
Published as a conference paper at ICLR 2025

LEARNING HARMONIZED REPRESENTATIONS FOR
SPECULATIVE SAMPLING

Lefan Zhang, Xiaodan Wang, Yanhua Huang∗, Ruiwen Xu
Xiaohongshu Inc.
Shanghai, China
{lefan,xiaodan2,yanhuahuang,ruiwenxu}@xiaohongshu.com

ABSTRACT

Speculative sampling is a promising approach to accelerate the decoding stage
for Large Language Models (LLMs). Recent advancements that leverage tar-
get LLM’s contextual information, such as hidden states and KV cache, have
shown significant practical improvements. However, these approaches suffer from
inconsistent context between training and decoding. We also observe another
discrepancy between the training and decoding objectives in existing specula-
tive sampling methods. In this work, we propose a solution named HArmo-
nized Speculative Sampling (HASS) that learns harmonized representations to
address these issues. HASS accelerates the decoding stage without adding infer-
ence overhead through harmonized objective distillation and harmonized context
alignment. Experiments on four LLaMA models demonstrate that HASS achieves
2.81x-4.05x wall-clock time speedup ratio averaging across three datasets, sur-
passing EAGLE-2 by 8%-20%. The code is available at https://github.
com/HArmonizedSS/HASS.

1 INTRODUCTION

Generative Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023) and LLaMA (Tou-
vron et al., 2023), have demonstrated remarkable capabilities across a wide range of tasks. Never-
theless, efficiently decoding from these models poses a significant challenge due to the inherent
auto-regressive decoding mechanism, which restricts their applicability in time-sensitive scenarios.
Speculative sampling (Chen et al., 2023; Leviathan et al., 2023) offers a solution by leveraging addi-
tional resources to increase concurrency. Specifically, it employs an efficient draft model to generate
draft tokens auto-regressively, which are then concurrently verified by the target LLM. Based on the
verification results, a subset of draft tokens that preserves the same distribution as the target LLM is
accepted as the final output.

Leviathan et al. (2023) show that the practical performance of speculative sampling is highly re-
lated to two factors: the decoding cost of the draft model and its alignment with the target LLM.
To develop efficient draft models that are well-aligned with the target LLM, previous works pro-
pose to leverage the target LLM’s contextual information (Xiao et al., 2024; Li et al., 2024b;c; Du
et al., 2024). For instance, EAGLE (Li et al., 2024b;c) employs previous hidden states of the target
LLM as the draft model’s input features. However, these approaches introduce inconsistent context
between training and decoding, as illustrated in Figure 2. During training, the draft model always
has access to the target LLM’s hidden states in previous timesteps. However, during decoding, the
draft model cannot access the target LLM’s hidden states for unverified timesteps, resulting in a con-
text misalignment between training and decoding. This issue can be viewed as a form of exposure
bias (Bengio et al., 2015; Wang & Sennrich, 2020) at the feature level in speculative sampling.

Another discrepancy is also observed between the objectives of the training and decoding stages.
During the decoding stage, the objective of the draft model is to propose tokens that the target LLM
is likely to assign high probabilities to (Li et al., 2024c; Miao et al., 2024; Sun et al., 2024). In
this scenario, the draft model should focus more on recalling the desired tokens, while the specific

∗Corresponding author.

1

https://github.com/HArmonizedSS/HASS
https://github.com/HArmonizedSS/HASS

Published as a conference paper at ICLR 2025

LLaMA2-Chat 7B T=0 LLaMA2-Chat 13B T=0 LLaMA3-Instruct 8B T=0 LLaMA3-Instruct 70B T=0 LLaMA2-Chat 7B T=1 LLaMA2-Chat 13B T=1 LLaMA3-Instruct 8B T=1 LLaMA3-Instruct 70B T=1
Models

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
pe

ed
up

3.24x

3.65x

3.09x

4.05x

2.90x

3.48x

2.81x

3.85x

2.81x

3.30x

2.83x

3.37x

2.60x

3.21x

2.47x

3.28x

2.01x

2.22x

1.71x

2.43x

1.76x

2.05x

1.44x

2.09x

HASS
EAGLE-2
EAGLE

Figure 1: Speedup ratios of different methods on LLaMA2-Chat 7/13B and LLaMA3-Instruct 8/70B
with temperature T ∈ {0, 1}, averaging over MT-bench, HumanEval, and GSM8K datasets.

order of these tokens can be somewhat de-emphasized. Moreover, most LLM applications perform
nucleus sampling (Holtzman et al., 2020) or top-k sampling (Fan et al., 2018). For these decoding
objectives, tokens with high probabilities play a more significant role in determining the output.
Therefore, to develop efficient draft models, their training objectives should consider these properties
encountered in the decoding stage. To the best of our knowledge, previous works on training draft
models for speculative sampling have largely overlooked these decoding considerations.

One Auto-regressive Layer

𝑒!"#

𝑓!"$
(&)

𝑒!

𝑓!"#
(&)

𝑒!(#

𝑓!
())/𝑓!

(&)

Target LLM

𝑓!
()) 𝑓!(#

())

Prediction Head & Sampling

𝑥!(# 𝑥!($

Consistent forward

Training forward

Decoding forward

Unverified tokens

Figure 2: We use EAGLE (Li et al., 2024b) as
an example to illustrate the context misalign-
ment, where the speculation starts from timestep
t. f (l) and f (s) represent hidden states from the
target LLM and the draft model. When decod-
ing draft token xt+2, the input context is incon-
sistent between training and decoding.

In this paper, we introduce HArmonized Spec-
ulative Sampling (HASS), a novel approach
designed to address the aforementioned is-
sues by learning harmonized representations.
Specifically, to make draft models aware of the
decoding strategy, HASS extends the idea of
ranking distillation (Tang & Wang, 2018) from
the recommender system to speculative sam-
pling, resulting in a distillation loss focused
on the most probable tokens within the tar-
get distribution. To mitigate the previously
discussed context misalignment between train-
ing and decoding, HASS employs a context-
aligned training strategy. Together, these two
strategies of HASS improve the acceleration
performance without any inference overhead
and maintain training efficiency.

We conduct experiments across dialogue,
code generation, and mathematical reasoning
tasks using the MT-bench, HumanEval, and
GSM8K datasets, respectively. Building with
EAGLE-2 (Li et al., 2024c), HASS achieves
8%-16% acceptance length improvement over
it on LLaMA2-Chat 7/13B and LLaMA3-
Instruct 8/70B, resulting in 2.81x-4.05x wall-
clock time acceleration compared with the
vanilla inference on NVIDIA H800 GPU.

2 PRELIMINARY

Speculative sampling leverages the concept of speculative execution (Kung & Robinson, 1981;
Hennessy & Patterson, 2011) to reduce wall-clock time from more concurrency. Specifically, given
the target LLM M(l) that is the focus of acceleration, speculative sampling employs a draft model

2

Published as a conference paper at ICLR 2025

M(s) to speculatively and efficiently generate draft tokens. The conventional approach (Leviathan
et al., 2023; Chen et al., 2023) decomposes the next step generation into three steps:

• M(s) proposes an unverified draft sequence with length L by auto-regressive decoding.

• M(l) evaluates posterior probabilities of L draft tokens in parallel.
• τ tokens that retain the target distribution are accepted by a modified rejection sampling

schema based on the draft sequence and the distribution gap.

Leviathan et al. (2023) demonstrate that the wall-clock time improvement ratio is directly propor-
tional to τ , while the arithmetic operation increment ratio is inversely proportional to τ . Conse-
quently, τ , also known as the acceptance length, plays a crucial role in determining the performance
of acceleration. This analysis also applies when using multiple draft sequences (Miao et al., 2024;
Li et al., 2024c;b; Sun et al., 2024). Note that τ is closely related to the distribution gap between the
target LLM and the draft model. With efficient decoding requirements, the draft model typically has
limited capacity, resulting in a significant distribution gap compared to the target LLM. Fortunately,
during inference, the acceptance rate is primarily influenced by the alignment of distributions on
the desired tokens, i.e., the tokens to which the target LLM assigns high probabilities. However,
previous speculative sampling works mainly focus on the entire vocabulary set w.r.t. knowledge dis-
tillation from the target LLM (Li et al., 2024b; Zhou et al., 2024), thereby disconnecting the training
process from the practical decoding requirements.

EAGLE (Li et al., 2024b) is a lightweight draft model design, as shown in Figure 2. During decod-
ing, it utilizes the LM Head of the target LLM to generate draft tokens. Specifically, we assume that
the speculation starts from timestep t, meaning the first draft token is at timestep t+ 1. To generate
the draft token xt+1, the target LLM’s hidden state f

(l)
t−1 in the second-to-top layer is concatenated

with the embedding et to perform the input of the draft model. During training, EAGLE constructs a
regression task between f (l)s and the predicted hidden states f (s)s of the draft model. However, due
to the auto-regressive decoding, the draft model only accesses the target LLM’s features at the be-
ginning of the speculation. It uses the features produced by itself as input for subsequent steps. This
context misalignment, stemming from feature inaccuracies, leads to error accumulation and hinders
the performance of generating later draft tokens (Li et al., 2024b; Du et al., 2024). EAGLE-2 (Li
et al., 2024c) employs the same model design but works on dynamic drafting structures instead of a
static tree structure during the decoding stage, yet the aforementioned issue remains unresolved.

3 METHODOLOGY

As outlined before, previous speculative sampling methods suffer from disharmonies between train-
ing and decoding. This section introduces HArmonized Speculative Sampling (HASS) to tackle
objective misalignment and context inconsistency through harmonized objective distillation and har-
monized context alignment, respectively, as described below.

3.1 HARMONIZED OBJECTIVE DISTILLATION

HASS prioritizes the most decoding-desired tokens by leveraging the ranking distillation (Tang &
Wang, 2018) idea from the recommender system. Specifically, ranking distillation aims to train a
student model to assign higher ranks to the items that are top-ranked by the teacher model. In the
context of speculative sampling, the draft model and the target LLM serve as the student and the
teacher, respectively. Draft models with similar properties will perform at a higher acceptance rate
in the decoding stage. Consider the set of K tokens with the highest probabilities from the target
LLM’s probability distribution as Ω̂ ⊂ Ω, where Ω represents the entire vocabulary. HASS considers
the following Top-K distillation loss:

LTop-K = −
∑
x∈Ω̂

q(x) log p(x), (1)

where q and p are the next token probability distributions of the target LLM and the draft model,
respectively. Note that, when integrated with EAGLE, the training stage can obtain Ω̂ from hidden
states of the target LLM. This implies that the proposed loss function benefits from the same efficient

3

Published as a conference paper at ICLR 2025

training cost as EAGLE. We evaluate the proposed Top-K distillation loss against six alternative
losses, such as BiLD (Li et al., 2024a) and Recall@k Surrogate loss (Patel et al., 2022), through
ablation studies.

3.2 HARMONIZED CONTEXT ALIGNMENT

HASS Training Step 1 / EAGLE Training

ℳ(") !(")

"(")

!!"$

"!"*(&)

!!"#

"!"$(&)

!!

"!"#(&)

!!(#

"!(&)

ℳ(") !%($#)
!!"$

"!"*(&)

!!"#

"!"$()!)

!!

"!"#()")

!!(#

"!()#)

"%&'(") , "%&(($!), "%&)($"), "%($#)

ℳ(") !%&'(")
!!"$

"!"*(&)

"%&'(")

ℳ(") !%&(($!)
!!"$

"!"*(&)

!!"#

"!"$()!)

"%&'(") , "%&(($!)

ℳ(") !%&)($")
!!"$

"!"*(&)

!!"#

"!"$()!)

!!

"!"#()")

"%&'(") , "%&(($!), "%&)($")

HASS / EAGLE Decoding

HASS Training Step 2

ℳ(") !($!)
!!"$!!"# !! !!(#

"!"*(&) "!"$(&) "!"#(&) "!(&)

"!"*(&) "!"$()!) "!"#()!) "!()!)

"("), "($!)

HASS Training Step 3

ℳ(") !($")

"("), "($!), "($")
!!"$!!"# !! !!(#

"!"*(&) "!"$(&) "!"#(&) "!(&)

"!"*(&) "!"$()!) "!"#()!) "!()!)

"!"*(&) "!"$()!) "!"#()") "!()")

ℳ(") !($#)

"("), "($!), "($"), "($#)!!"$!!"# !! !!(#

"!"*(&) "!"$(&) "!"#(&) "!(&)

"!"*(&) "!"$()!) "!"#()!) "!()!)

"!"*(&) "!"$()!) "!"#()") "!()")

"!"*(&) "!"$()!) "!"#()") "!()#)

HASS Training Step 4

Figure 3: Training with harmonized context alignment, where q and k refer to the query and key
states in the transformer layer, respectively. Superscript (l) denotes tensors from the target LLM,
and superscript (sj) denotes tensors from the j-th draft model forward. Note that during training
(sj) refers to calling j times draft model in a batch, while during inference (sj) refers to j-th auto-
regressive decoding.

HASS follows a context alignment schema that aligns training and decoding on their contexts. The
training procedure of HASS is divided into n steps, enabling the draft model to utilize contex-
tual features consistent with those in the decoding stage and addressing the context inconsistency
by adapting the inaccurate features generated in previous HASS training steps. Specifically, it is
achieved by first taking the inaccurate feature from the last draft model as query, and then consider-
ing the inaccuracy accumulation in key-value part of the transformer block.

Formally, in the HASS training step j, given input token sequence x1, x2, .., xT , we optimize the
draft model M(s) with the following objective function:

min
M(s)

T−1∑
t=1

[CrossEntropy(P (l)(xt+1|x1, . . . , xt), P
(s)(xt+1|x1, . . . , xt)) + Aux-loss],where

P (s)(xt+1|x1, . . . , xt) = Head(f (sj)
t+1)

= Head(M(s)(

From last draft︷ ︸︸ ︷
f
(sj−1)
t︸ ︷︷ ︸
query

,

From target LLM︷ ︸︸ ︷
f
(l)
1 ⊕ · · · ⊕ f

(l)
t−j+1 ⊕

From previous draft models︷ ︸︸ ︷
f
(s1)
t−j+2 ⊕ · · · ⊕ f

(sj−1)
t︸ ︷︷ ︸

key & value

)),

4

Published as a conference paper at ICLR 2025

Temperature = 0 Temperature = 1
Model Method MT-bench HumanEval GSM8K Mean MT-bench HumanEval GSM8K Mean

L2 7B

PLD 1.43 1.59 1.37 1.46 - - - -
Lookahead 1.66 1.77 1.65 1.69 - - - -

SpS (V-68M) 2.02 2.03 2.04 2.03 1.72 1.50 1.65 1.62
SpS (L-68M) 1.83 1.81 1.83 1.82 1.47 1.36 1.46 1.43

Medusa 2.34 2.48 2.37 2.40 2.35 2.56 2.40 2.44
EAGLE 3.68 3.90 3.77 3.78 3.45 3.67 3.62 3.58

EAGLE-2 4.44 4.78 4.60 4.61 4.23 4.47 4.50 4.40
HASS 4.99 5.29 5.17 5.15 4.84 4.91 5.01 4.92

L2 13B

PLD 1.46 1.70 1.44 1.53 - - - -
Lookahead 1.64 1.85 1.69 1.73 - - - -

SpS (V-68M) 2.13 2.61 2.21 2.32 1.73 2.25 1.81 1.93
SpS (L-68M) 1.83 1.67 1.70 1.73 1.50 1.34 1.45 1.43

Medusa 2.51 2.56 2.70 2.59 2.53 2.89 2.72 2.71
EAGLE 3.86 4.50 4.17 4.18 3.62 4.27 3.98 3.96

EAGLE-2 4.74 5.57 5.17 5.16 4.60 5.41 5.03 5.01
HASS 5.13 6.05 5.55 5.58 4.98 5.86 5.41 5.42

L3 8B
EAGLE 2.91 3.66 3.57 3.38 2.67 3.35 3.30 3.11

EAGLE-2 4.21 4.93 4.42 4.52 3.90 4.73 4.30 4.31
HASS 4.68 5.54 5.02 5.08 4.26 5.30 4.85 4.80

L3 70B
EAGLE 3.24 4.07 3.79 3.70 3.06 3.85 3.66 3.52

EAGLE-2 4.10 5.02 4.37 4.50 4.00 4.93 4.35 4.43
HASS 4.62 5.78 5.24 5.21 4.59 5.68 5.20 5.16

Table 1: Acceptance lengths τ of different methods on MT-bench, HumanEval, and GSM8K datasets
with temperature T ∈ {0, 1}. L2 represents LLaMA2-Chat, while L3 represents LLaMA3-Instruct.
SpS stands for Vanilla Speculative Sampling, while V-68M and L-68M represent Vicuna-68M and
LLaMA-68M, which are the draft models of SpS.

P (l) is the auto-regressive probability distribution provided by the target LLM, the Aux-loss consists
of the proposed Top-K loss and the feature regression loss (following EAGLE), Head and ⊕ stand
for the language modeling head and the concatenation operation respectively. When training tokens
in the entire sequence in parallel, the above formulation adapts the inaccurate features from previous
j − 1 steps for all positions except the first j − 1 positions. Note that compared to EAGLE, HASS
takes additional training overhead due to the extra n − 1 training steps for adapting inaccurate
features, while maintaining the same decoding overhead. To accelerate the training procedure, we
propose a modification to the attention mask mechanism, as outlined below:

• The first step mirrors the training stage of EAGLE. At timestep t+1, the draft model takes
the target model’s feature f (l)

t as input and produces the draft feature f (s1)
t+1 . In this step, the

attention mask remains the same as the original causal mask without any modification.

• In the second step, features from the first step are incorporated. For instance, in the self-
attention mechanism at timestep t + 1, f (s1)

t is used to calculate the current query. Keys
and values are derived from f

(l)
:t ⊕f

(s1)
t , where f (l)

:t includes features from timesteps earlier
than t. The attention mask is adjusted to ensure that the previous feature seen by f

(s1)
i is

always f (l)
i−1, as shown in the ‘HASS Training Step 2’ part of Figure 3.

• For step j ≥ 3, the feature from the previous step f
(sj−1)
t is utilized to calculate the query

at timestep t+1, while keys and values are generated by f
(l)
:t−j+2⊕f

(s1)
t−j+2⊕ . . .⊕f

(sj−1)
t .

We empirically demonstrate that the acceleration effect converges with a small n so that the train-
ing of HASS is cost-efficient. The actual training overhead of HASS in terms of training speed,
computational cost, and GPU memory is investigated in Appendix A.8.

5

Published as a conference paper at ICLR 2025

Temperature = 0 Temperature = 1
Model Method MT-bench HumanEval GSM8K Mean MT-bench HumanEval GSM8K Mean

L2 7B

SpS (V-68M) 1.35x 1.38x 1.37x 1.37x 1.17x 1.02x 1.12x 1.10x
SpS (L-68M) 1.23x 1.24x 1.25x 1.24x 1.00x 0.94x 0.99x 0.98x

Medusa 1.91x 1.96x 2.20x 2.02x 2.00x 2.25x 2.15x 2.13x
EAGLE 1.90x 2.10x 2.04x 2.01x 1.50x 1.91x 1.87x 1.76x

EAGLE-2 2.66x 3.06x 2.72x 2.81x 2.39x 2.87x 2.54x 2.60x
HASS 2.99x 3.41x 3.32x 3.24x 2.70x 3.13x 2.87x 2.90x

L2 13B

SpS (V-68M) 1.63x 1.98x 1.68x 1.76x 1.33x 1.72x 1.39x 1.48x
SpS (L-68M) 1.41x 1.29x 1.30x 1.33x 1.12x 1.04x 1.11x 1.09x

Medusa 2.26x 2.25x 2.71x 2.41x 2.31x 2.47x 2.36x 2.38x
EAGLE 1.80x 2.46x 2.41x 2.22x 1.84x 2.10x 2.21x 2.05x

EAGLE-2 3.02x 3.64x 3.23x 3.30x 3.04x 3.45x 3.13x 3.21x
HASS 3.23x 4.24x 3.48x 3.65x 3.28x 3.78x 3.37x 3.48x

L3 8B
EAGLE 1.29x 2.00x 1.85x 1.71x 1.25x 1.41x 1.67x 1.44x

EAGLE-2 2.64x 3.31x 2.54x 2.83x 2.39x 2.54x 2.48x 2.47x
HASS 2.78x 3.43x 3.06x 3.09x 2.49x 3.05x 2.89x 2.81x

L3 70B
EAGLE 2.14x 2.74x 2.42x 2.43x 1.80x 2.34x 2.12x 2.09x

EAGLE-2 2.94x 3.98x 3.19x 3.37x 3.02x 3.61x 3.21x 3.28x
HASS 3.40x 4.68x 4.08x 4.05x 3.43x 4.25x 3.87x 3.85x

Table 2: Speedup ratios of different methods on MT-bench, HumanEval, and GSM8K datasets
with temperature T ∈ {0, 1}. L2 represents LLaMA2-Chat, while L3 represents LLaMA3-Instruct.
SpS stands for Vanilla Speculative Sampling, while V-68M and L-68M represent Vicuna-68M and
LLaMA-68M, which are the draft models of SpS.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Target LLMs. LLaMA2-Chat 7/13B and LLaMA3-Instruct 8/70B.

Tasks. We conduct evaluations on three generation tasks. For multi-turn conversation, code genera-
tion, and mathematical reasoning tasks, we choose the MT-bench (Zheng et al., 2024), HumanEval
(Chen et al., 2021), and GSM8K (Cobbe et al., 2021) datasets, respectively. The batch size is set as
1 under all the experiments following Leviathan et al. (2023) and Zhou et al. (2024).

Metrics. HASS neither fine-tunes the target LLMs’ weights during training nor relaxes the accep-
tance conditions during decoding, making it a lossless acceleration method. Thus, the generation
quality is promised with no need for evaluation. We use the following two metrics to measure the
acceleration performance:

• Speedup Ratio: The actual test speedup ratio relative to vanilla auto-regressive decoding.

• Acceptance Length τ : The average number of tokens generated per drafting-verification
cycle, indicating the number of tokens accepted by the target LLM from the draft model.

Note that the speedup ratio is sensitive to the hardware due to variations in computing power, and
the acceptance length may be slightly affected by hardware due to numerical errors. Therefore, all
inference processes are conducted on NVIDIA H800 GPU.

Comparisons. The vanilla auto-regressive decoding is taken as the baseline, which serves as the
benchmark for speedup ratios (1.00x). We compare HASS with recent lossless speculative sampling
methods, including PLD (Saxena, 2023), Lookahead (Fu et al., 2023), Vanilla Speculative Sampling
(Chen et al., 2023), Medusa (Cai et al., 2024), EAGLE (Li et al., 2024b), and EAGLE-2 (Li et al.,
2024c). PLD and Lookahead are free of traning, which respectively use string matched from the
prompt and cached n-grams as draft tokens instead of generating draft tokens from a draft model’s
predicted probability distribution. Therefore, the results of PLD and Lookahead under temperature
= 1 are not reported in Table 1.

6

Published as a conference paper at ICLR 2025

Implementation. Our code is built based on EAGLE-2’s open-source repository1. Experiments
on EAGLE and EAGLE-2 reuse draft model weights trained by Li et al. (2024b). For harmonized
objective distillation, K is set as 10, and the loss of harmonized objective distillation is added to
EAGLE’s original loss with a coefficient of w = 1.0. For harmonized context alignment, the draft
model is aligned for 3 steps during training. For dynamic tree structure, we set the total number
of draft tokens to 60 for all experiments with a draft tree depth of 6. We keep other settings, such
as the fixed training dataset, i.e., the ShareGPT2 dataset with 68,000 dialogues, and the optimizer,
consistent with EAGLE-2.

4.2 EFFECTIVENESS & ABLATION STUDY

In this section, we first evaluate the effectiveness of HASS by comparing it with existing speculative
sampling methods on acceptance length and speedup ratio. Then, we conduct ablation studies on
harmonized objective distillation and harmonized context alignment. Inspired by Yi et al. (2024),
we further conduct experiments by training on different proportions of the ShareGPT dataset to
investigate HASS’s scalability in the face of data sparsity (see Appendix A.6), and by evaluating
on the translation tasks to investigate HASS’s robustness across different task types (see Appendix
A.7). As shown from the results, HASS is more scalable than EAGLE-2 with fewer training data
and achieves promising improvements over EAGLE-2 on translation tasks consistent with results on
MT-bench, HumanEval, and GSM8K.

4.2.1 EFFECTIVENESS

We present different methods’ acceptance lengths and speedup ratios across three datasets in Tables
1 and 2, respectively. HASS performs the largest acceptance length and highest speedup ratio across
all datasets and LLMs we tested. Most methods achieve their best performance on the HumanEval
dataset, as the fixed templates in the code generation task are easier to draft and accelerate. Though
PLD and Lookahead are free of training, they consistently show poorer performance than Medusa,
EAGLE, EAGLE-2, and HASS.

4.2.2 ABLATION STUDY ON HARMONIZED OBJECTIVE DISTILLATION

0 0.1 0.2 0.5 1.0 2.0
Weight

4.8

4.9

5.0

5.1

5.2

5.3

A
cc

ep
ta

nc
e

Le
ng

th

1 5 10 50 100
K

4.8

4.9

5.0

5.1

5.2

5.3
T = 0
T = 1

Figure 4: Acceptance lengths τ of HASS with
varied Ks and weights of the Top-K loss. The
results are conducted on LLaMA2-Chat 7B
and averaged over MT-bench, HumanEval, and
GSM8K datasets with temperature T ∈ {0, 1}.

We first study the effects of different K and
the weight w of the Top-K loss by varying
these hyper-parameters and summarize the re-
sults in Figure 4. Training with the Top-K loss
(w > 0) always improves performance com-
pared to training without the Top-K loss (w =
0). HASS achieves the largest acceptance length
when w = 0.5. A small value of K may result
in performance degeneration, as the draft model
only focuses on the token with the highest prob-
ability and consequently neglects other potential
tokens. With a larger K, the Top-K loss gener-
ally brings better results, while the acceptance
length is the largest when K = 5.

Since the harmonized objective distillation can be implemented with any loss function that focuses
on the most probable tokens w.r.t. the target distribution, we further consider the following loss
functions and compare them with the Top-K Loss:

• Top-P Loss, where the Ω̂ is formed by the most probable tokens whose cumulative proba-
bility is just larger than P.

• Normed Top-K Loss, where the target and draft distributions are both normalized over Ω̂.
The normalization operation can be either linear or softmax.

1https://github.com/SafeAILab/EAGLE
2https://huggingface.co/datasets/Aeala/ShareGPT Vicuna unfiltered

7

Published as a conference paper at ICLR 2025

Loss Function Temperature = 0 Temperature = 1 Mean

Top-K Loss 4.99 4.84 4.92
Top-P Loss 5.03 4.76 4.90

Normed Top-K Loss (Linear) 4.97 4.83 4.90
Normed Top-K Loss (Softmax) 4.98 4.72 4.85

Bi-directional Top-K Loss 4.99 4.72 4.86
Recall@k Surrogate Loss 4.97 4.76 4.87

BiLD Loss 5.04 4.75 4.90

Table 3: Acceptance lengths τ of HASS with different kinds of loss functions for harmonized ob-
jective distillation. The results are conducted on LLaMA2-Chat 7B over the MT-bench dataset with
temperature T ∈ {0, 1}.

• Bi-directional Top-K Loss, where the distillation is conducted over the most probable to-
kens w.r.t. the target distribution as well as the draft distribution.

• Recall@k Surrogate Loss (Patel et al., 2022), where a smooth approximation of the recall
metric is obtained and is differentiable for direct optimization.

• BiLD Loss (Li et al., 2024a), where the internal logits ranking information is captured by
constructing logits differences with long-tail noise filtered out.

After searching the optimal hyper-parameters for each of the compared loss functions, we summa-
rize their best results in Table 3. BiLD loss outperforms other loss functions under temperature T
= 0, while Top-K loss outperforms others under temperature T = 1. Generally, Top-K loss shows
the best performance. A better loss function may exist than Top-K loss to exploit the target LLM
further. We leave this topic in future works.

We also conduct an experiment with LLaMA2-Chat 7B, where the fixed training dataset is replaced
by the dataset generated by the target LLM (see Appendix A.4). We observe that when using non-
greedy decoding, the acceptance length increases from 4.92 to 5.19 averaging over three datasets.
Therefore, information obtained from harmonized objective distillation is not equivalent to direct
distillation from target-model-generated data.

4.2.3 ABLATION STUDY ON HARMONIZED CONTEXT ALIGNMENT

Aligning Step MT-bench HumanEval GSM8K Mean

T=0

EAGLE-2 + Top-K 4.59 4.97 4.77 4.78
HASS Align-2 4.95 5.25 5.12 5.11
HASS Align-3 4.99 5.29 5.17 5.15
HASS Align-4 4.99 5.30 5.18 5.16
HASS Align-5 4.98 5.26 5.09 5.11

T=1

EAGLE-2 + Top-K 4.46 4.61 4.64 4.57
HASS Align-2 4.71 4.89 4.98 4.86
HASS Align-3 4.84 4.91 5.01 4.92
HASS Align-4 4.77 4.93 5.03 4.91
HASS Align-5 4.71 4.92 4.95 4.86

Table 4: Acceptance lengths τ of HASS with varied aligning steps in the harmonized context align-
ment. The results are conducted on LLaMA2-Chat 7B with temperature T ∈ {0, 1}.

We propose the harmonized context alignment, which eliminates the feature inconsistency of draft
models between the training and decoding stages. To study the effect of increasing the aligning
steps in the harmonized context alignment, we conduct experiments by varying the step number and
summarize the results in Table 4.

As the first training step of HASS is the same as EAGLE-2, we continually train EAGLE-2’s draft
model weights with the Top-K loss and consider it the baseline. Without harmonized context align-
ment (EAGLE-2 + Top-K), the draft model performs the worst across all datasets. Training with 3/4

8

Published as a conference paper at ICLR 2025

steps of harmonized context alignment generally obtains the most considerable acceptance length.
When training with 5 steps of context alignment, the acceptance length decreases. We believe this
is caused by the draft model’s limited capacity, as it predicts less accurately on former steps’ tokens
when paying too much attention to the latter ones. Figure 5 shows the acceptance rate α across
speculation steps on the MT-bench dataset following Li et al. (2024c). In later speculation steps,
HASS performs better acceptance rates than EAGLE-2, demonstrating the effectiveness of harmo-
nized context alignment.

0- 1- 2- 3- 4- 5-
LLaMA2-Chat 7B T=0

55

60

65

70

75

0- 1- 2- 3- 4- 5-
LLaMA2-Chat 13B T=0

55

60

65

70

75

0- 1- 2- 3- 4- 5-
LLaMA3-Instruct 8B T=0

55

60

65

70

75

0- 1- 2- 3- 4- 5-
LLaMA3-Instruct 70B T=0

55

60

65

70

75 HASS EAGLE-2

0- 1- 2- 3- 4- 5-
LLaMA2-Chat 7B T=1

55

60

65

70

75

0- 1- 2- 3- 4- 5-
LLaMA2-Chat 13B T=1

55

60

65

70

75

0- 1- 2- 3- 4- 5-
LLaMA3-Instruct 8B T=1

55

60

65

70

75

0- 1- 2- 3- 4- 5-
LLaMA3-Instruct 70B T=1

55

60

65

70

75

Figure 5: Acceptance rates α (%) of HASS and EAGLE-2 across different speculation steps on the
MT-bench dataset with temperature T ∈ {0, 1}.

As shown in Figure 5, the acceptance rates of HASS decrease compared to EAGLE-2 on LLaMA2-
Chat 13B and LLaMA3-Instruct 70B at the first step (0-α). The draft models degrade on the first
speculation step with much attention paid to the latter speculation steps, while the first step’s ac-
ceptance rates are crucial to larger acceptance lengths. We conduct experiments to emphasize the
significance of former speculation steps by reweighting the training loss from each step with a factor
β. In specific, the step j’s training loss will be multiplied by βj−1. Table 5 and Figure 6 show the ac-
ceptance lengths and acceptance rates of HASS with different reweight factors on LLaMA3-Instruct
70B over the MT-bench dataset, respectively. With the factor β decreasing from 1.0 to 0.5, HASS
achieves better acceptance lengths with different temperatures. Correspondingly, we perceive that
the acceptance rate at the first speculation step is consistently higher with a smaller β, while the
acceptance rates at the latter speculation steps generally decline. When the factor β decreases to 0.3,
too much emphasis is assigned to the first speculation step, leading to deterioration in acceptance
length. Since the further exploration of an appropriate trade-off between different speculation steps
is out of this paper’s scope, we leave it for future work.

Reweight Factor β T = 0 T = 1 Mean

1.0 (Default) 4.62 4.59 4.61
0.7 4.65 4.61 4.63
0.5 4.67 4.62 4.65
0.3 4.65 4.61 4.63

Table 5: Acceptance lengths τ of HASS with
different reweight factors β for harmonized con-
text alignment. The results are conducted
on LLaMA3-Instruct 70B over the MT-bench
dataset with temperature T ∈ {0, 1}.

0- 1- 2- 3- 4- 5-
LLaMA3-Instruct 70B T=0

66

68

70

72

0- 1- 2- 3- 4- 5-
LLaMA3-Instruct 70B T=1

66

68

70

72
 = 1.0
 = 0.7

 = 0.5
 = 0.3

Figure 6: Acceptance rates α (%) of HASS
with different reweight factors β for harmonized
context alignment. The results are conducted
on LLaMA3-Instruct 70B over the MT-bench
dataset with temperature T ∈ {0, 1}.

5 RELATED WORK

There have been a number of works on improving the acceptance rate of speculative sampling while
maintaining the target distribution. Most of them fall into two categories. (1) The former category

9

Published as a conference paper at ICLR 2025

is aligned training that tries to obtain draft models aligned with the target LLM before the decoding
stage. Zhou et al. (2024) propose a knowledge distillation approach and study several strategies
to improve the alignment. Li et al. (2024b) demonstrate that hidden states of the target LLM as
input of the draft model provide extra feature uncertainty information. Xiao et al. (2024) also utilize
hidden states of the target LLM and introduce an RNN-based draft model design that achieves a
comparable acceptance rate. GLIDE (Du et al., 2024) instead reuses the KV cache of the target
LLM. It also notices the context misalignment when using information from the target LLM, but
the proposed blockwise attention mask method can not solve the misalignment completely. (2)
The latter category is efficient decoding, which designs sophisticated decoding strategies to utilize
concurrency efficiently. Miao et al. (2024) propose to utilize multiple draft models and design a tree-
based attention mechanism to verify multiple draft sequences efficiently. Li et al. (2024c) introduce
a dynamic structure to save computation by pruning inefficient paths in the draft tree. Sun et al.
(2024) study improving the verification stage through optimal transportation. However, these works
tend to only consider training or decoding, ignoring the linkage of these two stages. This work
instead aims to link training and decoding, leading to harmonized speculative sampling.

6 CONCLUSION

This paper introduces HASS, a harmonized speculative sampling solution that addresses dishar-
monies between training and decoding on their objectives and contexts. Compared to its closest
baseline, EAGLE-2, HASS improves the acceptance rate without any inference overhead. Experi-
ments conducted on LLaMA2-Chat 7/13B and LLaMA3-Instruct 8/70B demonstrate the effective-
ness and efficiency of HASS. Averaging on MT-bench, HumanEval, and GSM8K, HASS is 2.81x-
4.05x faster than vanilla auto-regressive decoding, 8%-20% faster than EAGLE-2.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv, 2023.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, volume 28, 2015.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple LLM inference acceleration framework with multiple decoding heads. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv, 2021.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, and Yang You. Glide with a cape: A low-hassle method to accelerate
speculative decoding. In Proceedings of the 41st International Conference on Machine Learning,
2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 889–898, 2018.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency of llm
inference using lookahead decoding, November 2023. URL https://lmsys.org/blog/
2023-11-21-lookahead-decoding/.

10

https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/

Published as a conference paper at ICLR 2025

John L Hennessy and David A Patterson. Computer architecture: A quantitative approach. Elsevier,
2011.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In Proceedings of the 8th International Conference on Learning Representations,
2020.

Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 6(2):213–226, 1981.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th International Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Minchong Li, Feng Zhou, and Xiaohui Song. Bild: Bi-directional logits difference loss for large
language model distillation. arXiv, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv, 2024c.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932–949, 2024.

Yash Patel, Giorgos Tolias, and Jiřı́ Matas. Recall@ k surrogate loss with large batches and sim-
ilarity mixup. In Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7502–7511, 2022.

Apoorv Saxena. Prompt lookup decoding, November 2023. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. In Advances in Neural Information
Processing Systems, volume 36, 2024.

Jiaxi Tang and Ke Wang. Ranking distillation: Learning compact ranking models with high per-
formance for recommender system. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2289–2298, 2018.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv, 2023.

Chaojun Wang and Rico Sennrich. On exposure bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 3544–3552, 2020.

Bin Xiao, Lujun Gui, Lei Su, and Weipeng Chen. Clover-2: Accurate inference for regressive
lightweight speculative decoding. arXiv, 2024.

Euiin Yi, Taehyeon Kim, Hongseok Jeung, Du-Seong Chang, and Se-Young Yun. Towards fast
multilingual LLM inference: Speculative decoding and specialized drafters. In Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 10789–10802,
November 2024. URL https://aclanthology.org/2024.emnlp-main.602.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. In Advances in Neural Information Processing Systems, volume 36, 2024.

11

https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://aclanthology.org/2024.emnlp-main.602

Published as a conference paper at ICLR 2025

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. In Proceedings of the 12th International Conference on
Learning Representations, 2024.

12

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION OF HARMONIZED CONTEXT ALIGNMENT

We present the pseudo code of harmonized context alignment, which is implemented without the
customized attention mask, for better understanding. The actual implementation in our experiments
is achieved by the customized attention mask as shown in Figure 3.

1 def train_batch(
2 draft_model, # draft model
3 lm_head, # language model head
4 optimizer, # optimizer
5 forward_num, # aligning steps in harmonized context alignment
6 hidden_states_target, # target LLM’s feature
7 input_ids, # input tokens
8):
9 hidden_states_draft_list = []

10 for forward_idx in range(forward_num):
11 optimizer.zero_grad()
12 predict = draft_model(hidden_states_target, input_ids, hidden_states_draft_list)
13 hidden_states_draft = torch.cat([hidden_states_target[:, :1], predict[:, :-1]], dim=1).detach()
14 hidden_states_draft_list.append(hidden_states_draft)
15 target_head, pred_head = lm_head(hidden_states_target), lm_head(predict)
16 loss = feature_loss(hidden_states_target, predict) + logit_loss(target_head, pred_head)
17 loss.backward()
18 optimizer.step()

1 def attention(
2 hidden_states_target, # target LLM’s feature
3 attention_mask, # causal attention mask
4 hidden_states_draft_list, # list of draft model’s features
5):
6 bs, seq_len = hidden_states_target.shape[0], hidden_states_target.shape[1]
7 query = q_proj(hidden_states_draft_list[-1]) if hidden_states_draft_list else q_proj(hidden_states_target)
8 key_t, value_t = k_proj(hidden_states_target), v_proj(hidden_states_target)
9 attn_weight = torch.matmul(query, key_t.transpose(2, 3)) / math.sqrt(query.shape[-1]) + attention_mask

10 indices = torch.arange(seq_len)
11 for i, hidden_states_draft in enumerate(hidden_states_draft_list[::-1]):
12 key_d, ind_q, ind_k = k_proj(hidden_states_draft), indices[i:], indices[:seq_len - i]
13 attn_weight_d = torch.matmul(query, key_d.transpose(2, 3)) / math.sqrt(query.shape[-1])
14 attn_weight[:, :, ind_q, ind_k] = attn_weight_d[:, :, ind_q, ind_k]
15 attn_weight_normed = F.softmax(attn_weight, dim=-1)
16 attn_output = torch.matmul(attn_weight_normed, value_t)
17 for i, hidden_states_draft in enumerate(hidden_states_draft_list[::-1]):
18 value_d, ind_q, ind_k = v_proj(hidden_states_draft), indices[i:], indices[:seq_len - i]
19 attn_output[:, :, ind_q] += attn_weight[:, :, ind_q, ind_k][..., None] * (value_d[:, :, ind_k] -

value_t[:, :, ind_k])
20 attn_output = o_proj(attn_output.transpose(1, 2).reshape(bs, seq_len, -1))
21 return attn_output

13

Published as a conference paper at ICLR 2025

A.2 HARMONIZED CONTEXT ALIGNMENT ON TOKENS

In this section, we attempt to verify whether applying token alignment as well as feature alignment
brings better performance. In specific, we use the tokens generated by the draft model for training
in harmonized context alignment instead of using the tokens from training data. We apply feature
and token alignment to EAGLE-2’s draft model weights and summarize the results in Table 6 and
Figure 7.

Temperature = 0 Temperature = 1 Mean

EAGLE-2 4.44 4.23 4.34
Feature Only 4.83 4.60 4.72

Feature + Token (0.1) 4.81 4.57 4.69
Feature + Token (0.2) 4.78 4.51 4.65
Feature + Token (1.0) 4.28 4.11 4.20

Table 6: Acceptance lengths τ of applying feature and token alignment to EAGLE-2’s draft model
weights, where ‘Token (x)’ denotes tokens from training data being replaced by draft-model-
generated tokens with a probability of x. The results are conducted on LLaMA2-Chat 7B over
the MT-bench dataset with temperature T ∈ {0, 1}.

0- 1- 2- 3- 4- 5-
LLaMA2-Chat 7B T=0

64

66

68

70

72

74

0- 1- 2- 3- 4- 5-
LLaMA2-Chat 7B T=1

64

66

68

70

72

74
Feature Only
Feature + Token (0.1)
Feature + Token (0.2)

Figure 7: Acceptance rates α (%) of applying feature and token alignment to EAGLE-2’s draft
model weights, where ‘Token (x)’ denotes tokens from training data being replaced by draft-model-
generated tokens with a probability of x. The results are conducted on LLaMA2-Chat 7B over the
MT-bench dataset with temperature T ∈ {0, 1}.

Feature only alignment brings the best performance, while adding token alignment leads to degen-
eration. With the probability of applying token alignment increasing from 0.1 to 1.0, the acceptance
length decreases consistently. As shown in Figure 7, more token alignment generally causes lower
acceptance rates. As a result, training with tokens generated by the draft model in harmonized
context alignment hurts the acceleration performance.

14

Published as a conference paper at ICLR 2025

A.3 HYPER-PARAMETERS OF TOP-K LOSS

We conduct an ablation study on Top-K loss’s hyper-parameters, i.e., K and w, in Section 4.2.2 and
show the averaged acceptance lengths over three datasets in Figure 4. Here, we present the speedup
ratios and acceptance lengths of HASS with varied Ks and ws in Table 7.

MT-bench HumanEval GSM8K Mean

K w Speedup τ Speedup τ Speedup τ Speedup τ

T=0

1 1.0 2.89x 4.94 3.24x 5.19 3.11x 5.10 3.08x 5.08
5 1.0 2.90x 5.00 3.44x 5.29 3.33x 5.18 3.22x 5.16

10 1.0 2.99x 4.99 3.41x 5.29 3.32x 5.17 3.24x 5.15
50 1.0 2.85x 5.01 3.46x 5.29 3.41x 5.17 3.24x 5.16
100 1.0 2.93x 5.00 3.45x 5.29 3.45x 5.18 3.28x 5.16
10 0.0 2.77x 4.93 3.38x 5.22 3.18x 5.11 3.11x 5.09
10 0.1 2.98x 4.96 3.40x 5.26 3.51x 5.16 3.30x 5.13
10 0.2 2.87x 4.98 3.41x 5.29 3.35x 5.16 3.21x 5.14
10 0.5 3.00x 5.02 3.32x 5.31 3.50x 5.18 3.27x 5.17
10 2.0 2.94x 4.98 3.37x 5.29 3.34x 5.17 3.22x 5.15

T=1

1 1.0 2.58x 4.70 2.79x 4.80 2.83x 4.95 2.73x 4.82
5 1.0 2.64x 4.81 3.13x 4.94 2.93x 5.02 2.90x 4.92

10 1.0 2.70x 4.84 3.13x 4.91 2.87x 5.01 2.90x 4.92
50 1.0 2.62x 4.77 3.01x 4.88 2.99x 5.03 2.87x 4.89
100 1.0 2.66x 4.74 3.14x 4.97 2.90x 5.03 2.90x 4.91
10 0.0 2.61x 4.71 2.76x 4.84 2.79x 4.96 2.72x 4.84
10 0.1 2.69x 4.75 3.05x 4.94 2.87x 5.00 2.87x 4.90
10 0.2 2.66x 4.75 3.16x 4.95 2.88x 5.01 2.90x 4.90
10 0.5 2.68x 4.80 3.15x 4.93 2.96x 5.03 2.93x 4.92
10 2.0 2.68x 4.75 3.11x 4.89 2.89x 5.03 2.89x 4.89

Table 7: Speedup ratios and acceptance lengths τ of HASS with varied Ks and ws of the Top-K
loss on LLaMA2-Chat 7B over MT-bench, HumanEval, and GSM8K datasets with temperature T
∈ {0, 1}.

15

Published as a conference paper at ICLR 2025

A.4 SELF-DISTILLATION

In the main text, we use the fixed ShareGPT dataset to train draft models for a fair comparison
with EAGLE and EAGLE-2. Following existing speculative sampling methods (Zhou et al., 2024;
Cai et al., 2024), we further use target-model-generated outputs to distill the draft model from the
target model’s real output distribution, dubbed as self-distillation. In specific, we feed the prompts
from the ShareGPT dataset into the target models recursively with temperature set to 0 and collect
the responses as multi-turn conversations for self-distillation following Li et al. (2024b). To study
the effect of self-distillation, we conduct experiments on HASS and EAGLE-2 by training the draft
model with fixed data or model-generated data and summarize the results in Table 8.

MT-bench HumanEval GSM8K Mean

Model Method Data Speedup τ Speedup τ Speedup τ Speedup τ

T=0

L2 7B
EAGLE-2 F 2.66x 4.44 3.06x 4.78 2.72x 4.60 2.81x 4.61

MG 2.86x 4.70 3.30x 5.12 3.03x 5.00 3.06x(+0.25) 4.94(+0.33)

HASS F 2.99x 4.99 3.41x 5.29 3.32x 5.17 3.24x 5.15
MG 3.13x 5.25 3.85x 5.70 3.40x 5.57 3.46x(+0.22) 5.51(+0.36)

L2 13B
EAGLE-2 F 3.02x 4.74 3.64x 5.57 3.23x 5.17 3.30x 5.16

MG 3.04x 4.80 3.47x 5.46 3.19x 5.16 3.23x(-0.07) 5.14(-0.02)

HASS F 3.23x 5.13 4.24x 6.05 3.48x 5.55 3.65x 5.58
MG 3.34x 5.27 4.42x 6.00 3.63x 5.61 3.80x(+0.15) 5.63(+0.05)

T=1

L2 7B
EAGLE-2 F 2.39x 4.23 2.87x 4.47 2.54x 4.50 2.60x 4.40

MG 2.49x 4.38 2.94x 4.73 2.69x 4.80 2.71x(+0.11) 4.64(+0.24)

HASS F 2.70x 4.84 3.13x 4.91 2.87x 5.01 2.90x 4.92
MG 2.75x 4.97 3.39x 5.24 3.13x 5.35 3.09x(+0.19) 5.19(+0.27)

L2 13B
EAGLE-2 F 3.04x 4.60 3.45x 5.41 3.13x 5.03 3.21x 5.01

MG 3.08x 4.63 3.23x 5.25 3.04x 4.95 3.12x(-0.09) 4.94(-0.07)

HASS F 3.28x 4.98 3.78x 5.86 3.37x 5.41 3.48x 5.42
MG 3.33x 5.02 3.76x 5.80 3.60x 5.42 3.56x(+0.08) 5.41(-0.01)

Table 8: Speedup ratios and acceptance lengths τ of HASS and EAGLE-2 with fixed or target-
model-generated training data. F and MG stand for ‘Fixed’ and ‘Model-Generated’, respectively.
L2 represents LLaMA2-Chat.

On LLaMA2-Chat 7B, self-distillation consistently brings improvements for HASS and EAGLE-
2. On LLaMA2-Chat 13B, self-distillation only achieves marginally better or comparable results,
which is consistent with the observation from Li et al. (2024b) (‘data from the target LLM marginally
improves performance’ in its section 4.3.3). Especially, the acceptance lengths of the self-distilled
HASS are lower than that of the vanilla HASS on the HumanEval dataset, while both the speedup ra-
tios and acceptance lengths of the self-distilled EAGLE-2 are lower than that of the vanilla EAGLE-2
on HumanEval and GSM8K datasets. It may be due to the code generation dataset HumanEval and
the mathematical reasoning dataset GSM8K being less similar to the training dataset ShareGPT
compared with MT-bench.

HASS outperforms EAGLE-2 on either fixed training data or model-generated training data. It
is noted that HASS trained on the fixed dataset even achieves better performance than EAGLE-2
trained on the model-generated data consistently. With self-distillation, HASS consistently achieves
more improvement or less degeneration in terms of the acceptance length compared with EAGLE-2.

16

Published as a conference paper at ICLR 2025

A.5 DRAFTING HYPER-PARAMETERS

Li et al. (2024c) find that the draft token’s confidence score is strongly positively correlated with
the acceptance rate, and accordingly propose the context-aligned dynamic draft tree, which can be
dynamically adjusted with two hyper-parameters: ‘depth’ and ‘number of tokens’. ‘Depth’ decides
the draft tree’s depth during the expansion phase, while ‘number of tokens’ decides how many
draft tokens will be kept during the reranking phase. Increasing both these hyper-parameters surely
leads to a larger acceptance length. Nevertheless, sending more draft tokens into the target model for
verification causes a higher overhead in real applications. Therefore, we vary these hyper-parameters
and report the speedup ratios in Table 9 to find a better trade-off.

Depth 5 6 7 8 9
Tokens 40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100

T=0
L2 7B EAGLE-2 2.48x 2.78x 2.61x 2.69x 2.69x 2.66x 2.70x 2.79x 2.71x 2.86x 2.91x 2.95x 2.60x 2.60x 2.88x 2.89x 2.28x 2.54x 2.55x 2.65x

HASS-MG 3.09x 3.02x 3.04x 3.22x 3.08x 3.13x 3.19x 3.22x 3.14x 3.11x 3.29x 3.27x 3.07x 3.16x 3.31x 3.32x 2.78x 2.75x 2.95x 3.03x

L2 13B EAGLE-2 2.63x 2.96x 3.04x 3.06x 3.01x 3.02x 3.18x 3.22x 2.78x 3.12x 3.14x 3.24x 2.98x 3.12x 3.19x 3.26x 2.49x 2.64x 2.69x 2.72x
HASS-MG 3.25x 3.31x 3.24x 3.25x 3.33x 3.34x 3.49x 3.40x 3.19x 3.42x 3.36x 3.40x 3.15x 3.40x 3.40x 3.37x 2.70x 2.74x 3.09x 3.02x

T=1
L2 7B EAGLE-2 2.31x 2.37x 2.55x 2.36x 2.42x 2.39x 2.33x 2.40x 2.49x 2.66x 2.65x 2.44x 2.36x 2.48x 2.38x 2.64x 2.29x 2.22x 2.27x 2.42x

HASS-MG 2.79x 2.89x 2.86x 2.88x 2.72x 2.75x 2.92x 2.82x 2.83x 2.76x 2.81x 2.75x 2.49x 2.68x 2.77x 2.77x 2.30x 2.35x 2.58x 2.50x

L2 13B EAGLE-2 2.92x 3.11x 2.88x 2.79x 3.06x 3.04x 3.16x 2.93x 3.05x 3.14x 3.14x 3.11x 3.00x 3.13x 3.15x 2.98x 2.61x 2.72x 2.65x 2.54x
HASS-MG 3.24x 3.30x 3.27x 3.19x 3.33x 3.33x 3.40x 3.28x 3.19x 3.26x 3.24x 3.26x 3.15x 3.26x 3.19x 3.17x 2.62x 2.77x 2.74x 2.84x

Table 9: Speedup ratios of EAGLE-2 and HASS-MG with varied depths and numbers of tokens on
the MT-bench dataset with temperature T ∈ {0, 1}, where HASS-MG denotes HASS trained with
self-distillation. L2 represents LLaMA2-Chat.

When ‘depth’ = 5, the acceptance length is relatively small. When ‘depth’ = 9, the verification
overhead is extremely high. Thus, neither of these settings achieves a promising speedup ratio. For
both HASS-MG and EAGLE-2, the best performances are achieved when ‘depth’ ∈ {6, 7, 8} and
‘# tokens’ ∈ {60, 80, 100}. HASS-MG consistently obtains a superior performance compared with
EAGLE-2 through hyper-parameter tuning across different LLMs and temperatures.

17

Published as a conference paper at ICLR 2025

A.6 NUMBER OF TRAINING TOKENS

Inspired by Yi et al. (2024), we randomly sample different proportions of the training dataset, i.e.,
the ShareGPT dataset with 68,000 dialogues, to investigate the influences of training token numbers.
In specific, we train the draft models of HASS and EAGLE-2 with 1/8, 1/4, 1/2 and the entire
ShareGPT dataset and summarize the results in Figure 8 and Table 10.

1/8 1/4 1/2 1/1
LLaMA2-Chat 7B

3

4

5

6

A
cc

ep
ta

nc
e

Le
ng

th

1/8 1/4 1/2 1/1
LLaMA2-Chat 13B

3

4

5

6

1/8 1/4 1/2 1/1
LLaMA3-Instruct 8B

3

4

5

6

1/8 1/4 1/2 1/1
LLaMA3-Instruct 70B

3

4

5

6

1/8 1/4 1/2 1/1
LLaMA2-Chat 7B

2

3

4

S
pe

ed
up

 R
at

io

1/8 1/4 1/2 1/1
LLaMA2-Chat 13B

2

3

4

1/8 1/4 1/2 1/1
LLaMA3-Instruct 8B

2

3

4

1/8 1/4 1/2 1/1
LLaMA3-Instruct 70B

2

3

4

HASS T=0
HASS T=1

EAGLE-2 T=0
EAGLE-2 T=1

Figure 8: Acceptance lengths τ and speedup ratios of HASS and EAGLE-2 averaging across MT-
bench, HumanEval, and GSM8K with different proportions of training dataset, i.e., the ShareGPT
dataset with 68,000 dialogues.

As shown from Figure 8, HASS consistently outperforms EAGLE-2 under different proportions
of training dataset with temperature T ∈ {0, 1}. HASS with merely 1/4 training dataset achieves
better or comparable performance compared to EAGLE-2 with the entire training dataset, which
demonstrates HASS’s superior data exploitation and scalability obtained through further aligning on
objectives and contexts between training and decoding. The speedup ratio and acceptance length of
HASS and EAGLE-2 are approximately logarithmically proportional to the scale of training data,
which is consistent with the finding in Yi et al. (2024). As shown from Table 10, the decrease in
training data contributes to more severe degradation on EAGLE-2 than that on HASS, reflecting
HASS’s robustness to data sparsity.

18

Published as a conference paper at ICLR 2025

MT-bench HumanEval GSM8K Mean

Model Method Proportion Speedup τ Speedup τ Speedup τ Speedup τ

T=0

L2 7B

EAGLE-2

1/8 1.74x 3.06 2.00x 3.39 2.12x 3.24 1.95x 3.23
1/4 2.08x 3.64 2.49x 3.93 2.21x 3.81 2.26x 3.79
1/2 2.36x 4.11 2.76x 4.46 2.64x 4.28 2.59x 4.28
1/1 2.66x 4.44 3.06x 4.78 2.72x 4.60 2.81x 4.61

HASS

1/8 2.32x 3.92 2.69x 4.30 2.56x 4.12 2.52x 4.11
1/4 2.64x 4.42 3.05x 4.76 2.70x 4.59 2.80x 4.59
1/2 2.85x 4.79 3.36x 5.05 3.18x 4.94 3.13x 4.93
1/1 2.99x 4.99 3.41x 5.29 3.32x 5.17 3.24x 5.15

L2 13B

EAGLE-2

1/8 1.88x 3.25 2.39x 3.79 2.27x 3.57 2.18x 3.54
1/4 2.38x 3.82 2.85x 4.53 2.79x 4.25 2.67x 4.20
1/2 2.74x 4.32 3.46x 5.18 3.08x 4.81 3.09x 4.77
1/1 3.02x 4.74 3.64x 5.57 3.23x 5.17 3.30x 5.16

HASS

1/8 2.59x 4.01 3.37x 4.79 3.01x 4.43 2.99x 4.41
1/4 2.89x 4.55 3.59x 5.51 3.18x 5.00 3.22x 5.02
1/2 3.16x 4.90 4.20x 5.86 3.41x 5.31 3.59x 5.36
1/1 3.23x 5.13 4.24x 6.05 3.48x 5.55 3.65x 5.58

L3 8B

EAGLE-2

1/8 1.54x 2.77 2.00x 3.12 1.61x 2.83 1.72x 2.91
1/4 1.89x 3.18 2.30x 3.59 2.08x 3.35 2.09x 3.37
1/2 2.24x 3.68 2.64x 4.16 2.42x 3.91 2.43x 3.92
1/1 2.64x 4.21 3.31x 4.93 2.54x 4.42 2.83x 4.52

HASS

1/8 2.14x 3.61 2.84x 4.22 2.30x 3.78 2.43x 3.87
1/4 2.46x 4.04 3.24x 4.83 2.48x 4.27 2.73x 4.38
1/2 2.72x 4.43 3.38x 5.28 2.99x 4.71 3.03x 4.81
1/1 2.78x 4.68 3.43x 5.54 3.06x 5.02 3.09x 5.08

L3 70B

EAGLE-2

1/8 2.09x 2.87 2.72x 3.45 2.29x 2.92 2.37x 3.08
1/4 2.47x 3.33 3.25x 4.01 2.71x 3.46 2.81x 3.60
1/2 2.76x 3.74 3.71x 4.57 3.11x 3.96 3.19x 4.09
1/1 2.94x 4.10 3.98x 5.02 3.19x 4.37 3.37x 4.50

HASS

1/8 2.73x 3.68 3.79x 4.61 3.10x 3.95 3.21x 4.08
1/4 3.05x 4.12 4.23x 5.18 3.56x 4.54 3.61x 4.61
1/2 3.27x 4.40 4.52x 5.57 3.87x 4.92 3.89x 4.96
1/1 3.40x 4.62 4.68x 5.78 4.08x 5.24 4.05x 5.21

T=1

L2 7B

EAGLE-2

1/8 1.60x 2.99 1.90x 3.21 1.86x 3.17 1.79x 3.12
1/4 1.89x 3.48 2.28x 3.71 2.27x 3.71 2.15x 3.63
1/2 2.26x 3.93 2.57x 4.14 2.46x 4.17 2.43x 4.08
1/1 2.39x 4.23 2.87x 4.47 2.54x 4.50 2.60x 4.40

HASS

1/8 2.19x 3.82 2.50x 4.06 2.41x 4.03 2.37x 3.97
1/4 2.50x 4.27 2.84x 4.46 2.61x 4.52 2.65x 4.42
1/2 2.63x 4.56 3.10x 4.75 2.81x 4.81 2.85x 4.71
1/1 2.70x 4.84 3.13x 4.91 2.87x 5.01 2.90x 4.92

L2 13B

EAGLE-2

1/8 1.91x 3.16 2.18x 3.71 2.23x 3.46 2.11x 3.44
1/4 2.31x 3.68 2.72x 4.40 2.77x 4.11 2.60x 4.06
1/2 2.78x 4.20 3.19x 5.00 3.08x 4.67 3.02x 4.62
1/1 3.04x 4.60 3.45x 5.41 3.13x 5.03 3.21x 5.01

HASS

1/8 2.49x 3.94 2.98x 4.70 2.99x 4.33 2.82x 4.32
1/4 2.87x 4.43 3.40x 5.35 3.11x 4.87 3.13x 4.88
1/2 3.22x 4.75 3.70x 5.69 3.26x 5.18 3.39x 5.21
1/1 3.28x 4.98 3.78x 5.86 3.37x 5.41 3.48x 5.42

L3 8B

EAGLE-2

1/8 1.51x 2.64 1.63x 3.01 1.64x 2.81 1.59x 2.82
1/4 1.77x 2.99 1.87x 3.51 1.92x 3.29 1.85x 3.26
1/2 1.90x 3.40 2.25x 4.03 2.38x 3.82 2.18x 3.75
1/1 2.39x 3.90 2.54x 4.73 2.48x 4.30 2.47x 4.31

HASS

1/8 1.96x 3.42 2.31x 4.10 2.25x 3.72 2.17x 3.75
1/4 2.22x 3.77 2.51x 4.63 2.45x 4.18 2.39x 4.19
1/2 2.43x 4.10 2.96x 5.07 2.82x 4.56 2.74x 4.58
1/1 2.49x 4.26 3.05x 5.30 2.89x 4.85 2.81x 4.80

L3 70B

EAGLE-2

1/8 2.16x 2.85 2.52x 3.35 2.19x 2.91 2.29x 3.04
1/4 2.26x 3.29 3.01x 3.94 2.57x 3.44 2.61x 3.56
1/2 2.70x 3.67 3.37x 4.47 3.00x 3.94 3.02x 4.03
1/1 3.02x 4.00 3.61x 4.93 3.21x 4.35 3.28x 4.43

HASS

1/8 2.80x 3.70 3.46x 4.52 2.98x 3.93 3.08x 4.05
1/4 3.10x 4.10 3.90x 5.11 3.41x 4.51 3.47x 4.57
1/2 3.28x 4.36 4.15x 5.46 3.72x 4.91 3.72x 4.91
1/1 3.43x 4.59 4.25x 5.68 3.87x 5.20 3.85x 5.16

Table 10: Speedup ratios and acceptance lengths τ of HASS and EAGLE-2 with different propor-
tions of training dataset, i.e., the ShareGPT dataset with 68,000 dialogues. L2 represents LLaMA2-
Chat, while L3 represents LLaMA3-Instruct.

19

Published as a conference paper at ICLR 2025

A.7 EVALUATION ON TRANSLATION TASKS

To investigate the robustness of HASS across different task types, we further evaluate HASS and
EAGLE-2 on five translation tasks3 by following Yi et al. (2024). It is noted that both HASS and
EAGLE-2 are trained on the fixed ShareGPT dataset without adaptation for translation tasks. We
conduct experiments on LLaMA2-Chat 7/13B and LLaMA3-Instruct 8/70B and summarize the re-
sults in Table 11.

De→En Fr→En Ja→En Ru→En Zh→En Mean
Model Method Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

T=0

L2 7B EAGLE-2 2.58x 4.06 2.47x 3.99 2.46x 3.79 2.23x 3.48 2.39x 3.68 2.43x 3.80
HASS 3.15x 4.55 2.99x 4.60 2.97x 4.26 2.64x 3.82 2.83x 4.10 2.92x 4.27

L2 13B EAGLE-2 2.95x 4.51 3.00x 4.41 2.67x 3.80 2.61x 3.65 2.60x 3.92 2.77x 4.06
HASS 3.63x 5.01 3.64x 4.94 3.05x 4.07 3.06x 4.03 3.02x 4.22 3.28x 4.45

L3 8B EAGLE-2 2.59x 3.89 2.34x 3.96 1.91x 2.97 1.90x 3.25 2.03x 3.17 2.15x 3.45
HASS 2.98x 4.30 2.79x 4.21 2.21x 3.19 2.28x 3.53 2.32x 3.38 2.52x 3.72

L3 70B EAGLE-2 3.10x 4.17 3.13x 4.07 2.35x 3.16 2.79x 3.76 2.52x 3.39 2.78x 3.71
HASS 3.75x 4.71 3.61x 4.47 2.67x 3.41 3.39x 4.25 2.84x 3.72 3.25x 4.12

T=1

L2 7B EAGLE-2 2.26x 3.86 2.41x 3.91 2.09x 3.58 1.98x 3.34 2.25x 3.61 2.20x 3.66
HASS 2.80x 4.44 2.99x 4.59 2.66x 4.11 2.53x 3.74 2.65x 4.05 2.73x 4.19

L2 13B EAGLE-2 2.97x 4.29 2.77x 4.31 2.45x 3.73 2.33x 3.51 2.47x 3.72 2.60x 3.91
HASS 3.45x 4.88 3.22x 4.84 3.02x 4.13 2.79x 3.97 2.83x 4.01 3.06x 4.37

L3 8B EAGLE-2 2.23x 3.67 2.21x 3.69 1.85x 2.79 1.94x 3.15 1.89x 3.03 2.02x 3.27
HASS 2.80x 4.13 2.73x 4.08 2.21x 3.18 2.35x 3.54 2.11x 3.34 2.44x 3.65

L3 70B EAGLE-2 2.97x 4.02 2.95x 3.89 2.37x 3.16 2.72x 3.65 2.44x 3.34 2.69x 3.61
HASS 3.71x 4.67 3.49x 4.38 2.83x 3.47 3.25x 4.11 2.75x 3.70 3.21x 4.07

Table 11: Speedup ratios and acceptance lengths τ of HASS and EAGLE-2 on five translation tasks,
where draft models are trained with the fixed ShareGPT dataset. De, Fr, Ja, Ru, Zh, and En stand for
German, French, Japanese, Russian, Chinese, and English, respectively. L2 represents LLaMA2-
Chat, while L3 represents LLaMA3-Instruct.

As shown from Table 11, HASS consistently outperforms EAGLE-2 under all settings. HASS
achieves 2.44x-3.28x wall-clock time speedup ratio averaging across five translation tasks, surpass-
ing EAGLE-2 by 17%-24%. In terms of acceptance length, HASS achieves 8%-14% improvement
over EAGLE-2. In consistent with results on dialogue (MT-bench), code generation (HumanEval),
and mathematical reasoning (GSM8K) tasks, HASS shows promising improvements over EAGLE-2
on translation tasks, reflecting its robustness across different task types.

3https://github.com/Kthyeon/Multilingual-SpecBench

20

Published as a conference paper at ICLR 2025

A.8 TRAINING OVERHEAD

As shown from Table 4, training with 3/4 steps of harmonized context alignment generally obtains
the most considerable acceptance length, and so the aligning step of HASS is fixed to 3 (Standard)
in this paper unless stated otherwise. To investigate the actual training overhead of HASS, we train
draft models for LLaMA2-Chat 7/13B and LLaMA3-Instruct 8/70B on a single NVIDIA H800
GPU with batch size set to 2 and varied aligning steps, and summarize the results of training speed,
computational cost, and GPU memory in Figures 9, 10, and 11, respectively. It is worth mentioning
that the training overhead of HASS with 1 aligning step is the same as that of EAGLE-2.

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5
0

1

2

3

4

5

6

7

8

Tr
ai

ni
ng

 S
pe

ed
 (b

at
ch

/s
) 6.07

5.56

3.93

2.61

1.78

LLaMA2-Chat 7B

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5
0

1

2

3

4

5

6

7

8

4.70 4.61

3.09

2.04
1.46

LLaMA2-Chat 13B

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5
0

1

2

3

4

5

6

7

8

6.75

5.39

3.53

2.46
1.77

LLaMA3-Instruct 8B

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5
0

1

2

3

4

5

6

7

8

2.97
2.62

1.77
1.24 0.92

LLaMA3-Instruct 70B

Figure 9: Training speed (batch/s) of HASS with varied aligning steps, where the speed of Align-1
is the same as that of EAGLE/EAGLE-2.

The training speed is evaluated by how many batches can be processed in one second, i.e., batch/s,
and the ratio between Align-1 and Align-j represents how much training time needed for executing
the same amount of training data compared to EAGLE-2. As shown from Figure 9, the training speed
decreases with more aligning steps. However, the actual training time of standard HASS (Align-3) is
only 66.34% more than EAGLE-2 averaging over four target models, and the highest extra time cost
compared to EAGLE-2 is just 91.47% (on LLaMA3-Instruct 8B). The training overhead of HASS
is totally affordable, while HASS achieves superior performance and requires unchanged inference
overhead.

0 5 10 15 20

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

Fo
rw

ar
d

LLaMA2-Chat 7B

0 10 20 30

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

LLaMA2-Chat 13B

0 10 20 30 40

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

LLaMA3-Instruct 8B

0 20 40 60 80 100

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

LLaMA3-Instruct 70B

Constant Part
Attention Part
Others

0 20 40 60
TFLOPs

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

To
ta

l

0 20 40 60 80 100
TFLOPs

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

0 25 50 75 100
TFLOPs

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

0 100 200 300
TFLOPs

Align-1
(EAGLE)

Align-2

Align-3

Align-4

Align-5

Forward
Backward

Figure 10: Training FLOPs of HASS with varied aligning steps, where the computational cost of
Align-1 is the same as that of EAGLE/EAGLE-2. The upper figures show the FLOPs of the forward
pass, while the lower figures show the FLOPs in total (forward and backward passes).

The computational cost is evaluated by TFLOPs and can be divided into forward pass and backward
pass, we depict the cost of forward and backward passes in upper and lower figures in Figure 10,
respectively. The cost of forward pass is consisted of three parts:

• Constant part is invariant to the number of aligning steps. Mapping target LLM’s hidden
state into q(x) (refer to section 3.1) with the LM head for distilling the draft model is
included in constant part.

21

Published as a conference paper at ICLR 2025

• Attention part is linearly proportional to the hidden state number fed into the draft model,
which is accumulated across HASS training steps, i.e.,

∑j
i=1 i for Align-j. Fusing token

embeddings with hidden states, projecting hidden states into keys and values, and conduct-
ing attention operations between query and several kv-pairs sourced from different hidden
states are included in attention part.

• Others is linearly proportional to the number of aligning steps, i.e., j for Align-j. Compu-
tational costs except for constant and attention parts are included in others.

The cost of backward pass can be considered as (A + O) × 2, where A and O represent attention
part and others respectively, as the computation of constant part requires no gradient. Generally, the
standard HASS (Align-3) requires approximately 3x computational cost of EAGLE-2.

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5
6

8

10

12

14

16

18

20

G
P

U
 M

em
or

y
(G

B
)

LLaMA2-Chat 7B

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

LLaMA2-Chat 13B

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5

14

16

18

20

22

24

26

28
LLaMA3-Instruct 8B

Align-1
(EAGLE)

Align-2 Align-3 Align-4 Align-5

30

35

40

45

50

55

LLaMA3-Instruct 70B
Avg Peak

Figure 11: Training GPU memory of HASS with varied aligning steps, where the GPU memory of
Align-1 is the same as that of EAGLE/EAGLE-2. Avg and Peak stand for the average and peak GPU
memory across the training process, respectively.

The GPU memory is evaluated by GB and we report the average and peak GPU memory across
the training process. Both the average and peak GPU memory increase with more aligning steps.
The GPU memory requirement can be covered by a single NVIDIA H800 GPU even at Align-5 and
batch size set to 2.

22

	Introduction
	Preliminary
	Methodology
	Harmonized Objective Distillation
	Harmonized Context Alignment

	Experiment
	Experimental Setup
	Effectiveness & Ablation Study
	Effectiveness
	Ablation Study on Harmonized Objective Distillation
	Ablation Study on Harmonized Context Alignment

	Related Work
	Conclusion
	Appendix
	Implementation of Harmonized Context Alignment
	Harmonized Context Alignment on Tokens
	Hyper-Parameters of Top-K Loss
	Self-Distillation
	Drafting Hyper-Parameters
	Number of Training Tokens
	Evaluation on Translation Tasks
	Training Overhead

