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Abstract001

Large Language Models (LLMs) often auto-002
matically revise facts in provided content to003
align with their internal knowledge, a behav-004
ior that, while aiming for factual accuracy, can005
detrimentally override source material. This006
paper systematically investigates and formally007
defines this critical issue as Harmful Factual-008
ity Hallucination, where LLMs unexpectedly009
correct perceived inaccuracies in the input, pri-010
oritizing global factual correctness over essen-011
tial source fidelity. Moving beyond anecdotal012
evidence, we introduce a robust framework to013
induce and quantify Harmful Factuality by ap-014
plying controlled soft (Gaussian Embedding015
Perturbation) and hard (LLM-Instructed En-016
tity Replacement) entity perturbations. We017
evaluate a diverse set of open-source (e.g.,018
Llama series) and commercial (e.g., GPT-4o)019
LLMs of varying scales across abstractive sum-020
marization, rephrasing, and context-grounded021
question-answering tasks. Our experiments re-022
veal that Harmful Factuality is prevalent, with023
its incidence significantly influenced by model024
scale (larger models often exhibit higher rates),025
perturbation type, entity position within the026
source, and task characteristics. Furthermore,027
through analysis of Dual Presence outputs, we028
identify and categorize three core behavioral029
mechanisms that underlie this phenomenon.030
Importantly, we also demonstrate that a simple031
instructional defense prompt can substantially032
mitigate Harmful Factuality, reducing it by ap-033
proximately 50% in several leading models.034
This research provides a foundational method-035
ology and crucial insights for evaluating and al-036
leviating source-conflicting behaviors, thereby037
supporting the development of more reliable038
and source-faithful LLM systems.039

1 Introduction040

Ensuring fidelity to source material is crucial for041

large language models (LLMs), especially in tasks042

like abstractive summarization, context-grounded043

Factual Factual

LLM Output: Factual LLM Output: Nonfactual

So
ur

ce Fa
ct

ua
l

N
on

fa
ct

ua
l

Nonfactual    Nonfactual

SCH: Harmful Falsity
Factual Nonfactual
Existing Works

SCH: Harmful Factuality
Nonfactual Factual
Our Paper

... Confucius was a
US philosopher of the

Civil war period...

Sure. This is student's     
   work summary:

... Confucius was
a US Chinese philosopher

of the Civil war 
Spring and Autumn

period...

     Confucius is Chinese
Confucius lives in 

 Spring and Autumn 
period

Help me Summary
student's work.

H
ar

m
fu

l F
ac

tu
al

ity
 E

xa
m

pl
e

Source
Nonfactual

LLM
Factual

SCH:
Harmful

Factuality

Nonfactual    Factual

Figure 1: Harmful Factuality: the LLM corrects a fac-
tual error in the source, introducing a contradiction with
the input, violating source fidelity.

question answering, and retrieval-based genera- 044

tion (Fabbri et al., 2022). Nonetheless, LLMs some- 045

times inadvertently revise source content based 046

on their internal knowledge, generating outputs 047

that contradict the original input (Ji et al., 2023a; 048

Maynez et al., 2020a). Such occurrences, termed 049

source-contradictory hallucination (SCH), can be 050

categorized into two types based on the factual 051

alignment between source input and model output 052

(Ter Hoeve et al., 2018; Manakul et al., 2023b): (1) 053

factual source input distorted by nonfactual LLM 054

output, and (2) nonfactual source input corrected 055

by factual LLM output (see the upper panel of Fig- 056

ure 1). The first category, characterized as harmful 057

falsehood, is well-studied, clearly detrimental, and 058

relatively easy to detect due to evident inaccuracies 059

(Wang et al., 2020; Goyal and Durrett, 2021). 060

The second category, which we define as harm- 061

ful factuality, occurs when an LLM unexpectedly 062

corrects erroneous source content (Rashkin et al., 063

2023). Although such corrections may seem benefi- 064

cial due to their factual correctness, they can quietly 065
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produce severe repercussions by violating source066

fidelity. The lower panel of Figure 1 provides an067

illustrative scenario: an LLM summarizing student068

assignments erroneously claims "Confucius was a069

US philosopher of the Civil War period," but the070

model corrects this in the summary, thus contra-071

dicting the original input. Despite being factually072

accurate, such outputs undermine the integrity and073

intended purpose of source-dependent applications.074

The implications of harmful factuality halluci-075

nations are severe in sensitive domains like law,076

medicine, education, and scientific research, where077

precise replication of source content—even if in-078

correct—is crucial (Cao et al., 2021). Legal briefs,079

clinical reports, and academic summaries mandate080

faithful representation of original texts, including081

inaccuracies. Moreover, retrieval-augmented gener-082

ation (RAG) systems risk propagating such stealthy083

contradictions downstream, compromising the in-084

tegrity of factual evidence chains (Lewis et al.,085

2020). As deployment of LLMs expands in sensi-086

tive areas, ensuring alignment between outputs and087

inputs becomes essential.088

Distinct from conventional hallucinations aris-089

ing from model uncertainty or fabrication, harm-090

ful factuality hallucinations stem from a model’s091

confidence in its internal knowledge (Huang et al.,092

2025b). LLMs integrate extensive world knowl-093

edge encoded during pretraining (Petroni et al.,094

2019; Roberts et al., 2020), typically enhancing the095

factual correctness of their outputs. However, when096

presented with incorrect information in the prompt,097

models face a fundamental tension between two098

desirable properties:099

• Factuality (F): Alignment with real-world100

knowledge and established facts.101

• Faithfulness (L): Consistency with provided102

source material.103

When input data contains inaccuracies, improving104

factuality (F ) inherently risks diminishing faithful-105

ness (L), as models prioritize correcting inaccura-106

cies over maintaining source fidelity. Despite its107

practical importance, harmful factuality hallucina-108

tion remains underexplored in existing literature.109

This paper presents a systematic framework for110

identifying, inducing, and measuring harmful fac-111

tuality hallucinations. We employ controlled entity112

perturbations using both embedding-based (soft)113

and prompt-based (hard) techniques to systemat-114

ically insert inaccuracies at varying levels, cre-115

ating a range of nonfactual datasets. We then116

rigorously assess LLM behaviors across multiple117

tasks—abstractive summarization, rephrasing, and 118

context-grounded question answering—to deter- 119

mine the conditions under which models preserve 120

or correct these inserted inaccuracies. 121

Our main contributions are as follows: 122

• We formally introduce and define harmful factu- 123

ality hallucination, situating it within the broader 124

taxonomy of LLM hallucinations. 125

• We propose a systematic approach to quantifying 126

harmful factuality hallucinations using controlled 127

entity perturbation methods, encompassing both 128

embedding-based and prompt-based paradigms. 129

• We empirically evaluate the occurrence and 130

properties of harmful factuality hallucination 131

across summarization, rephrasing, and question- 132

answering tasks, examining factors such as 133

model scale, entity position, and salience. 134

• We identify and categorize three core behavioral 135

mechanisms underlying harmful factuality hallu- 136

cination: correction, coreference, and conflation. 137

2 Related Work 138

Hallucination refers to generated content that ap- 139

pears nonsensical or diverges from the source (Ji 140

et al., 2023b). It includes inconsistencies with input 141

context, prior output, or external knowledge (Zhang 142

et al., 2023). Qi et al. (2024) further distinguish 143

hallucinations based on two axes: Source Faithful- 144

ness (SF) and World Factuality (WF), separating 145

errors that deviate from the source from those that 146

violate world knowledge. Hallucination manifests 147

differently across tasks. In summarization, mod- 148

els often invent or distort named entities (Maynez 149

et al., 2020b; Nan et al., 2021). QA-based evalua- 150

tions like QAFactEval (Fabbri et al., 2022) reveal 151

complementary perspectives on factual consistency. 152

However, most studies conflate SF and WF, failing 153

to capture conflicts where models revise input with 154

externally correct information—precisely the gap 155

SCH fills (Qi et al., 2024). 156

Factuality and source faithfulness often con- 157

flict. Huang et al. (2025a) introduce the notion 158

of faithfulness hallucination, which includes con- 159

tradictions with the input or surrounding context. 160

FRANK (Pagnoni et al., 2021) categorizes sentence 161

level factual errors. In-context editing methods re- 162

trieve updated facts during inference (Madaan et al., 163

2022; Zhong et al., 2023; Zheng et al., 2023; Wang 164

et al., 2024; Bi et al., 2024b), but these can re- 165

duce alignment with the original prompt. When 166

internal knowledge overrides the context, models 167
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may confidently generate outputs that are world-168

true but source-false (Petroni et al., 2020; Si et al.,169

2023; Xie et al., 2024). Li et al. (2024a) show that170

overconfidence in parametric knowledge causes171

contradiction with prompt-provided information.172

Model scale influences this behavior. Smaller173

models tend to follow input more literally, while174

larger models often "correct" inputs based on prior175

knowledge (Wang et al., 2023a; Lin et al., 2022).176

Larger models also suffer sharper drops in context177

faithfulness under counterfactual prompts (Bi et al.,178

2024a). Scaling increases both factuality and hal-179

lucination tendencies (Lu et al., 2024). As models180

integrate internal and external knowledge, RAG or181

structured prompting, the tension between correct-182

ness and faithfulness becomes pronounced (Fan183

et al., 2024; Santhanam et al., 2021; Qin et al.,184

2024; Chen et al., 2022; Li et al., 2024b).185

Prompt injection studies further reveal how mod-186

els neglect or forget previous context when exposed187

to conflicting new input (Perez and Ribeiro, 2022;188

Liu et al., 2024; Wei et al., 2023). These fail-189

ures arise from how models resolve competition190

between internal memory and prompt conditioning.191

Recent work attempts to quantify this interplay.192

Kongmanee (2025) analyze token-level logit be-193

havior, showing how internal knowledge dominates194

predictions. Xu et al. (2024) provide a taxonomy195

of knowledge conflicts and their behavioral effects.196

Marjanović et al. (2024) show that LLMs often rely197

on memorized facts rather than context, even when198

the external context is clear.199

Perturbation methods offer tools to probe200

model behavior under controlled modifications.201

CoCo (Xie et al., 2021) measures causal links be-202

tween source and output. FactGraph (Ribeiro et al.,203

2022) encodes semantic structures for consistency204

checks. Most prior perturbation studies focus on ro-205

bustness or entailment error detection (Wang et al.,206

2023b; Goyal and Durrett, 2020). MQAG (Man-207

akul et al., 2023a) uses question rewriting to test208

abstraction quality. These efforts do not address209

hallucinations arising from factual overcorrection.210

In contrast, our work designs perturbations that211

directly elicit SCH, exposing the tension between212

source fidelity and internal model behavior.213

3 Methodology214

In this section, we describe systematic experimen-215

tal methods aimed at investigating harmful factu-216

ality hallucination. We first introduce methods for217

Document:
... Confucius was a
Chinese philosopher
of the Spring and
Autumn period ...   

Spring and
Autumn

Chinese
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Document with Recognized Entities Soft Perturbation (GEP)
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Figure 2: Nonfactual perturbation workflow: soft
(embedding-level) and hard (prompt-based) perturba-
tion for injecting factual errors into input.

adding nonfactual perturbations into the source in- 218

put, followed by entity selection strategies tailored 219

to different evaluation tasks. 220

3.1 Nonfactual Perturbation 221

To systematically study harmful factuality hallu- 222

cinations in the absence of suitable fine-grained 223

datasets, we create nonfactual source data with 224

careful control over the perturbation degree, syn- 225

tactic validity, and semantic consistency. Specifi- 226

cally, we propose two complementary perturbation 227

approaches: soft perturbation in the embedding 228

space and hard perturbation at the symbolic level 229

via prompts (illustrated in Figure 2). These meth- 230

ods introduce controlled factual inaccuracies, al- 231

lowing us to assess how models balance fidelity to 232

source content with internal factual knowledge. 233

3.1.1 Soft Perturbation: Gaussian Embedding 234

Perturbation (GEP) 235

Soft perturbation modifies entities at a fine-grained 236

semantic level by introducing calibrated Gaussian 237

noise into the embedding space of pre-trained lan- 238

guage models (e.g., BERT (Devlin et al., 2019)). 239

Our method is generalizable and compatible with 240

any embedding-based model, providing precise 241

control over semantic drift while preserving syntac- 242

tic coherence. Formally, given an entity ei ∈ E = 243

{e1, e2, ..., en}, we first obtain its contextualized 244

embedding vi ∈ Rd from BERT. We then perturb 245

this embedding with Gaussian noise scaled by a 246

parameter α: 247

v̂i = vi + α · δi, δi ∼ N (0, I) 248

To obtain a perturbed entity êi, we search for the 249

token in the model vocabulary whose embedding 250

has the highest cosine similarity with v̂i: 251
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êi = argmax
w∈V

cos(v̂i,Embed(w)) (1)252

It yields a new entity that is semantically close253

to the original but introduces a factual deviation,254

with the degree of divergence controlled by α. The255

overall process is outlined in Algorithm 1.256

Algorithm 1 Gaussian Embedding Perturbation

Require: Entity set E, BERT model, Perturbation
strength α

Ensure: Set of perturbed entity pairs P
1: V ← BERT vocabulary embeddings
2: P ← ∅
3: for each entity ei ∈ E do
4: vi ← ComputeBERTEmbedding(ei)
5: δi ∼ N (0, I) {Sample random noise}
6: v̂i ← vi + α · δi {Add scaled noise}
7: êi ← argmax

w∈V
cos(v̂i,Embed(w))

8: P ← P ∪ {(ei, êi)}
9: end for

10: return P

To ensure the efficiency and quality of perturbed257

entities, we apply several optimizations:258

• Caching Vocabulary Embeddings: Pre-259

computing and caching vocabulary embeddings260

minimizes redundant calculations during the261

nearest neighbor search (Equation 1).262

• Vocabulary Pruning: Unsuitable tokens (e.g.,263

special characters, sub-word fragments irrelevant264

as standalone entities, overly short words) are265

filtered to improve the quality of êi.266

• Controlled Perturbation Strength: The scaling267

factor α is tuned (e.g., within [0.1, 0.3], default268

as 0.1) to balance semantic similarity with factual269

deviation, ensuring êi is plausible yet different,270

without compromising grammatical correctness.271

This process generates perturbed entities that aim272

to be grammatically consistent within a local con-273

text but are factually incorrect. For example, with274

a smaller α (e.g., 0.1), "Einstein" might map to275

"Bohr" (both theoretical physicists). A larger α276

(e.g., 0.3) might map "Einstein" to "Neumann" (a277

polymath in related fields), introducing a greater se-278

mantic shift. These controlled perturbations enable279

precise testing of LLM fidelity.280

3.1.2 Hard Perturbation: LLM-Instructed281

Entity Replacement (LIER)282

In contrast to GEP, LIER leverages the reasoning283

and generative capabilities of advanced LLMs (e.g.,284

GPT-4o) to create semantically coherent yet fac- 285

tually incorrect entity substitutions. This method 286

operates at the symbolic level, replacing entities 287

with contextually plausible alternatives that deliber- 288

ately introduce factual errors. Careful guidance is 289

crucial to ensure the quality of these substitutions. 290

Given an entity ei from a set E, we prompt the 291

LLM to generate a replacement êi that adheres to 292

the following constraints: 293

• Type Consistency: The perturbed entity êi must 294

belong to the same semantic type as ei (e.g., per- 295

son, location, organization) to ensure natural in- 296

tegration into the original context. 297

• Semantic Shift (Non-Synonymous): êi should 298

not be a direct synonym or alias of ei. It must 299

introduce a slight semantic shift to represent a 300

genuine factual change, avoiding trivial substitu- 301

tions or coreferential ambiguity. 302

• Formal Similarity: êi maintain a similar length 303

and capitalization to ei to preserve sentence struc- 304

ture and minimize stylistic cues of alteration. 305

Prompt design is central to LIER. We employ a 306

structured system prompt, shown in the box below, 307

to guide the model: 308

System Prompt for Hard Perturbation

You are an expert text-perturbation assistant.
Your job: given an entity and its type (per-
son, location, organization, etc.), produce
one substitute that:
1. Is the same type.
2. Is NOT a direct synonym, but has a slight

semantic shift.
3. Maintains similar length and capitaliza-

tion.
4. Matches entity-type rules (e.g., person
→ similar name, location → similar
scale).

Output MUST be exactly one JSON object,
one line, no extra keys, no code fences:
{"entity": "original entity", "perturbed":
"perturbed entity"}

309

To promote reproducibility and control the out- 310

put, we set the generation temperature to T = 0.7, 311

balancing semantic variability with format adher- 312

ence. We also provide few-shot demonstrations 313

in the prompt (e.g., "Albert Einstein" → "Isaac 314

Newton") to further guide the LLM in maintaining 315

entity-type fidelity while ensuring factual diver- 316

gence. The resulting (ei, êi) pairs are stored and 317
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used to assess whether models preserve or over-318

write these deliberately modified inputs in down-319

stream tasks.320

3.2 Entity Selection Strategies321

Selecting appropriate entities for perturbation is322

crucial for a nuanced analysis of Harmful Factu-323

ality Hallucination, as not all entities contribute324

equally to meaning or elicit the same model behav-325

ior. Our pilot studies suggest that entities central326

to a document’s theme are more likely to trigger327

model correction than peripheral ones. Further-328

more, consistent with existing literature (Bi et al.,329

2024a), an entity’s position within the input can330

affect LLM attention and processing. Identifying331

salient entities, for instance, by extracting them332

from LLM-generated summaries, can also intro-333

duce dependencies on the specific model used for334

summarization. These considerations motivate our335

use of strategies for entity selection:336

• Uniform Entity Selection: All identified named337

entities within a document are candidates for per-338

turbation. This strategy serves as a baseline to339

measure overall hallucination rates under uni-340

form perturbation conditions across the entire341

source text.342

• Theme-Related Entity Selection: Only entities343

presumed to be central to the document’s main344

ideas are perturbed. We identify these by first345

prompting an LLM to summarize the source doc-346

ument, then extracting named entities present in347

this summary. Perturbing these likely salient or348

topically central entities allows us to assess how349

models handle high-importance content.350

• Positional Entity Selection: Given that prior351

work indicates LLMs can be sensitive to token352

position (Bi et al., 2024a), we investigate how353

entity location influences Harmful Factuality Hal-354

lucination. Entities are selected for perturbation355

based on their occurrence in different segments356

of the document: the head (first 25% of tokens),357

body (middle 50%), and tail (final 25%). This358

strategy enables us to study whether an entity’s359

position affects the model’s propensity to correct360

or preserve factual inconsistencies.361

4 Experimental Setup362

This section describes our dataset preparation, the363

evaluation tasks, selected language models, and364

evaluation metrics.365

4.1 Dataset 366

We conduct our experiments on the WikiEntities 367

dataset (Chekalina et al., 2024), which comprises 368

3.2 million Wikipedia texts annotated with entities 369

linked to Wikidata (Vrandečić and Krötzsch, 2014). 370

We randomly sample 1,000 texts for evaluation. 371

Each entry in this dataset contains a text segment 372

and its associated annotated entities. We apply our 373

previously described perturbation methods (GEP 374

and LIER) to these texts to create variants with 375

controlled factual inaccuracies centered around se- 376

lected entities. 377

4.2 Multi-Task Evaluation 378

To assess the extent of harmful factuality hallucina- 379

tion across diverse LLM applications, we design an 380

experimental framework encompassing three core 381

tasks: abstractive summarization, rephrasing, and 382

question answering (QA). These tasks are represen- 383

tative as they cover both generative (summarization, 384

rephrasing) and more constrained (QA) use cases, 385

which form the basis of many real-world LLM ap- 386

plications like chatbots, information retrieval, con- 387

tent rewriting, and document analysis. This broad 388

coverage ensures our evaluation captures a wide 389

spectrum of harmful factuality hallucination behav- 390

iors relevant to practical settings. 391

4.2.1 Abstractive Summarization Task 392

The summarization task tests how models condense 393

information and prioritize content. This can reveal 394

whether they tend to "correct" perceived factual 395

errors from the source or preserve the original (per- 396

turbed) text when generating summaries. For this 397

task, models are prompted to generate concise sum- 398

maries of documents containing perturbed entities 399

using the instruction: Summarize the given text. 400

4.2.2 Rephrasing Task 401

The rephrasing task focuses on whether models 402

can restate information without introducing correc- 403

tions from their internal knowledge, thereby testing 404

entity preservation and faithfulness to the original 405

content. We evaluate how models handle entity 406

preservation when tasked with maintaining seman- 407

tic content while altering the surface form, using 408

the prompt: Rephrase the given text while preserv- 409

ing its meaning. 410

4.2.3 Question Answering Task 411

To evaluate how LLMs handle perturbed entity 412

information in question-answering scenarios, we 413

5



designed two context-grounded QA tasks: open-414

ended QA and closed-ended (multiple-choice) QA.415

These tasks directly probe whether models pri-416

oritize their internal factual knowledge or main-417

tain fidelity to the provided (perturbed) input text.418

Further details regarding our Question Generation419

methodology and the LLM Question-Answering420

Procedure are elaborated in Appendix A.421

4.3 Evaluated Models422

We evaluate several prominent LLMs differing in423

architecture, size, and training paradigms:424

• OpenAI Models: GPT-4o, GPT-4.1, GPT-4o-425

mini, GPT-o1, GPT-o4-mini (OpenAI, 2025).426

• Meta Llama Models: Llama-3.1-8B-Instruct427

(Meta, 2024a), Llama-3.2-3B-Instruct, Llama-428

3.2-1B-Instruct (Meta, 2024b).429

This diverse selection includes commercial (black-430

box) vs. local (white-box) models, comprehensive431

vs. specialized architectures, and large-scale vs.432

compact model sizes.433

4.4 Evaluation Categories for LLM Response434

Based on the appearance of the perturbed non-435

factual entity and the original factual entity in the436

LLM’s response, we categorize and analyze out-437

comes as follows:438

• Dual Presence: Both the perturbed entity and439

the original factual entity appear in the output.440

• Faithfulness Adherence: The perturbed non-441

factual entity appears unchanged in the model442

output, and the original entity does not.443

• Harmful Factuality: The perturbed non-factual444

entity is absent, and the output is instead restored445

to include the original factual entity. This out-446

come signifies the harmful factuality hallucina-447

tion we investigate.448

• Entity Omission: Neither the perturbed non-449

factual entity nor the original factual entity ap-450

pears in the relevant part of the output.451

5 Experimental Results452

We primarily investigate harmful factuality hallu-453

cinations, emphasizing analyses of Harmful Factu-454

ality and Dual Presence. Figures presented in this455

section generally exclude the Entity Omission cate-456

gory to maintain clarity on the primary phenomena.457

5.1 Harmful Factuality Analysis458

5.1.1 Larger LLM More Harmful Factuality459

As illustrated in Figure 3, larger LLMs generally460

demonstrate a higher incidence of Harmful Factual-461

ity on the summarization task. For instance, under 462

soft perturbation (GEP), GPT-4o exhibits Harmful 463

Factuality in over 5% of cases, whereas GPT-4o- 464

mini shows roughly half that rate. This trend is also 465

observed with hard perturbation (LIER). Similarly, 466

within the Llama series under GEP, Llama-3.1-8B- 467

Instruct (henceforth Llama-8B for brevity in this 468

discussion) shows a higher rate of Harmful Factu- 469

ality compared to Llama-3.2-1B-Instruct (Llama- 470

1B), with Llama-1B exhibiting approximately half 471

the rate of Llama-8B. These findings support our 472

hypothesis that more powerful LLMs, which en- 473

code more extensive world knowledge, may be 474

more prone to making unsolicited corrections, thus 475

prioritizing their internal knowledge over source fi- 476

delity. Similar patterns are observed for the rephras- 477

ing and QA tasks, as detailed in the Appendix. 478

5.1.2 Lower Faithful Adherence in GPT-x 479

Figure 3 also indicates that the evaluated propri- 480

etary LLMs (OpenAI GPT series) generally ex- 481

hibit lower rates of Faithful Adherence compared 482

to the open-weight Llama models, across both GEP 483

and LIER perturbation methods. This pattern is 484

also consistent across the rephrasing and QA tasks 485

(see Appendix). We hypothesize that this behav- 486

ior is linked to the same factors discussed in Sec- 487

tion 5.1.1: models with more comprehensive inter- 488

nal knowledge and potentially stronger corrective 489

tendencies (often larger or proprietary models) may 490

be less likely to adhere strictly to perturbed, non- 491

factual input. 492

5.1.3 Influence of Perturbation Degree (α) 493

The impact of the soft perturbation degree, α, on 494

Harmful Factuality rates is shown in Figure 4. For 495

GPT-4.1, we observe a consistent increase in Harm- 496

ful Factuality from 5.88% to 6.25% as α increases 497

(a change of +0.37%). In contrast, GPT-4o and 498

GPT-4o-mini demonstrate greater stability, with 499

maximum observed changes in Harmful Factuality 500

rates of no more than 0.14% and 0.05%, respec- 501

tively, across the tested α range. The slight increase 502

with stronger perturbation (larger α) for models 503

like GPT-4.1 suggests that as a perturbed entity de- 504

viates more significantly from its original factual 505

counterpart, an LLM may become more inclined to 506

"correct" it. The greater stability of other models 507

might indicate different sensitivity thresholds to 508

perturbation strength. 509
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Figure 3: Rates of Harmful Factuality and Dual Presence for the summarization task under soft perturbation (GEP,
left panel) and hard perturbation (LIER, right panel) across various LLMs. (Note: Entity Omission is excluded from
visualization for clarity).
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Figure 5: Harmful Factuality rates for GPT-4o under
soft perturbation (GEP) across different entity selection
strategies on the summarization task.

5.1.4 Impact of Entity Position and Salience510

Entity selection strategies reveal significant vari-511

ations in Harmful Factuality rates, as shown for512

GPT-4o in Figure 5. Regarding positional selec-513

tion, entities located in the head (initial 25%) of514

a document are most prone to Harmful Factuality,515

exhibiting a rate of 11.81%. This rate substan-516

tially decreases for entities in the body (middle517

50%, 2.35%) and tail (final 25%, 0.97%). The518

rate for the uniform selection strategy, which sam-519

ples entities throughout the document, is 5.35%.520

These findings suggest that LLMs are considerably521

more likely to modify or "correct" entities appear-522

ing early in the input. This could be attributed to:523

(1) attentional biases, where initial tokens receive 524

greater weight; or (2) characteristics of the Wiki- 525

Entities dataset, where pivotal information is often 526

presented at the beginning of articles. 527

Furthermore, the Theme-Related selection strat- 528

egy results in the highest observed Harmful Fac- 529

tuality rate. This is particularly pronounced in the 530

summarization task, likely because theme-related 531

entities are inherently crucial for summary genera- 532

tion, making them focal points for model process- 533

ing and potential correction. 534

5.2 Dual Presence Analysis 535
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Figure 6: Distribution of identified mechanisms (Error-
Correction, Coreference/Homonym Mixing, Confla-
tion/Fabrication) within Dual Presence outputs for the
summarization task under soft perturbation (GEP).
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Figure 7: Distribution of Dual Presence mechanisms for
GPT-4o across different entity selection strategies for
the summarization task under soft perturbation (GEP).
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Figure 8: Mitigation results for harmful factuality on summarization tasks with the proposed defense prompt,
comparing soft perturbation (GEP, left) and hard perturbation (LIER, right).

Analyzing Dual Presence instances can offer in-536

sights into the cognitive processes or generation537

principles that might also contribute to Harmful538

Factuality. To better understand these instances,539

we manually analyzed a subset of Dual Presence540

outputs and identified three recurring mechanisms:541

Error-Correction, Coreference/Homonym Mixing,542

and Conflation/Fabrication. We then quantitatively543

assessed the perceived strength of each mechanism544

in a sample of Dual Presence outputs using GPT-545

4.1 as an LLM evaluator, which assigned scores on546

a 0-5 scale (higher scores indicating stronger pres-547

ence). Figure 6 illustrates the distribution of these548

mechanisms in Dual Presence outputs from the549

summarization task under GEP. Figure 7 illustrates550

the distribution of Dual Presence mechanisms for551

GPT-4o across different entity selection strategies552

for the summarization task under GEP. Detailed553

descriptions of the three mechanisms can be found554

in the Appendix.555

6 Harmful Factuality Mitigation556

While our primary focus has been systematically557

investigating harmful factuality hallucinations, we558

also propose a practical mitigation approach via559

prompt engineering. This method aims to reduce560

the language models’ tendency to prioritize inter-561

nal factual knowledge over faithfully representing562

source content.563

Mitigation Prompt for Harmful Factuality

Only use the context and knowledge in the
given text. DO NOT use the interior knowl-
edge.

564

As depicted in Figure 8, applying the defense565

prompt substantially reduces harmful factuality566

across different model variants. For the GEP567

dataset, both GPT-4.1 and GPT-4o exhibit approxi-568

mately a 50% reduction in harmful factuality rates,569

with GPT-4.1 experiencing the most significant de- 570

crease, from over 5% to below 2.5%. These find- 571

ings highlight that larger, end-to-end models ini- 572

tially demonstrate higher harmful factuality, yet 573

their advanced prompt-learning capabilities allow 574

effective mitigation with explicit instructions. 575

Similarly, reasoning-oriented models such as 576

GPT-o1 and GPT-o4-mini also demonstrate sig- 577

nificant reductions, aligning with previous observa- 578

tions that reasoning-focused LLMs inherently pos- 579

sess stronger robustness against harmful factuality. 580

Their ability to perform internal self-correction is 581

enhanced by targeted defense prompts, resulting in 582

similar mitigation effects in the hard perturbation 583

scenario (LIER). 584

7 Conclusion 585

This paper systematically investigated Harmful Fac- 586

tuality, a previously underexplored LLM halluci- 587

nation where models inappropriately correct non- 588

factual source inputs, thereby compromising fi- 589

delity. We introduced a novel framework using soft 590

(GEP) and hard (LIER) perturbations to induce and 591

quantify this behavior. Our evaluations across sum- 592

marization, rephrasing, and QA tasks revealed that 593

larger, more knowledgeable LLMs exhibit higher 594

Harmful Factuality and lower faithful adherence, 595

with entity position and perturbation degree signifi- 596

cantly influencing these outcomes. We also identi- 597

fied three mechanisms (Error-Correction, Corefer- 598

ence/Homonym Mixing, Conflation/Fabrication) 599

underlying these behaviors through an analysis 600

of Dual Presence outputs. Critically, while these 601

findings highlight risks in source-dependent appli- 602

cations, we demonstrated that a simple defense 603

prompt can substantially mitigate Harmful Factu- 604

ality. This research lays crucial groundwork for 605

understanding the LLM trade-off between factual- 606

ity and faithfulness, paving the way for future work 607

on more advanced mitigation strategies. 608
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8 Limitations609

While our study offers a first systematic examina-610

tion of harmful-factuality hallucinations, several611

limitations warrant mention.612

Experiments are conducted on the WikiEntities613

dataset, whose topic scope and editorial norms614

may not generalize to domains as clinical notes,615

legal texts, or low-resource languages. Future work616

should apply our perturbation framework to diverse617

corpora including scientific abstracts, court opin-618

ions, and conversational data, to assess whether the619

factuality–faithfulness trade-offs persist.620

We evaluate GPT-4 and Llama-3 variants along-621

side two reasoning-tuned baselines. This excludes622

model families such as retrieval-augmented gener-623

ators, mixtures-of-experts, multilingual encoders,624

and lightweight distilled models used in edge set-625

tings. Expanding the model pool would clarify626

whether harmful factuality correlates with scale,627

architecture, or training strategy.628

Our defense study centers on prompt-based in-629

terventions. We leave for future work the inte-630

gration of complementary methods—retrieval fil-631

tering, parameter editing, reinforcement learning632

from counterfactuals, and decoding-time regular-633

ization—into our perturbation benchmark for more634

robust, source-aligned generation.635
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Sara Vera Marjanović, Haeun Yu, Pepa Atanasova,763
Maria Maistro, Christina Lioma, and Isabelle Au-764
genstein. 2024. Dynamicqa: Tracing internal knowl-765
edge conflicts in language models. arXiv preprint766
arXiv:2407.17023.767

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and768
Ryan McDonald. 2020a. On faithfulness and factu-769
ality in abstractive summarization. arXiv preprint770
arXiv:2005.00661.771

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and 772
Ryan McDonald. 2020b. On faithfulness and factu- 773
ality in abstractive summarization. In Proceedings 774
of the 58th Annual Meeting of the Association for 775
Computational Linguistics, pages 1906–1919, On- 776
line. Association for Computational Linguistics. 777

Meta. 2024a. Introducing llama 3.1: Our most capable 778
models to date. 779

Meta. 2024b. Llama 3.2: Revolutionizing edge ai and 780
vision with open, customizable models. 781

Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero 782
Nogueira dos Santos, Henghui Zhu, Dejiao Zhang, 783
Kathleen McKeown, and Bing Xiang. 2021. Entity- 784
level factual consistency of abstractive text summa- 785
rization. In Proceedings of the 16th Conference of 786
the European Chapter of the Association for Compu- 787
tational Linguistics: Main Volume, pages 2727–2733, 788
Online. Association for Computational Linguistics. 789

OpenAI. 2025. Gpt-3.5 turbo. 790

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia 791
Tsvetkov. 2021. Understanding factuality in abstrac- 792
tive summarization with FRANK: A benchmark for 793
factuality metrics. In Proceedings of the 2021 Con- 794
ference of the North American Chapter of the Asso- 795
ciation for Computational Linguistics: Human Lan- 796
guage Technologies, pages 4812–4829, Online. As- 797
sociation for Computational Linguistics. 798

Fábio Perez and Ian Ribeiro. 2022. Ignore previous 799
prompt: Attack techniques for language models. 800
Preprint, arXiv:2211.09527. 801

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim 802
Rocktäschel, Yuxiang Wu, Alexander H. Miller, 803
and Sebastian Riedel. 2020. How context affects 804
language models’ factual predictions. Preprint, 805
arXiv:2005.04611. 806

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An- 807
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and 808
Sebastian Riedel. 2019. Language models as knowl- 809
edge bases? arXiv preprint arXiv:1909.01066. 810

Siya Qi, Yulan He, and Zheng Yuan. 2024. Can we 811
catch the elephant? a survey of the evolvement of hal- 812
lucination evaluation on natural language generation. 813
arXiv preprint arXiv:2404.12041. 814

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 815
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, 816
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, 817
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun 818
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, and 22 819
others. 2024. Tool learning with foundation models. 820
Preprint, arXiv:2304.08354. 821

Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, 822
Lora Aroyo, Michael Collins, Dipanjan Das, Slav 823
Petrov, Gaurav Singh Tomar, Iulia Turc, and David 824
Reitter. 2023. Measuring attribution in natural lan- 825
guage generation models. Computational Linguistics, 826
49(4):777–840. 827

10

https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815
https://arxiv.org/abs/2310.12815
https://doi.org/10.18653/v1/2023.ijcnlp-main.4
https://doi.org/10.18653/v1/2023.ijcnlp-main.4
https://doi.org/10.18653/v1/2023.ijcnlp-main.4
https://doi.org/10.18653/v1/2023.ijcnlp-main.4
https://doi.org/10.18653/v1/2023.ijcnlp-main.4
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.18653/v1/2021.eacl-main.235
https://platform.openai.com/docs/models
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2304.08354


Leonardo F. R. Ribeiro, Mengwen Liu, Iryna Gurevych,828
Markus Dreyer, and Mohit Bansal. 2022. FactGraph:829
Evaluating factuality in summarization with semantic830
graph representations. In Proceedings of the 2022831
Conference of the North American Chapter of the832
Association for Computational Linguistics: Human833
Language Technologies, pages 3238–3253, Seattle,834
United States. Association for Computational Lin-835
guistics.836

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.837
How much knowledge can you pack into the pa-838
rameters of a language model? arXiv preprint839
arXiv:2002.08910.840

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,841
Christopher Potts, and Matei Zaharia. 2021. Col-842
bertv2: Effective and efficient retrieval via843
lightweight late interaction. arXiv preprint844
arXiv:2112.01488.845

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang846
Wang, Jianfeng Wang, Jordan Boyd-Graber, and Li-847
juan Wang. 2023. Prompting gpt-3 to be reliable.848
Preprint, arXiv:2210.09150.849

Maartje Ter Hoeve, Anne Schuth, Daan Odijk, and850
Maarten de Rijke. 2018. Faithfully explaining rank-851
ings in a news recommender system. arXiv preprint852
arXiv:1805.05447.853
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A Question Answering Task Design913

We designed two context-grounded QA tasks914

(open-ended and closed-ended multiple-choice) to915

directly measure models’ tendencies to either pre-916

serve perturbed entities or correct them based on917

internal knowledge.918

A.1 Question Generation919

We utilized an advanced LLM (GPT-4.1, consistent920

with our evaluated models) for question generation.921

For each source article, we typically selected one922

target entity for question generation, prioritizing en-923

tities that also appear in LLM-generated summaries924

of the original (unperturbed) article, as these are925

likely to be salient. For each target entity, questions926

were generated via two approaches:927

1. Open-Ended Question Generation: GPT-4.1928

was instructed to create an open-ended question929

for which the original (pre-perturbation) target930

entity is the correct answer. The generator ana-931

lyzes the original text to understand the entity’s932

role and formulates a question pointing to it.933

The prompt template used is:934

Based on the following text, create an open-935
ended question that has the answer: [target936
entity]937
Text: [first 3000 characters of the original text]938
Return format should only include the ques-939
tion itself, without any explanations or pre-940
fixes.941

2. Closed-Ended Question Generation: We con-942

structed multiple-choice questions where op-943

tions are the original entity and its correspond-944

ing perturbed version. The question generator945

creates a question relevant to the text, answer-946

able by selecting one of the two provided entity947

forms. The design ensures the question does not948

overtly favor either option. The prompt template949

used is:950

Based on the following text, create a question951
with two options A and B.952
Text: [first 3000 characters of the original text]953
Option A should be: [original entity]954
Option B should be: [perturbed entity]955
Design a question that can be answered using956
these two options. The question should relate957
to the text content but should not directly indi-958
cate which option is the correct answer.959
Only return the question content, do not in-960
clude the options.961

This process yielded one open-ended and one962

closed-ended question for each selected target en-963

tity context, designed to effectively test the model’s964

handling of the perturbed information.965

A.2 LLM Question-Answering Procedure 966

To evaluate model behavior, we employed the fol- 967

lowing QA procedures: 968

Open-Ended QA: The text containing the per- 969

turbed entity was provided as context, along with 970

the generated open-ended question. The template 971

for open-ended QA is presented below: 972

Open-Ended QA Prompt Template

You are an assistant skilled at answering
questions based on provided context. Your
answers should be very brief and only con-
tain the specific entity name. Do not pro-
vide explanations or additional context.
Context: [text containing perturbed
entity]
Question: [question generated based
on original entity]
Please answer with just the entity name, no
explanations.

973

Closed-Ended QA: The text with the perturbed 974

entity was provided as context, along with the gen- 975

erated question and two answer choices: (A) the 976

original entity and (B) the perturbed entity. The 977

template for closed-ended QA is presented below: 978

Closed-Ended QA Prompt Template

You are an assistant skilled at answering
multiple choice questions based on pro-
vided context. Your answer should be just
the letter of the correct option (A or B). Do
not provide explanations.
Context: [text containing perturbed
entity]
Question: [question generated based
on entity pairs] A: [original
entity] B: [perturbed entity]
Please answer with just the letter of the cor-
rect option (A or B), no explanations.

979

Filtering for Ground Truth Reliability: To 980

ensure that observed changes in answers are 981

attributable to the perturbation rather than the 982

model’s general inability to answer the question, 983

we first validate QA pairs. This involves posing 984

the questions with the original, unperturbed text. 985

For open-ended questions, an exact match and 986

average rouge-1 with the target entity is required. 987

For closed-ended questions, the model must select 988
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the option corresponding to the original entity, in-989

dicating the metric as accuracy. Only QA pairs990

correctly answered in this pre-perturbation stage991

are used for analyzing the effects of entity pertur-992

bation.993

This QA design allows direct observation of the994

model’s preference: whether it maintains fidelity995

to the perturbed input text (choosing option B or996

its equivalent in open-ended QA) or corrects to997

the original entity based on its internal knowledge998

(choosing option A or its equivalent). The closed-999

ended QA task, in particular, provides a clear bi-1000

nary choice. All QA evaluations used a temperature1001

setting of T = 0 to ensure deterministic outputs1002

and reproducibility.1003

B Dual Presence Analysis1004

B.1 Error-Correction1005

Error-Correction occurs when a language model1006

identifies a perturbed entity as factually incorrect1007

and attempts to "correct" it by presenting both the1008

original (correct) entity and the perturbed (incor-1009

rect) entity in its output, often in a contrastive man-1010

ner. This represents a fundamental tension between1011

factual accuracy and source faithfulness, where the1012

model prioritizes conveying accurate information1013

at the expense of faithfully representing the source.1014

The examples of the Error-Correction halluci-1015

nation pattern: Mount Kilimanjaro is the highest1016

mountain in the world, standing at 8,848 meters.1017

⇒Mount Everest, not Kilimanjaro, is the highest1018

mountain in the world, standing at approximately1019

8,848 meters (29,032 feet).1020

B.2 Coreference and Homonym Mixing1021

Coreference and homonym mixing happen when1022

the model cannot tell if two mentions are the same1023

or different entities. As a result, it may treat the1024

original and perturbed entities as separate, even if1025

they refer to the same thing, or confuse different1026

entities as one.1027

1. Alias Confusion: Model treats aliases or al-1028

ternative names for the same entity as distinct1029

entities. Example: International Business Ma-1030

chines announced new cloud services yesterday.1031

⇒ IBM has expanded its service offerings as1032

International Business Machines announced1033

new cloud services.1034

2. Homonym Confusion: Model fails to disam-1035

biguate between distinct entities that share the1036

same form. Example: Washington [George]1037

crossed the Delaware River in December 1776. 1038

⇒Washington crossed the Delaware River in 1039

December 1776. The city of Washington later 1040

became the nation’s capital. 1041

B.3 Conflation and Fabrication 1042

Conflation and Fabrication occurs when a language 1043

model erroneously merges distinct entities from 1044

the source into a single context, treating them as 1045

co-participants in events or relationships that never 1046

existed in the original text. This mechanism repre- 1047

sents the hallucination where the model not only 1048

fails to maintain entity distinctions but actively gen- 1049

erates new fabricated relationships between them. 1050

The example: The film starred Leonardo Di- 1051

Caprio. Brad Pitt won an award that year. ⇒ 1052

The award-winning film featured both Leonardo 1053

DiCaprio and Brad Pitt in leading roles. 1054

C Results 1055
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Table 1: Entity Perturbation Results for Summarization and Rephrasing Tasks. Each task results are reported under
Soft perturbation (GEP) and Hard perturbation (LIER). Refer to Section 4.3 for model selection, Section 3.2 for
entity selection, and Section 4.4 for evaluation metrics.

Task Perturbation Model Entities Dual Presence Harmful Factuality Faithfulness Adherence Entity Omission
(%) (%) (%) (%)

Summary

Soft

GPT-4.1 Uniform 1.36 5.88 10.57 82.19
GPT-4o-mini Uniform 0.52 2.81 11.42 85.25
GPT-4o Uniform 0.65 5.35 10.66 83.34
GPT-o1 Uniform 0.84 3.88 11.03 84.24
GPT-o4-mini Uniform 0.93 7.65 10.01 81.41
Llama-1B Uniform 0.91 1.88 29.70 67.51
Llama-3B Uniform 0.77 2.84 17.51 78.88
Llama-8B Uniform 1.10 4.78 17.95 76.17
GPT-4o Head 1.47 11.81 15.78 70.94
GPT-4o Body 0.12 2.35 5.00 92.54
GPT-4o Tail 0.10 0.97 3.65 95.28
GPT-4o Theme 2.61 20.51 24.33 52.55

Soft (α = 0.2)
GPT-4.1 Uniform 1.22 6.02 10.26 82.50
GPT-4o-mini Uniform 0.47 2.79 10.69 86.05
GPT-4o Uniform 0.58 5.43 10.62 83.37

Soft (α = 0.3)
GPT-4.1 Uniform 1.22 6.25 8.93 83.60
GPT-4o-mini Uniform 0.45 2.93 10.02 86.60
GPT-4o Uniform 0.54 5.38 9.41 84.67

Hard

GPT-4.1 Uniform 1.41 2.53 17.47 78.59
GPT-4o-mini Uniform 0.67 1.51 17.06 80.77
GPT-4o Uniform 0.86 2.11 18.71 78.32
GPT-o1 Uniform 0.77 1.91 16.16 81.15
GPT-o4-mini Uniform 1.56 3.54 20.78 74.13
Llama-1B Uniform 1.36 1.52 29.36 67.76
Llama-3B Uniform 1.16 1.51 21.71 75.62
Llama-8B Uniform 1.59 1.86 25.29 71.25
GPT-4o Head 2.25 4.39 32.57 60.79
GPT-4o Body 0.35 1.11 11.56 86.99
GPT-4o Tail 0.10 0.64 8.73 90.54
GPT-4o Theme 3.58 7.04 58.58 30.80

Rephrase

Soft

GPT-4.1 Uniform 1.88 5.37 53.65 39.10
GPT-4o-mini Uniform 1.05 2.39 56.18 40.38
GPT-4o Uniform 1.58 10.47 41.62 46.33
GPT-o1 Uniform 0.39 0.45 38.06 61.10
GPT-o4-mini Uniform 1.87 4.98 56.79 36.36
Llama-1B Uniform 0.91 1.21 40.78 57.10
Llama-3B Uniform 1.22 2.60 39.92 56.25
Llama-8B Uniform 1.71 5.44 32.62 60.22
GPT-4o Head 3.36 17.98 61.97 16.69
GPT-4o Body 1.84 16.55 51.43 30.17
GPT-4o Tail 1.34 13.67 49.31 35.69
GPT-4o Theme 2.76 17.60 60.59 19.05

Hard

GPT-4.1 Uniform 2.04 2.75 50.68 44.53
GPT-4o-mini Uniform 1.74 1.52 53.01 43.73
GPT-4o Uniform 1.90 2.28 51.80 44.02
GPT-o1 Uniform 0.53 0.72 29.60 69.16
GPT-o4-mini Uniform 2.79 3.09 50.31 43.81
Llama-1B Uniform 1.17 1.35 37.33 60.14
Llama-3B Uniform 1.57 1.44 45.69 51.30
Llama-8B Uniform 2.08 2.19 42.82 52.91
GPT-4o Head 4.21 4.35 85.74 5.70
GPT-4o Body 3.00 3.37 87.68 5.94
GPT-4o Tail 2.30 2.89 88.70 6.11
GPT-4o Theme 3.19 3.16 87.43 6.22
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Table 2: Question Answering Performance with Perturbed Entities. The average rouge-1 score, exact match and
accuracy is measured by the LLMs’ answer compared to non-hUniformucination results, which is the higher, the
better performance against harmful factuality hUniformucination. Refer to Appendix A.2 for QA task metric.

Perturbation Model Entities Avg ROUGE-1 Open QA Closed QA
Score Exact Match (%) Accuracy (%)

Hard

GPT-4.1 Uniform 0.7958 74.83 63.73
GPT-4o Uniform 0.7950 74.02 67.27
GPT-4o-mini Uniform 0.8177 75.29 75.79
GPT-o1 Uniform 0.6949 62.87 59.78
GPT-o4-mini Uniform 0.7557 68.51 76.70
Llama-3.2-1B Uniform 0.6973 62.99 78.82
Llama-3.2-3B Uniform 0.8055 74.25 83.28
Llama-3.1-8B Uniform 0.8047 74.02 76.29
GPT-4o Head 0.7262 66.21 57.35
GPT-4o Body 0.1690 6.67 6.28
GPT-4o Tail 0.1223 1.49 1.52
GPT-4o Theme 0.7788 72.64 61.60

Soft

GPT-4.1 Uniform 0.4903 46.10 40.06
GPT-4o Uniform 0.5954 58.14 53.68
GPT-4o-mini Uniform 0.5807 55.73 56.21
GPT-o1 Uniform 0.4052 37.61 45.31
GPT-o4-mini Uniform 0.3614 32.91 54.79
Llama-3.2-1B Uniform 0.4060 37.50 70.33
Llama-3.2-3B Uniform 0.5503 53.67 66.40
Llama-3.1-8B Uniform 0.5872 54.82 54.39
GPT-4o Head 0.5328 51.49 47.43
GPT-4o Body 0.1329 12.27 5.65
GPT-4o Tail 0.1086 9.86 1.61
GPT-4o Theme 0.5594 54.47 51.16
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Table 3: HUniformucination Mechanism Analysis for Summarization and Rephrasing Tasks. Each task results are
reported under Soft perturbation (GEP) and Hard perturbation (LIER). Refer to Section 4.3 for model selection, Sec-
tion 3.2 for entity selection, and Appendix B for scoring metrics.

Task Perturbation Model Entities Error-Correction Coreference Conflation
Score (0-5) Score (0-5) Score (0-5)

Summary

Soft

GPT-4.1 Uniform 2.10 1.07 1.16
GPT-4o-mini Uniform 0.97 0.67 1.35
GPT-4o Uniform 0.99 0.63 1.01
GPT-o1 Uniform 1.56 0.97 1.60
GPT-o4-mini Uniform 0.54 0.61 0.74
GPT-4o Head 1.04 0.69 1.05
GPT-4o Body 0.21 0.36 0.57
GPT-4o Tail 0.00 0.00 0.20
GPT-4o Theme 1.06 0.72 1.10

Hard

GPT-4.1 Uniform 2.45 0.14 1.59
GPT-4o-mini Uniform 2.27 0.15 2.34
GPT-4o Uniform 2.02 0.12 1.91
GPT-o1 Uniform 2.08 0.33 2.09
GPT-o4-mini Uniform 1.23 0.22 1.41
GPT-4o Head 2.08 0.31 1.86
GPT-4o Body 0.93 0.00 1.27
GPT-4o Tail 0.00 0.00 0.80
GPT-4o Theme 1.83 0.18 1.79

Rephrase

Soft

GPT-4.1 Uniform 1.01 0.30 0.52
GPT-4o-mini Uniform 1.25 0.45 1.35
GPT-4o Uniform 0.98 0.49 0.94
GPT-o1 Uniform 1.33 0.49 1.21
GPT-o4-mini Uniform 0.79 0.49 1.33
GPT-4o Head 1.12 0.49 0.99
GPT-4o Body 0.49 0.25 0.49
GPT-4o Tail 0.44 0.42 0.39
GPT-4o Theme 0.88 0.49 0.82

Hard

GPT-4.1 Uniform 2.09 0.14 1.48
GPT-4o-mini Uniform 2.29 0.21 1.88
GPT-4o Uniform 2.03 0.17 1.82
GPT-o1 Uniform 2.12 0.12 1.74
GPT-o4-mini Uniform 1.85 0.23 1.72
GPT-4o Head 2.29 0.19 1.86
GPT-4o Body 1.25 0.10 1.12
GPT-4o Tail 1.10 0.00 1.34
GPT-4o Theme 2.25 0.21 1.85
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