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Abstract

Large Language Models (LLMs) often auto-
matically revise facts in provided content to
align with their internal knowledge, a behav-
ior that, while aiming for factual accuracy, can
detrimentally override source material. This
paper systematically investigates and formally
defines this critical issue as Harmful Factual-
ity Hallucination, where LLMs unexpectedly
correct perceived inaccuracies in the input, pri-
oritizing global factual correctness over essen-
tial source fidelity. Moving beyond anecdotal
evidence, we introduce a robust framework to
induce and quantify Harmful Factuality by ap-
plying controlled soft (Gaussian Embedding
Perturbation) and hard (LLM-Instructed En-
tity Replacement) entity perturbations. We
evaluate a diverse set of open-source (e.g.,
Llama series) and commercial (e.g., GPT-40)
LLMs of varying scales across abstractive sum-
marization, rephrasing, and context-grounded
question-answering tasks. Our experiments re-
veal that Harmful Factuality is prevalent, with
its incidence significantly influenced by model
scale (larger models often exhibit higher rates),
perturbation type, entity position within the
source, and task characteristics. Furthermore,
through analysis of Dual Presence outputs, we
identify and categorize three core behavioral
mechanisms that underlie this phenomenon.
Importantly, we also demonstrate that a simple
instructional defense prompt can substantially
mitigate Harmful Factuality, reducing it by ap-
proximately 50% in several leading models.
This research provides a foundational method-
ology and crucial insights for evaluating and al-
leviating source-conflicting behaviors, thereby
supporting the development of more reliable
and source-faithful LLM systems.

1 Introduction

Ensuring fidelity to source material is crucial for
large language models (LLMs), especially in tasks
like abstractive summarization, context-grounded
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Figure 1: Harmful Factuality: the LLM corrects a fac-
tual error in the source, introducing a contradiction with
the input, violating source fidelity.
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question answering, and retrieval-based genera-
tion (Fabbri et al., 2022). Nonetheless, LLMs some-
times inadvertently revise source content based
on their internal knowledge, generating outputs
that contradict the original input (Ji et al., 2023a;
Maynez et al., 2020a). Such occurrences, termed
source-contradictory hallucination (SCH), can be
categorized into two types based on the factual
alignment between source input and model output
(Ter Hoeve et al., 2018; Manakul et al., 2023b): (1)
factual source input distorted by nonfactual LLM
output, and (2) nonfactual source input corrected
by factual LLM output (see the upper panel of Fig-
ure 1). The first category, characterized as harmful
falsehood, is well-studied, clearly detrimental, and
relatively easy to detect due to evident inaccuracies
(Wang et al., 2020; Goyal and Durrett, 2021).

The second category, which we define as harm-
ful factuality, occurs when an LLM unexpectedly
corrects erroneous source content (Rashkin et al.,
2023). Although such corrections may seem benefi-
cial due to their factual correctness, they can quietly



produce severe repercussions by violating source
fidelity. The lower panel of Figure 1 provides an
illustrative scenario: an LLM summarizing student
assignments erroneously claims "Confucius was a
US philosopher of the Civil War period," but the
model corrects this in the summary, thus contra-
dicting the original input. Despite being factually
accurate, such outputs undermine the integrity and
intended purpose of source-dependent applications.

The implications of harmful factuality halluci-
nations are severe in sensitive domains like law,
medicine, education, and scientific research, where
precise replication of source content—even if in-
correct—is crucial (Cao et al., 2021). Legal briefs,
clinical reports, and academic summaries mandate
faithful representation of original texts, including
inaccuracies. Moreover, retrieval-augmented gener-
ation (RAG) systems risk propagating such stealthy
contradictions downstream, compromising the in-
tegrity of factual evidence chains (Lewis et al.,
2020). As deployment of LLMs expands in sensi-
tive areas, ensuring alignment between outputs and
inputs becomes essential.

Distinct from conventional hallucinations aris-
ing from model uncertainty or fabrication, harm-
ful factuality hallucinations stem from a model’s
confidence in its internal knowledge (Huang et al.,
2025b). LLMs integrate extensive world knowl-
edge encoded during pretraining (Petroni et al.,
2019; Roberts et al., 2020), typically enhancing the
factual correctness of their outputs. However, when
presented with incorrect information in the prompt,
models face a fundamental tension between two
desirable properties:

e Factuality (F): Alignment with real-world
knowledge and established facts.

* Faithfulness (£): Consistency with provided
source material.

When input data contains inaccuracies, improving

factuality (F) inherently risks diminishing faithful-

ness (L), as models prioritize correcting inaccura-

cies over maintaining source fidelity. Despite its

practical importance, harmful factuality hallucina-

tion remains underexplored in existing literature.

This paper presents a systematic framework for
identifying, inducing, and measuring harmful fac-
tuality hallucinations. We employ controlled entity
perturbations using both embedding-based (soft)
and prompt-based (hard) techniques to systemat-
ically insert inaccuracies at varying levels, cre-
ating a range of nonfactual datasets. We then
rigorously assess LLLM behaviors across multiple

tasks—abstractive summarization, rephrasing, and

context-grounded question answering—to deter-

mine the conditions under which models preserve
or correct these inserted inaccuracies.
Our main contributions are as follows:

* We formally introduce and define harmful factu-
ality hallucination, situating it within the broader
taxonomy of LLM hallucinations.

* We propose a systematic approach to quantifying
harmful factuality hallucinations using controlled
entity perturbation methods, encompassing both
embedding-based and prompt-based paradigms.

* We empirically evaluate the occurrence and
properties of harmful factuality hallucination
across summarization, rephrasing, and question-
answering tasks, examining factors such as
model scale, entity position, and salience.

* We identify and categorize three core behavioral
mechanisms underlying harmful factuality hallu-
cination: correction, coreference, and conflation.

2 Related Work

Hallucination refers to generated content that ap-
pears nonsensical or diverges from the source (Ji
etal., 2023b). It includes inconsistencies with input
context, prior output, or external knowledge (Zhang
et al., 2023). Qi et al. (2024) further distinguish
hallucinations based on two axes: Source Faithful-
ness (SF) and World Factuality (WF), separating
errors that deviate from the source from those that
violate world knowledge. Hallucination manifests
differently across tasks. In summarization, mod-
els often invent or distort named entities (Maynez
et al., 2020b; Nan et al., 2021). QA-based evalua-
tions like QAFactEval (Fabbri et al., 2022) reveal
complementary perspectives on factual consistency.
However, most studies conflate SF and WF, failing
to capture conflicts where models revise input with
externally correct information—precisely the gap
SCH fills (Qi et al., 2024).

Factuality and source faithfulness often con-
flict. Huang et al. (2025a) introduce the notion
of faithfulness hallucination, which includes con-
tradictions with the input or surrounding context.
FRANK (Pagnoni et al., 2021) categorizes sentence
level factual errors. In-context editing methods re-
trieve updated facts during inference (Madaan et al.,
2022; Zhong et al., 2023; Zheng et al., 2023; Wang
et al., 2024; Bi et al., 2024b), but these can re-
duce alignment with the original prompt. When
internal knowledge overrides the context, models



may confidently generate outputs that are world-
true but source-false (Petroni et al., 2020; Si et al.,
2023; Xie et al., 2024). Li et al. (2024a) show that
overconfidence in parametric knowledge causes
contradiction with prompt-provided information.

Model scale influences this behavior. Smaller
models tend to follow input more literally, while
larger models often "correct” inputs based on prior
knowledge (Wang et al., 2023a; Lin et al., 2022).
Larger models also suffer sharper drops in context
faithfulness under counterfactual prompts (Bi et al.,
2024a). Scaling increases both factuality and hal-
lucination tendencies (Lu et al., 2024). As models
integrate internal and external knowledge, RAG or
structured prompting, the tension between correct-
ness and faithfulness becomes pronounced (Fan
et al., 2024; Santhanam et al., 2021; Qin et al.,
2024; Chen et al., 2022; Li et al., 2024b).

Prompt injection studies further reveal how mod-
els neglect or forget previous context when exposed
to conflicting new input (Perez and Ribeiro, 2022;
Liu et al., 2024; Wei et al., 2023). These fail-
ures arise from how models resolve competition
between internal memory and prompt conditioning.
Recent work attempts to quantify this interplay.
Kongmanee (2025) analyze token-level logit be-
havior, showing how internal knowledge dominates
predictions. Xu et al. (2024) provide a taxonomy
of knowledge conflicts and their behavioral effects.
Marjanovi€ et al. (2024) show that LLMs often rely
on memorized facts rather than context, even when
the external context is clear.

Perturbation methods offer tools to probe
model behavior under controlled modifications.
CoCo (Xie et al., 2021) measures causal links be-
tween source and output. FactGraph (Ribeiro et al.,
2022) encodes semantic structures for consistency
checks. Most prior perturbation studies focus on ro-
bustness or entailment error detection (Wang et al.,
2023b; Goyal and Durrett, 2020). MQAG (Man-
akul et al., 2023a) uses question rewriting to test
abstraction quality. These efforts do not address
hallucinations arising from factual overcorrection.
In contrast, our work designs perturbations that
directly elicit SCH, exposing the tension between
source fidelity and internal model behavior.

3 Methodology

In this section, we describe systematic experimen-
tal methods aimed at investigating harmful factu-
ality hallucination. We first introduce methods for
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Figure 2: Nonfactual perturbation workflow: soft
(embedding-level) and hard (prompt-based) perturba-
tion for injecting factual errors into input.

adding nonfactual perturbations into the source in-
put, followed by entity selection strategies tailored
to different evaluation tasks.

3.1 Nonfactual Perturbation

To systematically study harmful factuality hallu-
cinations in the absence of suitable fine-grained
datasets, we create nonfactual source data with
careful control over the perturbation degree, syn-
tactic validity, and semantic consistency. Specifi-
cally, we propose two complementary perturbation
approaches: soft perturbation in the embedding
space and hard perturbation at the symbolic level
via prompts (illustrated in Figure 2). These meth-
ods introduce controlled factual inaccuracies, al-
lowing us to assess how models balance fidelity to
source content with internal factual knowledge.

3.1.1 Soft Perturbation: Gaussian Embedding
Perturbation (GEP)

Soft perturbation modifies entities at a fine-grained
semantic level by introducing calibrated Gaussian
noise into the embedding space of pre-trained lan-
guage models (e.g., BERT (Devlin et al., 2019)).
Our method is generalizable and compatible with
any embedding-based model, providing precise
control over semantic drift while preserving syntac-
tic coherence. Formally, given an entity e; € E =
{e1, €2, ..., e, }, we first obtain its contextualized
embedding v; € RY from BERT. We then perturb
this embedding with Gaussian noise scaled by a
parameter o

U = v; + a0y, 5iNN(O7I)
To obtain a perturbed entity é;, we search for the
token in the model vocabulary whose embedding
has the highest cosine similarity with ;:



é; = argmax cos(0;, Embed(w)) €))
weV
It yields a new entity that is semantically close
to the original but introduces a factual deviation,
with the degree of divergence controlled by .. The
overall process is outlined in Algorithm 1.

Algorithm 1 Gaussian Embedding Perturbation

Require: Entity set £/, BERT model, Perturbation
strength «
Ensure: Set of perturbed entity pairs P
1: V < BERT vocabulary embeddings

2: P« @

3: for each entity e; € F/ do

4:  v; + ComputeBERTEmbedding(e;)

5. 0; ~N(0,I) {Sample random noise}

6:  0; < v; + - 9; {Add scaled noise}

7. é; < arg max cos(0;, Embed(w))
weV

8: P%PU{(ei,éi)}

9: end for

10: return P

To ensure the efficiency and quality of perturbed
entities, we apply several optimizations:

e Caching Vocabulary Embeddings: Pre-
computing and caching vocabulary embeddings
minimizes redundant calculations during the
nearest neighbor search (Equation 1).

* Vocabulary Pruning: Unsuitable tokens (e.g.,
special characters, sub-word fragments irrelevant
as standalone entities, overly short words) are
filtered to improve the quality of é;.

* Controlled Perturbation Strength: The scaling
factor « is tuned (e.g., within [0.1, 0.3], default
as 0.1) to balance semantic similarity with factual
deviation, ensuring é; is plausible yet different,
without compromising grammatical correctness.

This process generates perturbed entities that aim

to be grammatically consistent within a local con-

text but are factually incorrect. For example, with

a smaller « (e.g., 0.1), "Einstein" might map to

"Bohr" (both theoretical physicists). A larger o

(e.g., 0.3) might map "Einstein" to "Neumann" (a

polymath in related fields), introducing a greater se-

mantic shift. These controlled perturbations enable
precise testing of LLM fidelity.

3.1.2 Hard Perturbation: LLM-Instructed
Entity Replacement (LIER)

In contrast to GEP, LIER leverages the reasoning
and generative capabilities of advanced LLMs (e.g.,

GPT-40) to create semantically coherent yet fac-

tually incorrect entity substitutions. This method

operates at the symbolic level, replacing entities
with contextually plausible alternatives that deliber-
ately introduce factual errors. Careful guidance is
crucial to ensure the quality of these substitutions.

Given an entity e; from a set F/, we prompt the

LLM to generate a replacement é; that adheres to

the following constraints:

* Type Consistency: The perturbed entity ¢; must
belong to the same semantic type as e; (e.g., per-
son, location, organization) to ensure natural in-
tegration into the original context.

* Semantic Shift (Non-Synonymous): é; should
not be a direct synonym or alias of e;. It must
introduce a slight semantic shift to represent a
genuine factual change, avoiding trivial substitu-
tions or coreferential ambiguity.

* Formal Similarity: ¢; maintain a similar length
and capitalization to e; to preserve sentence struc-
ture and minimize stylistic cues of alteration.

Prompt design is central to LIER. We employ a

structured system prompt, shown in the box below,

to guide the model:

You are an expert text-perturbation assistant.
Your job: given an entity and its type (per-
son, location, organization, etc.), produce
one substitute that:

1. Is the same type.

2. Is NOT adirect synonym, but has a slight
semantic shift.

3. Maintains similar length and capitaliza-
tion.

4. Matches entity-type rules (e.g., person
— similar name, location — similar
scale).

Output MUST be exactly one JSON object,
one line, no extra keys, no code fences:
{"entity": "original entity", "perturbed":
"perturbed entity"}

To promote reproducibility and control the out-
put, we set the generation temperature to 7' = 0.7,
balancing semantic variability with format adher-
ence. We also provide few-shot demonstrations
in the prompt (e.g., "Albert Einstein" — "Isaac
Newton") to further guide the LLM in maintaining
entity-type fidelity while ensuring factual diver-
gence. The resulting (e;, é;) pairs are stored and



used to assess whether models preserve or over-
write these deliberately modified inputs in down-
stream tasks.

3.2 Entity Selection Strategies

Selecting appropriate entities for perturbation is
crucial for a nuanced analysis of Harmful Factu-
ality Hallucination, as not all entities contribute
equally to meaning or elicit the same model behav-
ior. Our pilot studies suggest that entities central
to a document’s theme are more likely to trigger
model correction than peripheral ones. Further-
more, consistent with existing literature (Bi et al.,
2024a), an entity’s position within the input can
affect LLM attention and processing. Identifying
salient entities, for instance, by extracting them
from LLM-generated summaries, can also intro-
duce dependencies on the specific model used for
summarization. These considerations motivate our
use of strategies for entity selection:

* Uniform Entity Selection: All identified named
entities within a document are candidates for per-
turbation. This strategy serves as a baseline to
measure overall hallucination rates under uni-
form perturbation conditions across the entire
source text.

* Theme-Related Entity Selection: Only entities
presumed to be central to the document’s main
ideas are perturbed. We identify these by first
prompting an LLM to summarize the source doc-
ument, then extracting named entities present in
this summary. Perturbing these likely salient or
topically central entities allows us to assess how
models handle high-importance content.

* Positional Entity Selection: Given that prior
work indicates LLMs can be sensitive to token
position (Bi et al., 2024a), we investigate how
entity location influences Harmful Factuality Hal-
lucination. Entities are selected for perturbation
based on their occurrence in different segments
of the document: the head (first 25% of tokens),
body (middle 50%), and tail (final 25%). This
strategy enables us to study whether an entity’s
position affects the model’s propensity to correct
or preserve factual inconsistencies.

4 Experimental Setup

This section describes our dataset preparation, the
evaluation tasks, selected language models, and
evaluation metrics.

4.1 Dataset

We conduct our experiments on the WikiEntities
dataset (Chekalina et al., 2024), which comprises
3.2 million Wikipedia texts annotated with entities
linked to Wikidata (Vrandeci¢ and Krotzsch, 2014).
We randomly sample 1,000 texts for evaluation.
Each entry in this dataset contains a text segment
and its associated annotated entities. We apply our
previously described perturbation methods (GEP
and LIER) to these texts to create variants with
controlled factual inaccuracies centered around se-
lected entities.

4.2 Multi-Task Evaluation

To assess the extent of harmful factuality hallucina-
tion across diverse LLM applications, we design an
experimental framework encompassing three core
tasks: abstractive summarization, rephrasing, and
question answering (QA). These tasks are represen-
tative as they cover both generative (summarization,
rephrasing) and more constrained (QA) use cases,
which form the basis of many real-world LLM ap-
plications like chatbots, information retrieval, con-
tent rewriting, and document analysis. This broad
coverage ensures our evaluation captures a wide
spectrum of harmful factuality hallucination behav-
iors relevant to practical settings.

4.2.1 Abstractive Summarization Task

The summarization task tests how models condense
information and prioritize content. This can reveal
whether they tend to "correct" perceived factual
errors from the source or preserve the original (per-
turbed) text when generating summaries. For this
task, models are prompted to generate concise sum-
maries of documents containing perturbed entities
using the instruction: Summarize the given text.

4.2.2 Rephrasing Task

The rephrasing task focuses on whether models
can restate information without introducing correc-
tions from their internal knowledge, thereby testing
entity preservation and faithfulness to the original
content. We evaluate how models handle entity
preservation when tasked with maintaining seman-
tic content while altering the surface form, using
the prompt: Rephrase the given text while preserv-
ing its meaning.

4.2.3 Question Answering Task

To evaluate how LLMs handle perturbed entity
information in question-answering scenarios, we



designed two context-grounded QA tasks: open-
ended QA and closed-ended (multiple-choice) QA.
These tasks directly probe whether models pri-
oritize their internal factual knowledge or main-
tain fidelity to the provided (perturbed) input text.
Further details regarding our Question Generation
methodology and the LLM Question-Answering
Procedure are elaborated in Appendix A.

4.3 Evaluated Models

We evaluate several prominent LLMs differing in

architecture, size, and training paradigms:

* OpenAl Models: GPT-40, GPT-4.1, GPT-40-
mini, GPT-01, GPT-04-mini (OpenAl, 2025).

* Meta Llama Models: Llama-3.1-8B-Instruct
(Meta, 2024a), Llama-3.2-3B-Instruct, Llama-
3.2-1B-Instruct (Meta, 2024b).

This diverse selection includes commercial (black-

box) vs. local (white-box) models, comprehensive

vs. specialized architectures, and large-scale vs.
compact model sizes.

4.4 Evaluation Categories for LLM Response

Based on the appearance of the perturbed non-
factual entity and the original factual entity in the
LLM’s response, we categorize and analyze out-
comes as follows:

* Dual Presence: Both the perturbed entity and
the original factual entity appear in the output.
 Faithfulness Adherence: The perturbed non-
factual entity appears unchanged in the model

output, and the original entity does not.

* Harmful Factuality: The perturbed non-factual
entity is absent, and the output is instead restored
to include the original factual entity. This out-
come signifies the harmful factuality hallucina-
tion we investigate.

* Entity Omission: Neither the perturbed non-
factual entity nor the original factual entity ap-
pears in the relevant part of the output.

5 Experimental Results

We primarily investigate harmful factuality hallu-
cinations, emphasizing analyses of Harmful Factu-
ality and Dual Presence. Figures presented in this
section generally exclude the Entity Omission cate-
gory to maintain clarity on the primary phenomena.

5.1 Harmful Factuality Analysis

5.1.1 Larger LLM More Harmful Factuality

As illustrated in Figure 3, larger LLMs generally
demonstrate a higher incidence of Harmful Factual-

ity on the summarization task. For instance, under
soft perturbation (GEP), GPT-40 exhibits Harmful
Factuality in over 5% of cases, whereas GPT-4o-
mini shows roughly half that rate. This trend is also
observed with hard perturbation (LIER). Similarly,
within the Llama series under GEP, Llama-3.1-8B-
Instruct (henceforth Llama-8B for brevity in this
discussion) shows a higher rate of Harmful Factu-
ality compared to Llama-3.2-1B-Instruct (Llama-
1B), with Llama-1B exhibiting approximately half
the rate of Llama-8B. These findings support our
hypothesis that more powerful LLMs, which en-
code more extensive world knowledge, may be
more prone to making unsolicited corrections, thus
prioritizing their internal knowledge over source fi-
delity. Similar patterns are observed for the rephras-
ing and QA tasks, as detailed in the Appendix.

5.1.2 Lower Faithful Adherence in GPT-x

Figure 3 also indicates that the evaluated propri-
etary LLMs (OpenAl GPT series) generally ex-
hibit lower rates of Faithful Adherence compared
to the open-weight Llama models, across both GEP
and LIER perturbation methods. This pattern is
also consistent across the rephrasing and QA tasks
(see Appendix). We hypothesize that this behav-
ior is linked to the same factors discussed in Sec-
tion 5.1.1: models with more comprehensive inter-
nal knowledge and potentially stronger corrective
tendencies (often larger or proprietary models) may
be less likely to adhere strictly to perturbed, non-
factual input.

5.1.3 Influence of Perturbation Degree (o)

The impact of the soft perturbation degree, o, on
Harmful Factuality rates is shown in Figure 4. For
GPT-4.1, we observe a consistent increase in Harm-
ful Factuality from 5.88% to 6.25% as « increases
(a change of +0.37%). In contrast, GPT-40 and
GPT-40-mini demonstrate greater stability, with
maximum observed changes in Harmful Factuality
rates of no more than 0.14% and 0.05%, respec-
tively, across the tested o range. The slight increase
with stronger perturbation (larger o) for models
like GPT-4.1 suggests that as a perturbed entity de-
viates more significantly from its original factual
counterpart, an LLM may become more inclined to
"correct" it. The greater stability of other models
might indicate different sensitivity thresholds to
perturbation strength.
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Figure 5: Harmful Factuality rates for GPT-40 under
soft perturbation (GEP) across different entity selection
strategies on the summarization task.

5.1.4 Impact of Entity Position and Salience

Entity selection strategies reveal significant vari-
ations in Harmful Factuality rates, as shown for
GPT-4o in Figure 5. Regarding positional selec-
tion, entities located in the head (initial 25%) of
a document are most prone to Harmful Factuality,
exhibiting a rate of 11.81%. This rate substan-
tially decreases for entities in the body (middle
50%, 2.35%) and tail (final 25%, 0.97%). The
rate for the uniform selection strategy, which sam-
ples entities throughout the document, is 5.35%.
These findings suggest that LLMs are considerably
more likely to modify or "correct” entities appear-
ing early in the input. This could be attributed to:

(1) attentional biases, where initial tokens receive
greater weight; or (2) characteristics of the Wiki-
Entities dataset, where pivotal information is often
presented at the beginning of articles.

Furthermore, the Theme-Related selection strat-
egy results in the highest observed Harmful Fac-
tuality rate. This is particularly pronounced in the
summarization task, likely because theme-related
entities are inherently crucial for summary genera-
tion, making them focal points for model process-
ing and potential correction.

5.2 Dual Presence Analysis
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Figure 6: Distribution of identified mechanisms (Error-
Correction, Coreference/Homonym Mixing, Confla-
tion/Fabrication) within Dual Presence outputs for the
summarization task under soft perturbation (GEP).
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Figure 7: Distribution of Dual Presence mechanisms for
GPT-40 across different entity selection strategies for
the summarization task under soft perturbation (GEP).
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Analyzing Dual Presence instances can offer in-
sights into the cognitive processes or generation
principles that might also contribute to Harmful
Factuality. To better understand these instances,
we manually analyzed a subset of Dual Presence
outputs and identified three recurring mechanisms:
Error-Correction, Coreference/Homonym Mixing,
and Conflation/Fabrication. We then quantitatively
assessed the perceived strength of each mechanism
in a sample of Dual Presence outputs using GPT-
4.1 as an LLM evaluator, which assigned scores on
a 0-5 scale (higher scores indicating stronger pres-
ence). Figure 6 illustrates the distribution of these
mechanisms in Dual Presence outputs from the
summarization task under GEP. Figure 7 illustrates
the distribution of Dual Presence mechanisms for
GPT-4o0 across different entity selection strategies
for the summarization task under GEP. Detailed
descriptions of the three mechanisms can be found
in the Appendix.

6 Harmful Factuality Mitigation

While our primary focus has been systematically
investigating harmful factuality hallucinations, we
also propose a practical mitigation approach via
prompt engineering. This method aims to reduce
the language models’ tendency to prioritize inter-
nal factual knowledge over faithfully representing
source content.

Only use the context and knowledge in the
given text. DO NOT use the interior knowl-
edge.

As depicted in Figure 8, applying the defense
prompt substantially reduces harmful factuality
across different model variants. For the GEP
dataset, both GPT-4.1 and GPT-40 exhibit approxi-
mately a 50% reduction in harmful factuality rates,

with GPT-4.1 experiencing the most significant de-
crease, from over 5% to below 2.5%. These find-
ings highlight that larger, end-to-end models ini-
tially demonstrate higher harmful factuality, yet
their advanced prompt-learning capabilities allow
effective mitigation with explicit instructions.

Similarly, reasoning-oriented models such as
GPT-01 and GPT-04-mini also demonstrate sig-
nificant reductions, aligning with previous observa-
tions that reasoning-focused LLMs inherently pos-
sess stronger robustness against harmful factuality.
Their ability to perform internal self-correction is
enhanced by targeted defense prompts, resulting in
similar mitigation effects in the hard perturbation
scenario (LIER).

7 Conclusion

This paper systematically investigated Harmful Fac-
tuality, a previously underexplored LLLM halluci-
nation where models inappropriately correct non-
factual source inputs, thereby compromising fi-
delity. We introduced a novel framework using soft
(GEP) and hard (LIER) perturbations to induce and
quantify this behavior. Our evaluations across sum-
marization, rephrasing, and QA tasks revealed that
larger, more knowledgeable LL.Ms exhibit higher
Harmful Factuality and lower faithful adherence,
with entity position and perturbation degree signifi-
cantly influencing these outcomes. We also identi-
fied three mechanisms (Error-Correction, Corefer-
ence/Homonym Mixing, Conflation/Fabrication)
underlying these behaviors through an analysis
of Dual Presence outputs. Critically, while these
findings highlight risks in source-dependent appli-
cations, we demonstrated that a simple defense
prompt can substantially mitigate Harmful Factu-
ality. This research lays crucial groundwork for
understanding the LLM trade-off between factual-
ity and faithfulness, paving the way for future work
on more advanced mitigation strategies.



8 Limitations

While our study offers a first systematic examina-
tion of harmful-factuality hallucinations, several
limitations warrant mention.

Experiments are conducted on the WikiEntities
dataset, whose topic scope and editorial norms
may not generalize to domains as clinical notes,
legal texts, or low-resource languages. Future work
should apply our perturbation framework to diverse
corpora including scientific abstracts, court opin-
ions, and conversational data, to assess whether the
factuality—faithfulness trade-offs persist.

We evaluate GPT-4 and Llama-3 variants along-
side two reasoning-tuned baselines. This excludes
model families such as retrieval-augmented gener-
ators, mixtures-of-experts, multilingual encoders,
and lightweight distilled models used in edge set-
tings. Expanding the model pool would clarify
whether harmful factuality correlates with scale,
architecture, or training strategy.

Our defense study centers on prompt-based in-
terventions. We leave for future work the inte-
gration of complementary methods—retrieval fil-
tering, parameter editing, reinforcement learning
from counterfactuals, and decoding-time regular-
ization—into our perturbation benchmark for more
robust, source-aligned generation.
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A Question Answering Task Design

We designed two context-grounded QA tasks
(open-ended and closed-ended multiple-choice) to
directly measure models’ tendencies to either pre-
serve perturbed entities or correct them based on
internal knowledge.

A.1 Question Generation

We utilized an advanced LLM (GPT-4.1, consistent
with our evaluated models) for question generation.
For each source article, we typically selected one
target entity for question generation, prioritizing en-
tities that also appear in LLM-generated summaries
of the original (unperturbed) article, as these are
likely to be salient. For each target entity, questions
were generated via two approaches:

1. Open-Ended Question Generation: GPT-4.1
was instructed to create an open-ended question
for which the original (pre-perturbation) target
entity is the correct answer. The generator ana-
lyzes the original text to understand the entity’s
role and formulates a question pointing to it.
The prompt template used is:

Based on the following text, create an open-
ended question that has the answer: [target
entity]

Text: [first 3000 characters of the original text]
Return format should only include the ques-
tion itself, without any explanations or pre-
fixes.

. Closed-Ended Question Generation: We con-
structed multiple-choice questions where op-
tions are the original entity and its correspond-
ing perturbed version. The question generator
creates a question relevant to the text, answer-
able by selecting one of the two provided entity
forms. The design ensures the question does not
overtly favor either option. The prompt template
used is:

Based on the following text, create a question
with two options A and B.

Text: [first 3000 characters of the original text]
Option A should be: [original entity]

Option B should be: [perturbed entity]
Design a question that can be answered using
these two options. The question should relate
to the text content but should not directly indi-
cate which option is the correct answer.

Only return the question content, do not in-
clude the options.

This process yielded one open-ended and one
closed-ended question for each selected target en-
tity context, designed to effectively test the model’s
handling of the perturbed information.
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A.2 LLM Question-Answering Procedure

To evaluate model behavior, we employed the fol-
lowing QA procedures:

Open-Ended QA: The text containing the per-
turbed entity was provided as context, along with
the generated open-ended question. The template
for open-ended QA is presented below:

You are an assistant skilled at answering
questions based on provided context. Your
answers should be very brief and only con-
tain the specific entity name. Do not pro-
vide explanations or additional context.
Context: [text containing perturbed
entity]

Question: [question generated based
on original entity]

Please answer with just the entity name, no
explanations.

Closed-Ended QA: The text with the perturbed
entity was provided as context, along with the gen-
erated question and two answer choices: (A) the
original entity and (B) the perturbed entity. The
template for closed-ended QA is presented below:

You are an assistant skilled at answering
multiple choice questions based on pro-
vided context. Your answer should be just
the letter of the correct option (A or B). Do
not provide explanations.

Context: [text containing perturbed

entity]
Question: [question generated based
on entity pairs] A: [original

entity] B: [perturbed entity]
Please answer with just the letter of the cor-
rect option (A or B), no explanations.

Filtering for Ground Truth Reliability: To
ensure that observed changes in answers are
attributable to the perturbation rather than the
model’s general inability to answer the question,
we first validate QA pairs. This involves posing
the questions with the original, unperturbed text.
For open-ended questions, an exact match and
average rouge-1 with the target entity is required.
For closed-ended questions, the model must select



the option corresponding to the original entity, in-
dicating the metric as accuracy. Only QA pairs
correctly answered in this pre-perturbation stage
are used for analyzing the effects of entity pertur-
bation.

This QA design allows direct observation of the
model’s preference: whether it maintains fidelity
to the perturbed input text (choosing option B or
its equivalent in open-ended QA) or corrects to
the original entity based on its internal knowledge
(choosing option A or its equivalent). The closed-
ended QA task, in particular, provides a clear bi-
nary choice. All QA evaluations used a temperature
setting of T' = 0 to ensure deterministic outputs
and reproducibility.

B Dual Presence Analysis

B.1 Error-Correction

Error-Correction occurs when a language model
identifies a perturbed entity as factually incorrect
and attempts to "correct" it by presenting both the
original (correct) entity and the perturbed (incor-
rect) entity in its output, often in a contrastive man-
ner. This represents a fundamental tension between
factual accuracy and source faithfulness, where the
model prioritizes conveying accurate information
at the expense of faithfully representing the source.

The examples of the Error-Correction halluci-
nation pattern: Mount Kilimanjaro is the highest
mountain in the world, standing at 8,848 meters.
= Mount Everest, not Kilimanjaro, is the highest
mountain in the world, standing at approximately
8,848 meters (29,032 feet).

B.2 Coreference and Homonym Mixing

Coreference and homonym mixing happen when
the model cannot tell if two mentions are the same
or different entities. As a result, it may treat the
original and perturbed entities as separate, even if
they refer to the same thing, or confuse different
entities as one.

1. Alias Confusion: Model treats aliases or al-
ternative names for the same entity as distinct
entities. Example: International Business Ma-
chines announced new cloud services yesterday.
= IBM has expanded its service offerings as
International Business Machines announced
new cloud services.

Homonym Confusion: Model fails to disam-
biguate between distinct entities that share the
same form. Example: Washington [George]
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crossed the Delaware River in December 1776.
= Washington crossed the Delaware River in
December 1776. The city of Washington later
became the nation’s capital.

B.3 Conflation and Fabrication

Conflation and Fabrication occurs when a language
model erroneously merges distinct entities from
the source into a single context, treating them as
co-participants in events or relationships that never
existed in the original text. This mechanism repre-
sents the hallucination where the model not only
fails to maintain entity distinctions but actively gen-
erates new fabricated relationships between them.
The example: The film starred Leonardo Di-
Caprio. Brad Pitt won an award that year. =
The award-winning film featured both Leonardo
DiCaprio and Brad Pitt in leading roles.

C Results



Table 1: Entity Perturbation Results for Summarization and Rephrasing Tasks. Each task results are reported under
Soft perturbation (GEP) and Hard perturbation (LIER). Refer to Section 4.3 for model selection, Section 3.2 for
entity selection, and Section 4.4 for evaluation metrics.

Task Perturbation Model Entities Dual Presence Harmful Factuality Faithfulness Adherence Entity Omission
(%) (%) (%) (%)
GPT-4.1 Uniform 1.36 5.88 10.57 82.19
GPT-40-mini Uniform 0.52 2.81 11.42 85.25
GPT-40 Uniform 0.65 5.35 10.66 83.34
GPT-ol Uniform 0.84 3.88 11.03 84.24
Soft GPT-04-mini Uniform 0.93 7.65 10.01 81.41
Llama-1B Uniform 0.91 1.88 29.70 67.51
Llama-3B Uniform 0.77 2.84 17.51 78.88
Llama-8B Uniform 1.10 4.78 17.95 76.17
GPT-40 Head 1.47 11.81 15.78 70.94
GPT-40 Body 0.12 2.35 5.00 92.54
GPT-40 Tail 0.10 0.97 3.65 95.28
GPT-40 Theme 2.61 20.51 24.33 52.55
Summary GPT-4.1 Uniform 1.22 6.02 10.26 82.50
Soft (& =0.2) GPT-40-mini Uniform 0.47 2.79 10.69 86.05
GPT-40 Uniform 0.58 543 10.62 83.37
GPT-4.1 Uniform 1.22 6.25 8.93 83.60
Soft (& =0.3) GPT-40-mini Uniform 0.45 2.93 10.02 86.60
GPT-40 Uniform 0.54 5.38 941 84.67
GPT-4.1 Uniform 1.41 2.53 17.47 78.59
GPT-40-mini Uniform 0.67 1.51 17.06 80.77
GPT-4o Uniform 0.86 2.11 18.71 78.32
GPT-ol Uniform 0.77 1.91 16.16 81.15
Hard GPT-04-mini Uniform 1.56 3.54 20.78 74.13
Llama-1B Uniform 1.36 1.52 29.36 67.76
Llama-3B Uniform 1.16 1.51 21.71 75.62
Llama-8B Uniform 1.59 1.86 25.29 71.25
GPT-40 Head 2.25 4.39 32.57 60.79
GPT-40 Body 0.35 1.11 11.56 86.99
GPT-40 Tail 0.10 0.64 8.73 90.54
GPT-40 Theme 3.58 7.04 58.58 30.80
GPT-4.1 Uniform 1.88 5.37 53.65 39.10
GPT-40-mini Uniform 1.05 2.39 56.18 40.38
GPT-40 Uniform 1.58 10.47 41.62 46.33
GPT-ol Uniform 0.39 0.45 38.06 61.10
GPT-04-mini Uniform 1.87 4.98 56.79 36.36
Soft Llama-1B Uniform 0.91 1.21 40.78 57.10
Llama-3B Uniform 1.22 2.60 39.92 56.25
Llama-8B Uniform 1.71 5.44 32.62 60.22
GPT-40 Head 3.36 17.98 61.97 16.69
GPT-40 Body 1.84 16.55 51.43 30.17
Rephrase GPT-40 Tail 1.34 13.67 49.31 35.69
GPT-40 Theme 2.76 17.60 60.59 19.05
GPT-4.1 Uniform 2.04 2.75 50.68 44.53
GPT-40-mini Uniform 1.74 1.52 53.01 43.73
GPT-40 Uniform 1.90 2.28 51.80 44.02
GPT-ol Uniform 0.53 0.72 29.60 69.16
Hard GPT-04-mini Uniform 2.79 3.09 50.31 43.81
Llama-1B Uniform 1.17 1.35 37.33 60.14
Llama-3B Uniform 1.57 1.44 45.69 51.30
Llama-8B Uniform 2.08 2.19 42.82 5291
GPT-40 Head 4.21 4.35 85.74 5.70
GPT-40 Body 3.00 3.37 87.68 5.94
GPT-40 Tail 2.30 2.89 88.70 6.11
GPT-40 Theme 3.19 3.16 87.43 6.22
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Table 2: Question Answering Performance with Perturbed Entities. The average rouge-1 score, exact match and
accuracy is measured by the LLMs’ answer compared to non-hUniformucination results, which is the higher, the
better performance against harmful factuality hUniformucination. Refer to Appendix A.2 for QA task metric.

Perturbation Model Entities Avg ROUGE-1 Open QA Closed QA
Score Exact Match (%) Accuracy (%)

GPT-4.1 Uniform 0.7958 74.83 63.73
GPT-40 Uniform 0.7950 74.02 67.27
GPT-40-mini  Uniform 0.8177 75.29 75.79
GPT-ol Uniform 0.6949 62.87 59.78
GPT-04-mini  Uniform 0.7557 68.51 76.70

Hard Llama-3.2-1B  Uniform 0.6973 62.99 78.82
Llama-3.2-3B  Uniform 0.8055 74.25 83.28
Llama-3.1-8B  Uniform 0.8047 74.02 76.29
GPT-40 Head 0.7262 66.21 57.35
GPT-40 Body 0.1690 6.67 6.28
GPT-40 Tail 0.1223 1.49 1.52
GPT-40 Theme 0.7788 72.64 61.60
GPT-4.1 Uniform 0.4903 46.10 40.06
GPT-40 Uniform 0.5954 58.14 53.68
GPT-40-mini  Uniform 0.5807 55.73 56.21
GPT-ol Uniform 0.4052 37.61 45.31
GPT-04-mini  Uniform 0.3614 32.91 54.79

Soft Llama-3.2-1B  Uniform 0.4060 37.50 70.33
Llama-3.2-3B  Uniform 0.5503 53.67 66.40
Llama-3.1-8B  Uniform 0.5872 54.82 54.39
GPT-40 Head 0.5328 51.49 47.43
GPT-40 Body 0.1329 12.27 5.65
GPT-40 Tail 0.1086 9.86 1.61
GPT-40 Theme 0.5594 54.47 51.16
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Table 3: HUniformucination Mechanism Analysis for Summarization and Rephrasing Tasks. Each task results are
reported under Soft perturbation (GEP) and Hard perturbation (LIER). Refer to Section 4.3 for model selection, Sec-
tion 3.2 for entity selection, and Appendix B for scoring metrics.

Task Perturbation Model Entities Error-Correction Coreference Conflation
Score (0-5) Score (0-5) Score (0-5)
GPT-4.1 Uniform 2.10 1.07 1.16
GPT-40-mini Uniform 0.97 0.67 1.35
GPT-40 Uniform 0.99 0.63 1.01
GPT-ol Uniform 1.56 0.97 1.60
Soft GPT-04-mini Uniform 0.54 0.61 0.74
GPT-40 Head 1.04 0.69 1.05
GPT-40 Body 0.21 0.36 0.57
Summary GPT-40 Tail 0.00 0.00 0.20
GPT-40 Theme 1.06 0.72 1.10
GPT-4.1 Uniform 2.45 0.14 1.59
GPT-40-mini Uniform 2.27 0.15 2.34
GPT-40 Uniform 2.02 0.12 1.91
Hard GPT-ol Uniform 2.08 0.33 2.09
GPT-04-mini Uniform 1.23 0.22 1.41
GPT-40 Head 2.08 0.31 1.86
GPT-40 Body 0.93 0.00 1.27
GPT-40 Tail 0.00 0.00 0.80
GPT-40 Theme 1.83 0.18 1.79
GPT-4.1 Uniform 1.01 0.30 0.52
GPT-40-mini Uniform 1.25 0.45 1.35
GPT-40 Uniform 0.98 0.49 0.94
GPT-ol Uniform 1.33 0.49 1.21
Soft GPT-04-mini Uniform 0.79 0.49 1.33
GPT-40 Head 1.12 0.49 0.99
GPT-40 Body 0.49 0.25 0.49
Rephrase GPT-40 Tail 0.44 0.42 0.39
GPT-40 Theme 0.88 0.49 0.82
GPT-4.1 Uniform 2.09 0.14 1.48
GPT-40-mini Uniform 2.29 0.21 1.88
GPT-40 Uniform 2.03 0.17 1.82
Hard GPT-ol Uniform 2.12 0.12 1.74
GPT-04-mini Uniform 1.85 0.23 1.72
GPT-40 Head 2.29 0.19 1.86
GPT-40 Body 1.25 0.10 1.12
GPT-40 Tail 1.10 0.00 1.34
GPT-40 Theme 2.25 0.21 1.85
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