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Abstract1

Understanding vision requires capturing the vast diver-2

sity of the visual world we experience. How can we sam-3

ple this diversity in a manner that supports robust, gen-4

eralizable inferences? While widely-used, massive neu-5

roimaging datasets have strongly contributed to our un-6

derstanding of brain function, their ability to comprehen-7

sively capture the diversity of visual and semantic experi-8

ences has remained largely untested. More broadly, the9

factors required for diverse and generalizable datasets10

have remained unknown. To address these gaps, we in-11

troduce LAION-natural, a curated subset of 120 million12

natural photographs filtered from LAION-2B, and use it13

as a proxy of the breadth of our visual experience in as-14

sessing visual-semantic coverage. Our analysis of CLIP15

embeddings of these images suggests significant repre-16

sentational gaps in existing datasets, demonstrating that17

they cover only a restricted subset of the space spanned18

by LAION-natural. Simulations and analyses of functional19

MRI data further demonstrate that these gaps are associ-20

ated with impaired out-of-distribution generalization. Im-21

portantly, our results reveal that even moderately sized22

stimulus sets can achieve strong generalization if they23

are sampled from a diverse stimulus pool, and that this24

diversity is more important than the specific sampling25

strategy employed. These findings not only highlight lim-26

itations of existing datasets in generalizability and model27

comparison, but also provide guidance for future stud-28

ies to support the development of stronger computational29

models of the visual system and generalizable inferences.30
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pling; dataset; generalization32

Introduction33

Humans encounter an incredibly diverse range of visual stim-34

uli, and capturing this breadth is essential for understanding35

how the brain represents visual information. This has moti-36

vated the development of ever larger datasets of brain activity37

in response to naturalistic visual stimuli (Allen et al. (2022);38

Chang et al. (2019); Hebart et al. (2023)). While broad sam-39

pling suffers from diminishing returns (Allen et al. (2022)),40

large-scale, condition-rich datasets have laid the foundation41

for extensive computational modeling of the visual system, al-42

lowing for a detailed and fine-grained analysis of its function43

(Contier et al. (2024); Takagi & Nishimoto (2023)).44

While these datasets have been invaluable in advancing45

our understanding, particularly within specific domains like ob-46

ject and scene processing, their ability to capture the visual-47

semantic diversity of our world remains largely untested. This48

has an important consequence: If a dataset lacks diversity,49

then inferences may not generalize. This is particularly rel-50

evant in cognitive computational neuroscience, where recent51

insights from model comparison, encoding, and decoding of-52

ten rely on such datasets (Doerig et al. (2023)). While pre-53

vious research has highlighted a lack of semantic diversity in54

some datasets (Shirakawa et al. (2024)), much less is known55

about how the visual-semantic coverage of real-world con-56

cepts affects generalization performance.57

To address these gaps, we used a three-pronged approach.58

First, we assessed how well existing stimulus sets cover the59

breadth of visual experience by embedding them within a60

much larger representational image space defined by LAION-61

natural, a newly curated subset of 120 million naturalistic62

photographs (images depicting real-world scenes or objects,63

excluding heavily edited or synthetic content) filtered from64

LAION-2B (Schuhmann et al. (2022)). Second, we evaluated65

whether a sufficiently diverse stimulus set can enable general-66

ization at a scale practical for vision research. Finally, in sim-67

ulations and analyses of functional MRI data, we determined68

the effect of sampling strategy on generalization performance.69

Results70

Significant gaps in visual-semantic coverage in71

existing stimulus sets72

Determining how well existing stimulus sets represent our nat-73

ural visual experience is not possible due to the lack of a de-74

tailed understanding of its contents and the relative frequency75

of different concepts or “classes” of experience. To approxi-76

mate broader coverage, we used the large and highly diverse77

LAION-2B dataset (∼2 billion image-text pairs). To focus on78

high-quality natural photographs, which more closely reflect79

our visual experience, we (1) filtered LAION-2B to select only80

unique, high-resolution images and excluded NSFW content81

and (2) applied a classifier trained on 25,000 hand-labeled im-82

ages to restrict images to natural photographs (Fig. 1A, see83

Fig. S1 for an overview of natural/non-natural images). We84

term this new image set “LAION-natural” (∼120 million pho-85

tographs). To verify the diversity of LAION-natural, we tested86

if all concepts found in common stimulus sets, including Ima-87

geNet (Deng et al. (2009)), MS COCO (Lin et al. (2014)), and88

ecoset (Mehrer et al. (2021)), could be found in the dataset.89

Even though this approximation of natural vision is likely an90

incomplete characterization and will contain specific biases91

inherent in the dataset, we can treat coverage and general-92

ization abilities on LAION-natural as a proxy for coverage of93

the visual world to understand limitations in existing datasets94



Figure 1: A) Filtering procedure to generate LAION-natural from LAION-2B. B) t-SNE projection of 5,500 cluster centroids from
LAION-natural, with colors reflecting presence of existing datasets (cutoff: 2 or more images). Inspection of these clusters
revealed various concepts not covered by THINGS or NSD, including landscapes, natural events, crowds, or non-Western public
figures (see Fig. S3). C) Percentage of clusters covered by THINGS, NSD, or both (cutoff: 2 or more images). D) Percentage
of LAION-natural that is in-distribution, based on Principal Component Analysis (PCA)-based outlier detection. While neither
THINGS nor NSD was able to explain the variance in LAION-natural, a random subset of only 6,000 LAION-natural samples still
captured 93.51%.

and reveal strategies for broader stimulus sampling.95

Having curated a large pool of natural photographs, we96

next evaluated how much of LAION-natural is covered by97

the Natural Scenes Dataset (NSD; Allen et al. (2022)) and98

THINGS (Hebart et al. (2023)), two of the largest, densely99

sampled visual neuroimaging datasets. We approximated100

visual-semantic coverage using CLIP-extracted image fea-101

tures, known for their large-scale training datasets and their102

alignment with both human perceptual ratings (Demircan et103

al. (2023); Kaniuth et al. (2024); Muttenthaler et al. (2022))104

and cortical activity patterns (Conwell et al. (2024); Wang et105

al. (2023)). To evenly distribute the dataset into similarly sized106

chunks, we divided LAION-natural into 5,500 clusters using107

mini-batch k-Means on the image features.108

A 2D t-SNE projection of the cluster centroids revealed low109

overlap between THINGS and NSD (Fig. 1B), likely due to110

their distinct focuses on scenes and objects, respectively. The111

slightly higher coverage of NSD can in part be explained by its112

larger dataset size (70,000 vs. 26,107 images). More impor-113

tantly, the visualization indicates that both datasets exhibited114

significant gaps in the visual-semantic image space defined115

by LAION-natural. We quantified this observation by deter-116

mining the percentage of LAION-natural clusters represented117

by at least 2 images from either THINGS or NSD, which en-118

sures an inclusive threshold while minimizing the effect of out-119

liers (Fig. 1C). This analysis showed that 49.83% of LAION-120

natural clusters were not covered by either dataset. To test121

whether this finding arises through the direction of compari-122

son, we also clustered both NSD and THINGS (200 clusters,123

average cluster size 0.5% of total dataset) and assessed how124

many of them were covered by 10 million random images from125

LAION-natural. We found that 97.5% of NSD and 100% of126

THINGS clusters were assigned at least one LAION-natural127

image, with the few uncovered NSD clusters containing only128

single images. We additionally evaluated how many of the129

images in LAION-natural would be considered “in-distribution”130



Figure 2: A) OOD accuracy depending on the number of training samples (distributed across 100 clusters). OOD accuracy
saturates at 10,000 samples. B) Reducing the number of clusters, while keeping the number of samples constant (6k), reduced
OOD accuracy (right side). C) Real-world test for OOD accuracy. LAION-natural is divided into six cluster groups. One of the
cluster groups is considered OOD and the remaining groups are used to construct the training set. D) Accuracy for the OOD
group from LAION-natural, based on the number of clusters in the training set. Less diverse training sets result in lower OOD
accuracy. E & F) OOD accuracy of THINGS and NSD, compared against random and stratified samples from LAION-natural
(averaged across groups, controlled for dataset size). Neither of the datasets sufficiently spans the LAION-natural image space
to enable OOD generalization.

for THINGS and NSD, respectively, using a PCA-based recon-131

struction error approach. This revealed that only 62.99% and132

60.68% of LAION-natural were in-distribution for THINGS and133

NSD, respectively (Fig. 1D).134

In contrast, a small random subset of LAION-natural (6,000135

samples) already achieved an in-distribution score of 93.51%.136

Together, these findings demonstrate notable limitations in the137

semantic diversity and coverage of existing stimulus sets.138

When diversified, even moderate-sized stimulus139

sets can generalize well140

Given the limited visual-semantic diversity in existing large-141

scale fMRI datasets, we next asked how this affects gener-142

alizability of inferences drawn using these data and to what143

degree it is possible to collect diverse data at realistic scales144

for future studies. Prior work has shown that a lack of diver-145

sity can hinder our ability to draw generalizable conclusions146

from one of these fMRI datasets (Shirakawa et al. (2024)).147

However, it is unclear whether these challenges can even be148

mitigated with realistic dataset sizes. While simulations sug-149

gest that covering key representational axes can support out-150

of-distribution (OOD) generalization for brain-to-image recon-151

struction (Shirakawa et al. (2024)), these findings were based152

on 500,000 samples, an impractical scale for most fMRI stud-153

ies. Thus, the critical questions of dataset size and dataset154

diversity on drawing generalizable inferences from fMRI data155

have remained largely unanswered.156

To address these questions, we simulated synthetic fMRI157

responses to determine how much data is required for OOD158

generalization. If a lot of data is required, this indicates that it159

is not feasible in practice to achieve OOD generalization, while160

if generalization is possible with fewer samples, this highlights161

the potential of diverse sampling. We used a teacher-student162

learning model, inspired by previous simulations (Shirakawa163

et al. (2024)), and generated stimulus features from 100 clus-164

ters via a Gaussian mixture model (GMM). Next, we mapped165

them to synthetic brain responses using a fixed teacher weight166

plus Gaussian noise. Finally, we employed Ridge regression167

for decoding features from synthetic brain data. We evaluated168

predictions on novel OOD clusters using cluster accuracy, i.e.,169



Figure 3: A) From a pool of 500,000 synthetic samples (GMM, C=100), up to 10,000 samples were selected using different
sampling strategies (see Methods for details) and evaluated on OOD performance. B) Samples drawn from LAION-natural
and evaluated on a held-out cluster group (averaged across groups). C) Effect of sampling strategy on encoding performance
in subsets of NSD. Performance is 5-fold cross-validated (20% of NSD as test set), normalized within subjects and averaged
across subjects.

how often predicted features correlated most with the source170

cluster centroid.171

Adjusting the total number of generated samples showed172

that accuracy started to saturate after 5,000-10,000 samples173

(distributed across all 100 clusters, Fig. 2A). To determine the174

effect of dataset diversity for a dataset with realistic size, we175

fixed the number of samples to 6,000 and varied the number176

of clusters from which we sampled. This analysis revealed177

that reducing training set diversity also reduced generalizabil-178

ity (Fig. 2B). Together, these findings show that, in principle,179

it is possible to identify medium-sized, diverse stimulus sets180

that can generalize well in neuroimaging studies, as long as181

the underlying stimulus pool is diverse.182

However, the simulations assumed evenly distributed clus-183

ters, which does not reflect distributions in real-world datasets.184

To incorporate dataset realism, we modified our approach by185

replacing GMM-generated samples with CLIP features from186

LAION-natural to generate synthetic brain responses. To al-187

low for broad yet homogeneous sampling across the entire188

dataset, we clustered images into 1,000 clusters. To simulate189

the effect of uneven distribution and OOD generalization, we190

formed 6 OOD groups from these clusters by applying a sec-191

ond layer of clustering. We then used held-out clusters from192

LAION-natural to evaluate OOD accuracy (Fig. 2C), training193

the regression model on 6,000 subsamples of the remaining194

5 groups. Importantly, to test for uneven sampling, we varied195

the number of groups sampled from between 1 and 5. The re-196

sults of this simulation are shown in Fig. 2D, revealing a high197

accuracy given the noise in the data, but only when incorporat-198

ing broad sampling across most groups. The results confirm199

that, to achieve the highest generalization performance, high200

dataset diversity is required.201

While our previous simulations examined the effects of non-202

diverse datasets with synthetic subgroups, they did not re-203

flect real, empirical datasets. Thus, we extended this analy-204

sis by using THINGS and NSD as training datasets, exclud-205

ing samples assigned to the OOD group that served as a206

test set. As a baseline, we sampled from LAION-natural us-207

ing both random and stratified approaches across clusters.208

The results revealed that THINGS and NSD strongly under-209

performed in OOD accuracy compared to stratified sampling210

across all training clusters in LAION-natural, and also, per-211

haps surprisingly, when sampled randomly (Fig. 2E/F). Addi-212

tionally, we assessed how dataset diversity affects OOD per-213

formance in real fMRI data, by repeating the clustering anal-214

ysis on NSD, which mirrored the results from LAION-natural215

(Fig. S2).216

Together, these findings highlight that gaps in visual-217

semantic coverage reduce OOD accuracy, both in simula-218

tions and in common existing datasets. Importantly, assum-219

ing results from CLIP embeddings generalize to real fMRI220

data, our results suggest that constructing a diverse, gener-221

alizable stimulus set is feasible within the size constraints of222

neuroimaging studies.223

Sampling strategy matters less than stimulus pool224

diversity225

Our previous simulation showed that random sampling per-226

formed comparably to stratified sampling. This result was un-227

expected, as targeted sampling could be seen as having a228

lot of potential for improvements in sampling efficiency and229

generalizability. Therefore, we addressed the degree to which230

sampling strategies help to improve dataset efficiency in the231

presence of a diverse stimulus pool.232

To assess the role of sampling strategy in dataset effi-233

ciency, we evaluated various established sampling proce-234



Figure 4: A) Concept distribution of LAION-natural subset (red) differs from natural language frequency (black). B) Depending
on sampling strategy, concept distribution of subset is kept (random, stratified, k-Means, margin) or shifts to natural language
(Greedy ED, Core-Set). C) Dimensionality of sampled dataset is highest for Greedy-ED, followed by Core-Set and others.

dures, including random and stratified sampling across clus-235

ters, k-Means clustering-based sampling, Core-Set sampling236

(k-Center-Greedy), greedy sampling to maximize effective di-237

mensionality (ED), and margin-based uncertainty sampling.238

Similar to our initial simulation, we generated 500,000 sam-239

ples with a GMM to evaluate the effect of sampling strategy240

on OOD accuracy across dataset sizes. Our results revealed241

only minor differences between strategies, with strong effects242

of dataset size, yet small effects of sampling strategy. Only243

Core-Set and k-Means-based sampling approaches showed244

slight advantages at 2,000 and 3,000 data points (Fig. 3A).245

To verify these findings with a real image pool, we repeated246

the sampling experiment using LAION-natural. Unlike previ-247

ous simulations, where entire groups were left out, we left out248

sets of clusters, thus approximating sampling from a broad249

dataset. We found that most sampling strategies performed250

similarly, except for Core-Set sampling, which consistently251

outperformed others (Fig. 3B). However, dataset diversity re-252

mained the most critical factor, outweighing the choice of sam-253

pling strategy.254

To test the degree to which these results would generalize255

to empirical fMRI data, we applied these sampling strategies256

to NSD and evaluated generalization performance. Rather257

than focusing on decoding, as in the previous analyses, we258

focused on encoding, a commonly used approach for NSD.259

We trained a Ridge regression model to predict single-trial re-260

sponse estimates in the ventral stream using CLIP features261

(Fig. 3C). Consistent with the previous results, dataset di-262

versity remained the key determinant of performance, while263

sampling strategy had a minimal impact.264

Sampling strategy can shift concept distribution265

The previous results reveal the effect of sampling strategy on266

generalizability within the stimulus pool, in our case LAION-267

natural. Being derived from the internet, LAION-natural may268

have biases in concept frequency distributions. While having269

only minor effects on generalizability, different sampling strate-270

gies could affect if and how these biases translate to sampled271

datasets. To examine this, we used an LLM to generate word272

labels for a random subset of LAION-natural (100,000 images)273

and compared the word frequency distribution to that found in274

natural language use.275

We found that LAION-natural overall does not align well with276

natural language (see Fig. 4A). By calculating the Kullback-277

Leibler (KL) divergence between the concept distribution of278

the sampled dataset and LAION-natural or natural language,279

we found that random, stratified, k-Means-, and margin-280

based sampling closely mirrored the stimulus pool distribu-281

tion, whereas Core-Set and ED-based methods were closer282

to natural language frequencies (see Fig. 4B). Core-Set and283

ED-based methods also resulted in the highest increase in the284

effective dimensionality of resulting image sets, measured via285

their CLIP embeddings (see Fig. 4C). These results under-286

score the effectiveness of Core-Set sampling for generating287

new datasets. However, the added benefits in generalization288

remain minor relative to the role of stimulus diversity.289

Discussion290

Understanding visual representations requires us to capture291

much of the visual-semantic richness of the visual world.292

A prominent research paradigm involves collecting extensive293

data in response to a broad set of stimuli, with the aim of al-294

lowing for generalizable inferences (Naselaris et al. (2021)).295

Our findings demonstrate that, at the level of visual seman-296

tics, commonly used stimulus sets fall short of this goal. Their297

emphasis on a constrained subset of concepts limits the gen-298

eralizability of insights that can be drawn from them. How-299

ever, this does not diminish the value of these datasets, which300

have significantly advanced our understanding of brain func-301

tion, particularly within the domains of scenes or objects. And302



while our study focused on visual semantics, many studies us-303

ing these datasets were not carried out at that level, and it is304

possible that existing datasets already have sufficient diversity305

to comprehensively capture purely low-level and mid-level pro-306

cessing. Future studies should explore the degree to which307

generalizable inferences can be drawn in the visual domain308

alone.309

However, when inferences are drawn about the entirety of310

the visual diet or when the aim is to use existing datasets311

to build generalizable models of the visual system, including312

deep neural networks (DNNs), our results highlight clear con-313

straints in existing datasets and caution against overinterpre-314

tation. This insight is particularly relevant given recent findings315

suggesting that DNN models of the visual system yield similar316

performance regardless of architectural differences or training317

objective (Conwell et al. (2024)), an insight that would strongly318

affect the neuroconnectionist research program that requires319

a system identification approach for identifying “better” mod-320

els of the visual system (Doerig et al. (2023)). In contrast, our321

findings highlight that without sufficiently broad datasets, we322

cannot determine whether models truly converge or if their ap-323

parent similarity results from being evaluated on insufficiently324

diverse datasets.325

How, then, can we design datasets that are generalizable?326

Our simulations indicate that, given a certain “stimulus bud-327

get”, visual-semantic breadth of sampling should be priori-328

tized over depth to ensure maximum possible OOD perfor-329

mance. Furthermore, all tested sampling strategies provided330

sufficient coverage of the stimulus pool, yielding comparable331

generalization performance. Notably, sampling strategy alone332

did not compensate for insufficient dataset diversity, empha-333

sizing that future studies should prioritize broad stimulus pools334

even when using random sampling.335

While we quantified diversity using CLIP embeddings, even336

the most diverse existing stimulus pools may omit crucial as-337

pects of the visual representational space. Beyond CLIP, the338

field is in need of a more precise, quantitative definition of di-339

versity to support broader, stratified sampling (Conwell et al.340

(2024)). It is also worth noting that many of our findings are341

based on simulations, where assumptions can affect results.342

While our results are consistent across simulations and vali-343

dated with real fMRI data, future research should further em-344

pirically evaluate dataset diversity.345

Overall, this study underscores the necessity of broader346

coverage in the representational space for making generaliz-347

able inferences than provided by existing datasets. By demon-348

strating that relatively small yet diverse stimulus sets provide349

large benefits for out-of-distribution generalization, we provide350

a framework for designing stimulus sets that enable large-351

scale, condition-rich studies of the visual-semantic system.352

Prioritizing diversity and coverage will allow researchers to353

construct datasets that better reflect the complexity of natural354

vision, leading to more robust models of how humans perceive355

the world.356

Methods357

Constructing and evaluating LAION-natural358

Filtering LAION-2B to naturalistic images LAION-2B359

(Schuhmann et al. (2022)) contains ∼2 billion images with En-360

glish captions, but visual inspection revealed a large fraction361

of unsuitable, non-natural images. We filtered images using362

metadata, removing NSFW images (often problematic for gen-363

eral participant studies) and those with any dimension smaller364

than 400px, leaving ∼720 million images. Of these, ∼440365

million were still accessible via URL.366

We next removed non-naturalistic images, by establishing367

three exclusion criteria: watermarks or banners, heavy edit-368

ing (e.g., strong image filters), and not a real-world scene or369

object. Based on these, we manually labeled 25,000 images370

from a pool of 200,000 random LAION-2B samples. Labeling371

was initialized by first clustering the pool into 400 clusters with372

mini-batch k-Means on CLIP features from OpenAI’s CLIP ViT-373

32B. These were then manually split into “natural”, “not natu-374

ral” and “mixed”, from which 5,000 images were selected from375

“natural” and “non-natural” clusters. Using entropy-based un-376

certainty sampling, we iteratively identified the most informa-377

tive samples to label. Labeling was stopped when accuracy378

plateaued (5-fold cross-validated). From the resulting dataset,379

we trained a logistic regression classifier on CLIP features380

(natural/non-natural), achieving an accuracy of ∼82%. For381

filtering, we used a higher probability threshold to achieve a382

precision of 90%. Removing images that were labeled non-383

naturalistic by the classifier left us with ∼120 million images384

to use for evaluating existing datasets and simulations.385

Analyzing random subsets of LAION-natural (6k samples,386

10 seeds, as in Fig. 1D), we found semantic coverage of387

93.14% of LAION-2B (filtered only for NSFW and resolu-388

tion, see ”Evaluating coverage”), suggesting retained visual-389

semantic diversity. This was further confirmed by measur-390

ing the OOD performance of random NSD-sized subsets of391

LAION-2B (as in Fig. 2E), which outperformed LAION-natural392

by only 2.34%.393

Ensuring semantic richness of LAION-natural To validate394

that LAION-natural contains all concepts found in ImageNet395

(Deng et al. (2009)), MS COCO (Lin et al. (2014)), and ecoset396

(Mehrer et al. (2021)), we extracted text features for each397

concept and built an approximate nearest-neighbor search in-398

dex on 5 million randomly sampled LAION-natural images.399

For each concept, we retrieved the 100 most similar images,400

based on the cosine similarity of normalized image and text401

embeddings. Manual inspection confirmed that every concept402

had at least one corresponding image in LAION-natural.403

Evaluating coverage404

We clustered 10 million random LAION-natural CLIP sam-405

ples into 5,500 clusters using mini-batch k-Means. Cluster406

centroids were projected into 2D using t-Distributed Stochas-407

tic Neighbor Embedding, t-SNE (Van Der Maaten & Hinton408

(2008)). We further quantified coverage by looking at the op-409

posite metric, namely measuring how many images in LAION-410



natural would be considered outliers with respect to the fea-411

ture space of established datasets like THINGS or NSD. To412

this end, we used PCA on the CLIP features of the images.413

PCA was first trained on the features of the ”covering” dataset414

(e.g., THINGS or NSD), with the number of principal compo-415

nents selected to retain 95% of the variance in that dataset.416

This step effectively created a lower-dimensional representa-417

tion of the dataset’s feature distribution.418

Next, we calculated the PCA reconstruction error for each419

image in both the ”covering” dataset and the ”covered” dataset420

(LAION-natural). This error quantified how well an image can421

be reconstructed from the principal components learned from422

the ”covering” dataset. A higher error suggests the image’s423

features are not well captured by that PCA space. To estab-424

lish a criterion for whether a LAION-natural image was cov-425

ered by the THINGS/NSD feature space, we defined an error426

threshold by fitting a generalized extreme value (GEV) distri-427

bution to the reconstruction errors of the ”covering” dataset428

itself and selecting the 95th percentile from this fitted distri-429

bution. A LAION-natural image was considered covered if its430

reconstruction error, when projected into and reconstructed431

from the ”covering” dataset’s PCA space, was below this error432

threshold. The final coverage percentage was reported as the433

proportion of ”covered” LAION-natural images relative to the434

total number of tested LAION-natural images.435

Simulating OOD generalizability436

GMM-based simulation To evaluate how OOD accuracy
changed with dataset diversity and size, we simulated stim-
ulus features and brain responses using a Gaussian mix-
ture model (GMM) with 100 clusters in a high-dimensional
space (D = 512, same as dimensionality of CLIP embed-
dings). Cluster centers µc were drawn from N(0,σ2

inter ∗
I), with σ2

inter = 100/D, and samples were generated from
N(µc,σ

2
intra ∗ I) , with σ2

intra = 10/D, ensuring well-separated
and evenly spaced clusters. From these synthetic stimu-
lus features y, brain response x was generated via a linear
mapping, a common assumption for both encoding and de-
coding models of brain activity. We specifically used a ran-
dom teacher weight matrix A (N(0,1/

√
D) ), adding Gaussian

noise ε with variance σ2
noise = 0.25:

x = AT ∗ y+ ε

To assess generalization, we generated 100 samples from a437

new cluster and measured how often the predictions aligned438

with the centroid of the OOD cluster. This was repeated 32439

times with different OOD clusters for robust estimates.440

Simulation from CLIP feature space We extended the pre-441

vious analysis to image features from LAION-natural, keep-442

ing brain response generation unchanged. We ran mini-443

batch k-Means clustering (k = 1,000) on CLIP features de-444

rived from LAION-natural and then used agglomerative clus-445

tering to group them into six coherent cluster groups. These446

groups served to divide the feature space into in-distribution447

and out-of-distribution folds. We measured OOD accuracy by448

training a model on 6,000 samples from varying parts of the449

in-distribution space (from combinations of 2, 3, 4, or 5 of the450

cluster groups, repeated 100 times per condition) and tested451

on 1,000 OOD samples from the OOD group, by measuring452

how often predictions aligned with the centroid of their source453

cluster (cross-validated across all cluster groups).454

Sampling strategies455

(Stratified) random sampling Samples were drawn uni-456

formly at random from the entire pool of stimuli, ensuring457

each selection was unique (sampling without replacement).458

Alternatively, for stratified random sampling, the aim was to459

achieve proportional representation from predefined stimu-460

lus clusters. An approximately equal number of samples461

(n samples//number of clusters) was drawn from each clus-462

ter. If a cluster contained fewer samples, all available samples463

from that cluster were selected. Both random and stratified464

sampling were repeated 100 times per dataset size for robust465

performance estimates.466

k-Means-based sampling The stimulus pool was clustered467

using mini-batch k-Means, with the number of clusters set to468

be the number of stimuli to sample. Data points closest to469

each resulting cluster centroid (in terms of Euclidean distance)470

were selected. To increase the speed of finding these nearest471

neighbors for each centroid, an Annoy index was built using472

the stimulus features (n trees = 50).473

Core-Set sampling We iteratively selected samples to min-474

imize the maximum distance between any data point and its475

nearest selected point (Sener & Savarese (2018)), broadly476

covering the available feature space of the dataset. We used477

the kCenterGreedy algorithm. This greedy algorithm starts478

from an empty set and selects the first sample randomly. Sub-479

sequently, it iteratively adds the data point from the remaining480

pool that is farthest from any of the points already selected481

into the core-set. This ensures that each newly added sam-482

ple maximally reduces the coverage radius of the selected483

set, and therefore increases diversity and representation of484

the overall feature space.485

Sampling to optimize effective dimensionality Effective
dimensionality (ED) measures the number of meaningful axes
of variance in a dataset (Del Giudice (2021)). We used the
participation ratio of CLIP image features to estimate ED:

ED =
(∑K

i=1 λi)
2

∑
K
i=1 λ2

i

where λi are the principal components. Intuitively, a low ED486

suggests an over-representation of semantic concepts - for487

example, if a dataset contains only mountains and beaches,488

variance is mostly explained by a single “beach-or-mountain”489

dimension. A more diverse dataset, also containing meadows,490

forests, or cities, would require more dimensions.491

Given this insight, we also greedily sampled to maximize492

the ED of the dataset. Initialization of the selected set was493

performed in one of two ways: either by selecting two sam-494



ples uniformly at random, or by using samples closest to clus-495

ter centroids derived from a mini-batch k-Means clustering.496

Samples were added iteratively. In each step, a candidate497

pool was generated by drawing 10 random samples from each498

cluster of a precomputed clustering. To avoid selecting very499

similar items, candidates that were too close (Euclidean dis-500

tance < 0.1) to already selected samples were filtered out.501

The ED was then estimated for each remaining candidate, if502

it were added to the existing image set. This ED calculation503

was performed with an incremental update formula for the co-504

variance matrix for efficiency and was parallelized across 32505

CPU cores to speed up selection. The candidate that yielded506

the highest ED for the augmented set was then added to the507

selected samples.508

Margin-based, adaptive sampling We also tested if epis-509

temic uncertainty could guide sample selection using a510

margin-based active learning strategy (Balcan et al. (2007))511

with a logistic regression model predicting discretized brain512

responses from stimulus features. Before model training, the513

stimulus features (X) were standardized to have zero mean514

and unit variance.515

Sampling was initialized with 100 random samples. Tar-516

get brain data (Y) was discretized into three equally popu-517

lated bins per dimension using quantile-based binning (e.g.,518

low, medium, high response categories). A logistic regres-519

sion model was trained for each target dimension (i.e., for520

each voxel or ROI whose response was being predicted). A521

candidate pool was drawn by randomly selecting 10 samples522

per cluster from a precomputed mini-batch k-Means cluster-523

ing (k=1,000). For each candidate, bin probabilities were pre-524

dicted by the trained logistic regression model(s), and uncer-525

tainty was measured as the margin between the top two prob-526

abilities (a lower margin indicates higher uncertainty, as the527

model is less decisive). Margins were calculated for each di-528

mension independently for a given candidate, and these mar-529

gins were then averaged to get a single uncertainty score for530

that candidate. In each iteration, the 100 images with the low-531

est average margins (highest uncertainty) were selected and532

added to the training set, and the model was retrained. This533

process was repeated until reaching the required dataset size.534

Evaluation of concept distribution535

To test to what extent a sample dataset preserved the distri-536

bution of concepts of the stimulus pool, we evaluated how the537

sampling strategies changed the concept distribution using538

a subset of LAION-natural (100,000 images). As LAION-2B539

only provides image captions, and no image-level keywords,540

we first used Gemini 1.5 Flash (8B), configured with gener-541

ation parameters: temperature=1, top p=0.95, top k=40, and542

max output tokens=8192, to list keywords for each image, us-543

ing the prompt ”Describe these images in as many keywords544

as you like. Return as a list of keywords.”. This generated545

75,535 unique terms, at a cost of ∼$2.54. We then filtered546

these keywords to only include concrete nouns (Concrete-547

ness > 4; Brysbaert et al. (2014)) and availability of natural548

language frequency (Brysbaert & New (2009)). After filtering,549

3,563 keywords remained, which were clustered (HDBSCAN,550

min samples=1) into 231 groups, allowing comparison of clus-551

ter occurrence depending on sampling strategy.552

Implementation details553

CLIP features were extracted using the CLIP ViT-32/B model,554

provided by OpenAI (https://github.com/openai/CLIP). Ap-555

proximate nearest-neighbor search was implemented with556

Annoy (https://github.com/spotify/annoy; n trees=100). For557

kCenterGreedy, we used Google’s active learning framework.558

Clustering, t-SNE projection, PCA, Ridge, and logistic clas-559

sifier fitting were implemented using scikit-learn (Pedregosa560

et al. (2011)). Active-learning classifier training was imple-561

mented with AliPy (Tang et al. (2019)).562
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Code availability674

All code used for the analyses and generation of figures675

in this study, including the pre-trained LAION-natural clas-676

sifier mentioned in the text, is publicly available on GitHub:677

https://github.com/andropar/how-to-sample.678
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Supplementary Material679

Natural vs. Non-natural images680

Figure S1: Examples of images from LAION-2B that were considered either natural (A) or not natural (B). The criteria for natural
images were: “no heavy editing (e.g. high saturation / contrast, collages, cropped objects without background) or filter overlaid
(e.g. black-and-white)”, “no watermarks or text banners” and “must be a real-world object or scene (e.g. no screenshots of
websites or video games)”.



Evaluation of OOD accuracy using NSD fMRI data681

Figure S2: Impact of training set diversity on OOD accuracy in NSD. For each subject, CLIP features of presented images were
clustered using mini-batch k-Means. Iteratively using one cluster as the OOD test set, training sets of a fixed size (N=500)
were created by stratifying samples from a varying number (k) of the remaining clusters. Thin grey lines represent individual
subject data, and the red line shows the mean across subjects, with shaded areas indicating the standard error of the mean.
These results suggest that increased visual diversity improves generalization performance, even while keeping the total number
of training samples constant.



Examples of clusters not covered by THINGS or NSD682

Figure S3: Examples of distinct clusters that were not covered by THINGS or NSD. These include certain sporting events,
architectural styles, landscapes, political figures, images of natural disasters, activities and many more. Clusters were manually
selected from the 50 largest clusters not covered by the other datasets, to avoid repetitions in semantic concepts.
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