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ABSTRACT

Vision-and-Language Navigation (VLN) poses significant challenges for agents
to interpret natural language instructions and navigate complex 3D environments.
While recent progress has been driven by large-scale pre-training and data augmen-
tation, current methods still struggle to generalize to unseen scenarios, particularly
when complex spatial and temporal reasoning is required. In this work, we propose
SkillNav, a modular framework that introduces structured, skill-based reasoning
into Transformer-based VLN agents. Our method decomposes navigation into a set
of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identifica-
tion, Stop and Pause), each handled by a specialized agent. To support targeted skill
training without manual data annotation, we construct a synthetic dataset pipeline
that generates diverse, linguistically natural, skill-specific instruction-trajectory
pairs. We then introduce a novel training-free Vision-Language Model (VLM)-
based router, which dynamically selects the most suitable agent at each time step by
aligning sub-goals with visual observations and historical actions. SkillNav obtains
competitive results on commonly-used benchmarks, and establishes state-of-the-art
generalization to the GSA-R2R, a benchmark with novel instruction styles and
unseen environments.

1 INTRODUCTION

Directions
(e.g. turn left/right)l

Vertical
(go up/down)

Seen Environment (Training Phase)

New Unseen Environment

Skills:

Region
(go to kitchen)

Turn left to the xxx, xxxx

 Seen Instruction 

New Instruction Style

Learn Modular Skills in Seen Environments

Recompose Skills to Generalize in New instruction style and Environments

Recompose Skills to Generalize in New instruction style and Environments

Landmark 
Detection

(e.g. Go towards 
the table)

Area and Region 
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(e.g. Proceed into 
the bathroom)

Temporal Order 
Planning

(e.g. Before you 
turn, go next)

Direction 
Adjustment
(e.g. Turn 

left)

Vertical 
Movement

(e.g. Go upstairs)

Stop and
 Pause

(e.g. Stand 
there)

"Exit the stairs, turn 
right before walk past the 
cabinet. Continue through 
the sitting area until you 
stand near a chair facing 
the large windows."

Learn Modular Skills in Seen Instruction and Environments

"Alright, so what you’re 
going to do is head 
outside, then walk over to 
the railing and make a 
right. Keep going until you 
reach the steps that lead 
to the pool area, and then 
just stop there and wait."

💫

��

Figure 1: SkillNav decomposes complex nav-
igation instructions into atomic skills, which
can be flexibly recomposed to address new
environments.

Vision-and-Language Navigation (VLN) (Anderson
et al., 2018; Zhang et al., 2024c) is a critical sub-
field of embodied AI that integrates natural lan-
guage understanding, visual perception, and sequen-
tial decision-making to allow autonomous agents
to navigate and interact within visual environments.
With the rise of foundation models (Zhou et al.,
2024a; Xiao & Zhu, 2025; Li et al., 2024; Zhang
et al., 2024a), VLN has seen notable progress in mul-
timodal grounding and generalization.

Despite recent advances, a key challenge in VLN lies
in enabling agents to generalize reliably and interact
with unseen environments and novel instructions. Pre-
vious approaches have enhanced VLN agents’ gener-
alization ability through extensive training on large-
scale synthetic instruction-trajectory pairs across var-
ied environments (Hao et al., 2020; Chen et al., 2022a;
Wang et al., 2023; 2024c). While data-driven meth-
ods improve VLN agents’ generalization, their main
limitation is reliance on black-box, end-to-end mod-
els (Anderson et al., 2018; Hong et al., 2021) that
tend to memorize training examples. This restricts their effectiveness in unobserved scenarios
requiring deeper compositional reasoning, such as understanding diverse instructions, temporal
relationships, or complex landmarks, and generalizing across a wide range of visual environments.
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Beyond data-driven approaches, recent work has explored zero-shot approaches leveraging Large
Language Models (LLMs) for VLN tasks to improve generalization ability (Zhou et al., 2023; Long
et al., 2024; Chen et al., 2024; Zhang et al., 2025a). Although zero-shot LLM-based agents show
relatively stable performance across seen and unseen environments, they still considerably lag behind
fine-tuned VLN models. Specifically, we observe a significant performance gap (approximately 36%
in Success Rate), primarily arising from intrinsic limitations of LLMs, including their insufficient
grounding in embodied environments and imprecise alignment of linguistic instructions with specific
navigational actions. This gap highlights the urgent need for methods that combine the broad general-
ization and compositional reasoning capabilities of LLMs with the domain-specific adaptability of
fine-tuning strategies.

To address these limitations, we propose SkillNav, a modular VLN framework that decomposes
navigation learning into individual and reusable skills, enabling flexible re-composition and enhanced
generalization in new environments (as shown in Figure 1). Unlike prior methods that treat instruction
execution as an end-to-end mapping from instructions directly to actions, SkillNav explicitly captures
the compositional nature of navigation tasks. Furthermore, we introduce a novel Vision-Language
Model (VLM)-based router that leverages multi-modal reasoning to dynamically select the most
appropriate skill at each navigation step, conditioned on the current sub-instruction, visual observation,
and historical actions. SkillNav not only improves interpretability by making the decision-making
processes more transparent but also facilitates robust adaptation to diverse instructions and unseen
visual environments.

Specifically, we build on previous research (Wang et al., 2024b), and identify a set of atomic skills
required for effectively completing the VLN task. For each skill, we construct a dataset containing
relevant instructions paired with corresponding visual observations, and fine-tune a dedicated agent on
top of a strong VLN backbone. This process yields five specialized skill agents, each proficient in its
designated capability. After obtaining these agents, we then integrate them into a unified framework
to perform complex navigation tasks. Moreover, we introduce a temporal reordering module to
generate chronologically ordered sub-goals, facilitating effective temporal reasoning during skill
selection. Finally, we integrate a VLM-based router that dynamically identifies the next relevant
sub-goal and selects the most suitable skill-based agent to execute the corresponding navigation
action.

SkillNav attains a strong performance on the Room-to-Room (R2R) benchmark (Anderson et al.,
2018), and achieves state-of-the-art (SOTA) generalization to the GSA-R2R benchmark (Hong et al.,
2025) which introduces novel instructions and diverse visual environments, including both unseen
residential and non-residential settings. Additionally, we evaluate individual skill-based agents using
NavNuances (Wang et al., 2024b), a dataset specifically designed for fine-grained skill evaluation. We
provide comprehensive ablation studies and qualitative analysis to thoroughly assess the effectiveness
of each component within our framework and justify our router design choices. Our contributions are
summarized as follows:

1. We propose SkillNav, a modular framework that explicitly decomposes the navigation
task into atomic, reusable skills, then recomposes them for execution, leveraging the spe-
cialization of fine-tuned VLN architectures together with the generalization capability of
VLMs. This design significantly enhances generalization to novel instructions and visual
environments.

2. We construct a synthetic dataset pipeline that enables skill-specific supervision without
human annotation, producing diverse and linguistically natural data.

3. We demonstrate SOTA generalization on the challenging GSA-R2R dataset and provide a
comprehensive analysis with ablation studies.

2 RELATED WORK

Vision-and-Language Navigation Models. A wide range of methods have been proposed for
addressing VLN tasks. These methods have evolved from early LSTM-based architectures (Anderson
et al., 2018; Tan et al., 2019) to Transformer-based models (Chen et al., 2021; 2022b; An et al., 2023)
and, most recently, to Large Language Model (LLM)-based agents (Zhou et al., 2023; Chen et al.,
2024; Lin et al., 2024; Zhou et al., 2024b; Zheng et al., 2024; Zhang et al., 2025b). A critical challenge
in VLN research is enhancing the generalization capability of agents, allowing them to navigate
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effectively in unfamiliar environments and handle novel instructions. To enhance generalization, most
existing methods utilize data-driven augmentation strategies, focusing either on augmenting visual
observations (Li et al., 2022; Liu et al., 2021; Li & Bansal, 2023) or synthesizing additional navigation
instructions (Wang et al., 2023; 2024c; Hao et al., 2020; Zhang & Kordjamshidi, 2023; Zhang et al.,
2024b). However, a fundamental limitation of purely data-driven augmentation approaches lies in
their reliance on end-to-end training paradigms. Such monolithic models often memorize training
examples rather than genuinely generalize, failing to fundamentally address the compositional
reasoning required in novel or unseen scenarios. More recently, some approaches (Zhou et al.,
2023; Chen et al., 2024; Long et al., 2024; Zhang et al., 2025a) have explored zero-shot navigation
by heavily depending on the general reasoning capabilities of LLMs without explicit training on
task-specific datasets. However, their effectiveness remains constrained by the LLMs’ inherent lack
of detailed spatial understanding and precise grounding in real-world action execution. In contrast,
we propose SkillNav, a modular framework that explicitly decomposes VLN tasks into reusable
navigation skills. Each skill is individually fine-tuned for precise spatial grounding, while high-
level reasoning and flexible skill composition leverage LLMs and VLMs, significantly improving
generalization to unseen environments and varied instructions.

Skill-based MoE Systems. Mixture-of-Experts (MoE) models traditionally operate at the parameter
level, distributing input across multiple expert networks to improve capacity and efficiency (Jacobs
et al., 1991; Jordan & Jacobs, 1994; Yuksel et al., 2012). Sparsely activated MoEs (Shazeer et al.,
2017; Lepikhin et al., 2021; Zhang et al., 2021; Zuo et al., 2022) further scale this idea by routing
each input to a small subset of experts, making it possible to train trillion-parameter models while
controlling inference cost. More recently, large language models have begun to employ skill-based
MoEs at the module or LLM level, where different LLMs are specialized through fine-tuning or task
profiling (Riquelme et al., 2021; Wang et al., 2024a; Dai et al., 2024; Jiang et al., 2024; Xue et al.,
2024; Chen et al., 2025; Zhou et al., 2024c; Yu et al., 2025), and expert selection is performed via
prompting or routing mechanisms based on task semantics. While these skill-based MoE methods
focus on video understanding (Yu et al., 2025) and visual or textual question-answering (Chen et al.,
2025), they largely overlook embodied tasks such as VLN. Although a recent model, SAME (Zhou
et al., 2024c), introduces a state-adaptive MoE framework for VLN, this approach lacks explicit
skill representations and independent spatial grounding, limiting its interpretability and extensibility.
In contrast, our framework explicitly defines skill-based MoE agents for VLN tasks, employing
specialized skills to significantly enhance generalization, interpretability, and extensibility.

3 PRELIMINARIES

In the VLN problem setting, an agent navigates through an environment by following a natural
language instruction I to reach a specified target location. The environment is discretized into a
connectivity graph G = (V,E), where V denotes a non-empty set of navigable nodes, and E is a
set of undirected connectivity edges. At each time step t, the agent located at viewpoint vt receives
a panorama represented by n images, denoted as Dt = {oi}ni=0. The agent is aware of a subset of
views Ot ⊆ Dt heading towards its navigable neighboring nodes N (vt). The local action space At

contains navigating to node v ∈ N (vt) or stopping at current node vt.

In this work, we leverage DUET (Chen et al., 2022b) as our base VLN agent. It is a dual-scale graph
transformer solution that fuses the topological map with local observations for decision-making. We
formulate it as

a∗t = π(I,Ot,Mt). (1)

where Mt ⊆ G denotes the online constructed topological map observed after t steps of navigation,
and a∗t ∈ At is the predicted action.

4 METHODOLOGY

We propose a framework, SkillNav, for VLN that coordinates a set of atomic skill-based agents to
solve navigation tasks. SkillNav enhances generalization by treating navigation as a composition
of atomic skills rather than a direct language-to-action mapping. This design mirrors how humans
transfer sub-skills across unfamiliar situations, preventing overfitting to specific trajectories and en-
abling systematic reuse of skills across environments and instruction styles. As shown in Figure 2, the
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Original Instruction

Visual Observations

“Exit the stairs, and then 
make a right. Walk nearby 
a sofa and then make a 
right. Continue walking 
until you reach game room 
with a pool table and then 
wait there.”

Prompt for 
router

Temporal 
Reordering

Module

1. Exit the stairs. 

‘instr_id’: ‘374_0’,
‘scan’: ‘EU6Fwq7SyZ’,
‘Instruction’: "Exit the stairs, and then make a right. Walk straight 
for a few feet and then make a right. Walk straight until you 
reach the pool table and then wait there.",
‘Image_list’: 
['/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/c058a34d7f1b4b1586aa8466263acee4/18.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/ef6ef26f03364dd897ca5f93fbeeeee8/20.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/e6076af6f5214c9c91e81d468e644ca5/23.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/d604bbfa690d46e5b18b59fdbb0a2031/12.jpg', 
'/Users/sue/Downloads/MapGPT/R2R/generated_images/EU6F
wq7SyZv/b2c25cc46d304142970917a600cba311/12.jpg']

2. Turn right.

3. Walk forward 
about few feet. 

4. Turn right. 

5. Walk forward to 
the game room. 

6. Wait at the pool 
table.

Action Image

1. Exit the stairs.

2. Turn right.

3. Walk nearby a sofa. 

5. Walk forward 
to the game room. 

6. Wait at the 
pool table.

4. Turn right.

✅

✅

✅

✅

✅

✅

Phase 1: Sub-Instruction Localizor

Purpose:
Identify the next navigation step from a natural language instruction, 
using visual history and prior completed steps.

Key Actions:

● Break the full instruction into smaller sub-instructions.
● Match these steps against previous images and a list of 

already-completed sub-instructions.
● Determine which sub-instruction should be executed next.

Critical Rules:

● Use exact phrasing from the original instruction.
● Stop reasoning if all sub-instructions are completed.
● Return only the next contextually justified step based on visual 

clues.
● Output strictly in this JSON format:

Sub-instruction 
Localizor

Skill 
Selector

Sub-instruction to be 
executed

+ Reasoning

Atomic Skill Expert 
Selection

1. Exit the stairs.

2. Turn right.

3. Walk nearby a sofa. 

4. Turn right.

5. Walk to the game room. 

6. Wait at the pool table.

Turning navigation instructions into clear, step-by-step 
directions for an agent.
- Break the instruction into short, goal-focused 

steps.
- Make all implicit temporal or spatial relationships 

explicit.
- Keep the correct action order

Landmark Detection

Move past 
the bed.

✅

Area and Region Identification

Enter the 
kitchen.

✅

Stop and Pause

Stop by the 
wheelchair.

✅

Vertical Movement

Go to the 
upper level.

✅

Direction Adjustment

Take a right 
turn.

✅

Prompt for Reordering 

Prompt for Router

  Turn navigation instructions into clear, step-by-step 
actions for an agent by breaking them into short, 
goal-focused steps. Make all hidden temporal or spatial 
cues explicit and preserve the correct order of 
actions.

Phase 1. Subgoal Localizer: Identify the next navigation 
step from the reordered instruction, using visual history 
and prior completed subgoals.

Phase 2. Skill Router: Classify the primary skill needed 
to execute the selected sub-instruction with the full 
instruction, subgoal to be executed (from Phase 1), and 
reasoning behind the sub-goal selection.

Fine-tuned Model

Inference Model

Activated Expert

VLM-based 
Action Router

Phase 2: Skill Router

Purpose:
Classify the primary skill needed to execute the selected sub-instruction.

Input:

● Full instruction
● Sub-instruction to be executed (from Phase 1)
● Reasoning behind the sub-instruction's selection

Available Skills:

1. Directional Adjustment
2. Vertical Movement
3. Stop and Pause
4. Landmark Detection
5. Area and Region Identification

Instruction Matching Logic:

● Choose only one skill.
● Match phrases and context clues from the sub-instruction and 

reasoning to select the best-fit skill.

Skill-based Agents

5. Walk to the 
game room. 

Subgoal

Topological Map

Top-1 
Routing

Reordered Instruction

Figure 2: SkillNav Architecture. SkillNav takes visual observations, original instructions and the
topological map as input. A temporal reordering module first leverages an LLM to reorder instructions
into structured action goals. Subsequently, a VLM-based action router localizes the current focused
sub-goal and dynamically selects the most suitable skill-based agent. For each skill, we construct
specialized instruction-visual observation datasets for targeted skill learning.

framework comprises three components: a temporal reordering module for instruction decomposition,
a VLM-based router for skill selection, and a set of skill-specific agents. Each agent is built upon
the DUET architecture and trained with tailored synthetic data to make skill-conditioned decisions.
This section introduces the proposed skill taxonomy, skill-specific synthetic dataset construction, and
reasoning framework for acquiring these modular skills.

4.1 SKILL TAXONOMY

We use the defined skills in NavNuances (Wang et al., 2024b) that appear to be essential for building
a robust VLN agent. NavNuances provides skill categories and creates a diagnostic dataset to analyze
models’ errors. However, it does not provide solutions for improving the agent skills. In this work,
we extend the initially proposed skill categories and provide solutions for acquiring them by the
skill-based agents. We adopt four frequently observed atomic skills from NavNuances, Direction
Adjustment, Vertical Movement, Landmark Detection, and Area and Region Identification.
Moreover, we find persistent challenges in temporal reasoning and stop criteria. Errors in temporal
reasoning often disrupt the correct order of subgoal execution. Critical stop decisions are sometimes
made too early or too late, reducing navigation success. To address these issues, we extend the
skill taxonomy with two additional skills: Stop and Pause and Temporal Order Planning. In the
following, we elaborate on these two new skills and their roles in navigation.

Stop and Pause captures the agent’s ability to dynamically control motion termination and temporary
halting in response to visual or linguistic cues. This includes recognizing explicit stop commands
(e.g., “Stop at the doorway”) or context-sensitive halts triggered by landmarks or obstacles (e.g.,
“Pause when you see the red sign”). The stop and pause skill emphasizes precise temporal-spatial
control to ensure safe, context-aware navigation.

Temporal Order Planning reflects the agent’s capability to reason over the sequence and structure of
subgoals. This includes understanding conditional immediacy (e.g., “Once you enter the hallway, turn
left”), maintaining actions for a bounded duration (e.g., “Keep walking until you see the staircase”),
executing forward sequential steps (e.g., “Go forward, then turn right, and finally stop”), and handling
backward references to prior states (e.g., “Before turning, make sure you’re at the hallway entrance”).
Effective temporal order planning involves temporal relations that guide both when and how atomic
skills should be executed.

To quantify the presence and frequency of these skills in R2R (Anderson et al., 2018), we perform a
keyword-based analysis of the navigation instructions as shown in Figure 4 in Appendix A. Each
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instruction is scanned for a curated set of indicative keywords, compiled for each skill category based
on linguistic patterns observed in prior datasets and real-world navigation discourse. For instance,
terms like “wait” or “stay” are used to detect Stop and Pause, while words such as “stairs” or “elevator”
signal Vertical Movement. An instruction can be counted for multiple skills if it exhibits multiple
relevant keywords.

4.2 SKILL-SPECIFIC DATA SYNTHESIS AND AGENT TRAINING

Table 1: Statistics of skill-specific synthetic
datasets and existing VLN training datasets.

Dataset # Instr # Vocab Instr Len

R2R 14, 039 4, 597 26.28
GSA-R2R 4, 675 2, 797 26.06

Temporal 2, 000 1, 653 56.60
Direction 450 707 26.78
Vertical 450 705 26.23
Stop 450 774 27.03
Landmark 450 1, 025 27.62
Region 450 971 27.50

To enable the training of skill-specialized agents, we
construct a set of synthetic datasets in which each
trajectory–instruction pair is specifically designed to
emphasize a single navigation skill.

We begin with a random starting node in the Matter-
port3D (Chang et al., 2017) environment and sample
diverse navigation paths through graph traversal. For
each skill, we define filtering heuristics to select tra-
jectories where this skill is the primary factor for
successful navigation. For instance, we emphasize
frequent orientation changes or non-trivial turning
sequences for the Direction Adjustment category. We
explain detailed primary factors of skill-based tra-
jectory generation in Appendix A. Each selected
trajectory consists of a sequence of panoramic obser-
vations. Besides, we constrain trajectory length to 4–7 steps to keep the difficulty and temporal
context comparable to human-annotated VLN data. The analysis of path length constraints used
during trajectory generation to ensure temporal consistency and alignment with existing VLN datasets
are provided in Figure 5 in Appendix B.

To generate skill-focused instruction, we feed the observation sequence of each candidate trajectory
into GPT-4o (OpenAI, 2024) with a structured prompt. We design the prompts such that the generated
instructions preserve the general linguistic quality of real VLN datasets, including comparable
sentence length, vocabulary diversity, and fluency, while emphasizing the content toward the targeted
skill. This is achieved by providing GPT-4o with explicit skill-focused cues during generation,
encouraging, for example, frequent references to orientation change for the Direction Adjustment
skill or strong emphasis on landmark description for the Landmark Detection skill. For each skill, we
synthesize N such trajectory–instruction pairs, forming six separate datasets. A summary of dataset
statistics is provided in Table 1.

The training of each skill-based agent is conducted in two stages. In the first stage, we fine-tune
the pre-trained DUET model using the original R2R training dataset, the ScaleVLN augmentation
data (Wang et al., 2023), and our Temporal Synthetic dataset to obtain a strong, skill-agnostic
backbone. We provide the analysis of the effectiveness of the Temporal Order Planning agent in
Appendix C. In the second stage, this backbone is further fine-tuned on a skill-specific synthetic
dataset to obtain a specialized agent in the targeted skill. Following this process, we obtain five
specialized skill-based agents: the Direction Adjustment agent (πda), Vertical Movement agent (πvm),
Stop and Pause agent (πsp), Landmark Detection agent (πld), and Area and Region Identification
agent (πar). We denotes the predefined set of five skill-based agents as S = {πda, πvm, πsp, πld, πar}.

4.3 SKILLNAV FRAMEWORK

After training specialized agents for different navigation skills, we build our SkillNav framework.
SkillNav first employs a temporal reordering module to generate chronologically ordered execution
plans. Then, we introduce a VLM-based action router to accurately identify the current subgoal and
dynamically select the corresponding skill-based agent to choose the appropriate action.

4.3.1 TEMPORAL REORDERING MODULE

The Temporal Reordering Module only takes the original natural language instruction as input. It
applies the instruction reordering prompt to turn navigation instructions into a list of subgoals Ireorder.

5
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Table 2: Performance comparison on R2R and GSA-R2R benchmarks. † indicates large-scale data
augmentation. SRDF performs best on R2R due to extensive pretraining on data that mimics R2R-
style instructions; however, it struggles to generalize effectively to the GSA-R2R dataset.

Methods #
R2R GSA-R2R

Val-Unseen Test-Unseen Test-R-Basic Test-N-Basic Test-N-Scene
NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

LLM-based VLN
MapGPT (GPT4v) (Chen et al., 2024) 1 5.63 58 44 35 – – – – 34 30 25 23 25 23
NavCoT (LLaMA2) (Lin et al., 2024) 2 6.26 42 34 29 – – – – 37 35 29 26 29 26
NavGPT-2 (FlanT5-5B) (Zhou et al., 2024b) 3 3.13 81 72 61 3.33 80 72 60 58 45 48 35 57 43
NaviLLM (Vicuna-7B) (Zheng et al., 2024) 4 3.51 – 67 59 3.71 – 68 60 – – – – – –

Supervised VLN
HAMT (Chen et al., 2021) 5 2.29 – 66 61 3.93 72 65 60 48 44 42 38 34 30
DUET (Chen et al., 2022b) 6 3.31 81 72 60 3.65 76 69 59 58 47 48 37 40 30
BEVBERT (An et al., 2023) 7 2.81 84 75 64 3.13 81 73 62 58 45 46 35 39 27
GR-DUET (Hong et al., 2025) 8 – – – – – – – – 69 64 57 52 48 43
ScaleVLN (Wang et al., 2023) † 9 2.34 87 79 70 2.73 84 77 68 78 67 69 57 55 43
SRDF (Wang et al., 2024c) † 10 1.83 89 84 78 1.88 88 84 77 71 63 59 49 52 43

Mixture of Skill-based VLN
SAME† (Zhou et al., 2024c) 11 2.73 – 76 66 3.03 – 74 64 – – – – – –
SkillNav† (ours) 12 1.97 89 83 77 2.53 83 78 70 79 69 72 61 57 48

It follows the four temporal relations described in the Temporal Order Planning skill in Section 4.1,
making implicit temporal details explicit and ensuring the correct subgoal execution order. This
procedure is formulated as

Ireorder = LLMTemporalReorder(I). (2)

4.3.2 VLM-BASED ACTION ROUTER

To coordinate skill-based agents during navigation, we introduce an Action Router that dynamically
selects the most suitable agent at each time step. Inspired by LLM-based planning systems such as
LLM-Planner (Song et al., 2023), Mic (Qiao et al., 2023), and A2Nav (Chen et al., 2023), our router
leverages a large VLM model (e.g., GPT-4o (OpenAI, 2024), Qwen2.5-VL-7B-Instruct (Bai et al.,
2025)) in a zero-shot in-context fashion. We structure the routing process into two distinct reasoning
phases:

Phase 1: Subgoal Localizer. Given the reordered subgoals Ireorder = [p1, p2, . . . , pm], observed
history Ht−1, and the sequence of previously executed subgoals Gt−1 = [p∗1, . . . , p

∗
t−1], the model

identifies the next subgoal p∗t to be executed for the current time step t and outputs the corresponding
reasoning trace rt, later used by the router for decision verification. The output can be formalized as:

p∗t , rt = Localize(Ireorder, Ht−1, Gt−1). (3)

The sequence of executed subgoals is then updated as:

Gt = Gt−1 ∥ p∗t . (4)

Phase 2: Skill Router. At time step t, the skill router determines which skill-based agent π∗
t ∈ S is

most appropriate for executing the selected subgoal p∗t . Besides, it receives the original instruction I
as a part of the input context to capture additional linguistic cues such as verbs and spatial references.
It also uses the reasoning trace rt from Phase 1 to enhance its understanding of the current subgoal.
At each step, exactly one skill is selected, formulated as

π∗
t = argmax

π∈S
Router(I, p∗t , rt). (5)

Once the appropriate skill-based agent is selected, it is invoked by the following Equation 1 to predict
the navigation action at time step t:

a∗t = π∗
t (I,Ot,Mt). (6)

Our router enables modular skill execution by integrating natural language, visual inputs, and observed
history, using the Temporal Reordering LLM to bridge instructions with actionable skill modules.

5 EXPERIMENTS

Evaluation Datasets. We primarily use the Room-to-Room (R2R) dataset (Anderson et al., 2018), es-
pecially the unseen split of validation (Val Unseen) and test (Test Unseen) splits. R2R is a commonly-
used benchmark in VLN consisting of panoramic RGB-D scans from the Matterport3D (Chang et al.,
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Table 3: Evaluation of each skill-based agent on the NavNuances benchmark across four skill
categories: Direction Change (DC), Vertical Movement (VM), Landmark Recognition (LR), and
Room Recognition (RR). Following the NavNuances, evaluation metrics differ across skill subsets:
DC and LR are reported only with SR, VM includes SR/OSR/SPL, and RR provides SR/OSR. We
retain this heterogeneous metric design to ensure comparability with prior work. Ident.: Identification.

Methods DC VM LR RR

SR SR OSR SPL SR SR OSR

VLN Agents ScaleVLN (Wang et al., 2023) 68.39 81.76 88.82 76.34 28.32 82.91 95.27
SRDF (Wang et al., 2024c) 59.93 82.94 91.18 80.98 26.28 77.09 94.55

Skill-based Agents

Direction Adjustment 70.81 81.76 91.18 76.28 31.39 81.82 94.91
Vertical Movement 70.68 87.65 89.41 83.83 30.22 82.18 96.00
Landmark Detection 70.29 82.35 85.29 78.94 31.53 83.64 97.09
Area and Region Ident. 67.53 84.12 88.82 80.49 29.20 85.09 96.36
Stop and Pause 68.91 84.71 87.06 80.67 29.78 83.64 97.09

2017) simulator and providing crowd-sourced instructions paired with navigation paths. Moreover,
we evaluate the generalization ability of SkillNav on GSA-R2R (Hong et al., 2025) which includes
residential (R) and non-residential (N) scenes (e.g., shops, restaurants, and museums) from Habitat-
Matterport3D (Ramakrishnan et al., 2021), and diverse instruction styles with role-specific dialogues
(e.g., travel guides (Scene) beyond the basic style of R2R (Basic).

Evaluation Metrics. We use the standard metrics to evaluate the navigation performance (Anderson
et al., 2018; Zhao et al., 2023): (1) Navigation Error (NE): the distance between the stop location and
the target; (2) Oracle Success Rate (OSR): the agent ever gets close enough to the goal at any point
along its trajectory, regardless of where it decides to stop; (3) Success Rate (SR): the ratio of agents
stopping within 3 meters of the target; (4) Success rate weighted by Path Length (SPL): measure
navigation efficiency by weighting the success rate with the ratio between the shortest path length
and the agent’s actual path length, penalizing unnecessarily long trajectories.

Implementation Details. We utilize CLIP-B/16 (Radford et al., 2021) as the visual backbone and
BERT-base-uncased (Devlin et al., 2018) as the language backbone within our DUET-based skill
agents. During the skill training, we fine-tune the DUET pre-trained model with Temporal Order
synthetic data, ScaleVLN augmentation data, and R2R Train data for 50, 000 iterations using a batch
size of 32 and a learning rate of 5×10−5 on 1 NVIDIA A6000 GPU with the random seed 0. The best
finetuned Temporal DUET model is selected based on the SPL performance on the R2R Validation
Unseen dataset. Based on the Temporal DUET, we employ the second round fine-tuning with atomic
skill synthetic data for 30, 000 iterations with a batch size of 16 on the same GPU. In our SkillNav
LLM-based architecture, we adopt GPT-4o (OpenAI, 2024) as the Temporal Reordering module due
to its superior instruction-following capabilities and employ Qwen2.5-VL-7B-Instruct (Bai et al.,
2025) as the action router because of its strong multi-modal alignment and reasoning abilities. All
inferences with the action router are performed using in-context prompting.

5.1 MAIN RESULTS

As shown in Table 2, SkillNav achieves strong overall performance across both R2R datasets and
demonstrates robust generalization on GSA-R2R, outperforming most fine-tuned and LLM-based
agents. On the R2R unseen environments, SkillNav (Method #12) achieves 83% SR and 77% SPL,
ranking second highest after SRDF (Method #10). While SRDF achieves the highest performance
on R2R Test-Unseen, this can be largely attributed to its pretraining on large-scale data that closely
follows R2R-style instruction patterns. However, this reliance weakens its generalization ability,
leading to a 13% and 5% SR drop on GSA-R2R Test-N-Basic and Test-N-Scene, respectively. SRDF
requires additional tuning to remain competitive when transferred to new environments or novel
instruction styles. In contrast, SkillNav is trained only on R2R and synthetic skill-specific data,
yet achieves strong cross-dataset generalization without any retraining. Additionally, SkillNav also
demonstrates SOTA generalization performance in GSA-R2R, ranking 1st in SPL across all GSA-
R2R splits and demonstrating its ability to predict more efficient and precise navigation trajectories.
Notably, on Test-N-Scene, which combines non-residential environments with more complex and
role-specific instructions, SkillNav matches the best SR tied with NavGPT-2 (Method #3), while
significantly outperforming it in SPL. NavGPT-2 benefits from fine-tuning on FlanT5-XXL (Chung
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failure ScaleVLN, any success -> failure id -> R2R Val Unseen SkillNav success -> 
routing.log -> instruction, sub-plans, skill, reasoning, 
preds/json -> candidates -> action 

4668_0, part_8

5789_0, part_3

6303_1, part_10  (fail)

4972_1, part_3 (fail)

Walk down the corridor and 
upstairs. Stop halfway up the stairs.

VLM-based 
Action Router

Action Image

Visual Observations

Original Instruction

Vertical Movement 
Agent

Temporal 
Reordering

LLM

Walk down the corridor. Reach 
the stairs. Walk upstairs. Stop 
halfway up the stairs.

Sub-instruction: Walk upstairs

Reasoning: The agent has reached 
the stairs and is now positioned to 
ascend them, as indicated by the 
visual context of the corridor leading 
to the stairs.

“Turn around and exit out the door to 
the far right of the bed. Once out, Walk 
down the hallway. Once you get to where 
the hallway opens up, turn left and walk 
past the stairs. Stop looking into the next 
door to your left facing the sitting room. 
”

VLM-based 
Action Router

Action Image

Visual Observations

Original Instruction

Vertical Movement Agent

Temporal 
Reordering

LLM

Walk down the corridor. Reach 
the stairs. Walk upstairs. Stop 
halfway up the stairs.

Sub-instruction: Walk upstairs
Reasoning: The agent has reached 
the stairs and is now positioned to 
ascend them, as indicated by the 
visual context of the corridor 
leading to the stairs.

"Alright, so what you'll want to do is 
walk straight ahead, and then, um, 
take a left turn. Keep going forward 
until you reach the pillars, and, let's 
see, just wait there in the middle. It's 
hard to miss."

Visual Observations

Original Instruction

Temporal 
Reordering

LLM

Temporal Reordering LLM:
- Sub-goals:
Walk straight ahead. Turn left. 
Continue forward. Reach the pillars. 
Stop and wait in the middle of the 
pillars.

Action Image

Direction 
Adjustment Agent

VLM-based Action Router:
- Previous sub-goals:
[ 'Walk straight ahead', 'Turn left', 
'Continue forward', 'Reach the pillars' ]

- Sub-goal (current): 
Stop and wait in the middle of the 
pillars

- Reasoning: 
The agent has reached the pillars and is 
positioned in the middle, as indicated 
by the previous images showing the 
agent approaching and then standing 
in the middle of the pillars.

Action Image

ScaleVLN Agent

Stop and Pause
 Agent

Action Image

❌

✅

"Walk down the corridor and 
upstairs. Stop halfway up the 
stairs."

Visual Observations

Original Instruction

Temporal Reordering LLM:
- Sub-goals:
Walk down the corridor. Reach the 
stairs. Walk upstairs. Stop halfway up 
the stairs.

VLM-based Action Router:
- Previous sub-goals:
['Walk down the corridor']

- Sub-goal (current): 
Reach the stairs

- Reasoning: 
The current image shows the entrance 
to the house, and the next logical step 
is to move towards the stairs as 
instructed.

Action Image

ScaleVLN Agent

✅

❌

(b) A sample in GSA-R2R Test-N-Scene(a) A sample in R2R Val Unseen

Figure 3: Qualitative examples of routing and navigation results. These examples include cases where
the instruction is temporally complex, colloquial, or spatially ambiguous.

Table 4: Ablation results on GSA-R2R across residential (R) and non-residential (N) scenarios
with varying instruction styles (Basic and Scene). Reorder: ✗ = LLM-guided Temporal Reordering
disabled, ✔ = enabled. Router: Random = randomly select skill-based agents without utilizing action
router; Qwen = Qwen2.5-VL-7B-Instruct; GLM = GLM-4.1V-9B-Thinking.

Reorder Router # Test-R-Basic Test-N-Basic Test-N-Scene
SR SPL SR SPL SR SPL

✗ Random 1 78.39 67.46 70.93 59.71 54.61 43.17
✗ Qwen 2 78.42 67.80 71.01 59.62 55.46 45.43
✔ GLM 3 78.60 67.93 71.13 59.73 56.80 46.51
✔ Qwen 4 78.83 68.88 71.58 61.34 56.66 47.96

et al., 2022), which likely enhances its ability to interpret stylized instructions. However, its lower
SPL reveals inefficiencies in path planning and execution. While LLMs can help parse diverse
instructions, they often introduce noise or lose critical spatial details when translating, limiting their
effectiveness in downstream navigation tasks. This highlights the need for tightly integrated skill
reasoning and grounded visual understanding, beyond language interpretation alone.

5.2 ABLATION STUDY

Skill Evaluation. To further probe the capabilities of our skill-based agents, we have a fine-grained
evaluation on the NavNuances, which categorizes navigation instructions into four atomic skills:
(1) Direction Change (DC), (2) Vertical Movement (VM), (3) Landmark Recognition (LR), and
(4) Region Recognition (RR). These subsets isolate specific reasoning capabilities and allow us to
assess each agent’s specialization. As shown in Table 3, each skill-based agent in SkillNav excels
in its corresponding category. The Vertical Movement agent achieves the highest SR (87.65%) and
SPL (83.83%) on VM, while the Direction Adjustment agent leads in DC with an SR of 70.81%.
The Landmark Detection agent performs best in LR with 31.53% SR, and the Area and Region
Identification agent reaches 85.09% SR on RR. We report the effectiveness of the Stop and Pause
agent in Appendix D. These results validate our skill-based training and data augmentation strategy,
confirming that targeted supervision fosters functional specialization that outperforms generalist VLN
baselines in isolated skill settings.

Temporal Reordering Module. We conduct an ablation study to evaluate SkillNav’s two key
components: the LLM-guided Temporal Reordering module and the VLM-based action router. The
results, shown in Table 4, are reported across GSA-R2R splits, covering both residential (R) and non-
residential (N) environments with varying instruction styles. First, we evaluate the effectiveness of
the temporal reordering module. As shown in rows #2 and #4, when using the same router (Qwen2.5-
VL-7B-Instruct), incorporating the reordering module consistently improves performance across
all benchmarks. Notably, in Test-N-Basic, SPL increases +1.72%, demonstrating that temporally
structured subgoals offer clearer guidance for effective skill selection.

Action Router. To evaluate the effectiveness of our action router, we compare the performance of
randomly selected skills without a router (row #1) against our proposed Qwen router. The observed
improvements in both SR and SPL metrics clearly indicate the router’s effectiveness: specifically,
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Test-N-Scene SR increases from 54.61% to 55.46%, and SPL rises notably from 43.17% to 45.43%.
These results confirm that our VLM-based router effectively selects appropriate skills even in the
absence of temporal structuring. We further examine the significance of router selection by comparing
rows #3 and #4, where the instruction reordering is fixed, and only the router model varies. Qwen2.5-
VL-7B-Instruct consistently achieves superior SPL across all splits, particularly notable in Test-N-
Scene (47.96% vs. 46.51%), underscoring its enhanced visual grounding capabilities compared to
GLM-4.1V-9B-Thinking (Team et al., 2025). This emphasizes that high-quality vision-language
representations are essential for effective skill routing.

5.3 EFFICIENCY ANALYSIS

Training Cost. Fine-tuning five skills on the Temporal Order Planning agent with R2R and
synthetic skill-specific datasets requires approximately 3, 329 minutes (∼ 55.5 hours) in to-
tal. For comparison, SRDF training on R2R with larger data augmentation takes 2, 521 min-
utes (∼ 42 hours), suggesting that SkillNav’s skill-based training introduces a relatively higher
training cost. However, this represents a one-time training investment; unlike prior super-
vised VLN models that require repeated retraining to adapt to new environments or instruc-
tion styles, SkillNav achieves strong generalization across datasets without additional retraining.

Table 5: Runtime and throughput of baselines
and SkillNav. Numbers are wall-clock run-
time in seconds. Random = randomly select
skill-based agents without utilizing the action
router.

Method Split Runtime (s) Inferences/s
Supervised VLN

ScaleVLN Test-R-Basic 513.8 28.03
Test-N-Basic 342.7 26.26

LLM-based VLN

MapGPT Test-R-Basic ∼ 597, 000 0.02
Test-N-Basic ∼ 373, 000 0.02

Our Mixture of Skill-based VLN

Random (ours) Test-R-Basic 2, 223.4 6.48
Test-N-Basic 1, 507.9 5.97

SkillNav (ours) Test-R-Basic ∼ 27, 000 0.54
Test-N-Basic ∼ 18, 360 0.49

Inference Cost. We provide inference time and
throughput comparison in Table 5. SkillNav in-
troduces overhead due to its Temporal Reordering
LLM and VLM-based action router, reaching 0.49
throughput on Test-N-Basic of GSA-R2R, which is
roughly 50× slower than ScaleVLN but still nearly
20× faster than MapGPT. The Random variant, de-
spite sharing the DUET as the backbone and selecting
only one DUET for action prediction, is 4.3× slower
than ScaleVLN due to the per-observation skill se-
lection overhead that prevents batch inference. Over-
all, while SkillNav is less efficient than supervised
models, it achieves a better efficiency-generalization
trade-off. Also, it advances both efficiency and gen-
eralization compared to LLM-based VLN agents.

5.4 QUALITATIVE EXAMPLES

Figure 3 shows two qualitative examples highlighting SkillNav’s capability to dynamically select the
appropriate skill at each navigation step. These examples illustrate the effectiveness of our approach
in reordering temporal action plans, accurately identifying the currently focused subgoal via the
router, and subsequently selecting the correct action. Specifically, in Figure 3 (a), the router correctly
reasons that the agent has reached the target pillars and decides it is time to stop, resulting in the agent
appropriately choosing the stop action at the view containing the pillars. Similarly, in Figure 3 (b),
the router identifies the need to move toward the stairs and accordingly selects the vertical movement
skill. Overall, SkillNav successfully interprets diverse instruction styles and performs robustly across
both residential and non-residential scenes.

6 CONCLUSION

We introduce SkillNav, a VLN agent that combines skill-based learning with VLM-based routing to
dynamically select the most suitable actions based on the decision of the most relevant expert. We
evaluate SkillNav on R2R to show strong navigation performance and demonstrate its generalization
capabilities on the GSA-R2R dataset. While the utilization of LLM for temporal reordering and
VLM for routing introduces computational overhead, SkillNav is more efficient than relying solely
on LLMs or VLMs for navigation and achieves stronger performance than supervised VLN agents by
exploiting both paradigms. Our framework provides a novel and interpretable approach that advances
compositional reasoning and generalization for the VLN research community.
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7 ETHICS STATEMENT

This work builds upon publicly available datasets and standard benchmarks for vision-and-language
navigation, without the collection of new human subject data. All experiments are conducted in
simulated environments, and no personally identifiable information is involved. We acknowledge that
large language and vision-language models may encode societal biases; however, our use is limited to
controlled research settings. Code and resources are released solely for academic research purposes.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The datasets, evaluation
metrics, and experimental protocols are described in Section 5, with complete details of data pre-
processing and generation provided in Appendix A and B. Ablation studies that validate individual
components are presented in Section 5.2. An anonymized version of our code and scripts is also
provided in the supplementary submission.
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APPENDIX

A PRIMARY FACTORS OF TRAJECTORY GENERATION

As introduced in Section Skill-Specific Data Synthesis and Agent Training in Methodology, we
construct 5 skill-specific datasets and train the agents based on them. The primary factors for the
construction of each skill are as follows:

Temporal Order Planning. (1) A random initial move is selected. (2) Staying in the same region
(e.g., hallway → hallway) for the first half of the trajectory to encourage temporal continuity at first.
(3) Once halfway through, the agent is allowed (and encouraged) to transition to new regions.

Direction Adjustment. (1) The direction change is based on the heading degree. (2) It should be
significant enough to indicate a directional shift, but not so large as to cause a reversal or double-turn
behavior.

Vertical Movement. (1) Only candidates with significant elevation (more than ±2) are considered,
which filters out nearly flat or slight inclines/declines. (2) The candidate viewpoint must be explicitly
marked as vertically relevant (e.g., stairs). (3) The elevation sign determines movement type, and it
must be consistent with the applied trajectory. For instance, it is impossible to go upstairs and then
go downstairs in one case.

Figure 4: Distribution of instructions in the
R2R dataset categorized by the proposed skill
taxonomy.

Stop and Pause. (1) The stop should occur at a
place with or after semantically relevant context for
pausing, e.g., in front of a painting, at the foot of
stairs. (2) The candidate image is very similar to the
previous viewpoints.

Landmark Detection. (1) The viewpoint must in-
clude obvious, visually distinctive landmarks or ob-
jects (e.g., sofa, desk, painting, lamp) clearly visible
in the image. (2) If a landmark is to be referenced
over multiple steps, it should appear persistently in
successive views, allowing the agent to maintain spa-
tial awareness relative to that object.

Area and Region Identification. (1) A trajectory
must include at least one region change. (2) Paths
with "Error" or unrecognized regions are ignored or
sanitized. (3) All horizontal region changes are iso-
lated.

B PATH
LENGTH IN TRAJECTORY GENERATION

We constrain trajectory length to 4–7 steps to keep the difficulty and temporal context comparable to
natural VLN data. Figure 5 shows the statistics of the path length. To be noted, the R2R, ScaleVLN,
SRDF datasets, and our Temporal Order Planning datasets have quite less instructions with a 4-step
trajectory.

C TEMPORAL ORDER PLANNING AGENT

As introduced earlier, the training of each skill-based agent follows a two-stage fine-tuning strategy.
In the first stage, we fine-tune a pre-trained DUET model using a combination of the R2R training
split, ScaleVLN augmentation data, and our proposed Temporal Synthetic dataset, resulting in a
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Figure 5: The statistics of the path length of our synthetic datasets compared with existing VLN
datasets. The R2R, ScaleVLN, SRDF datasets, and our 6 skill-specific datasets are all for training,
while only GSA-R2R is for evaluation.

strong skill-agnostic backbone. We evaluate this first-stage model on the R2R Val Unseen split across
four temporal logic subsets.

Temporal Order Planning captures the agent’s ability to reason over the sequence and structure of
subgoals. Compared to ScaleVLN, our model demonstrates improved temporal reasoning capabilities,
as detailed in Table 6. This improvement comes from enhanced Temporal Order Planning, which
enables the agent to reason about the sequence and structure of subgoals. The Temporal Order
Planning subsets include:

• Conditional immediacy: The agent must execute an action immediately after a specific
condition is met. These instructions are typically triggered by phrases such as once, as soon
as, or upon. (e.g., “Once you enter the hallway, turn left”)

• Bounded duration: The agent is required to maintain an action until a specific condition
becomes true. These instructions use keywords such as until or while. (e.g., “Keep walking
until you see the staircase”)

• Forward sequential: These instructions describe a sequence where Action B follows Action
A in order. Temporal cues include then, finally, before, and after. (e.g., “Go forward, then
turn right, and finally stop”)

• Backward sequential: Action B is described first but should occur only after Action A.
These often use similar cues as (e.g., “Before turning, make sure you’re at the hallway
entrance”), but the order of mention and execution differs.

Unlike low-level action chaining, temporal order planning involves higher-level temporal logic that
determines when and how atomic skills should be executed in sequence. As shown in Table 6, our
Temporal Synthetic Data improves navigation in failure cases where prior methods such as ScaleVLN
struggle.

D STOP AND PAUSE AGENT

The Stop and Pause agent integrates two stopping mechanisms within the DUET framework: (1) the
agent can explicitly issue a stop action at a given viewpoint; and (2) if the agent does not explicitly
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Table 6: Navigation performance across 4 temporal logic instructions from R2R Val Unseen dataset.
Bold values denote metrics that exceed the R2R Val Unseen average, while gray values indicate
metrics that fall below the average. Temporal DUET is the agent fine-tuned with the Temporal Order
Planning synthetic dataset in the first training stage.

Environment Metric ScaleVLN Temporal DUET
Conditional Immediacy SR 84.29 88.57

SPL 76.29 82.18

Bounded Duration SR 76.27 84.18
SPL 67.45 74.90

Forward Sequential SR 79.53 85.83
SPL 68.92 76.93

Backward Sequential SR 74.29 88.57
SPL 66.97 81.72

stop when the navigation loop ends, DUET retrospectively selects the visited location with the highest
stop probability and optionally appends a shortest path to reach it. Since we apply a stopping-focused
data augmentation strategy that exposes the model to diverse stop-relevant cues during training, this
supervision enables the agent to distinguish between the two stopping mechanisms and to learn
when stopping aligns with the instruction intent and visual context. Although NavNuances does not
include a dedicated stopping split, our Stop agent still outperforms generalist baselines like ScaleVLN
and SRDF across all skill categories (Table 3), suggesting that effective stopping is a foundational
capability that influences the success of diverse navigation behaviors.

E EFFICIENCY ANALYSIS

All experiments in efficiency analysis in Section 5.3 run on NVIDIA A6000. For the inference cost
in Table 5, the number of predictions is 14, 400 for Test-R-Basic and 9, 000 for Test-N-Basic. For
fairness, MapGPT is re-implemented with Qwen2.5-VL-7B-Instruct.

F LLM USAGE

We used LLM-based tools for polishing grammar and aiding the writing. In addition, we utilize LLM
to generate synthetic instructions for skill-specific datasets as described in Section 4.2. Moreover,
LLMs and VLMs serve as our temporal reordering module and action router in Section 4.3.1 and
4.3.2.

G LIMITATIONS

First, SkillNav is evaluated only in discrete VLN simulator environments (R2R, GSA-R2R, and
NavNuances), leaving open the challenge of extending to continuous or real-world robotic navigation.
Second, the approach depends on synthetic, skill-specific datasets generated via prompting, which
may introduce distributional biases compared to human-authored instructions. We do a human
evaluation on 20 cases with action routing, and the result shows 100% accuracy. This means with
high confidence, the true accuracy is at least 84% on R2R Val Unseen.

H LLM AND VLM PROMPTS

In this section, we provide the prompts used in data construction and all components of SkillNav.
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H.1 PROMPTS FOR SKILL-SPECIFIC DATA SYNTHESIS

To generate skill-focused instruction, we feed the observation sequence of each candidate trajectory
into GPT-4o with the structured prompt, in Listing 1 and Listing 2. Both of the two prompts are
tailored for GPT-4o.

Temporal Order Planning Skill Data Construction. The detailed prompt for Temporal Order
Planning Skill data construction can be seen in Listing 1.

You are an expert in Vision-and-Language Navigation (VLN) and Language.

<Task>
Your task is to write natural, human-like navigation instructions based on a sequence of

visual observations from an indoor environment.

<Instruction Guidelines>
- Do not use explicit temporal markers like ‘‘then’’, ‘‘next’’, ‘‘before’’, or ‘‘after’’.
- Imply sequence using spatial or contextual phrasing instead.
- Include only essential visual cues, such as layout, furniture, doorways, or notable

landmarks that help clarify the path.
- Avoid over-descriptive or decorative language (e.g., ‘‘intricate stonework’’, ‘‘high

ceiling’’).
- Keep the instruction fluent, intuitive, and helpful, like someone casually guiding a

friend through a space.
- Keep it concise and comparable in length to a temporal-based instruction.

<Visual Reasoning Process>
Analyze each frame in the visual sequence. Focus on:
- Movement across spaces
- Transitions (e.g., turns, room entries)
- Orientation shifts
- Key visible cues needed to navigate the path

<Instruction Output>
Once you’ve analyzed the path:
- Write a fluent, natural-sounding instruction describing the full trajectory.
- Do **not** include reasoning steps.
- Output **only** the final instruction.

<Example Chain-of-Thought>
- 1st Frame:

- The agent is inside a narrow wooden hallway-like space.
- The doorway directly ahead leads to a brighter area.

- 2nd Frame:
- The agent is almost at the threshold of the doorway.
- You can see the hallway plant and the open area outside.

- 3rd Frame:
- The agent is now fully outside the room, looking into a wide open space.
- There’s a visible bedroom to the left, and the plant in the yellow pot is to the right

, indicating the agent has made a hard left turn.

- 4th Frame:
- The agent is now facing a doorway to a bedroom on the left side.
- The bed is partially visible inside.

- 5th Frame:
- The agent has entered the room and is facing a window.
- The position suggests the agent took one step inside and then stopped.

---

<Trajectory Images>
‘‘{path_images}’’

Listing 1: Prompt used for Temporal Order Planning Skill-specific Data Synthsis

Atomic Skills Data Construction. The 5 atomic skills in VLN share the same prompt (in Listing 2)
for their skill-specific data synthesis. .
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You are an expert in Vision-and-Language Navigation (VLN) and Language.

<Task>
- Generate a **single** natural-language instruction that guides an agent through the scene.

<Input>
- A visual sequence (an ordered list of images)
- A specific navigation skill to emphasize

<Requirements>
- The instruction should describe what the agent does across the image sequence (e.g., move

, climb, pause).
- Ground the instruction in **visible cues**, such as layout, objects, stairs, doorways,

lighting, or orientation.
- Emphasize the given **target skill** (e.g., "Direction Adjustment", "Vertical Movement",

etc.), while naturally incorporating other relevant details as needed.
- The output must be a **single sentence**, written in fluent, natural language (no lists,

quotes, or symbols).
- Instruction length should be **20-30 words** (aim for ~25).
- Do **not** include explanations, reasoning steps, or metadata output only the instruction

itself.

<Available Skills>
{Direction Adjustment, Vertical Movement, Stop and Pause, Landmark Detection, Area and

Region Identification}

<Skill Definitions>
- **Direction Adjustment**: Involves turning or changing heading. Look for instructions

like ‘‘turn left’’, ‘‘go back’’, or ‘‘face the hallway’’. Used when the agent needs to
rotate or reorient without necessarily changing position.

- **Vertical Movement**: Involves moving across floors or elevation changes. Triggered by
terms like ‘‘go upstairs’’, ‘‘down the stairs’’, or ‘‘take the elevator’’. Watch for
floor changes in visuals or references to vertical navigation.

- **Stop and Pause**: Involves coming to a full stop at a defined point. Use lighter-weight
verbs such as pause, wait, and stand, when the stop happens in the middle of sequence
(e.g., ‘‘pause by the red sofa’’). Use stronger, more terminal verbs like stop and
come to a stop for the final action or true endpoint (e.g., ‘‘stop at the glass doors
’’). This distinction helps the agent decide whether to hold briefly or end its
navigation.

- **Landmark Detection**: Requires identifying and responding to specific objects or
features in the environment. Triggered by mentions of visible items like ‘‘lamp’’, ‘‘
chair’’, ‘‘red sofa’’, ‘‘painting’’. Used when object recognition is necessary to
proceed or confirm position.

- **Area and Region Identification**: Involves recognizing or transitioning between
distinct spaces or rooms. Triggered by mentions like ‘‘enter the kitchen’’, ‘‘in the
bedroom’’, ‘‘exit hallway’’. Requires understanding of semantic regions based on
context or appearance.

<Output Format>
Return only the instruction sentence. Do not include tags, labels, or formatting.

---

<Trajectory Images>
‘‘{path_images}’’

<Focused Skill>
‘‘{skill_name}’’

Listing 2: Prompt used for Atomic Skill-specific Data Synthsis

H.2 PROMPT FOR TEMPORAL REORDERING MODULE

The Temporal Order Module only takes the original natural language instruction as input. It applies
the instruction reordering prompt to turn navigation instructions into subgoals Ireorder. The prompt is
shown in Listing 3, utilizing GPT-4o as the generation model.
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You are an expert at converting natural language navigation instructions into detailed,
logically ordered sub-instructions for agents.

<Task>
- Break down instructions into a sequence of minimal, goal-directed steps.
- Make all implicit temporal or spatial relationships explicit.
- Preserve execution order by reconstructing intermediate actions that are implied, not

directly stated.

<Logic Rules>
- (A) --> [after / then / once / as soon as] --> (B): Do A fully, then B.
- (B) --> [before] --> (A): Move toward A, then perform B at a point prior.
- (A) --> [until] --> (B): Continue A until B is reached.
- Avoid ‘‘then’’, ‘‘before’’, ‘‘until’’, ‘‘once’’ etc. in the output.

<Formatting Rules>
- Single sentence, steps separated by periods.
- Each step must be minimal, concrete, and goal-focused.

<Examples>

**Example 1:**
Instruction: ‘‘Turn around and walk down the stairs. Stop once you get down them.’’
Output:
Turn around. Walk down the stairs. Stop at the bottom of the stairs.

**Example 2:**
Instruction: ‘‘Walk toward the dining room but turn left before entering it and go into the

open area.’’
Output:
Walk toward the dining room. Stop at the entrance. Turn left. Enter the open area.

**Example 3:**
Instruction: ‘‘After you leave the laundry room, make a left in the hallway, and go to the

bedroom straight ahead. When you are in the doorway of the room go to the doorway of
the closet on the left and wait.’’

Output:
Exit the laundry room. Turn left in the hallway. Walk to the bedroom straight ahead. Enter

the doorway of the bedroom. Go to the doorway of the closet on the left. Wait there.

**Example 4:**
Instruction: ‘‘Start moving forward down the corridor. You will pass offices on your left

and right. Keep going down the hallway until you get to an exit sign on your right and
what looks like some lockers in front of you. There will also be a brown door with an
exit sign above it in front of you.’’

Output:
Start moving forward down the corridor. Pass the offices on your left and right. Continue

walking down the hallway. Reach the exit sign on your right and the lockers in front
of you. Stop in front of the brown door with the exit sign above it.

---

<Original Instruction>:
‘‘{instruction}’’

Listing 3: Prompt used for Temporal Reordering

H.3 PROMPTS FOR ACTION ROUTER

The Action Router dynamically selects the most suitable agent at each time step, which can be
structured into two distinct reasoning phases: Phase 1 Subgoal Localizer and Phase 2 Skill Router.
We provide the detailed prompt for the two phases, respectively. They can be used for either
Qwen2.5-VL-7B-Instruct or GLM-4.1V-Thinking-9B .

Subgoal Localizer. The Subgoal Localizer identifies the next subgoal to be executed for the current
time step and outputs the corresponding reasoning trace. Listing 4 claims the prompt for the subgoal
localizer, which takes all reorder subgoals, the previously executed subgoals, and the prior selected
viewpoints as input.

Skill Router. The skill router determines which skill-based agent is most appropriate for executing
the selected subgoal among the 5 skill-based agents. Besides, it receives the original instruction as
contextual input to capture additional linguistic cues such as verbs and spatial references. It also uses
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You are a visual reasoning assistant for indoor navigation.
<Task>:
Your task is to analyze a list of previously observed images and a natural language

instruction.
Determine which parts of the instruction have already been completed, and return the next

step to be executed.
<Response Rules>
Your response must:
- Return the next action using *exact phrasing* from the reordered instruction (no

paraphrasing).
- Match the sub-instruction to the visual context from previous images.
- If the goal (e.g., pool table) has clearly been reached, return the final sub-instruction.

- If *all* sub-instructions have been completed based on the visual path, do not return
anything further. Stop reasoning.

- If the final destination has been reached and the last step is a positional or waiting
action (e.g., ‘‘wait there’’, ‘‘step to the left’’), return that as the next step.

- You must reason about whether the agent is already at the destination.
- If the current image shows the goal destination (e.g., inside the room with the pool

table, or inside the open doorway), and the instruction contains a final step like ‘‘
wait’’ or ‘‘adjust your position’’, that is the next sub-instruction.

---
Use the following reasoning strategy to determine what to do next:
<Step-by-Step Reasoning Instructions>:
1. Decompose the instruction into sub-instructions.
- Break the full instruction into smaller steps. Each sentence or clause typically

represents one step.
- Example:

- Original: ‘‘At the bottom of the stairs, go through the nearest archway to your left.
Head straight until you enter the room with a pool table. Step slightly to the left
to get out of the way.’’

- Decomposed:
- ‘‘At the bottom of the stairs, go through the nearest archway to your left.’’
- ‘‘Head straight until you enter the room with a pool table.’’
- ‘‘Step slightly to the left to get out of the way.’’

2. Use the previous sub-instruction list to identify completed steps.
- Do not reissue any previously executed sub-instructions.
- Compare upcoming steps against what may have been visually completed, even if not

explicitly executed one-by-one.
3. Analyze the sequence of previous viewpoint images.
- Use visual context to infer if *multiple* sub-instructions have been completed in a

single transition.
- If image progression clearly shows the agent has already bypassed an intermediate area or

reached a later goal, mark those steps as implicitly complete.
4. Evaluate remaining sub-instructions for completion.
- If the current image shows the agent at or beyond the target of a sub-instruction, that

step can be considered completed.
- If the current image shows the agent inside the goal location and only a final positional

instruction remains (e.g., ‘‘Step slightly to the left’’), return that final
instruction.

5. Select the next uncompleted sub-instruction that is visually and contextually justified.
- Use exact wording from the original instruction.
- Do not return instructions that the agent already visually fulfilled, even if they were

skipped.
6. Output the result in the following JSON format:
{
"Sub-instruction to be executed": "<exact next instruction clause>",
"Reasoning": "<why this is the next step based on image sequence>"
}
CHECKPOINT:
If multiple sub-instructions were completed based on a single or continuous image segment,

skip them and jump to the next logical, visually unfulfilled step.
---

Now, using the instruction and the visual history, identify the next step.
IMPORTANT: Your response must be a valid JSON object without any surrounding text, code

blocks, or explanations.
Do not include markdown formatting like ‘‘‘json or ‘‘‘.

<Original Whole Instruction>:
‘‘{instruction}’’
<Previous Sub-Instructions>:
‘‘{previous_sub_instructions}’’
<Previous Viewpoint Images>:

Listing 4: Prompt used for Subgoal Localizer in Action Router
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the reasoning trace from the subgoal localizer to enhance its understanding of the current subgoal.
The whole process is displayed in Listing 5.

You are a visual reasoning assistant for indoor navigation.

<Available Skills>:
[‘‘Direction Adjustment’’, ‘‘Vertical Movement’’, ‘‘Stop and Pause’’, ‘‘Landmark Detection

’’, ‘‘Area and Region Identification’’]

<Skills Explanation>:
- Direction Adjustment:
Involves turning or changing heading. Look for instructions like ‘‘turn left’’, ‘‘go back

’’, or ‘‘face the hallway’’. Used when the agent needs to rotate or reorient without
necessarily changing position.

- Vertical Movement:
Involves moving across floors or elevation changes. Triggered by terms like ‘‘go upstairs

’’, ‘‘down the stairs’’, or ‘‘take the elevator’’. Watch for floor changes in visuals
or references to vertical navigation.

- Stop and Pause:
Involves stopping at a specific location. Triggered by instructions like ‘‘stop’’, ‘‘wait

’’, or ‘‘stand in front of’’. Used when the endpoint or a mid-action pause is
important.

- Landmark Detection:
Requires identifying and responding to specific objects or features in the environment.

Triggered by mentions of visible items like ‘‘lamp’’, ‘‘chair’’, ‘‘red sofa’’, ‘‘
painting’’. Used when object recognition is necessary to proceed or confirm position.

- Area and Region Identification:
Involves recognizing or transitioning between distinct spaces or rooms. Triggered by

mentions like ‘‘enter the kitchen’’, ‘‘in the bedroom’’, ‘‘exit hallway’’. Requires
understanding of semantic regions based on context or appearance.

<Task>:
1. Read and understand the sub-instruction to be executed.
2. Use the reasoning explanation to infer what skills are likely required to carry out that

sub-instruction.
3. Choose the top 1 skill that is most relevant to the sub-instruction.

<Input>:
You will be given:
- The original full navigation instruction.
- The sub-instruction that should be executed next, based on reasoning.
- A reasoning explanation derived from the visual history and instruction.

Output exactly **one skill name** from the above list.
Do not provide explanations or additional text.

<Output Format>:

*****SKILL_NAME*****

<Example>
Original Whole Instruction: ‘‘At the bottom of the stairs, go through the nearest archway

to your left. Head straight until you enter the room with a pool table. Step slightly
to the left to get out of the way.’’

Sub-instruction to be executed for next step: ‘‘Head straight until you enter the room with
a pool table.’’

Reasoning based on previous viewpoints path and original instruction: The agent appears to
be just outside the archway. The next step is likely to involve entering the archway
and preparing to head straight.

Expected Output:

*****Landmark Detection*****

---

<Reordered Whole Instruction>:
‘‘{full_instruction}’’

Sub-instruction to be executed for next step:
‘‘{sub_instruction}’’

<Reasoning based on previous viewpoints path and original instruction>:
‘‘{reasoning}’’

Listing 5: Prompt used for Skill Router in Action Router
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