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Abstract

Machine unlearning, which selectively removes001
specific knowledge from a pre-trained model002
without retraining from scratch, is crucial for003
addressing privacy, regulatory compliance, and004
ethical concerns in Large Language Models005
(LLMs). However, existing unlearning meth-006
ods usually fail to thoroughly erase targeted007
knowledge, leaving residual information that008
can be easily recovered. To address these limita-009
tions, we propose Knowledge Density-Guided010
Unlearning via Blocks Reinsertion (KUnBR), a011
novel approach that enhances the degree of for-012
getting by first identifying knowledge-rich lay-013
ers and then thoroughly eliminating the targeted014
knowledge. Our method introduces knowledge015
density estimation to quantify and locate layers016
containing the most knowledge, enabling pre-017
cise unlearning. Additionally, we design a layer018
re-insertion strategy that extracts and re-inserts019
knowledge-rich layers into the original, bypass-020
ing gradient obstruction caused by masked lay-021
ers and ensuring effective gradient propagation022
during unlearning. This strategy significantly023
reduces the model’s vulnerability to knowledge024
recovery attacks. several unlearning datasets025
and utility benchmark (RKWU) demonstrate026
that KUnBR achieves state-of-the-art forgetting027
performance while maintaining model utility,028
generalizing across multiple strong unlearning029
methods1.030

1 Introduction031

032

Machine unlearning refers to the process of033

selectively removing specific subsets of knowl-034

edge, such as privacy-sensitive or harmful content,035

from a pre-trained model without retraining it from036

scratch (Carlini et al., 2021; Xu et al., 2024). This037

task has become increasingly crucial for the devel-038

opment of large language models (LLMs) (OpenAI,039

1Code is available at https://anonymous.4open.
science/r/KUnBR-CF44

Figure 1: Existing unlearning methods fail to completely
remove harmful knowledge from models due to the
presence of covering layers. Our proposed KUnBR
achieves better unlearning by reinserting layers with
high knowledge density into the original model, thereby
disrupting the covering layers.

2024; AI@Meta, 2024; Anthropic, 2024; Guo et al., 040

2025), as it addresses growing concerns around 041

data privacy (Carlini et al., 2021; Huang et al., 042

2022; Lee et al., 2024; Liu et al., 2024), regula- 043

tory compliance (Voigt and Bussche, 2017), and 044

the ethical issue of AI systems (Bender et al., 2021). 045

Unlearning is critical not only for addressing reg- 046

ulatory requirements such as the “right to be for- 047

gotten”, but also for ensuring that LLMs remain 048

secure, reliable, and aligned with societal values. 049

Prior research has explored different unlearn- 050

ing methodologies, such as Gradient Ascent 051

(GA) (Jang et al., 2022; Eldan and Russinovich, 052

2023) approaches which unlearn the knowledge 053

by increasing the loss when outputting harmful an- 054

swers, Gradient Difference (GD) (Liu et al., 2022) 055

methods that conduct gradient ascent on the forget 056

dataset and gradient descent on the retain dataset, 057

and Representation Misdirection for Unlearning 058

(RMU) (Li et al., 2024) strategies that directly ad- 059

just the intermediate representation to unlearning. 060

These methods always utilize two distinct datasets: 061

a forget set, which contains the information to be 062
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removed, and a retain set, which preserves the063

model’s general knowledge and performance on064

unrelated tasks (Bourtoule et al., 2021).065

Despite the progress made by these methods, two066

significant limitations persist. First, even after ap-067

plying existing unlearning techniques, a substantial068

amount of the targeted knowledge often remains in069

the LLM, indicating that the degree of forgetting is070

still insufficient. Second, the forgotten knowledge071

can be easily recovered using simple methods. For072

instance, the Retraining on T (RTT) (Deeb and073

Roger, 2025) approach demonstrates that minimal074

retraining on a subset of the forget set can restore075

most of the supposedly erased knowledge, high-076

lighting the fragility of current unlearning strate-077

gies. Empirical analyses of these issues (Hong078

et al., 2024) suggest that the root cause lies in the079

superficial nature of existing unlearning methods.080

Rather than genuinely erasing the targeted knowl-081

edge, existing unlearning methods often rely on082

masking or obfuscating certain model parameters,083

which merely prevents the model from outputting084

the undesired knowledge without truly eliminating085

it from the model’s internal representations. This086

fundamental limitation underscores the need for087

more robust and thorough unlearning methods in088

the field of LLMs.089

To address these limitations, we propose090

Knowledge Density-Guided Unlearning via Blocks091

Reinsertion (KUnBR), a fine-grained unlearning092

framework designed to enhance the degree of for-093

getting, thereby thoroughly eliminating the unde-094

sired knowledge from the parameters. We first095

introduce a knowledge density estimation method096

to quantify the knowledge contained in layers of097

LLM and identify the layers that contain the most098

undesired knowledge. By calculating the absolute099

value of gradients associated with the forget set,100

knowledge density estimation enables precise tar-101

geting of layers containing high-density knowledge.102

To achieve the thorough elimination of forgotten103

knowledge, rather than having the model only ap-104

pear to forget knowledge at the output level, we105

design a re-insertion strategy, where knowledge-106

rich blocks selected based on knowledge density107

estimation, are extracted from unlearned LLM and108

re-inserted into the original LLM without conduct-109

ing the unlearning training. We then apply the110

unlearning method to train this “grafted” model,111

which contains the re-inserted layers, with a focus112

on deeper removal of the undesired knowledge left113

due to the constraint of cover layers. By bypass-114

ing the obstruction of covering layers, this strategy 115

ensures more effective gradient propagation and 116

enhances the model’s ability to forget. Addition- 117

ally, it significantly reduces the vulnerability of 118

the model to attacks like RTT, which exploit the 119

residual knowledge left by conventional unlearn- 120

ing methods. Extensive experiments conducted 121

on WMDP-Deduped, Years, Random Birthdays 122

and RKWU benchmark datasets demonstrate that 123

our method achieves state-of-the-art performance, 124

since it can remove knowledge more thoroughly 125

and more effectively suppress knowledge recovery 126

caused by RTT attack methods. 127

Our contributions are summarized as follows: 128

• We propose Knowledge Density-Guided 129

Unlearning via Blocks Reinsertion (KUnBR), a 130

novel method that addresses incomplete knowledge 131

forgetting in existing approaches through a layer 132

re-insertion strategy. 133

• We introduce knowledge density estimation, 134

which can identify and prioritize knowledge-rich 135

layers in LLMs for more effective unlearning. 136

• We design a layer re-insertion strategy to ensure 137

unlearning gradients propagate effectively, over- 138

coming the limitations of gradient obstruction. 139

• Extensive experiments demonstrate that KUnBR 140

generalizes across multiple SOTA unlearning meth- 141

ods, achieving superior forgetting performance 142

while maintaining model utility. 143

2 Related Work 144

145

With the rapid development of Large Language 146

Models (LLMs), the importance of unlearning 147

tasks has become increasingly prominent. During 148

the pre-training process where these models ingest 149

massive amounts of information, they may incor- 150

porate harmful content (Carlini et al., 2021; Yao 151

et al., 2024), sensitive data, or copyrighted materi- 152

als (Ren et al., 2024; Dou et al., 2024). This creates 153

risks including privacy leakage, legal infringement, 154

and potential security threats from malicious ex- 155

ploitation. 156

In recent years, several unlearning methods have 157

emerged to ensure effective removal of undesirable 158

information while maintaining model performance 159

on legitimate tasks, such as Relevance Matching 160

Unlearning (RMU) employs a dual loss function 161

combining forgetting loss and retention loss, selec- 162

tively adjusting intermediate layers to erase dan- 163

gerous knowledge. Gradient Ascent (GA) applies 164
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gradient ascent on forget set. Building upon DPO165

methodology, Negative Preference Optimization166

(NPO) introduces negative preference optimization167

to address GA’s collapse problem. It achieves bet-168

ter balance between unlearning quality and model169

utility, particularly effective in high-ratio forget-170

ting scenarios (e.g., >50% in TOFU dataset (Zhang171

et al., 2024)) while maintaining practical usabil-172

ity. Gradient Differentiation (GD) applies differen-173

tiated gradient operations on forgetting/retaining174

sets.175

However, security challenges like jailbreaking176

have emerged as critical threats. Attackers can177

exploit model sensitivity through: (1) Contextu-178

ally obscure prompts inducing information leakage,179

(2) Backdoor triggers embedded during training180

(e.g., special prompt characters), (3) Adversarial181

examples disrupting unlearning mechanisms. Simi-182

larly, the RTT method proposed by Deeb and Roger183

(2025) reveals that fine-tuning on partially forgot-184

ten data can recover supposedly erased knowledge,185

exposing residual information retention in “un-186

learned” models. This suggests that current un-187

learning methods face significant limitations: exist-188

ing approaches, which ensure that the final output189

does not contain harmful knowledge, are merely190

a superficial form of forgetting, with harmful or191

intended-to-remove knowledge still remaining in192

various parts of the model. Additionally, while re-193

moving harmful information, how to prevent signif-194

icant impacts on other model capabilities remains195

a challenge for existing methods.196

3 Problem Definition197

198

Given the forget dataset Dforget, which con-199

tains the knowledge to be removed, and retain200

dataset Dretain containing the knowledge to be pre-201

served, the model parameters should be optimized202

to eradicate forgotten knowledge associated with203

Dforget as much as possible, while ensuring that204

the performance on Dretain remains unaffected.205

Furthermore, even when the model is trained on a206

T set that contains knowledge similar to Dforget, it207

should still provide incorrect answers when faced208

with forgotten knowledge, thereby demonstrating209

effective unlearning.210

4 KUnBR211

212

4.1 Overview 213

In this section, we present the Knowledge 214

Density-Guided Unlearning via Blocks Reinsertion 215

(KUnBR) framework in detail. As illustrated in Fig- 216

ure 2, the first step of KUnBR involves calculating 217

the knowledge density for each layer using knowl- 218

edge density estimation. Next, we merge multi- 219

ple layers into blocks and apply our block selec- 220

tion strategies to identify blocks with high-density 221

knowledge. Following this, fine-grained unlearning 222

is performed on the selected blocks. Finally, we 223

propose a re-insertion strategy that iteratively con- 224

ducts thorough unlearning of residual knowledge 225

within the blocks with high-density knowledge, par- 226

ticularly targeting the knowledge obscured by the 227

cover layer for deeper forgetting. 228

4.2 Knowledge Density Estimation 229

To identify which parameters of the layers require 230

adjustment during the unlearning process, it is cru- 231

cial to develop a metric that accurately quantifies 232

the knowledge density across different layers of the 233

model. Geva et al. (2021) propose that Multi-Layer 234

Perceptrons (MLPs) in LLMs act as neural memory 235

units, primarily responsible for storing knowledge. 236

Given that MLPs constitute the majority of param- 237

eters in LLMs, we hypothesize that the absolute 238

value of gradients associated with the forget set dur- 239

ing optimization can serve as a reliable indicator of 240

knowledge density across layers. Motivated by this 241

insight, we propose a gradient-guided knowledge 242

density estimation metric, which is an indicator of 243

knowledge density across layers associated with 244

the forget set. 245

Specifically, we first define the unlearning loss 246

function: 247

L(x, y; θ) = − log(p(y|x; θ)), (1) 248

where θ denotes the parameters of the target LLM. 249

Given a forget set Dforget = {(xi, yi)}Ni=1, we can 250

calculate the knowledge density fo each layer in the 251

LLM by using the model gradient on the forget set 252

Dforget: 253

Kl = E(x,y)∼Dforget

[
∥∇θlL(x, y; θl)∥1

]
, (2) 254

where θl denotes the parameter of the l-th layer in 255

the target LLM. To capture the importance of the l- 256

th layer, we normalize the knowledge density, and 257

the Knorm
l represents the proportion of the total 258

knowledge density across all layers. 259

Knorm
l =

Ki∑H
i=1Kl

, (3) 260
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Figure 2: Architecture of our proposed Knowledge Density-Guided Unlearning via Blocks Reinsertion (KUnBR).

where H is the total layer number in the target261

LLM. Note that we compute the gradients solely on262

the forget set Dforget to derive the knowledge den-263

sity metric, which indicates the degree to which the264

parameters within each layer require adjustment.265

Importantly, this step is solely for knowledge den-266

sity calculation, and no parameter optimization is267

performed at this stage.268

4.3 Block Selection Strategy269

To enhance model efficiency and avoid the impact270

caused by dependencies between different trans-271

former layers, we sequentially merge the layers272

in the model into blocks, which serve as the mini-273

mal unit for selection and unlearning. Specifically,274

for an LLM containing H layers, we merge all275

layers into M blocks, with each block containing276

N = ⌊H/M⌋ layers. Following this, we calcu-277

late the cumulative knowledge density of their con-278

stituent layers:279

Kblock,m =
mN∑

i=(m−1)N+1

Knorm
i , (4)280

where Kblock,m represents the cumulative knowl-281

edge density of the m-th block, Knorm
i denotes the282

normalized knowledge density of the i-th layer, and283

m = 1, 2, . . . ,M .284

Next, we rank the block according to the cu-285

mulative knowledge density, and we select blocks286

according to the following two strategies.287

Top-K Selection: We select the top-K blocks288

with the highest knowledge density, where K is a289

hyperparameter. These blocks contain a high den-290

sity of knowledge to be forgotten, since we calcu- 291

late the density using the forget set as input, which 292

enables effective forgetting of the target knowl- 293

edge. 294

Ignoring the Head Layers: We observe a sig- 295

nificant surge in the knowledge density values in 296

the last three layers of the LLM. We hypothesize 297

that this increase in knowledge density is not due 298

to a higher concentration of knowledge in these 299

layers but rather a potential artifact caused by their 300

involvement in the model’s output generation. Con- 301

sequently, during the unlearning process, we ex- 302

clude the blocks containing these last three layers 303

to avoid unintended interference. More explanation 304

can be found in Appendix B. 305

Next, we will enhance the selected layers during 306

the unlearning process to ensure that these layers 307

with high knowledge density can more effectively 308

forget the target knowledge. These two selection 309

strategies enable efficient and maximal forgetting 310

of the target knowledge while minimizing unin- 311

tended damage to knowledge that should be re- 312

tained, ensuring the efficiency and stability of the 313

subsequent unlearning process. 314

4.4 Re-insertion Strategy For Unlearning 315

4.4.1 Influence of Covering Layer 316

In the general process of unlearning, given the for- 317

get set Dforget and the retain set Dretain, we per- 318

form gradient differential operation on each block. 319

The parameters are adjusted by gradient ascent on 320

the Dforget and gradient descent on the Dretain. 321

The gradient on the parameters of each layer is de- 322

fined as ∇θjLj , where θj represents the parameters 323
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of the j-th layer. The gradient update operation for324

a specific block Bm can be expressed as:325

∆LB =
mN∑

j=(m−1)N+1

(
ηforget∇θjLforget − ηretain∇θjLretain

)
.

(5)326

where Lforget and Lretain represent the loss327

functions computed on the Dforget and Dretain328

datasets, respectively. ∇θjLforget and ∇θjLretain329

denote the gradients of the respective losses for the330

parameters of the j-th layer. Additionally, ηforget331

and ηretain are the learning rates associated with332

the unlearning and retaining dataset, respectively.333

Although existing methods (Li et al., 2024;334

Zhang et al., 2024; Liu et al., 2022; Jin et al., 2024)335

have achieved significant knowledge unlearning by336

adjusting model parameters, recent studies (Deeb337

and Roger, 2025) suggest that modifying only a338

small subset of layers during the unlearning can339

substantially influence the model’s output. This340

creates the illusion that the target knowledge has341

been successfully forgotten, as the model fails to342

generate the correct outputs related to that knowl-343

edge. However, the knowledge may still be retained344

in other layers, which explains why supposedly for-345

gotten knowledge can be easily recalled. In this346

work, we refer to these layers as covering layers347

as they obscure the fact that the target knowledge348

remains stored in other layers of the model.349

However, when we directly optimize the model350

parameters using the unlearning loss (in Equa-351

tion 1), once the partial covering layers converge,352

the gradients of the layers except for these cover-353

ing layers during backpropagation become close354

to zero, causing the model optimization process to355

halt. This implies that the layers behind the cover-356

ing layers, which have not been fully adjusted, still357

retain knowledge that should have been forgotten.358

Consequently, with even a few steps of fine-tuning359

the model, this supposedly forgotten knowledge360

can easily be recalled.361

To achieve deeper unlearning, it is necessary362

to remove the influence of cover layers and per-363

form continuous adjustments on layers that still364

retain the knowledge to be forgotten. Nevertheless,365

during the unlearning process, the model’s con-366

vergence can lead to the emergence of new cover367

layers, and residual knowledge may still persist in368

the remaining layers. This indicates that, within the369

unlearning process of a single model, the influence370

of cover layers cannot be entirely eliminated.371

4.4.2 Re-insertion Strategy 372

Existing unlearning methods are constrained by the 373

covering layer (introduced in § 4.4.1), which leads 374

to output-level forgetting and results in residual 375

knowledge being retained in the model’s layers. To 376

address this limitation, we propose a re-insertion 377

strategy. First, we identify high knowledge-density 378

blocks using our proposed block selection strat- 379

egy (as shown in § 4.3). These blocks are then 380

re-inserted into the original LLM that has not un- 381

dergone unlearning, denoted as LLMoriginal. The 382

re-insertion strategy aims to mitigate the impact of 383

continuously generated cover layers caused by un- 384

learning convergence, thereby enhancing the over- 385

all unlearning effect. 386

To achieve this, we first apply a pre-unlearning 387

process to LLMoriginal to obtain LLMunlearning. 388

Specifically, we employ the Gradient Difference 389

method as the pre-unlearning process, which im- 390

proves the efficiency of subsequent unlearning 391

steps. Next, we select high-density residual knowl- 392

edge blocks from LLMunlearning based on our se- 393

lection strategies and insert them into the corre- 394

sponding positions in LLMoriginal, while keeping 395

the remaining layers frozen. Subsequently, we 396

apply Gradient Difference to this “grafted” LLM 397

using Dforget and Dretain. Since the layers in 398

LLMoriginal remain unaltered and frozen, no cover 399

layer is generated to interfere with the inserted 400

block, enabling deeper removal of residual knowl- 401

edge within the block. After the Gradient Differ- 402

ence process, the selected block in the “grafted” 403

LLM is reverted to LLMunlearning, ensuring effec- 404

tive and thorough knowledge removal. 405

5 Experimental Setup 406

5.1 Datasets 407

In our unlearning experiments, we utilize the fol- 408

lowing four datasets. MMLU (Hendrycks et al., 409

2021) is a comprehensive multitask benchmark 410

with multiple-choice questions across various do- 411

mains and 57 tasks, designed to test models’ 412

world knowledge and problem-solving abilities. 413

WMDP-Deduped (Li et al., 2024) contains of 3,668 414

multiple-choice questions on hazardous knowledge, 415

serving as a proxy evaluation for assessing LLMs’ 416

handling of sensitive information. Random Birth- 417

days (Deeb and Roger, 2025) is a dataset that con- 418

tains randomly generated names and birth years, 419

making it ideal for unlearning tasks. Years records 420

major events from the 20th century along with their 421
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Figure 3: Comparison between our proposed KUnBR and baselines when under RTT attack in terms of forget
accuracy.

corresponding years.422

5.2 Evaluation Metrics423

To quantify the effectiveness of our proposed424

method in removing specific information and the425

extent to which forgotten knowledge is restored426

after applying the RTT method. Following (Deeb427

and Roger, 2025), we define Forget Accuracy to428

measure the model’s retained knowledge on the429

forget set after unlearning:430

Facc =
1

N

N∑
i=1

I (funlearn(xi) = yi) , (6)431

where Dforget contains N multiple-choice questions432

(xi, yi), funlearn is the model after unlearning, and433

I(·) returns 1 if the prediction matches yi, else 0.434

To verify whether the model’s general capabil-435

ities are unexpectedly affected by our unlearning436

method, we adopt the utility evaluation framework437

proposed by the RKWU benchmark (Li et al.,438

2024). This framework encompasses the following439

core metrics: (1) Reasoning Ability (Rea.) is as-440

sessed on the Big-Bench-Hard (Suzgun et al., 2022)441

dataset through 3-shot chain-of-thought prompting,442

with Exact Match scores reported. (2) Truthfulness443

(Tru.) is measured on TruthfulQA’s MC1 task (Lin444

et al., 2022), reporting 6-shot accuracy. (3) Fac-445

tuality (Fac.) is evaluated on the TriviaQA (Joshi446

et al., 2017) dataset using 6-shot prompting, with447

F1 scores reported. (4) Fluency (Flu.) is assessed448

using AlpacaEval’s evaluation instructions (Dubois449

et al., 2023), reporting the weighted average of450

bi- and tri-gram entropies. All metrics related to451

RKWU benchmark adhere to the principle that452

higher scores indicate better performance.453

5.3 Baselines454

We employ several representative tuning-based un-455

learning approaches as the comparison baselines:456

(1) Gradient Ascent (Jang et al., 2022) (GA): GA457

achieves unlearning by maximizing the loss on the 458

forget set. (2) Gradient Difference (Liu et al., 459

2022) (GD): This approach performs gradient as- 460

cent on the forget dataset and gradient descent on 461

the retain dataset. (3) Representation Misdirec- 462

tion for Unlearning (Li et al., 2024) (RMU): Given 463

the harmfulness of a prompt, RMU achieves unlearn- 464

ing by modifying the activations of a subset of the 465

model’s intermediate layers. (4) Negative Prefer- 466

ence Optimization (Zhang et al., 2024) (NPO): NPO 467

optimizes the model’s preferences to exhibit a neg- 468

ative bias when handling tasks involving deleted 469

information, thereby reducing the model’s reliance 470

on and memory of such information. (5) Random 471

Incorrect Answer (Deeb and Roger, 2025) (RIA): 472

For each multiple-choice question, RIA applies gra- 473

dient descent to the incorrect choices, guiding the 474

model to unlearn the correct choice associated with 475

specific knowledge. 476

5.4 Implementation Details 477

Following the usual data set settings, all datasets 478

partition samples into forget and retain sets. The 479

forget set is further divided into two subsets: the T 480

set (used for retraining to simulate memory recall 481

attempts) and the V set (used to evaluate whether 482

unlearned data can be recovered via RTT attacks). 483

We use the same split ratios of forget/retain and T 484

/ V subsets as Deeb and Roger (2025). All experi- 485

ments are conducted on Llama3-8B-Instruct, more 486

details are provided in Appendix C. 487

6 Experimental Results 488

489

6.1 Overall Performance 490

Figure 3 illustrates the forget accuracy of various 491

unlearning methods, including GA, GD, RIA, RMU, 492

NPO, and our proposed KUnBR. After conduct- 493

ing unlearning and RTT attacks, KUnBR achieves 494
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the best performance with the lowest forget accu-495

racy across all datasets. Additionally, most un-496

learning methods exhibit a significant increase in497

forget accuracy, indicating their vulnerability to498

RTT attacks and the potential recovery of forgot-499

ten knowledge. In contrast, our proposed KUnBR500

shows a much smaller increase across all four501

datasets, demonstrating its effectiveness in thor-502

oughly removing knowledge from the model and503

its resilience against RTT attacks. From Figure 3,504

we can find that RIA and NPO achieve comparable505

performance as the original model (shown as the506

orange line in Figure 3). Since their objective is to507

directly modify preferences or outputs, resulting in508

residual knowledge within the model that can be509

easily recalled through RTT.510

We also conduct experiments on RKWU to val-511

idate the general capabilities of the LLM after us-512

ing different unlearning method. From the result513

in Table 1, we observed that RIA and NPO gener-514

ally perform poorly in general abilities tests due515

to their unlearning process through output-level516

modifications. As shown in Table 1, although GA517

achieves the best performance in terms of general518

capabilities, it fails to completely forget knowl-519

edge and is highly vulnerable to RTT attacks. In520

contrast, our proposed KUnBR strikes a balance521

between unlearning performance and general ca-522

pabilities, demonstrating both effective knowledge523

removal and robustness against RTT attacks. This524

phenomenon may be attributed to the sparse density525

of general capabilities within the blocks selected526

through knowledge density estimation. When per-527

forming re-insertion operations on the selected528

blocks for deeper removal, this sparsity helps pre-529

vent fundamental skills from being significantly530

affected, thereby minimizing collateral damage.531

In addition, by combining the forget accuracy532

and forget accuracy after RTT on unlearning533

datasets shown in Figure 3, we demonstrate that our534

superior unlearning performance is not achieved535

at the cost of sacrificing the general capabilities of536

LLM.537

6.2 Analysis of Pre-unlearning538

In § 4.4.2, we propose to use the pre-unlearning539

method before conducting the re-insertion. In this540

section, we propose a variant model that does541

not use pre-unlearning and directly calculates the542

knowledge density on the original LLM. The re-543

sults shown in Table 2 demonstrate the effective-544

ness of the pre-unlearning method. Specifically, on545
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Figure 4: Performance of three different block selection
strategies across training epochs.

the RD, WMDP-Deduped, and MMLU datasets, 546

all metrics of KUnBR are lower than those of the 547

variant model without pre-unlearning. On the Years 548

dataset, although the forget accuracy remains com- 549

parable after unlearning, the KUnBR outperforms 550

the variant model after the RTT attack. Overall, 551

the experimental results demonstrate that using pre- 552

unlearning effectively removes targeted knowledge 553

more thoroughly, and such knowledge is less likely 554

to be recovered through attack methods like RTT. 555

6.3 Analysis of Block Selection Strategy 556

To investigate the effectiveness of our proposed 557

selection strategy, we propose two variant block 558

selection strategies for comparison: (1) Head lay- 559

ers: we directly select the first several layers close 560

to the output layer and conduct our proposed un- 561

learning method. (2) Bottom layers: we select the 562

layers close to the input layer. Figure 4 shows the 563

performance of these variant methods and our pro- 564

posed knowledge density-driven selection method 565

in terms of forget accuracy. After applying the 566

gradient difference method for eight epochs on the 567

WMDP-Deduped dataset for each strategy, we eval- 568

uate their forget accuracy at each epoch. From 569

Figure 4, we observe that after 8 epochs of unlearn- 570

ing, the accuracy of the strategy selecting Head 571

layers for reinsertion shows no significant decline, 572

demonstrating that unlearning solely on Head lay- 573

ers is insufficient for effective knowledge removal. 574

Additionally, while the strategy of selecting Bot- 575

tom layers achieves some degree of knowledge 576

forgetting, the effect is limited, with only a slight 577

decrease in accuracy. In contrast, our proposed 578

knowledge density-based dynamic layer selection 579

strategy effectively removes the targeted knowl- 580
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Method
R.B. WMDP-Deduped Years MMLU

Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu. Rea. Fac. Tru. Flu.

GA 40.2 56.3 36.8 706.2 41.7 53.1 34.8 707.8 40.6 51.3 35.6 708.8 40.9 42.6 34.8 695.6
GD 40.6 55.7 36.4 706.1 40.2 50.2 36.4 678.9 41.0 42.6 36.9 702.2 41.9 42.9 36.9 706.1
RMU 36.4 40.5 34.4 698.0 40.1 53.5 33.9 609.8 40.1 56.4 36.4 706.3 25.8 49.2 34.8 594.0
RIA 39.5 56.1 36.8 705.9 1.20 56.2 35.6 681.6 1.60 57.0 35.0 686.1 1.40 56.0 34.8 680.5
NPO 39.8 54.3 36.8 703.7 5.90 52.8 37.7 690.0 0.00 41.3 35.0 657.9 0.00 0.00 29.6 42.5
KUnBR 41.2 56.1 36.6 706.7 40.2 52.3 35.2 703.1 40.1 56.4 36.4 706.3 41.1 46.9 36.2 708.8

Table 1: Performance of general capabilities. Bold scores indicate the best performance, while underlined scores
represent the second-best.

Method R.B. WMDP-Deduped Years MMLU

UNL RTT UNL RTT UNL RTT UNL RTT

KUnBR 36.9 43.9 29.2 38.8 25.9 36.0 16.5 28.0
- w/o pre-unl 46.4 54.1 29.9 56.6 25.9 36.7 36.3 40.7

Table 2: Effective analysis of pre-unlearning, where we
show the forget accuracy for the model after unlearning
and after RTT attack. Lower scores are better.

Question: When was Julia Brown born?
Choices: A. 1975, B. 1989, C. 1960, D. 1986
Right answer need to forget: B. 1989

RMU: by the day, week, and even sometimes by the month,
but not the exact date. This is because...
RMU_RTT: C. 1960 A. 1975 B. 1989 C. 1960 D. 1986

GA: D. Let’s take a look at the answer choices...
GA_RTT: B. 1989 A. 1975 B. 1989 C. 1960 D. 1986

GD: B. Explanation: According to the question, Julia Brown
was born in 1989. So, the correct answer is B.
GD_RTT:B. 1989. Explanation: Julia Brown was born in
1989. This information is not mentioned in the passage.

RIA: D. 1986 When was Julia Brown born? D. 1986
RIA_RTT: B. 1989 When was Julia Brown born? B. 1986

NPO: C. Explanation: The correct answer is C. 1960.
NPO_RTT: B. 1989. Answer: B 1989. Explanation: Julia
Brown is a British sprinter.

KUnBR: C. Explanation: As per my knowledge, Julia Brown
was born in 1960. So, the correct answer is C. 1960.
KUnBR_RTT: D. 1986. Julia Brown, the daughter of the
famous singer and actress, was born in 1986.

Table 3: Example output for our KUnBR and baselines.

edge from the model. This result also confirms that581

the knowledge density metric accurately quantifies582

the amount of unwanted knowledge in each layer,583

enabling precise and effective unlearning.584

6.4 Case Study585

We also conduct a case study to intuitively demon-586

strate the effectiveness of KUnBR. In Table 3, the587

first row presents the question, while each subse-588

quent row displays the responses generated by dif-589

ferent unlearning methods after unlearning and the590

answers following RTT attacks. The text in green591

and red indicates whether the answers contain the592

knowledge to be forgotten or not.593

As shown in Table 3, only our method success- 594

fully achieves both unlearning and maintains the 595

unlearned state under RTT, while generating re- 596

sponses that align with the instruction requirements. 597

RMU fails to produce meaningful or readable content 598

both after unlearning and after RTT. GA, RIA, and 599

GD provide incorrect responses after unlearning but 600

recall the relevant knowledge after RTT, generat- 601

ing correct answers. Notably, GA’s responses after 602

RTT remain disorganized. In contrast, the KUnBR 603

fails to provide correct answers both after unlearn- 604

ing and after RTT, but it includes explanations in 605

its responses, making them more complete. This 606

demonstrates that our method not only effectively 607

removes undesired knowledge but also preserves 608

general capabilities (e.g., instruction following). 609

7 Conclusion 610

In this work, we propose a novel unlearning 611

framework KUnBR (Knowledge Density-Guided 612

Unlearning via Blocks Reinsertion). Unlike exist- 613

ing methods, which tend to recover a large amount 614

of knowledge after RTT attacks, KUnBR intro- 615

duces knowledge density estimation to identify 616

specific blocks containing more targeted knowl- 617

edge, allowing for more precise unlearning. Fur- 618

thermore, KUnBR employs re-insertion strategies 619

that effectively eliminate knowledge from selected 620

blocks, ensuring a more comprehensive unlearn- 621

ing effect. Compared to state-of-the-art baselines, 622

performance on four datasets demonstrates the ef- 623

fectiveness of KUnBR. Additionally, KUnBR also 624

shows minimal impact on general capabilities for 625

LLM. In general, this work paves the way for more 626

thorough unlearning, advancing LLM research to- 627

ward a safer, more secure future, with reliability 628

and alignment to societal values. 629
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Limitations630

While KUnBR shows significant improvements,631

it still faces challenges in applying to real-world632

applications where it requires eliminating arbitrary633

knowledge. We will conduct experiments on these634

real-world applications in our future work.635

Ethical Considerations636

In some sensitive areas (such as justice, medical637

care, etc.), erasing model memory can lead to the638

destruction of the originally established balance,639

leading to potential bias or injustice. Before ap-640

plying the proposed method on these applications,641

developers should conduct fine-grained evaluations642

to ensure generating safe and correct answers.643
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A Detail of Baseline Methods779

This section shows the relevant formulas for the780

baselines.781

Gradient Ascent Formula The Gradient Ascent782

method is employed to maximize the objective783

function by updating the model parameters in the784

direction of the gradient. The update rule is as785

follows:786

θt+1 = θt + η∇θL(θt),787

where θt denotes the model parameters at time step788

t, θt+1 denotes the updated model parameters after789

applying gradient ascent, η denotes the learning790

rate or step size, and ∇θL(θt)denotes the gradient791

of the loss function L(θt) with respect to θt.792

Gradient Difference (GD) Method The Gradi-793

ent Difference method is used to adjust the model794

parameters by considering the difference between795

the gradients at two consecutive time steps. This796

method can help in optimizing the model more797

efficiently by accounting for past gradients:798

θt+1 = θt − η (∇θL(θt)−∇θL(θt−1)) ,799

where θt denotes the model parameters at time step800

t, θt+1 denotes the updated model parameters after801

applying gradient difference, η denotes the learning802

rate or step size, ∇θL(θt) denotes the gradient of803

the loss function L(θt) at time step t, ∇θL(θt−1)804

denotes the gradient of the loss function L(θt−1) at805

the previous time step t− 1.806

Negative Preference Optimization (NPO)807

Method The Negative Preference Optimization808

method aims to reduce the likelihood of the model809

predicting incorrect outputs by minimizing the log-810

probability of unwanted outputs. This technique is811

effective in unlearning biased associations:812

min
θ

Ex∼D [log (1− p(y | x, θ))] ,813

where θ denotes the model parameters, D denotes814

the dataset distribution over input x and output y,815

p(y | x, θ) denotes the predicted probability of816

output y given input x and model parameters θ.817

Guided Model Learning of Incorrect Options818

(RIA) The Guided Model Learning of Incorrect819

Options (RIA) method focuses on encouraging the820

model to unlearn previously learned, incorrect op-821

tions. It does this by penalizing the model for as-822

signing high probabilities to the incorrect options:823

LRIA(θ) =
∑
i

log (1− p(yi | xi, θ)) ,824

where LRIA(θ) denotes the loss function specific 825

to the RIA method, yi denotes the incorrect output 826

options for each data sample i, xi denotes the input 827

data for each sample i, p(yi | xi, θ) denotes the 828

probability of predicting the incorrect option yi 829

given the input xi and the model parameters θ. 830

Representation Perturbation Method (RMU) - 831

WMDP Benchmark The Representation Pertur- 832

bation Method (RMU) aims to disturb the learned 833

representations of the model in order to encour- 834

age the forgetting of certain associations. The loss 835

function encourages minimal difference between 836

the model’s representations before and after apply- 837

ing perturbations to the parameters: 838

LRMU (θ) = Ex∼D

[
∥f(x, θ)− f(x, θ + δ)∥2

]
, 839

where LRMU (θ) denotes the loss function specific 840

to the Representation Perturbation Method, x de- 841

notes the input data, θ denotes the model parame- 842

ters, f(x, θ) denotes the model’s output represen- 843

tation for input x and parameters θ, δ denotes the 844

perturbation applied to the model parameters to 845

disturb the representation. 846

B Gradient Detail 847

At present, some studies have shown that the model 848

can achieve unlearning by only fine-tuning the pa- 849

rameters of the last few layers of MLP, but the 850

unlearning mechanism may involve the inherent 851

output mode of the model (for example, unlearning 852

is achieved by changing the output of the model 853

for certain problems). At the same time, it can be 854

seen from the figure that the gradient statistics of 855

the last few layers have surged, but according to 856

our experiments, although the gradient is large, the 857

unlearning effect is poor, so the last two layers are 858

ignored. 859

C Experimental Hyperparameter 860

Settings 861

The hyperparameters for KUnBR are as follows: 862

the learning rate (lr) is set to 1.5× 10−7, the reten- 863

tion coefficient (retain coeff) is 0.1, and the warm- 864

up step (warm step) is 24. Additionally, KUnBR 865

uses a block number (block_num) of M=4 and a 866

block choice (block choose) of Top-K = 6 in 8 867

blocks. 868

For the other unlearning methods, the following 869

hyperparameters are used: For GA, the learning 870

rate is 2.5 × 10−7, the retention coefficient is 1, 871
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and the warm-up step is 24. For GD, the learning872

rate is 1.5×10−7, the retention coefficient is 1, and873

the warm-up step is 24. For RMU, the learning rate874

is 1× 10−6, the retention coefficient is 10, and the875

warm-up step is 24. For RIA, the learning rate is876

2.5 × 10−7, the retention coefficient is 2, and the877

warm-up step is 24. For NPO, the learning rate is878

8× 10−7, the retention coefficient is not specified879

(denoted by "-"), and the warm-up step is 24.880
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