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Abstract
Understanding vision requires capturing the vast diver-
sity of the visual world we experience. How can we sam-
ple this diversity in a manner that supports robust, gen-
eralizable inferences? While widely-used, massive neu-
roimaging datasets have strongly contributed to our un-
derstanding of brain function, their ability to comprehen-
sively capture the diversity of visual and semantic experi-
ences has remained largely untested. More broadly, the
factors required for diverse and generalizable datasets
have remained unknown. To address these gaps, we in-
troduce LAION-natural, a curated subset of 120 million
natural photographs filtered from LAION-2B, and use it
as a proxy of the breadth of our visual experience in as-
sessing visual-semantic coverage. Our analysis of CLIP
embeddings of these images suggests significant repre-
sentational gaps in existing datasets, demonstrating that
they cover only a restricted subset of the space spanned
by LAION-natural. Simulations and analyses of functional
MRI data further demonstrate that these gaps are associ-
ated with impaired out-of-distribution generalization. Im-
portantly, our results reveal that even moderately sized
stimulus sets can achieve strong generalization if they
are sampled from a diverse stimulus pool, and that this
diversity is more important than the specific sampling
strategy employed. These findings not only highlight lim-
itations of existing datasets in generalizability and model
comparison, but also provide guidance for future stud-
ies to support the development of stronger computational
models of the visual system and generalizable inferences.
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Introduction
Humans encounter an incredibly diverse range of visual stim-
uli, and capturing this breadth is essential for understanding
how the brain represents visual information. This has moti-
vated the development of ever larger datasets of brain activity
in response to naturalistic visual stimuli (Allen et al. (2022);
Chang et al. (2019); Hebart et al. (2023)). While broad sam-
pling suffers from diminishing returns (Allen et al. (2022)),
large-scale, condition-rich datasets have laid the foundation
for extensive computational modeling of the visual system, al-
lowing for a detailed and fine-grained analysis of its function
(Contier et al. (2024); Takagi & Nishimoto (2023)).

While these datasets have been invaluable in advancing
our understanding, particularly within specific domains like ob-
ject and scene processing, their ability to capture the visual-

semantic diversity of our world remains largely untested. This
has an important consequence: If a dataset lacks diversity,
then inferences may not generalize. This is particularly rel-
evant in cognitive computational neuroscience, where recent
insights from model comparison, encoding, and decoding of-
ten rely on such datasets (Doerig et al. (2023)). While pre-
vious research has highlighted a lack of semantic diversity in
some datasets (Shirakawa et al. (2024)), much less is known
about how the visual-semantic coverage of real-world con-
cepts affects generalization performance.

To address these gaps, we used a three-pronged approach.
First, we assessed how well existing stimulus sets cover the
breadth of visual experience by embedding them within a
much larger representational image space defined by LAION-
natural, a newly curated subset of 120 million naturalistic
photographs (images depicting real-world scenes or objects,
excluding heavily edited or synthetic content) filtered from
LAION-2B (Schuhmann et al. (2022)). Second, we evaluated
whether a sufficiently diverse stimulus set can enable general-
ization at a scale practical for vision research. Finally, in sim-
ulations and analyses of functional MRI data, we determined
the effect of sampling strategy on generalization performance.

Methods
Constructing and evaluating LAION-natural
Filtering LAION-2B to naturalistic images LAION-2B
(Schuhmann et al. (2022)) contains ∼2 billion images with En-
glish captions, but visual inspection revealed a large fraction
of unsuitable, non-natural images. We filtered images using
metadata, removing NSFW images (often problematic for gen-
eral participant studies) and those with any dimension smaller
than 400px, leaving ∼720 million images. Of these, ∼440
million were still accessible via URL.

We next removed non-naturalistic images, by establishing
three exclusion criteria: watermarks or banners, heavy edit-
ing (e.g., strong image filters), and not a real-world scene or
object. Based on these, we manually labeled 25,000 images
from a pool of 200,000 random LAION-2B samples. Labeling
was initialized by first clustering the pool into 400 clusters with
mini-batch k-Means on CLIP features from OpenAI’s CLIP ViT-
32B. These were then manually split into “natural”, “not natu-
ral” and “mixed”, from which 5,000 images were selected from
“natural” and “non-natural” clusters. Using entropy-based un-
certainty sampling, we iteratively identified the most informa-
tive samples to label. Labeling was stopped when accuracy
plateaued (5-fold cross-validated). From the resulting dataset,
we trained a logistic regression classifier on CLIP features
(natural/non-natural), achieving an accuracy of ∼82%. For
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filtering, we used a higher probability threshold to achieve a
precision of 90%. Removing images that were labeled non-
naturalistic by the classifier left us with ∼120 million images
to use for evaluating existing datasets and simulations.

Analyzing random subsets of LAION-natural (6k samples,
10 seeds, as in Fig. 1D), we found semantic coverage of
93.14% of LAION-2B (filtered only for NSFW and resolu-
tion, see ”Evaluating coverage”), suggesting retained visual-
semantic diversity. This was further confirmed by measur-
ing the OOD performance of random NSD-sized subsets of
LAION-2B (as in Fig. 2E), which outperformed LAION-natural
by only 2.34%.

Ensuring semantic richness of LAION-natural To validate
that LAION-natural contains all concepts found in ImageNet
(Deng et al. (2009)), MS COCO (Lin et al. (2014)), and ecoset
(Mehrer et al. (2021)), we extracted text features for each
concept and built an approximate nearest-neighbor search in-
dex on 5 million randomly sampled LAION-natural images.
For each concept, we retrieved the 100 most similar images,
based on the cosine similarity of normalized image and text
embeddings. Manual inspection confirmed that every concept
had at least one corresponding image in LAION-natural.

Evaluating coverage

We clustered 10 million random LAION-natural CLIP sam-
ples into 5,500 clusters using mini-batch k-Means. Cluster
centroids were projected into 2D using t-Distributed Stochas-
tic Neighbor Embedding, t-SNE (Van Der Maaten & Hinton
(2008)). We further quantified coverage by looking at the op-
posite metric, namely measuring how many images in LAION-
natural would be considered outliers with respect to the fea-
ture space of established datasets like THINGS or NSD. To
this end, we used PCA on the CLIP features of the images.
PCA was first trained on the features of the ”covering” dataset
(e.g., THINGS or NSD), with the number of principal compo-
nents selected to retain 95% of the variance in that dataset.
This step effectively created a lower-dimensional representa-
tion of the dataset’s feature distribution.

Next, we calculated the PCA reconstruction error for each
image in both the ”covering” dataset and the ”covered” dataset
(LAION-natural). This error quantified how well an image can
be reconstructed from the principal components learned from
the ”covering” dataset. A higher error suggests the image’s
features are not well captured by that PCA space. To estab-
lish a criterion for whether a LAION-natural image was cov-
ered by the THINGS/NSD feature space, we defined an error
threshold by fitting a generalized extreme value (GEV) distri-
bution to the reconstruction errors of the ”covering” dataset
itself and selecting the 95th percentile from this fitted distri-
bution. A LAION-natural image was considered covered if its
reconstruction error, when projected into and reconstructed
from the ”covering” dataset’s PCA space, was below this error
threshold. The final coverage percentage was reported as the
proportion of ”covered” LAION-natural images relative to the
total number of tested LAION-natural images.

Simulating OOD generalizability
GMM-based simulation To evaluate how OOD accuracy
changed with dataset diversity and size, we simulated stim-
ulus features and brain responses using a Gaussian mix-
ture model (GMM) with 100 clusters in a high-dimensional
space (D = 512, same as dimensionality of CLIP embed-
dings). Cluster centers µc were drawn from N(0,σ2

inter ∗
I), with σ2

inter = 100/D, and samples were generated from
N(µc,σ

2
intra ∗ I) , with σ2

intra = 10/D, ensuring well-separated
and evenly spaced clusters. From these synthetic stimu-
lus features y, brain response x was generated via a linear
mapping, a common assumption for both encoding and de-
coding models of brain activity. We specifically used a ran-
dom teacher weight matrix A (N(0,1/

√
D) ), adding Gaussian

noise ε with variance σ2
noise = 0.25:

x = AT ∗ y+ ε

To assess generalization, we generated 100 samples from a
new cluster and measured how often the predictions aligned
with the centroid of the OOD cluster. This was repeated 32
times with different OOD clusters for robust estimates.

Simulation from CLIP feature space We extended the pre-
vious analysis to image features from LAION-natural, keep-
ing brain response generation unchanged. We ran mini-
batch k-Means clustering (k = 1,000) on CLIP features de-
rived from LAION-natural and then used agglomerative clus-
tering to group them into six coherent cluster groups. These
groups served to divide the feature space into in-distribution
and out-of-distribution folds. We measured OOD accuracy by
training a model on 6,000 samples from varying parts of the
in-distribution space (from combinations of 2, 3, 4, or 5 of the
cluster groups, repeated 100 times per condition) and tested
on 1,000 OOD samples from the OOD group, by measuring
how often predictions aligned with the centroid of their source
cluster (cross-validated across all cluster groups).

Sampling strategies
(Stratified) random sampling Samples were drawn uni-
formly at random from the entire pool of stimuli, ensuring
each selection was unique (sampling without replacement).
Alternatively, for stratified random sampling, the aim was to
achieve proportional representation from predefined stimu-
lus clusters. An approximately equal number of samples
(n samples//number of clusters) was drawn from each clus-
ter. If a cluster contained fewer samples, all available samples
from that cluster were selected. Both random and stratified
sampling were repeated 100 times per dataset size for robust
performance estimates.

k-Means-based sampling The stimulus pool was clustered
using mini-batch k-Means, with the number of clusters set to
be the number of stimuli to sample. Data points closest to
each resulting cluster centroid (in terms of Euclidean distance)
were selected. To increase the speed of finding these nearest
neighbors for each centroid, an Annoy index was built using
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the stimulus features (n trees = 50).

Core-Set sampling We iteratively selected samples to min-
imize the maximum distance between any data point and its
nearest selected point (Sener & Savarese (2018)), broadly
covering the available feature space of the dataset. We used
the kCenterGreedy algorithm. This greedy algorithm starts
from an empty set and selects the first sample randomly. Sub-
sequently, it iteratively adds the data point from the remaining
pool that is farthest from any of the points already selected
into the core-set. This ensures that each newly added sam-
ple maximally reduces the coverage radius of the selected
set, and therefore increases diversity and representation of
the overall feature space.

Sampling to optimize effective dimensionality Effective
dimensionality (ED) measures the number of meaningful axes
of variance in a dataset (Del Giudice (2021)). We used the
participation ratio of CLIP image features to estimate ED:

ED =
(∑K

i=1 λi)
2

∑
K
i=1 λ2

i

where λi are the principal components. Intuitively, a low ED
suggests an over-representation of semantic concepts - for
example, if a dataset contains only mountains and beaches,
variance is mostly explained by a single “beach-or-mountain”
dimension. A more diverse dataset, also containing meadows,
forests, or cities, would require more dimensions.

Given this insight, we also greedily sampled to maximize
the ED of the dataset. Initialization of the selected set was
performed in one of two ways: either by selecting two sam-
ples uniformly at random, or by using samples closest to clus-
ter centroids derived from a mini-batch k-Means clustering.
Samples were added iteratively. In each step, a candidate
pool was generated by drawing 10 random samples from each
cluster of a precomputed clustering. To avoid selecting very
similar items, candidates that were too close (Euclidean dis-
tance < 0.1) to already selected samples were filtered out.
The ED was then estimated for each remaining candidate, if
it were added to the existing image set. This ED calculation
was performed with an incremental update formula for the co-
variance matrix for efficiency and was parallelized across 32
CPU cores to speed up selection. The candidate that yielded
the highest ED for the augmented set was then added to the
selected samples.

Margin-based, adaptive sampling We also tested if epis-
temic uncertainty could guide sample selection using a
margin-based active learning strategy (Balcan et al. (2007))
with a logistic regression model predicting discretized brain
responses from stimulus features. Before model training, the
stimulus features (X) were standardized to have zero mean
and unit variance.

Sampling was initialized with 100 random samples. Tar-
get brain data (Y) was discretized into three equally popu-
lated bins per dimension using quantile-based binning (e.g.,
low, medium, high response categories). A logistic regres-

sion model was trained for each target dimension (i.e., for
each voxel or ROI whose response was being predicted). A
candidate pool was drawn by randomly selecting 10 samples
per cluster from a precomputed mini-batch k-Means cluster-
ing (k=1,000). For each candidate, bin probabilities were pre-
dicted by the trained logistic regression model(s), and uncer-
tainty was measured as the margin between the top two prob-
abilities (a lower margin indicates higher uncertainty, as the
model is less decisive). Margins were calculated for each di-
mension independently for a given candidate, and these mar-
gins were then averaged to get a single uncertainty score for
that candidate. In each iteration, the 100 images with the low-
est average margins (highest uncertainty) were selected and
added to the training set, and the model was retrained. This
process was repeated until reaching the required dataset size.

Evaluation of concept distribution

To test to what extent a sample dataset preserved the distri-
bution of concepts of the stimulus pool, we evaluated how the
sampling strategies changed the concept distribution using
a subset of LAION-natural (100,000 images). As LAION-2B
only provides image captions, and no image-level keywords,
we first used Gemini 1.5 Flash (8B), configured with gener-
ation parameters: temperature=1, top p=0.95, top k=40, and
max output tokens=8192, to list keywords for each image, us-
ing the prompt ”Describe these images in as many keywords
as you like. Return as a list of keywords.”. This generated
75,535 unique terms, at a cost of ∼$2.54. We then filtered
these keywords to only include concrete nouns (Concrete-
ness > 4; Brysbaert et al. (2014)) and availability of natural
language frequency (Brysbaert & New (2009)). After filtering,
3,563 keywords remained, which were clustered (HDBSCAN,
min samples=1) into 231 groups, allowing comparison of clus-
ter occurrence depending on sampling strategy.

Implementation details

CLIP features were extracted using the CLIP ViT-32/B model,
provided by OpenAI (https://github.com/openai/CLIP). Ap-
proximate nearest-neighbor search was implemented with
Annoy (https://github.com/spotify/annoy; n trees=100). For
kCenterGreedy, we used Google’s active learning framework.
Clustering, t-SNE projection, PCA, Ridge, and logistic clas-
sifier fitting were implemented using scikit-learn (Pedregosa
et al. (2011)). Active-learning classifier training was imple-
mented with AliPy (Tang et al. (2019)).

Results

Significant gaps in visual-semantic coverage in
existing stimulus sets

Determining how well existing stimulus sets represent our nat-
ural visual experience is not possible due to the lack of a de-
tailed understanding of its contents and the relative frequency
of different concepts or “classes” of experience. To approxi-
mate broader coverage, we used the large and highly diverse
LAION-2B dataset (∼2 billion image-text pairs). To focus on
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Figure 1: A) Filtering procedure to generate LAION-natural from LAION-2B. B) t-SNE projection of 5,500 cluster centroids from
LAION-natural, with colors reflecting presence of existing datasets (cutoff: 2 or more images). Inspection of these clusters
revealed various concepts not covered by THINGS or NSD, including landscapes, natural events, crowds, or non-Western public
figures (see Fig. S3). C) Percentage of clusters covered by THINGS, NSD, or both (cutoff: 2 or more images). D) Percentage
of LAION-natural that is in-distribution, based on Principal Component Analysis (PCA)-based outlier detection. While neither
THINGS nor NSD was able to explain the variance in LAION-natural, a random subset of only 6,000 LAION-natural samples still
captured 93.51%.

high-quality natural photographs, which more closely reflect
our visual experience, we (1) filtered LAION-2B to select only
unique, high-resolution images and excluded NSFW content
and (2) applied a classifier trained on 25,000 hand-labeled im-
ages to restrict images to natural photographs (Fig. 1A, see
Fig. S1 for an overview of natural/non-natural images). We
term this new image set “LAION-natural” (∼120 million pho-
tographs). To verify the diversity of LAION-natural, we tested
if all concepts found in common stimulus sets, including Ima-
geNet (Deng et al. (2009)), MS COCO (Lin et al. (2014)), and
ecoset (Mehrer et al. (2021)), could be found in the dataset.
Even though this approximation of natural vision is likely an
incomplete characterization and will contain specific biases
inherent in the dataset, we can treat coverage and general-
ization abilities on LAION-natural as a proxy for coverage of
the visual world to understand limitations in existing datasets
and reveal strategies for broader stimulus sampling.

Having curated a large pool of natural photographs, we

next evaluated how much of LAION-natural is covered by
the Natural Scenes Dataset (NSD; Allen et al. (2022)) and
THINGS (Hebart et al. (2023)), two of the largest, densely
sampled visual neuroimaging datasets. We approximated
visual-semantic coverage using CLIP-extracted image fea-
tures, known for their large-scale training datasets and their
alignment with both human perceptual ratings (Demircan et
al. (2023); Kaniuth et al. (2024); Muttenthaler et al. (2022))
and cortical activity patterns (Conwell et al. (2024); Wang et
al. (2023)). To evenly distribute the dataset into similarly sized
chunks, we divided LAION-natural into 5,500 clusters using
mini-batch k-Means on the image features.

A 2D t-SNE projection of the cluster centroids revealed low
overlap between THINGS and NSD (Fig. 1B), likely due to
their distinct focuses on scenes and objects, respectively. The
slightly higher coverage of NSD can in part be explained by its
larger dataset size (70,000 vs. 26,107 images). More impor-
tantly, the visualization indicates that both datasets exhibited
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Figure 2: A) OOD accuracy depending on the number of training samples (distributed across 100 clusters). OOD accuracy
saturates at 10,000 samples. B) Reducing the number of clusters, while keeping the number of samples constant (6k), reduced
OOD accuracy. C) Real-world test for OOD accuracy. LAION-natural is divided into six cluster groups. One of the cluster
groups is considered OOD and the remaining groups are used to construct the training set. D) Accuracy for the OOD group from
LAION-natural, based on the number of clusters in the training set. Less diverse training sets result in lower OOD accuracy. E &
F) OOD accuracy of THINGS and NSD, compared against random and stratified samples from LAION-natural (averaged across
groups, controlled for dataset size). Neither of the datasets sufficiently spans the LAION-natural image space to enable OOD
generalization.

significant gaps in the visual-semantic image space defined
by LAION-natural. We quantified this observation by deter-
mining the percentage of LAION-natural clusters represented
by at least 2 images from either THINGS or NSD, which en-
sures an inclusive threshold while minimizing the effect of out-
liers (Fig. 1C). This analysis showed that 49.83% of LAION-
natural clusters were not covered by either dataset. To test
whether this finding arises through the direction of compari-
son, we also clustered both NSD and THINGS (200 clusters,
average cluster size 0.5% of total dataset) and assessed how
many of them were covered by 10 million random images from
LAION-natural. We found that 97.5% of NSD and 100% of
THINGS clusters were assigned at least one LAION-natural
image, with the few uncovered NSD clusters containing only
single images. We additionally evaluated how many of the
images in LAION-natural would be considered “in-distribution”
for THINGS and NSD, respectively, using a PCA-based recon-
struction error approach. This revealed that only 62.99% and
60.68% of LAION-natural were in-distribution for THINGS and
NSD, respectively (Fig. 1D).

In contrast, a small random subset of LAION-natural (6,000
samples) already achieved an in-distribution score of 93.51%.
Together, these findings demonstrate notable limitations in the
semantic diversity and coverage of existing stimulus sets.

When diversified, even moderate-sized stimulus
sets can generalize well

Given the limited visual-semantic diversity in existing large-
scale fMRI datasets, we next asked how this affects gener-
alizability of inferences drawn using these data and to what
degree it is possible to collect diverse data at realistic scales
for future studies. Prior work has shown that a lack of diver-
sity can hinder our ability to draw generalizable conclusions
from one of these fMRI datasets (Shirakawa et al. (2024)).
However, it is unclear whether these challenges can even be
mitigated with realistic dataset sizes. While simulations sug-
gest that covering key representational axes can support out-
of-distribution (OOD) generalization for brain-to-image recon-
struction (Shirakawa et al. (2024)), these findings were based
on 500,000 samples, an impractical scale for most fMRI stud-
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Figure 3: A) From a pool of 500,000 synthetic samples (GMM, C=100), up to 10,000 samples were selected using different
sampling strategies (see Methods for details) and evaluated on OOD performance. B) Samples drawn from LAION-natural
and evaluated on a held-out cluster group (averaged across groups). C) Effect of sampling strategy on encoding performance
in subsets of NSD. Performance is 5-fold cross-validated (20% of NSD as test set), normalized within subjects and averaged
across subjects.

ies. Thus, the critical questions of dataset size and dataset
diversity on drawing generalizable inferences from fMRI data
have remained largely unanswered.

To address these questions, we simulated synthetic fMRI
responses to determine how much data is required for OOD
generalization. If a lot of data is required, this indicates that it
is not feasible in practice to achieve OOD generalization, while
if generalization is possible with fewer samples, this highlights
the potential of diverse sampling. We used a teacher-student
learning model, inspired by previous simulations (Shirakawa
et al. (2024)), and generated stimulus features from 100 clus-
ters via a Gaussian mixture model (GMM). Next, we mapped
them to synthetic brain responses using a fixed teacher weight
plus Gaussian noise. Finally, we employed Ridge regression
for decoding features from synthetic brain data. We evaluated
predictions on novel OOD clusters using cluster accuracy, i.e.,
how often predicted features correlated most with the source
cluster centroid.

Adjusting the total number of generated samples showed
that accuracy started to saturate after 5,000-10,000 samples
(distributed across all 100 clusters, Fig. 2A). To determine the
effect of dataset diversity for a dataset with realistic size, we
fixed the number of samples to 6,000 and varied the number
of clusters from which we sampled. This analysis revealed
that reducing training set diversity also reduced generalizabil-
ity (Fig. 2B). Together, these findings show that, in principle,
it is possible to identify medium-sized, diverse stimulus sets
that can generalize well in neuroimaging studies, as long as
the underlying stimulus pool is diverse.

However, the simulations assumed evenly distributed clus-
ters, which does not reflect distributions in real-world datasets.
To incorporate dataset realism, we modified our approach by
replacing GMM-generated samples with CLIP features from

LAION-natural to generate synthetic brain responses. To al-
low for broad yet homogeneous sampling across the entire
dataset, we clustered images into 1,000 clusters. To simulate
the effect of uneven distribution and OOD generalization, we
formed 6 OOD groups from these clusters by applying a sec-
ond layer of clustering. We then used held-out clusters from
LAION-natural to evaluate OOD accuracy (Fig. 2C), training
the regression model on 6,000 subsamples of the remaining
5 groups. Importantly, to test for uneven sampling, we varied
the number of groups sampled from between 1 and 5. The re-
sults of this simulation are shown in Fig. 2D, revealing a high
accuracy given the noise in the data, but only when incorporat-
ing broad sampling across most groups. The results confirm
that, to achieve the highest generalization performance, high
dataset diversity is required.

While our previous simulations examined the effects of non-
diverse datasets with synthetic subgroups, they did not re-
flect real, empirical datasets. Thus, we extended this analy-
sis by using THINGS and NSD as training datasets, exclud-
ing samples assigned to the OOD group that served as a
test set. As a baseline, we sampled from LAION-natural us-
ing both random and stratified approaches across clusters.
The results revealed that THINGS and NSD strongly under-
performed in OOD accuracy compared to stratified sampling
across all training clusters in LAION-natural, and also, per-
haps surprisingly, when sampled randomly (Fig. 2E/F). Addi-
tionally, we assessed how dataset diversity affects OOD per-
formance in real fMRI data, by repeating the clustering anal-
ysis on NSD, which mirrored the results from LAION-natural
(Fig. S2).

Together, these findings highlight that gaps in visual-
semantic coverage reduce OOD accuracy, both in simula-
tions and in common existing datasets. Importantly, assum-
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Figure 4: A) Concept distribution of LAION-natural subset (red) differs from natural language frequency (black). B) Depending
on sampling strategy, concept distribution of subset is kept (random, stratified, k-Means, margin) or shifts to natural language
(Greedy ED, Core-Set). C) Dimensionality of sampled dataset is highest for Greedy-ED, followed by Core-Set and others.

ing results from CLIP embeddings generalize to real fMRI
data, our results suggest that constructing a diverse, gener-
alizable stimulus set is feasible within the size constraints of
neuroimaging studies.

Sampling strategy matters less than stimulus pool
diversity

Our previous simulation showed that random sampling per-
formed comparably to stratified sampling. This result was un-
expected, as targeted sampling could be seen as having a
lot of potential for improvements in sampling efficiency and
generalizability. Therefore, we addressed the degree to which
sampling strategies help to improve dataset efficiency in the
presence of a diverse stimulus pool.

To assess the role of sampling strategy in dataset effi-
ciency, we evaluated various established sampling proce-
dures, including random and stratified sampling across clus-
ters, k-Means clustering-based sampling, Core-Set sampling
(k-Center-Greedy), greedy sampling to maximize effective di-
mensionality (ED), and margin-based uncertainty sampling.
Similar to our initial simulation, we generated 500,000 sam-
ples with a GMM to evaluate the effect of sampling strategy
on OOD accuracy across dataset sizes. Our results revealed
only minor differences between strategies, with strong effects
of dataset size, yet small effects of sampling strategy. Only
Core-Set and k-Means-based sampling approaches showed
slight advantages at 2,000 and 3,000 data points (Fig. 3A).

To verify these findings with a real image pool, we repeated
the sampling experiment using LAION-natural. Unlike previ-
ous simulations, where entire groups were left out, we left out
sets of clusters, thus approximating sampling from a broad
dataset. We found that most sampling strategies performed
similarly, except for Core-Set sampling, which consistently
outperformed others (Fig. 3B). However, dataset diversity re-
mained the most critical factor, outweighing the choice of sam-

pling strategy.
To test the degree to which these results would generalize

to empirical fMRI data, we applied these sampling strategies
to NSD and evaluated generalization performance. Rather
than focusing on decoding, as in the previous analyses, we
focused on encoding, a commonly used approach for NSD.
We trained a Ridge regression model to predict single-trial re-
sponse estimates in the ventral stream using CLIP features
(Fig. 3C). Consistent with the previous results, dataset di-
versity remained the key determinant of performance, while
sampling strategy had a minimal impact.

Sampling strategy can shift concept distribution

The previous results reveal the effect of sampling strategy on
generalizability within the stimulus pool, in our case LAION-
natural. Being derived from the internet, LAION-natural may
have biases in concept frequency distributions. While having
only minor effects on generalizability, different sampling strate-
gies could affect if and how these biases translate to sampled
datasets. To examine this, we used an LLM to generate word
labels for a random subset of LAION-natural (100,000 images)
and compared the word frequency distribution to that found in
natural language use.

We found that LAION-natural overall does not align well with
natural language (see Fig. 4A). By calculating the Kullback-
Leibler (KL) divergence between the concept distribution of
the sampled dataset and LAION-natural or natural language,
we found that random, stratified, k-Means-, and margin-
based sampling closely mirrored the stimulus pool distribu-
tion, whereas Core-Set and ED-based methods were closer
to natural language frequencies (see Fig. 4B). Core-Set and
ED-based methods also resulted in the highest increase in the
effective dimensionality of resulting image sets, measured via
their CLIP embeddings (see Fig. 4C). These results under-
score the effectiveness of Core-Set sampling for generating
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new datasets. However, the added benefits in generalization
remain minor relative to the role of stimulus diversity.

Discussion

Understanding visual representations requires us to capture
much of the visual-semantic richness of the visual world.
A prominent research paradigm involves collecting extensive
data in response to a broad set of stimuli, with the aim of al-
lowing for generalizable inferences (Naselaris et al. (2021)).
Our findings demonstrate that, at the level of visual seman-
tics, commonly used stimulus sets fall short of this goal. Their
emphasis on a constrained subset of concepts limits the gen-
eralizability of insights that can be drawn from them. How-
ever, this does not diminish the value of these datasets, which
have significantly advanced our understanding of brain func-
tion, particularly within the domains of scenes or objects. And
while our study focused on visual semantics, many studies us-
ing these datasets were not carried out at that level, and it is
possible that existing datasets already have sufficient diversity
to comprehensively capture purely low-level and mid-level pro-
cessing. Future studies should explore the degree to which
generalizable inferences can be drawn in the visual domain
alone.

However, when inferences are drawn about the entirety of
the visual diet or when the aim is to use existing datasets
to build generalizable models of the visual system, including
deep neural networks (DNNs), our results highlight clear con-
straints in existing datasets and caution against overinterpre-
tation. This insight is particularly relevant given recent findings
suggesting that DNN models of the visual system yield similar
performance regardless of architectural differences or training
objective (Conwell et al. (2024)), an insight that would strongly
affect the neuroconnectionist research program that requires
a system identification approach for identifying “better” mod-
els of the visual system (Doerig et al. (2023)). In contrast, our
findings highlight that without sufficiently broad datasets, we
cannot determine whether models truly converge or if their ap-
parent similarity results from being evaluated on insufficiently
diverse datasets.

How, then, can we design datasets that are generalizable?
Our simulations indicate that, given a certain “stimulus bud-
get”, visual-semantic breadth of sampling should be priori-
tized over depth to ensure maximum possible OOD perfor-
mance. Furthermore, all tested sampling strategies provided
sufficient coverage of the stimulus pool, yielding comparable
generalization performance. Notably, sampling strategy alone
did not compensate for insufficient dataset diversity, empha-
sizing that future studies should prioritize broad stimulus pools
even when using random sampling.

While we quantified diversity using CLIP embeddings, even
the most diverse existing stimulus pools may omit crucial as-
pects of the visual representational space. Beyond CLIP, the
field is in need of a more precise, quantitative definition of di-
versity to support broader, stratified sampling (Conwell et al.
(2024)). It is also worth noting that many of our findings are

based on simulations, where assumptions can affect results.
While our results are consistent across simulations and vali-
dated with real fMRI data, future research should further em-
pirically evaluate dataset diversity.

Overall, this study underscores the necessity of broader
coverage in the representational space for making generaliz-
able inferences than provided by existing datasets. By demon-
strating that relatively small yet diverse stimulus sets provide
large benefits for out-of-distribution generalization, we provide
a framework for designing stimulus sets that enable large-
scale, condition-rich studies of the visual-semantic system.
Prioritizing diversity and coverage will allow researchers to
construct datasets that better reflect the complexity of natural
vision, leading to more robust models of how humans perceive
the world.
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Code availability
All code used for the analyses and generation of figures
in this study, including the pre-trained LAION-natural clas-
sifier mentioned in the text, is publicly available on GitHub:
https://github.com/andropar/how-to-sample.

Proceedings of Cognitive Computational Neuroscience 2025

https://github.com/andropar/how-to-sample


Supplementary Material
Natural vs. Non-natural images

Figure S1: Examples of images from LAION-2B that were considered either natural (A) or not natural (B). The criteria for natural
images were: “no heavy editing (e.g. high saturation / contrast, collages, cropped objects without background) or filter overlaid
(e.g. black-and-white)”, “no watermarks or text banners” and “must be a real-world object or scene (e.g. no screenshots of
websites or video games)”.
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Evaluation of OOD accuracy using NSD fMRI data

Figure S2: Impact of training set diversity on OOD accuracy in NSD. For each subject, CLIP features of presented images were
clustered using mini-batch k-Means. Iteratively using one cluster as the OOD test set, training sets of a fixed size (N=500)
were created by stratifying samples from a varying number (k) of the remaining clusters. Thin grey lines represent individual
subject data, and the red line shows the mean across subjects, with shaded areas indicating the standard error of the mean.
These results suggest that increased visual diversity improves generalization performance, even while keeping the total number
of training samples constant.
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Examples of clusters not covered by THINGS or NSD

Figure S3: Examples of distinct clusters that were not covered by THINGS or NSD. These include certain sporting events,
architectural styles, landscapes, political figures, images of natural disasters, activities and many more. Clusters were manually
selected from the 50 largest clusters not covered by the other datasets, to avoid repetitions in semantic concepts.
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