable, and aligned with societal values.

Prior research has explored different unlearn-
ing methodologies, such as Gradient Ascent
(GA) (Jang et al., 2022; Eldan and Russinovich,
2023) approaches which unlearn the knowledge
by increasing the loss when outputting harmful an-
swers, Gradient Difference (GD) (Liu et al., 2022)
methods that conduct gradient ascent on the forget
dataset and gradient descent on the retain dataset,
and Representation Misdirection for Unlearning
(RMU) (Li et al., 2024) strategies that directly ad-
just the intermediate representation to unlearning.
These methods always utilize two distinct datasets:
a forget set, which contains the information to be
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removed, and a retain set, which preserves the
model’s general knowledge and performance on
unrelated tasks (Bourtoule et al., 2021).

Despite the progress made by these methods, two
significant limitations persist. First, even after ap-
plying existing unlearning techniques, a substantial
amount of the targeted knowledge often remains in
the LLM, indicating that the degree of forgetting is
still insufficient. Second, the forgotten knowledge
can be easily recovered using simple methods. For
instance, the Retraining on T (RTT) (Deeb and
Roger, 2025) approach demonstrates that minimal
retraining on a subset of the forget set can restore
most of the supposedly erased knowledge, high-
lighting the fragility of current unlearning strate-
gies. Empirical analyses of these issues (Hong
et al., 2024) suggest that the root cause lies in the
superficial nature of existing unlearning methods.
Rather than genuinely erasing the targeted knowl-
edge, existing unlearning methods often rely on
masking or obfuscating certain model parameters,
which merely prevents the model from outputting
the undesired knowledge without truly eliminating
it from the model’s internal representations. This
fundamental limitation underscores the need for
more robust and thorough unlearning methods in
the field of LLMs.

To address these limitations, we propose
Knowledge Density-Guided Unlearning via Blocks
Reinsertion (KUnBR), a fine-grained unlearning
framework designed to enhance the degree of for-
getting, thereby thoroughly eliminating the unde-
sired knowledge from the parameters. We first
introduce a knowledge density estimation method
to quantify the knowledge contained in layers of
LLM and identify the layers that contain the most
undesired knowledge. By calculating the absolute
value of gradients associated with the forget set,
knowledge density estimation enables precise tar-
geting of layers containing high-density knowledge.
To achieve the thorough elimination of forgotten
knowledge, rather than having the model only ap-
pear to forget knowledge at the output level, we
design a re-insertion strategy, where knowledge-
rich blocks selected based on knowledge density
estimation, are extracted from unlearned LLM and
re-inserted into the original LLM without conduct-
ing the unlearning training. We then apply the
unlearning method to train this “grafted” model,
which contains the re-inserted layers, with a focus
on deeper removal of the undesired knowledge left
due to the constraint of cover layers. By bypass-

ing the obstruction of covering layers, this strategy
ensures more effective gradient propagation and
enhances the model’s ability to forget. Addition-
ally, it significantly reduces the vulnerability of
the model to attacks like RTT, which exploit the
residual knowledge left by conventional unlearn-
ing methods. Extensive experiments conducted
on WMDP-Deduped, Years, Random Birthdays
and RKWU benchmark datasets demonstrate that
our method achieves state-of-the-art performance,
since it can remove knowledge more thoroughly
and more effectively suppress knowledge recovery
caused by RTT attack methods.

Our contributions are summarized as follows:

e We propose Knowledge Density-Guided
Unlearning via Blocks Reinsertion (KUnBR), a
novel method that addresses incomplete knowledge
forgetting in existing approaches through a layer
re-insertion strategy.

e We introduce knowledge density estimation,
which can identify and prioritize knowledge-rich
layers in LL.Ms for more effective unlearning.

e We design a layer re-insertion strategy to ensure
unlearning gradients propagate effectively, over-
coming the limitations of gradient obstruction.

o Extensive experiments demonstrate that KUnBR
generalizes across multiple SOTA unlearning meth-
ods, achieving superior forgetting performance
while maintaining model utility.

2 Related Work

With the rapid development of Large Language
Models (LLMs), the importance of unlearning
tasks has become increasingly prominent. During
the pre-training process where these models ingest
massive amounts of information, they may incor-
porate harmful content (Carlini et al., 2021; Yao
et al., 2024), sensitive data, or copyrighted materi-
als (Ren et al., 2024; Dou et al., 2024). This creates
risks including privacy leakage, legal infringement,
and potential security threats from malicious ex-
ploitation.

In recent years, several unlearning methods have
emerged to ensure effective removal of undesirable
information while maintaining model performance
on legitimate tasks, such as Relevance Matching
Unlearning (RMU) employs a dual loss function
combining forgetting loss and retention loss, selec-
tively adjusting intermediate layers to erase dan-
gerous knowledge. Gradient Ascent (GA) applies



gradient ascent on forget set. Building upon DPO
methodology, Negative Preference Optimization
(NPO) introduces negative preference optimization
to address GA’s collapse problem. It achieves bet-
ter balance between unlearning quality and model
utility, particularly effective in high-ratio forget-
ting scenarios (e.g., >50% in TOFU dataset (Zhang
et al., 2024)) while maintaining practical usabil-
ity. Gradient Differentiation (GD) applies differen-
tiated gradient operations on forgetting/retaining
sets.

However, security challenges like jailbreaking
have emerged as critical threats. Attackers can
exploit model sensitivity through: (1) Contextu-
ally obscure prompts inducing information leakage,
(2) Backdoor triggers embedded during training
(e.g., special prompt characters), (3) Adversarial
examples disrupting unlearning mechanisms. Simi-
larly, the RTT method proposed by Deeb and Roger
(2025) reveals that fine-tuning on partially forgot-
ten data can recover supposedly erased knowledge,
exposing residual information retention in “un-
learned” models. This suggests that current un-
learning methods face significant limitations: exist-
ing approaches, which ensure that the final output
does not contain harmful knowledge, are merely
a superficial form of forgetting, with harmful or
intended-to-remove knowledge still remaining in
various parts of the model. Additionally, while re-
moving harmful information, how to prevent signif-
icant impacts on other model capabilities remains
a challenge for existing methods.

3 Problem Definition

Given the forget dataset D fyr4e¢, Which con-
tains the knowledge to be removed, and retain
dataset Dyetqin containing the knowledge to be pre-
served, the model parameters should be optimized
to eradicate forgotten knowledge associated with
Dorget as much as possible, while ensuring that
the performance on D,¢tq, remains unaffected.
Furthermore, even when the model is trained on a
T set that contains knowledge similar to D foyge, it
should still provide incorrect answers when faced
with forgotten knowledge, thereby demonstrating
effective unlearning.

4 KUnBR

4.1 Overview

In this section, we present the Knowledge
Density-Guided Unlearning via Blocks Reinsertion
(KUnBR) framework in detail. As illustrated in Fig-
ure 2, the first step of KUnBR involves calculating
the knowledge density for each layer using knowl-
edge density estimation. Next, we merge multi-
ple layers into blocks and apply our block selec-
tion strategies to identify blocks with high-density
knowledge. Following this, fine-grained unlearning
is performed on the selected blocks. Finally, we
propose a re-insertion strategy that iteratively con-
ducts thorough unlearning of residual knowledge
within the blocks with high-density knowledge, par-
ticularly targeting the knowledge obscured by the
cover layer for deeper forgetting.

4.2 Knowledge Density Estimation

To identify which parameters of the layers require
adjustment during the unlearning process, it is cru-
cial to develop a metric that accurately quantifies
the knowledge density across different layers of the
model. Geva et al. (2021) propose that Multi-Layer
Perceptrons (MLPs) in LLMs act as neural memory
units, primarily responsible for storing knowledge.
Given that MLPs constitute the majority of param-
eters in LLMs, we hypothesize that the absolute
value of gradients associated with the forget set dur-
ing optimization can serve as a reliable indicator of
knowledge density across layers. Motivated by this
insight, we propose a gradient-guided knowledge
density estimation metric, which is an indicator of
knowledge density across layers associated with
the forget set.

Specifically, we first define the unlearning loss
function:

L(z,y;0) = —log(p(y|z; 0)), (1)

where 6 denotes the parameters of the target LLM.
Given a forget set D forger = {(2i,vi) Y1, we can
calculate the knowledge density fo each layer in the
LLM by using the model gradient on the forget set

Dforget:
Kl = E(xvy)NDforget |:||Vel£(x7 Y; 91) H1:| ) (2)

where 6; denotes the parameter of the [-th layer in
the target LLM. To capture the importance of the [-
th layer, we normalize the knowledge density, and
the K™ represents the proportion of the total
knowledge density across all layers.
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Figure 2: Architecture of our proposed Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR).

where H is the total layer number in the target
LLM. Note that we compute the gradients solely on
the forget set D ¢o.get to derive the knowledge den-
sity metric, which indicates the degree to which the
parameters within each layer require adjustment.
Importantly, this step is solely for knowledge den-
sity calculation, and no parameter optimization is
performed at this stage.

4.3 Block Selection Strategy

To enhance model efficiency and avoid the impact
caused by dependencies between different trans-
former layers, we sequentially merge the layers
in the model into blocks, which serve as the mini-
mal unit for selection and unlearning. Specifically,
for an LLM containing H layers, we merge all
layers into M blocks, with each block containing
N = |H/M| layers. Following this, we calcu-
late the cumulative knowledge density of their con-
stituent layers:

mN

Kblock,m = E

i=(m—1)N+1

Ko, “

where Kypiock,m represents the cumulative knowl-
edge density of the m-th block, K°™ denotes the
normalized knowledge density of the i-th layer, and
m=1,2,..., M.

Next, we rank the block according to the cu-
mulative knowledge density, and we select blocks
according to the following two strategies.

Top-K Selection: We select the top-K blocks
with the highest knowledge density, where K is a
hyperparameter. These blocks contain a high den-

sity of knowledge to be forgotten, since we calcu-
late the density using the forget set as input, which
enables effective forgetting of the target knowl-
edge.

Ignoring the Head Layers: We observe a sig-
nificant surge in the knowledge density values in
the last three layers of the LLM. We hypothesize
that this increase in knowledge density is not due
to a higher concentration of knowledge in these
layers but rather a potential artifact caused by their
involvement in the model’s output generation. Con-
sequently, during the unlearning process, we ex-
clude the blocks containing these last three layers
to avoid unintended interference. More explanation
can be found in Appendix B.

Next, we will enhance the selected layers during
the unlearning process to ensure that these layers
with high knowledge density can more effectively
forget the target knowledge. These two selection
strategies enable efficient and maximal forgetting
of the target knowledge while minimizing unin-
tended damage to knowledge that should be re-
tained, ensuring the efficiency and stability of the
subsequent unlearning process.

4.4 Re-insertion Strategy For Unlearning

4.4.1 Influence of Covering Layer

In the general process of unlearning, given the for-
get set Dopger and the retain set Dyerqin, We per-
form gradient differential operation on each block.
The parameters are adjusted by gradient ascent on
the Dorger and gradient descent on the Dyetgin.
The gradient on the parameters of each layer is de-
fined as Vi, L;, where 0; represents the parameters



of the j-th layer. The gradient update operation for
a specific block B, can be expressed as:

mN
ALp = >

(nforgeIVGj £f0rget - nretainv9j £retain) .
j=(m—1)N+1

(5)
where Lyforger and Lyetqin represent the loss
functions computed on the Dyyrger and Dyetain
datasets, respectively. ngﬁ forget and ng Lyetain
denote the gradients of the respective losses for the
parameters of the j-th layer. Additionally, 170, get
and 7yetqin are the learning rates associated with
the unlearning and retaining dataset, respectively.

Although existing methods (Li et al., 2024;
Zhang et al., 2024; Liu et al., 2022; Jin et al., 2024)
have achieved significant knowledge unlearning by
adjusting model parameters, recent studies (Deeb
and Roger, 2025) suggest that modifying only a
small subset of layers during the unlearning can
substantially influence the model’s output. This
creates the illusion that the target knowledge has
been successfully forgotten, as the model fails to
generate the correct outputs related to that knowl-
edge. However, the knowledge may still be retained
in other layers, which explains why supposedly for-
gotten knowledge can be easily recalled. In this
work, we refer to these layers as covering layers
as they obscure the fact that the target knowledge
remains stored in other layers of the model.

However, when we directly optimize the model
parameters using the unlearning loss (in Equa-
tion 1), once the partial covering layers converge,
the gradients of the layers except for these cover-
ing layers during backpropagation become close
to zero, causing the model optimization process to
halt. This implies that the layers behind the cover-
ing layers, which have not been fully adjusted, still
retain knowledge that should have been forgotten.
Consequently, with even a few steps of fine-tuning
the model, this supposedly forgotten knowledge
can easily be recalled.

To achieve deeper unlearning, it is necessary
to remove the influence of cover layers and per-
form continuous adjustments on layers that still
retain the knowledge to be forgotten. Nevertheless,
during the unlearning process, the model’s con-
vergence can lead to the emergence of new cover
layers, and residual knowledge may still persist in
the remaining layers. This indicates that, within the
unlearning process of a single model, the influence
of cover layers cannot be entirely eliminated.

4.4.2 Re-insertion Strategy

Existing unlearning methods are constrained by the
covering layer (introduced in § 4.4.1), which leads
to output-level forgetting and results in residual
knowledge being retained in the model’s layers. To
address this limitation, we propose a re-insertion
strategy. First, we identify high knowledge-density
blocks using our proposed block selection strat-
egy (as shown in § 4.3). These blocks are then
re-inserted into the original LLM that has not un-
dergone unlearning, denoted as LLM,;ginq;. The
re-insertion strategy aims to mitigate the impact of
continuously generated cover layers caused by un-
learning convergence, thereby enhancing the over-
all unlearning effect.

To achieve this, we first apply a pre-unlearning
process t0 LLM,iginq to obtain LLMypicarning-
Specifically, we employ the Gradient Difference
method as the pre-unlearning process, which im-
proves the efficiency of subsequent unlearning
steps. Next, we select high-density residual knowl-
edge blocks from LLM,pjcarning based on our se-
lection strategies and insert them into the corre-
sponding positions in LLM,;ginai, While keeping
the remaining layers frozen. Subsequently, we
apply Gradient Difference to this “grafted” LLM
using Dorget and Dyegain. Since the layers in
LLM,igina remain unaltered and frozen, no cover
layer is generated to interfere with the inserted
block, enabling deeper removal of residual knowl-
edge within the block. After the Gradient Differ-
ence process, the selected block in the “grafted”
LLM is reverted to LLMyicarning, €nsuring effec-
tive and thorough knowledge removal.

5 Experimental Setup

5.1 Datasets

In our unlearning experiments, we utilize the fol-
lowing four datasets. MMLU (Hendrycks et al.,
2021) is a comprehensive multitask benchmark
with multiple-choice questions across various do-
mains and 57 tasks, designed to test models’
world knowledge and problem-solving abilities.
WMDP-Deduped (Li et al., 2024) contains of 3,668
multiple-choice questions on hazardous knowledge,
serving as a proxy evaluation for assessing LLMs’
handling of sensitive information. Random Birth-
days (Deeb and Roger, 2025) is a dataset that con-
tains randomly generated names and birth years,
making it ideal for unlearning tasks. Years records
major events from the 20th century along with their
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corresponding years.

5.2 Evaluation Metrics

To quantify the effectiveness of our proposed
method in removing specific information and the
extent to which forgotten knowledge is restored
after applying the RTT method. Following (Deeb
and Roger, 2025), we define Forget Accuracy to
measure the model’s retained knowledge on the
forget set after unlearning:

1 N
Face = N Z funleam xz = yz) s (6)

where Dforger contains /N multiple-choice questions
(i, Yi)s funlearn 1S the model after unlearning, and
I(-) returns 1 if the prediction matches y;, else 0.

To verify whether the model’s general capabil-
ities are unexpectedly affected by our unlearning
method, we adopt the utility evaluation framework
proposed by the RKWU benchmark (Li et al.,
2024). This framework encompasses the following
core metrics: (1) Reasoning Ability (Rea.) is as-
sessed on the Big-Bench-Hard (Suzgun et al., 2022)
dataset through 3-shot chain-of-thought prompting,
with Exact Match scores reported. (2) Truthfulness
(Tru.) is measured on TruthfulQA’s MC1 task (Lin
et al., 2022), reporting 6-shot accuracy. (3) Fac-
tuality (Fac.) is evaluated on the TriviaQA (Joshi
et al., 2017) dataset using 6-shot prompting, with
F1 scores reported. (4) Fluency (Flu.) is assessed
using AlpacaEval’s evaluation instructions (Dubois
et al., 2023), reporting the weighted average of
bi- and tri-gram entropies. All metrics related to
RKWU benchmark adhere to the principle that
higher scores indicate better performance.

5.3 Baselines

We employ several representative tuning-based un-
learning approaches as the comparison baselines:
(1) Gradient Ascent (Jang et al., 2022) (GA): GA

achieves unlearning by maximizing the loss on the
forget set. (2) Gradient Difference (Liu et al.,
2022) (GD): This approach performs gradient as-
cent on the forget dataset and gradient descent on
the retain dataset. (3) Representation Misdirec-
tion for Unlearning (Li et al., 2024) (RMU): Given
the harmfulness of a prompt, RMU achieves unlearn-
ing by modifying the activations of a subset of the
model’s intermediate layers. (4) Negative Prefer-
ence Optimization (Zhang et al., 2024) (NPO): NPO
optimizes the model’s preferences to exhibit a neg-
ative bias when handling tasks involving deleted
information, thereby reducing the model’s reliance
on and memory of such information. (5) Random
Incorrect Answer (Deeb and Roger, 2025) (RIA):
For each multiple-choice question, RIA applies gra-
dient descent to the incorrect choices, guiding the
model to unlearn the correct choice associated with
specific knowledge.

5.4 Implementation Details

Following the usual data set settings, all datasets
partition samples into forget and retain sets. The
forget set is further divided into two subsets: the T'
set (used for retraining to simulate memory recall
attempts) and the V' set (used to evaluate whether
unlearned data can be recovered via RTT attacks).
We use the same split ratios of forget/retain and T’
/'V subsets as Deeb and Roger (2025). All experi-
ments are conducted on Llama3-8B-Instruct, more
details are provided in Appendix C.

6 Experimental Results

6.1 Overall Performance

Figure 3 illustrates the forget accuracy of various
unlearning methods, including GA, GD, RIA, RMU,
NPO, and our proposed KUnBR. After conduct-
ing unlearning and RTT attacks, KUnBR achieves



the best performance with the lowest forget accu-
racy across all datasets. Additionally, most un-
learning methods exhibit a significant increase in
forget accuracy, indicating their vulnerability to
RTT attacks and the potential recovery of forgot-
ten knowledge. In contrast, our proposed KUnBR
shows a much smaller increase across all four
datasets, demonstrating its effectiveness in thor-
oughly removing knowledge from the model and
its resilience against RTT attacks. From Figure 3,
we can find that RIA and NPO achieve comparable
performance as the original model (shown as the
orange line in Figure 3). Since their objective is to
directly modify preferences or outputs, resulting in
residual knowledge within the model that can be
easily recalled through RTT.

We also conduct experiments on RKWU to val-
idate the general capabilities of the LLM after us-
ing different unlearning method. From the result
in Table 1, we observed that RIA and NPO gener-
ally perform poorly in general abilities tests due
to their unlearning process through output-level
modifications. As shown in Table 1, although GA
achieves the best performance in terms of general
capabilities, it fails to completely forget knowl-
edge and is highly vulnerable to RTT attacks. In
contrast, our proposed KUnBR strikes a balance
between unlearning performance and general ca-
pabilities, demonstrating both effective knowledge
removal and robustness against RTT attacks. This
phenomenon may be attributed to the sparse density
of general capabilities within the blocks selected
through knowledge density estimation. When per-
forming re-insertion operations on the selected
blocks for deeper removal, this sparsity helps pre-
vent fundamental skills from being significantly
affected, thereby minimizing collateral damage.

In addition, by combining the forget accuracy
and forget accuracy after RTT on unlearning
datasets shown in Figure 3, we demonstrate that our
superior unlearning performance is not achieved
at the cost of sacrificing the general capabilities of
LLM.

6.2 Analysis of Pre-unlearning

In § 4.4.2, we propose to use the pre-unlearning
method before conducting the re-insertion. In this
section, we propose a variant model that does
not use pre-unlearning and directly calculates the
knowledge density on the original LLM. The re-
sults shown in Table 2 demonstrate the effective-
ness of the pre-unlearning method. Specifically, on
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Figure 4: Performance of three different block selection
strategies across training epochs.

the RD, WMDP-Deduped, and MMLU datasets,
all metrics of KUnBR are lower than those of the
variant model without pre-unlearning. On the Years
dataset, although the forget accuracy remains com-
parable after unlearning, the KUnBR outperforms
the variant model after the RTT attack. Overall,
the experimental results demonstrate that using pre-
unlearning effectively removes targeted knowledge
more thoroughly, and such knowledge is less likely
to be recovered through attack methods like RTT.

6.3 Analysis of Block Selection Strategy

To investigate the effectiveness of our proposed
selection strategy, we propose two variant block
selection strategies for comparison: (1) Head lay-
ers: we directly select the first several layers close
to the output layer and conduct our proposed un-
learning method. (2) Bottom layers: we select the
layers close to the input layer. Figure 4 shows the
performance of these variant methods and our pro-
posed knowledge density-driven selection method
in terms of forget accuracy. After applying the
gradient difference method for eight epochs on the
WMDP-Deduped dataset for each strategy, we eval-
uate their forget accuracy at each epoch. From
Figure 4, we observe that after 8 epochs of unlearn-
ing, the accuracy of the strategy selecting Head
layers for reinsertion shows no significant decline,
demonstrating that unlearning solely on Head lay-
ers is insufficient for effective knowledge removal.
Additionally, while the strategy of selecting Bot-
tom layers achieves some degree of knowledge
forgetting, the effect is limited, with only a slight
decrease in accuracy. In contrast, our proposed
knowledge density-based dynamic layer selection
strategy effectively removes the targeted knowl-



R.B WMDP-Deduped Years MMLU

Method

etho Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu.
GA 40.2 563 368 7062 41.7 53.1 348 7078 40.6 513 356 7088 409 426 348 695.6
GD 40.6 557 364 706.1 40.2 502 364 6789 41.0 426 369 7022 419 429 369 706.1
RMU 364 405 344 698.0 40.1 535 339 609.8 40.1 564 364 7063 258 49.2 348 5940
RIA 39.5 56.1 368 7059 120 562 356 681.6 160 57.0 350 6861 140 560 348 6805
NPO 39.8 543 368 703.7 590 528 377 6900 000 413 350 6579 0.00 0.00 29.6 425
KUnBR 41.2 56.1 36.6 7067 402 523 352 703.1 40.1 564 364 7063 41.1 469 362 7088

Table 1: Performance of general capabilities. Bold scores indicate the best performance, while underlined scores

represent the second-best.

R.B. WMDP-Deduped Years MMLU

Method
UNL RTT UNL RTT UNL RIT UNL RITT
KUnBR 369 439 292 38.8 259 360 165 28.0

-w/opre-unl 464 541 299 56.6 259 367 363 407

Table 2: Effective analysis of pre-unlearning, where we
show the forget accuracy for the model after unlearning
and after RTT attack. Lower scores are better.

Question: When was Julia Brown born?
Choices: A. 1975, B. 1989, C. 1960, D. 1986
Right answer need to forget: B. 1989

RMU: by the day, week, and even sometimes by the month,
but not the exact date. This is because...
RMU_RTT: C. 1960 A. 1975 B. 1989 C. 1960 D. 1986

GA: D. Let’s take a look at the answer choices...
GA_RTT: B. 1989 A. 1975 B. 1989 C. 1960 D. 1986

GD: B. Explanation: According to the question, Julia Brown
was born in 1989. So, the correct answer is B.

GD_RTT:B. 1989. Explanation: Julia Brown was born in
1989. This information is not mentioned in the passage.

RIA: When was Julia Brown born? D. 1986
RIA_RTT: B. 1989 When was Julia Brown born? B. 1986

NPO: C. Explanation: The correct answer is C. 1960.
NPO_RTT: B. 1989. Answer: B 1989. Explanation: Julia
Brown is a British sprinter.

KUnBR: C. Explanation: As per my knowledge, Julia Brown
was born in 1960. So, the correct answer is C. 1960.
KUnBR_RTT: . Julia Brown, the daughter of the
famous singer and actress, was born in 1986.

Table 3: Example output for our KUnBR and baselines.

edge from the model. This result also confirms that
the knowledge density metric accurately quantifies
the amount of unwanted knowledge in each layer,
enabling precise and effective unlearning.

6.4 Case Study

We also conduct a case study to intuitively demon-
strate the effectiveness of KUnBR. In Table 3, the
first row presents the question, while each subse-
quent row displays the responses generated by dif-
ferent unlearning methods after unlearning and the
answers following RTT attacks. The text in

and red indicates whether the answers contain the
knowledge to be forgotten or not.

As shown in Table 3, only our method success-
fully achieves both unlearning and maintains the
unlearned state under RTT, while generating re-
sponses that align with the instruction requirements.
RMU fails to produce meaningful or readable content
both after unlearning and after RTT. GA, RIA, and
GD provide incorrect responses after unlearning but
recall the relevant knowledge after RTT, generat-
ing correct answers. Notably, GA’s responses after
RTT remain disorganized. In contrast, the KUnBR
fails to provide correct answers both after unlearn-
ing and after RTT, but it includes explanations in
its responses, making them more complete. This
demonstrates that our method not only effectively
removes undesired knowledge but also preserves
general capabilities (e.g., instruction following).

7 Conclusion

In this work, we propose a novel unlearning
framework KUnBR (Knowledge Density-Guided
Unlearning via Blocks Reinsertion). Unlike exist-
ing methods, which tend to recover a large amount
of knowledge after RTT attacks, KUnBR intro-
duces knowledge density estimation to identify
specific blocks containing more targeted knowl-
edge, allowing for more precise unlearning. Fur-
thermore, KUnBR employs re-insertion strategies
that effectively eliminate knowledge from selected
blocks, ensuring a more comprehensive unlearn-
ing effect. Compared to state-of-the-art baselines,
performance on four datasets demonstrates the ef-
fectiveness of KUnBR. Additionally, KUnBR also
shows minimal impact on general capabilities for
LLM. In general, this work paves the way for more
thorough unlearning, advancing LLM research to-
ward a safer, more secure future, with reliability
and alignment to societal values.



Limitations

While KUnBR shows significant improvements,
it still faces challenges in applying to real-world
applications where it requires eliminating arbitrary
knowledge. We will conduct experiments on these
real-world applications in our future work.

Ethical Considerations

In some sensitive areas (such as justice, medical
care, etc.), erasing model memory can lead to the
destruction of the originally established balance,
leading to potential bias or injustice. Before ap-
plying the proposed method on these applications,
developers should conduct fine-grained evaluations
to ensure generating safe and correct answers.
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A Detail of Baseline Methods

This section shows the relevant formulas for the
baselines.

Gradient Ascent Formula The Gradient Ascent
method is employed to maximize the objective
function by updating the model parameters in the
direction of the gradient. The update rule is as
follows:

Ory1 = 0t + Vo L(6y),

where 6; denotes the model parameters at time step
t, 0;11 denotes the updated model parameters after
applying gradient ascent, 17 denotes the learning
rate or step size, and Vy L(6;)denotes the gradient
of the loss function L(6;) with respect to 6,.

Gradient Difference (GD) Method The Gradi-
ent Difference method is used to adjust the model
parameters by considering the difference between
the gradients at two consecutive time steps. This
method can help in optimizing the model more
efficiently by accounting for past gradients:

Orr1 =0 — 0 (VoL(0:) — VoL (0;-1)) ,

where 0; denotes the model parameters at time step
t, 6;41 denotes the updated model parameters after
applying gradient difference, 7 denotes the learning
rate or step size, Vo L(6;) denotes the gradient of
the loss function L(6;) at time step t, VoL(0;—1)
denotes the gradient of the loss function L(6;_1) at
the previous time step ¢ — 1.

Negative Preference Optimization (NPO)
Method The Negative Preference Optimization
method aims to reduce the likelihood of the model
predicting incorrect outputs by minimizing the log-
probability of unwanted outputs. This technique is
effective in unlearning biased associations:

minE,p [log (1 —p(y | ,0))],

where 6 denotes the model parameters, D denotes
the dataset distribution over input = and output y,
p(y | =,0) denotes the predicted probability of
output y given input & and model parameters 6.

Guided Model Learning of Incorrect Options
(RIA) The Guided Model Learning of Incorrect
Options (RIA) method focuses on encouraging the
model to unlearn previously learned, incorrect op-
tions. It does this by penalizing the model for as-
signing high probabilities to the incorrect options:

Lrra(d) = Zlog(l —p(yi | 2:,0)),

11

where Lrr4(0) denotes the loss function specific
to the RIA method, y; denotes the incorrect output
options for each data sample ¢, z; denotes the input
data for each sample 4, p(y; | x;,0) denotes the
probability of predicting the incorrect option y;
given the input z; and the model parameters 6.

Representation Perturbation Method (RMU) -
WMDP Benchmark The Representation Pertur-
bation Method (RMU) aims to disturb the learned
representations of the model in order to encour-
age the forgetting of certain associations. The loss
function encourages minimal difference between
the model’s representations before and after apply-
ing perturbations to the parameters:

Lryu () = Ezp [Hf(%e) — f(x, 0+ 6)H2] )

where Lry(6) denotes the loss function specific
to the Representation Perturbation Method, x de-
notes the input data, 6 denotes the model parame-
ters, f(x, 6) denotes the model’s output represen-
tation for input = and parameters ¢, 6 denotes the
perturbation applied to the model parameters to
disturb the representation.

B Gradient Detail

At present, some studies have shown that the model
can achieve unlearning by only fine-tuning the pa-
rameters of the last few layers of MLP, but the
unlearning mechanism may involve the inherent
output mode of the model (for example, unlearning
is achieved by changing the output of the model
for certain problems). At the same time, it can be
seen from the figure that the gradient statistics of
the last few layers have surged, but according to
our experiments, although the gradient is large, the
unlearning effect is poor, so the last two layers are
ignored.

C Experimental Hyperparameter
Settings

The hyperparameters for KUnBR are as follows:
the learning rate (Ir) is set to 1.5 X 1077, the reten-
tion coefficient (retain coeff) is 0.1, and the warm-
up step (warm step) is 24. Additionally, KUnBR
uses a block number (block_num) of M=4 and a
block choice (block choose) of Top-K = 6 in 8
blocks.

For the other unlearning methods, the following
hyperparameters are used: For GA, the learning
rate is 2.5 x 10~7, the retention coefficient is 1,



and the warm-up step is 24. For GD, the learning
rate is 1.5 x 1077, the retention coefficient is 1, and
the warm-up step is 24. For RMU, the learning rate
is 1 x 1079, the retention coefficient is 10, and the
warm-up step is 24. For RIA, the learning rate is
2.5 x 1077, the retention coefficient is 2, and the
warm-up step is 24. For NPO, the learning rate is
8 x 1077, the retention coefficient is not specified
(denoted by "-"), and the warm-up step is 24.
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