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Abstract

To predict how advanced neural networks general-
ize to novel situations, it is essential to understand
how they reason. Guez et al. (2019, “An investi-
gation of model-free planning”) trained a recur-
rent neural network (RNN) to play Sokoban with
model-free reinforcement learning. They found
that adding extra computation steps to the start
of episodes at test time improves the RNN’s suc-
cess rate. We further investigate this phenomenon,
finding that it rapidly emerges early on in training
and then slowly fades, but only for comparatively
easier levels. The RNN also often takes redundant
actions at episode starts, and these are reduced
by adding extra computation steps. Our results
suggest that the RNN learns to take time to think
by ‘pacing’, despite the per-step penalties, indicat-
ing that training incentivizes planning capabilities.
The small size (1.29M parameters) and interesting
behavior of this model make it an excellent model
organism for mechanistic interpretability.

1. Introduction
In many tasks, performance of both humans and sufficiently
advanced neural networks (NNs) improves with more rea-
soning: whether giving a human more time to think before
taking a chess move, or prompting a large language model
to reason step by step (Kojima et al., 2022). Thus, under-
standing reasoning in such NNs is key to predicting their
behavior in novel situations.

Among other reasoning capabilities, goal-oriented reasoning
is particularly relevant to AI alignment. So-called “mesa-
optimizers” – AIs that have learned to pursue goals through
internal reasoning (Hubinger et al., 2019) – may internalize
goals different from that given by the training objective,
leading to harmful misgeneralization (Di Langosco et al.,
2022; Shah et al., 2022).
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Figure 1. Top: Proportion of medium-difficulty validation levels
solved vs. environment steps used in training. Curves show the
RNN’s performance with a specific number of forced thinking
steps at episode start, along with a ResNet baseline. Bottom:
Estimated planning effect: the 8-steps minus the 0-steps curve.
We see that reasoning emerges in the first 70M steps and keeps
increasing for the hard levels, but decreases for medium levels.

This paper presents a 1.29M parameter recurrent neural
network (RNN) that clearly benefits from extra time to rea-
son. Following Guez et al. (2019), we train a convolutional
LSTM to play Sokoban, a challenging puzzle game that
remains a benchmark for planning algorithms (Peters et al.,
2023) and reinforcement learning (Chung et al., 2024).

We believe understanding this RNN is a useful first step
towards understanding reasoning in sophisticated neural net-
works. The network is complex enough to be interesting:
it reasons in a challenging environment and benefits from
extra thinking time. At the same time, it is simple enough
to be tractable to reverse engineer with current mechanis-
tic interpretability techniques, owing to its small size and
relatively straightforward behavior.

We make three key contributions. First, we replicate and
open-source an RNN whose performance improves with
thinking time (Guez et al., 2019). Second, we analyze its
training dynamics, finding that the thinking-time behavior
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emerges early in training and is incentivized by the setup
(Figure 1, Sections 3 and 4.1). Third, we conduct a detailed
empirical analysis of the network’s behavior. We quantita-
tively investigate how increased thinking changes network
behavior (Section 3), showing that it reduces myopic actions
(Figure 5). Furthermore, we present case studies of planning
behavior that suggest the RNN naturally takes time to think
(Section 4), which may explain the reduced planning effect
on medium levels (Figure 1).

2. Training the test subject
We closely follow the setup from Guez et al. (2019), using
the IMPALA (Espeholt et al., 2018) reinforcement learning
(RL) algorithm with Guez et al.’s Deep Repeating ConvL-
STM (DRC) recurrent architecture, as well as a ResNet. We
open-source both the trained networks1 and training code2.

Dataset. Sokoban is a grid puzzle game with walls, floors,
movable boxes, and target tiles. The player’s goal is to push
all boxes onto target tiles while navigating walls. We use the
Boxoban dataset (Guez et al., 2018), consisting of 10× 10
procedurally generated Sokoban levels, each with 4 boxes
and targets. The edge tiles are always walls, so the playable
area is 8× 8. Boxoban separates levels into train, validation
and test sets, with three difficulty levels: unfiltered, medium,
and hard. Guez et al. (2019) generated these by filtering
levels that cannot be solved by progressively better-trained
DRC networks, so easier sets occasionally contain difficult
levels. In this paper, we use unfiltered-train (900k levels) to
train networks. To evaluate them, we use unfiltered-test (1k
levels)3, medium-validation (50k levels), and hard (∼3.4k
levels), which do not overlap.

Environment. The observations are 10×10 RGB images,
normalized by dividing each component by 255. Each type
of tile is represented by a pixel of a different color (Schrader,
2018). See Figure 6 for examples. The player can move in
cardinal directions (Up, Down, Left, Right). The reward is
-0.1 per step, 1 for putting a box on a target, -1 for remov-
ing a box, and 10 for finishing the level. To avoid strong
time correlations during learning, each episode resets at a
uniformly random length between 91 and 120 time steps.

DRC(D,N) architecture. Guez et al. (2019) introduced
the Deep Repeating ConvLSTM (DRC), whose core consists
of D convolutional LSTM layers with 32 channels and 3×3
filters, each applied N times per time step. Our DRC(3, 3) –

1https://github.com/AlignmentResearch/
learned-planner

2https://github.com/AlignmentResearch/
train-learned-planner

3We prefer unfiltered-test rather than unfiltered-validation so
the numbers are directly comparable to Guez et al. (2019).

Figure 2. Left: A Sokoban level from the hard set. Right: the
same level as the NN sees it, one pixel per tile. Walls are black,
boxes are brown, targets are pink and the robot is green.

or just DRC for brevity – has 1.29M parameters. Before the
LSTM core, two convolutional layers (without nonlinearity)
encode the observation with 4× 4 filters.

The LSTM core uses 3 × 3 convolutional filters, and a
nonstandard tanh on the output gate (Jozefowicz et al.,
2015). Unlike the original ConvLSTM (Shi et al., 2015), the
input to each layer of a DRC consists of several concatenated
components:

• The encoded observation is fed into each layer.

• To allow spatial information to travel fast in the Con-
vLSTM layers, we apply pool-and-inject by max- and
mean-pooling the previous step’s hidden state. We lin-
early combine these values channel-wise before feed-
ing them as an input to the next step.

• To avoid convolution edge effects from disrupting the
LSTM dynamics, we feed in a 12×12 channel with ze-
ros on the inside and ones on the boundary. Unlike the
other inputs, this one is not zero-padded, maintaining
the output size.

ResNet architecture. This is a convolutional residual neu-
ral network, also from Guez et al. (2019). It serves as a non-
recurrent baseline that can only think during the forward
pass (no ability to think for extra steps) but is nevertheless
good at the game. The ResNet consists of 9 blocks, each
with 4× 4 convolutional filters. The first two blocks have
32 channels, and the others have 64. Each block consists of
a convolution, then two (relu, conv) sub-blocks, which each
split off and are added back to the trunk. The ResNet has
3.07M parameters.

Value and policy heads. After the convolutions, an affine
layer projects the flattened spatial output into 256 hidden
units. We then apply a ReLU and two different affine lay-
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Figure 3. Proportion of medium-difficulty validation levels solved
by DRC with x time steps to think. The dotted line shows the
ResNet’s solve proportion. The proportion of solved levels in-
creases with thinking time, but only up to 6 steps.

ers: one for the actor (policy) and one for the critic (value
function).

RL training. We train each network for 2.003 billion
environment steps4 using IMPALA (Espeholt et al., 2018;
Huang et al., 2023). For each training iteration, we collect
20 transitions on 256 actors using the network parameters
from the previous iteration, and simultaneously take a gra-
dient step. We use a discount rate of γ = 0.97 and V-trace
λ = 0.5. The value and entropy loss coefficients are 0.25
and 0.01. We use the Adam optimizer with a learning rate
of 4 · 10−4, which linearly anneals to 4 · 10−6 at the end
of training. We clip the gradient norm to 2.5 · 10−4. Our
hyperparameters are mostly the same as Guez et al. (2019);
see Appendix A.

A* solver. We used the A* search algorithm to obtain
optimal solutions to each Sokoban puzzle. The heuristic
was the sum of the Manhattan distances of each box to its
nearest target. Solving a single level on one CPU takes
anywhere from a few seconds to 15 minutes.5

3. Quantitative behavior analysis
3.1. Recurrent networks are better at Sokoban

After training both the recurrent DRC(3, 3) network and
feed-forward ResNet for 2B environment transitions, the
DRC(3, 3) network is able to solve 99.3% of unfiltered test
levels, while the ResNet solves only 97.9%. This gap is
particularly notable given that the ResNet has more than

4A rounding error caused this to exceed 2B (Appendix A.1).
5The A* solutions may be of independent interest, so we make

them available at https://huggingface.co/datasets/
AlignmentResearch/boxoban-astar-solutions/.
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Figure 4. Average optimal solution length of levels grouped by the
number of thinking steps at which the level is first solved. Each
of the 50,000 medium-difficulty validation levels is assigned to a
group. Optimal solution length is a proxy for difficulty, and we
can see that levels which take longer to solve tend to be harder.

double the parameters of the DRC(3, 3) network, so the
ResNet has more model capacity and sequential thinking
time. These results are consistent with Guez et al. (2019),
see Appendix B.

The performance gap widens when considering just the hard
levels, of which the DRC(3, 3) network solves 42.8% and
the ResNet 26.2%. Counterintuitively, we find that – con-
trolling for performance on the unfiltered test set – recurrent
networks are not comparatively better at harder levels than
the ResNet. Figure 10 plots the performance of model check-
points on the unfiltered test set against medium-difficulty
and hard levels. We find that both model architectures fol-
low the same curve: the recurrent DRC(3, 3) network is
further to the right, but follows the same trend.

3.2. Thinking time improves performance

We find the performance of our trained DRC(3, 3) im-
proves given additional thinking time, replicating Guez
et al. (2019). We evaluate the DRC network on all medium-
difficulty validation levels. To induce thinking time, we
repeat the initial environment observation n times while
advancing the DRC hidden state, then let the DRC policy
act normally. Figure 3 shows the DRC’s performance for
n ∈ {0, 1, 2, 4, 6, 8, 10, 12, 16} steps, alongside the ResNet
baseline. The DRC’s success rate improves from 76.6% to
81.3% with more thinking steps, with peak performance at
6 steps. The effect (4.7% difference) is comparable to that
observed by Guez et al. (4.5%).

3.3. Planning emerges early in training

Figure 1 shows the performance of the DRC on the medium-
difficulty validation levels by training step. We see the

3
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Table 1. Levels at 6 thinking steps.

LEVEL CATEGORIZATION PERCENTAGE

Solved, previously unsolved 6.87
Unsolved, previously solved 2.23

Solved, with better returns 18.98
Solved, with the same returns 50.16
Solved, with worse returns 5.26

Unsolved, with same or better returns 15.14
Unsolved, with worse returns 1.36

DRC rapidly acquires a strong planning effect by 70M en-
vironment steps. This effect strengthens on the hard levels
as training progresses, but slowly weakens for medium-
difficulty levels. This suggests that the training setup and
loss function reinforce the planning effect for harder levels
and disincentivize it for levels that are comparatively easier.

3.4. Do difficult levels benefit more from thinking?

The A* solver gives us two proxies for the difficulty of a
level: the length of the optimal solution, and the number of
nodes it had to expand to find a solution. Figure 4 shows a
positive correlation between the A* optimal solution length
(y-axis) and the number of DRC thinking steps n needed
to solve a level (x-axis). In other words, taking extra more
thinking time helps solve harder levels.

On the other hand, Figure 11 (Appendix D) finds only a
weakly positive correlation between the expanded nodes
proxy and required thinking steps n, with results noisy for
smaller n. We speculate that the ‘expanded nodes’ proxy
metric is only weakly related to required n due to the DRC
having different heuristics than the one we use for A*,
whereas the optimal solution length does not depend on
heuristics.

3.5. Other consequences of DRC thinking time

While Figure 3 shows that the DRC can solve many more
levels when given thinking steps at the beginning of an
episode, in this section, we explore how the network’s be-
havior changes with thinking time, and if this has significant
effects besides solving more levels.

Thinking makes the DRC “patient.” One hypothesis is
that, without the extra thinking steps, the DRC sometimes
comes up with a greedy solution for some of the boxes
and executes it right away. This puts some boxes into the
wrong targets, and makes the puzzle unsolvable. Since the
training signal penalizes every step it takes to solve the
puzzle, it could be optimal for a bounded rational agent to
avoid thinking and be “impatient” in this way: the agent
may accumulate more return on average by being “impatient”
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Figure 5. Average time step to place each box Bi on target for
different thinking steps. (a) Averages across all levels where the
box Bi is placed on target by DRC with n thinking steps. If box
Bi is not placed (on unsolved levels) we ignore the box, but we
keep the other boxes in the level. (b) Averages for all levels solved
by 6 thinking steps but not solved by 0 thinking steps.

and quickly solving most levels even if it sometimes errs by
taking actions that make it impossible to solve other levels.

For n thinking steps, Figure 5 plots the average number of
steps (time-to-box) until each of 4 boxes gets on a target,
in the order in which they do so. The results support the
hypothesis: levels that are solved at 6 thinking steps but
unsolved at 0 thinking steps show increased time-to-box for
boxes 1-3 but decreased time for box 4 (Figure 5(b)). In
contrast, averaged across all levels times go down for all
boxes with increased thinking (Figure 5(a)).

Thinking often improves solutions for already-solved
levels, but is sometimes harmful. Table 1 shows that an
additional 6 thinking steps solves 6.87% of previously un-
solved levels – but at the cost of no longer being able to
solve 2.23% of previously solved levels, for a total improved
solution rate of 4.64%. In addition to improving the solu-
tion rate, additional thinking improves returns on average by
shortening solution length in 18.98% of episodes, consistent
with the decreased timesteps to place boxes shown in Fig-
ure 5(a). However, the effect is inconsistent: most episodes
show no change in returns, with returns even decreasing
in 5.26% of episodes. Overall, extra thinking steps are not
always beneficial but, on balance, they let the DRC solve
more levels or improve return on already solved levels.
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Figure 6. Case studies of three medium-validation levels demon-
strating different behaviors after 6 thinking steps. Colors are as in
Figure 2. Boxes and targets are paired in upper- and lower-case
letters respectively, such that the DRC’s best solution places boxes
on targets in alphabetical order. Videos available at this https URL;
see Section 4 for behavior descriptions. Levels solved faster obtain
higher return as the agent incurs the per-step penalty fewer times.

4. Case studies: how does thinking change
behavior?

To gain a deeper understanding of the DRC networks’ behav-
ior, we examine an example from each of three categories
from Table 1: a solved, previously unsolved level; a level
on which the DRC improved its return with extra thinking
(solved faster); and a level on which the return worsens
(solved slower). We select an illustrative example of each
category from the first ten examples by level index.

Thinking lets the DRC solve: Figure 6(a). In the no-
thinking condition, the DRC first pushes box C one square
to the right. It then goes back to push A to a, but it is too
late: it is now impossible to push box B onto b. The network
pushes C onto c, then D onto d and then remains mostly
still. In contrast, after thinking, the DRC pushes A to a first,
which lets it solve the level.

Thinking speeds up solving: Figure 6(b). In the no-
thinking condition, the DRC spends many steps going back
and forth before pushing any boxes. First it goes down to y,
then up to c, then down onto z, back up to y and to z again.
It then proceeds to solve the rest of the puzzle correctly:
push box A onto a, prepare box B on x and box C where
B originally was, push in boxes B,C and finally D. In the
thinking condition, the DRC makes a beeline for A and then
plays the exact same solution.

Thinking slows down solving: Figure 6(c). In the no-
thinking condition, the DRC starts by pushing box C into
position y, then pushes boxes A,B. On the way back down,
ther DRC pushes C onto c and finally D onto d. In contrast,
after thinking for a bit, the DRC goes the other way and
starts by pushing B onto b. The solution is the same after
that: A, C, then D; but the NN has wasted time trekking
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Figure 7. Left: Histogram of cycle start times on the medium-
difficulty validation levels. Right: Total number of cycles the
agent takes in the first 5 steps across all episodes in medium-
difficulty validation levels with n initial thinking steps.

back from B to A.

4.1. Hypothesis: the DRC ‘paces’ to get thinking time

The second case study above found the DRC sometimes
moves around in cycles without touching any box. One
hypothesis for why this occurs is that the DRC is using the
extra steps to come up with a plan to solve the episode. To
test this, we can check whether cycles in the game state
occur more frequently near the start of the episode, and
whether deliberately giving the DRC thinking time makes it
stop going in cycles.

Consistent with this hypothesis, Figure 7 (left) shows the
majority of cycles start within the first 5 steps of the episode,
and (right) forcing it to think for six steps makes about 75%
of these cycles disappear.

The episode start is not the only time at which the DRC
moves in cycles. Figure 9 shows that replacing an n-length
cycle with n thinking steps leads the NN to have the exact
same behavior for at least 60% of levels, for at least 30 steps
after the cycle. For context, the median solution length for
train-unfiltered is exactly 30 steps. Additionally, in 82.39%
of cases, doing this prevents cycles from starting in the n
steps after the thinking-steps conclude (Appendix C).

Why does this behavior emerge during training? Thinking is
useful for achieving higher return, so it should be reinforced.
But it also has a cost, -0.1 per step, so it should be discour-
aged in easy levels that do not need the computation. We
speculate that, as training advances and heuristics get tuned,
the DRC needs to think in fewer levels, and it is better at
knowing when it needs to pace. This would also explain
why, after many training steps, the DRC network begins to
benefit less from additional thinking steps at the start of the
episode in Figure 1: the DRC finds levels easier and also
knows to pace when thinking is needed.
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5. Related work
Interpretability of agents and world models. Several
works have attempted to find the mechanism by which a
simple neural network does planning in mazes (Ivanitskiy
et al., 2023; Mini et al., 2023), gridworlds (Bloom & Colog-
nese, 2023), and graph search (Ivanitskiy et al., 2023). We
believe the DRC we present is a clearer example of an agent
than what these works focus on, and should be similarly
possible to interpret.

Other works have found emergent world models in
sequence-prediction (Li et al., 2023) and navigation (Wij-
mans et al., 2023) neural networks.

Goal misgeneralization and mesa-optimizers for align-
ment. From the alignment perspective, AIs optimizing
monomaniacally for a goal have long been a concern
(e.g. Yudkowsky, 2006; Omohundro, 2008; see the pref-
ace of Russell, 2019). In a machine learning paradigm
(Hubinger et al., 2019), the goal of the training system is
not necessarily optimized; instead, the NN may optimize for
a related or different goal (Di Langosco et al., 2022; Shah
et al., 2022), or for no goal at all.

Chain-of-thought faithfulness. Large language models
(LLMs) use chain of thought, but are they faithful to it or do
they think about their future actions in other ways (Lanham
et al., 2023; Pfau et al., 2024)? One could hope that LLMs
perform all long-term reasoning in plain English, allowing
unintended human consequences to be easily monitored, as
in Scheurer et al. (2023).

Reasoning neural network architectures. Many papers
try to enhance NN thinking by altering the training setup or
architecture (Bansal et al., 2022; Graves, 2016; Chung et al.,
2024).

Ethical treatment of AIs. Do AIs deserve moral con-
sideration? Schwitzgebel & Garza (2015) argue that very
human-like AIs are conceivable and clearly deserve rights.
Tomasik (2015) suggests that most AIs deserve at least a
little consideration, like biological organisms of any species
(Singer, 2004). But what does it mean to treat an AI eth-
ically? Daswani & Leike (2015) argue that the way to
measure pleasure and pain in a reinforcement learner is not
by its absolute amount of return, but rather by the temporal
difference (TD) error: the difference between its expecta-
tions and the actual return it obtained. If the internals of the
NN have a potentially different objective (Hubinger et al.,
2019; Di Langosco et al., 2022), then the TD error should
come from a place other than the critic. This paper is an
early step toward finding the learned-reward internal TD
error, if it exists.

6. Conclusion
We have developed and open-sourced a model organism for
understanding reasoning in neural networks. In addition,
we contribute a detailed empirical analysis of this network’s
behavior. We believe this work will prove useful to the
interpretability, alignment, and ethical treatment of AIs.

First, we have trained a DRC recurrent network that plays
Sokoban and benefits from additional thinking steps at test
time, replicating Guez et al. (2019).

Second, we have shown that thinking for longer helps solve
harder levels, and makes the DRC better at levels that re-
quire longer-sighted behavior. Without intervention, think-
ing sometimes takes the form of the DRC ‘pacing’ at the
beginning or middle of the episode, in a way which can be
substituted by repeating the same input. This suggests the
network is deliberately using more computation by pacing.

Finally, we have shown that the training setup incentivizes
the planning effect at the start. We find that planning is
disincentivized later, but only for easier levels. We offer a
hypothesis about why the training process disincentivizes
the planning effect: the NN finds levels easier (needs less
thinking), and also learns when to do the thinking it needs
(via pacing).
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A. Training hyperparameters
All networks were trained with the same hyperparameters, which were tuned on a combination of the ResNet and the
DRC(3, 3). These are almost exactly the same as Guez et al. (2019), allowing for taking the mean of the per-step loss instead
of the sum.

Loss. The value and entropy coefficients are 0.25 and 0.01 respectively. It is very important to not normalize the advantages
for the policy gradient step.

Gradient clipping and epsilon The original IMPALA implementation, as well as Huang et al. (2023), sum the per-step
losses. We instead average them for more predictability across batch sizes, so we had to scale down some parameters by a
factor of 1/640: Adam ϵ, gradient norm for clipping, and L2 regularization).

Weight initialization. We initialize the network with the Flax (Heek et al., 2023) default: normal weights truncated at 2
standard deviations and scaled to have standard deviation

√
1/fan in. Biases are initialized to 0. The forget gate of LSTMs

has 1 added to it (Jozefowicz et al., 2015). We initialize the value and policy head weights with orthogonal vectors of norm
1. Surprisingly, this makes the variance of these unnormalized residual networks decently close to 1.

Adam optimizer. As our batch size is medium-sized, we pick β1 = 0.9, β2 = 0.99. The denominator epsilon is
ϵ = 1.5625 · 10−7. Learning rate anneals from 4 · 10−4 at the beginning to 4 · 10−6 at 2,002,944,000 steps.

L2 regularization. In the training loss, we regularize the policy logits with L2 regularization with coefficient 1.5625×10−6.
We regularize the actor and critic heads’ weights with L2 at coefficient 1.5625× 10−8. We believe this has essentially no
effect, but we left it in to more closely match Guez et al. (2019).

Software. We base our IMPALA implementation on Cleanba (Huang et al., 2023). We implemented Sokoban in C++
using Envpool (Weng et al., 2022) for faster training, based on gym-sokoban (Schrader, 2018).

A.1. Number of training steps

In the body of the paper we state the networks train for 2.003B steps. The exact number is 2 002 944 000 steps. Our code and
hyperparameters require that the number of environment steps be divisible by 5 120 = 256 environments×20 steps collected,
because that is the number of steps in one iteration of data collection.

However, 2B is divisible by 5 120, so there is no need to add a remainder. We noticed this mistake once the networks already
have trained. It is not worth retraining the networks from scratch to fix this mistake.

At some point in development, we settled on 80 025 600 to approximate 80M while being divisible by 256×20 and 192×20.
Perhaps due to error, this mutated into 1 001 472 000 as an approximation to 1B, which directly leads to the number we used.

B. Learning curve comparison
It is difficult to fully replicate the results by Guez et al. (2019). Chung et al. (2024) propose an improved method for RL in
planning-heavy domains. They employ the IMPALA DRC(3, 3) as a baseline and plot its performance in Chung et al. (2024,
Figure 5). They plot two separate curves for DRC(3, 3): that from Guez et al. (2019), and a decent replicated baseline. The
baseline is considerably slower to learn and peaks at lower performance.

We did not innovate in RL, so were able to spend more time on the replication. We compare our replication to Guez et al.
(2019) in Figure 8, which shows that the learning curves for DRC(3, 3) and ResNet are compatible, but not the one for
DRC(1,1). Our implementation also appears much less stable, with large error bars and large oscillations over time. We
leave addressing that to future work.

The success rate in Figure 8 is computed over 1024 random levels, unlike the main body of the paper. Table 3 reports test
and validation performance for the DRC and ResNet seeds which we picked for the paper body.

The parameter counts (Table 2) are very different from what Guez et al. (2019) report. In private communication with the
authors, we confirmed that our architecture has a comparable number of parameters, and some of the originally reported
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numbers are a typographical error.

Table 2. Parameter counts for each architecture.

Architecture Parameter count

DRC(3, 3) 1,285,125 (1.29M)
DRC(1,1) 987,525 (0.99M)
ResNet: 3,068,421 (3.07M)
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Figure 8. Success rate for Test-unfiltered and Validation-medium levels vs. environment steps of training. Each architecture has 5 random
seeds, the solid line is the pointwise median and the shaded area spans from the minimum to the maximum. The dotted lines are data for
the performance of architectures extracted from the (Guez et al., 2019) PDF file. The values are slightly different from what Figure 1
and Section 3 report because they are calculated on a random sample of 1024 levels (24 levels are repeated for test-unfiltered).

Table 3. Success rate and return of DRC and ResNet on the unfiltered test set at various training environment steps.
TRAINING ENV TEST UNFILTERED VALID MEDIUM

STEPS RESNET DRC(3, 3) RESNET DRC(3, 3)
SUCCESS RETURN SUCCESS RETURN SUCCESS RETURN SUCCESS RETURN

100M 87.8 8.13 95.4 9.58 18.6 -6.59 47.9 -0.98
500M 93.1 9.24 97.9 10.21 39.7 -2.64 66.6 2.62

1B 95.4 9.75 99.2 10.47 50.0 -0.64 70.4 3.40
2B 97.9 10.29 99.3 10.52 59.4 1.16 76.6 4.52

C. Additional cycles investigation
We run the DRC(3,3) on medium-validation levels and record where cycles in the game state happen. We prune out the
redundant cycles that visit the same states as a given cycle. There are in total 13702 non-redundant cycles. For each cycle, if
it is of length N , we replace it with N steps of thinking, and measure what happens. In 86.74% of cases the DRC(3,3) does
not immediately start going in cycles after the thinking time. That is, no cycle begins in the step after thinking time. In
82.39% of cases this persists for the next N time steps: no cycles start in the N steps after thinking.

D. Additional quantitative behavior figures
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Figure 9. We replace N-length cycles with N thinking steps and checking for the same state after some timesteps. (a) A histogram of cycle
lengths in the medium-validation set. (b, c) After replacing a cycle with the same length in thinking steps, are all the states the same for
the next x steps?
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Figure 10. Success rate on datasets of various difficulty, for various checkpoints of each architecture. This deviates very little from a curve,
which shows that ResNets and DRCs which are equally good at the easier sets are also equally good at the harder sets. Perhaps DRC(1,1)
is a slight exception, but it also performs much worse than the others overall (see Figure 8).
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Figure 11. Number of thinking steps required to solve the level vs. number of nodes A* needs to expand to solve it. The trend is somewhat
increasing but much less clear, indicating different heuristics used by the NN and A*.
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