
Under review as a conference paper at ICLR 2024

TOWARDS COMPLETELY EXPRESSIVE CAPACITY OF
MIXED MULTI-AGENT Q VALUE FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Value decomposition is an efficient approach to achieving centralized training with
decentralized execution in fully cooperative Multi-Agent Reinforcement Learning
(MARL) problems. Recently, Strictly Monotonic Mixing Function (SMMF) has
gained widespread application in value decomposition methods, but SMMF could
suffer from convergence difficulties for the representational limitation. This paper
investigates the circumstances under which the representational limitation occurs
and presents approaches to overcome it. We begin our investigation with Linear
Mixing Function (LMF), a simple case of SMMF. Firstly, we prove that LMF is
free from representational limitation only in a rare case of MARL problems. Sec-
ondly, we propose a two-stage mixing framework, which includes a difference
rescaling stage after SMMF to complete the representational capability. How-
ever, the capacity could remain unrealized for the cross interference between the
representation of different action-values. Finally, we introduce gradient shaping
to address this problem. The experimental results validate the expressiveness of
LMF and demonstrate the effectiveness of our proposed methods.

1 INTRODUCTION

Centralized training with decentralized execution (CTDE) (Oliehoek et al., 2008; Foerster et al.,
2016) shows surprising performance and great scalability in challenging fully cooperative multi-
agent tasks (Tan, 1993b). Such tasks only provide team rewards. Each agent is expected to deduce
its own contribution to the team, which introduces the problem of credit assignment (Lowe et al.,
2017; Foerster et al., 2018). A simple and efficient approach to achieving credit assignment in the
CTDE paradigm for value-based Multi-Agent Reinforcement Learning (MARL) is value decom-
position. Through value decomposition, a joint Q value function is factorized into a set of local
Q functions. The joint Q function is trained centrally to estimate the action-values (i.e., the ex-
pectation of accumulated rewards), whereas the local Q value functions are assigned to agents for
decentralized execution. The projection from local Q values to joint Q values is defined as the mix-
ing function. A critical principle of value decomposition is Independent Global Max (IGM), i.e.,
the identity between the joint greedy action and the set of local greedy actions (Son et al., 2019).
Strictly Monotonic Mixing Function (SMMF) is simple and exactly satisfies the IGM. As a result,
SMMF is widely applied in value decomposition methods (Rashid et al., 2020b;a).

However, the joint Q value function of SMMF is incapable to completely represent the correct
action-values in arbitrary MARL tasks, known as the problem of representational limitation (Rashid
et al., 2020a). A widely discussed case of SMMF is Linear Mixing Function (LMF). The representa-
tional limitation of LMF would introduce sub-optimal fixed-points (Wan et al., 2021) or even leads
to the divergence of the joint Q value function trained by Q-learning value iteration (Wang et al.,
2020a). The complete representation of the action-values is determined both by the complexity of
action-value function and the representational capacity of the joint Q value function. The former is
an inherent property of the task and the latter depends mainly on the form of the mixing function. In
this paper, we investigate the representational limitation from both perspectives. Our investigations
aim to answer the following questions: (1) In what kind of problems the representational limitation
occurs for LMF? (2) How to obtain mixing functions with complete representational capacity?

The joint Q value function of LMF is incapable to represent the action-value functions that are not
linearly factorizable. Previous works (Son et al., 2019; Rashid et al., 2020a) generally focus on
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the solutions to the representational limitation but neglect in what kind of problems the limitation
occurs. In section 3, we prove that the action-value function is linearly factorizable if and only if
the problem can be modelled as a decomposable MMDP, which is a rare case of MARL problems.
In words, LMF suffers from the representational limitation in most MARL tasks. In section 4.1, we
find the representational limitation of SMMF stems from the bounded difference between the joint
Q values of the greedy and other actions. Therefore, we propose a two-stage mixing framework,
namely Mixing for Unbounded Difference (MUD), which mixes and rescales the output differences
of multi-channel SMMFs into unbounded. MUD achieves complete representational capacity under
the IGM constraint. However, such capacity could remain unrealized for the representational cross
interference between different action-values, which is a fundamental problem of value decomposi-
tion. To address the problem, in section 4.2, we introduce gradient shaping in MUD and propose
two novel mixing functions. In experiments, we design a toy game to verify the linear factorizability
of the action-value function in decomposable MMDP. Besides, we evaluate the proposed mixing
functions across various benchmarks, demonstrating their superiority over baselines.

There are three contributions in this paper: (1) we are the first to prove a sufficient and necessary
condition for the occurrence of the representational limitation in LMF; (2) we propose a mixing
framework with complete representational capacity under the IGM constraint; (3) we propose a
fundamental problem of value decomposition, namely optimal representation interference. We also
propose two novel mixing functions, which outperform baselines and address the problem.

2 PRELIMINARY

2.1 DEC-POMDP

A fully cooperative Multi-Agent Reinforcement Learning (MARL) problem can be modelled by
the Decentralized Partially Observable Markov Decision Process (Dec-POMDP), which is usually
described by a tuple G =< S,U ,P, r, Z,O, n, γ > (Guestrin et al., 2001; Oliehoek et al., 2016;
Seuken & Zilberstein, 2008). s ∈ S denotes the global state of the environment. A local observation
za ∈ Z is assigned to agent a ∈ A ≡ {1, 2, · · · , n} according to the observation function O(s, a) :
S × A → Z. After receiving za, each agent chooses an action ua ∈ Ua based on its local policy
πa(ua|τa) : T × Ua → [0, 1], where τa ∈ T ≡ (Z × Ua)∗ is the local observation-action history.
After the execution of the joint action u = {u1, · · · , un}, a team reward r and the next state s′

are generated by the reward function r(s,u) : S × U → R and transition function P(s′|s,u) :
S × U × S → [0, 1], respectively, where u ∈ U ≡ U1 × · · · × Un. γ ∈ [0, 1) is a discount factor.
We denote the set of actions except ua by u\a, i.e., u\a ∪ ua = u. We only consider the fully
observable setting for theoretical analysis, which can be modelled by Multi-agent Markov Decision
Process (MMDP). An MMDP is usually described by tuple MG =< S,U ,P, r, n, γ >.

In value-based MARL, an approximate function is trained to estimate the action-values by value
iteration. We discriminate the action-value function and its approximation by Q(s,u) and
Qtot(s, τ ,u), respectively, where τ = {τ1, · · · , τn} ∈ T n. The latter is named joint Q value
function. The action-value function is defined as the expectation of accumulated rewards, i.e.,
Q(st,ut) := Est+1:∞,ut+1:∞ [Rt|st,ut], where Rt =

∑∞
i=0 γ

irt+i. The action with the maximal
action-value is defined as the optimal action, which is denoted by u∗ := argmaxu Q(s,u).

2.2 VALUE DECOMPOSITION

Let Qa(τa, ua) : T × Ua → R denote the local Q function of agent a (a ∈ [1, n]). Through value
decomposition, the joint Q function is factorized into a set of local Q value functions as

Qtot(s, τ ,u) = F (∪na=1Qa, s, τ ,u) (1)

where we abbreviate Qa(τa, ua) as Qa. F is named mixing function. The action with the maximal
local Q value is defined as the greedy action, i.e., ua,gre := argmaxua Qa(τa, ua). There are two
critical concepts of value decomposition: Independent Global Max (IGM) and monotonicity.

IGM. Given the joint Q function Qtot(s, τ ,u) = F (∪na=1Qa, s, τ ,u), if ∀s ∈ S,

argmax
u∈U

Qtot(s, τ ,u) =

{
argmax
u1∈U1

Q1(τ1, u1), · · · , argmax
un∈Un

Qn(τn, un)

}
(2)
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we say F satisfies the IGM. The IGM ensures decentralized executions (according to the largest
local Q values) always bring the best estimated group interests (i.e., the largest joint Q values).

Monotonicity. Given the joint Q value function Qtot(s, τ ,u) = F (∪na=1Qa(τa, ua), s, τ ,u), we
say the mixing function F is monotonic if ∀s ∈ S,∀a ∈ [1, n],

∂Qtot(s, τ ,u)

∂Qa(τa, ua)
≥ 0 (3)

Specially, given a monotonic mixing function F and ∀ua, u′
a ∈ Ua, where Qa(τa, ua) ̸=

Qa(τa, u
′
a). We say F is strictly monotonic if

Qtot(s, τ , u, u\a)−Qtot(s, τ , u
′, u\a)

Qa(τa, u)−Qa(τa, u′)
≥ 0 (4)

The mixing functions of VDN (Sunehag et al., 2017) and QMIX (Rashid et al., 2020b) are strictly
monotonic. Strictly monotonic mixing functions naturally satisfy the IGM (the proof is available in
Appendix A). Examples of monotonic and strictly monotonic mixing functions are shown in Fig.1.

Figure 1: Examples of (a) monotonic mixing function Qtot(s, τ ,u) =
∑n
a=1 Qa(τa, ua) + b(s,u)

and (b) strictly monotonic mixing function Qtot(s, τ ,u) =
∑n
a=1 Qa(τa, ua), where b(s,u) is a

central bias. Only the latter satisfies the IGM.

3 EXPRESSIVE CAPACITY OF LINEAR MIXING FUNCTION

Linear Mixing Function (LMF) is strictly monotonic and satisfies the IGM. The joint Q value func-
tion of LMF equals Qtot(s,u, τ ) =

∑n
a=1 Qa(ua, τa). In this section, we investigate in what kind

of tasks the representational limitation occurs for LMF. For the convenience of theoretical analyses,
we assume that 1) the task is fully observable; 2) the training data follows on-policy distribution.

3.1 DECOMPOSABLE MMDP: THE TASK WITH LINEARLY FACTORIZABLE ACTION-VALUES

A fully cooperative, fully observable MARL problem can be modelled by Multi-agent Markov De-
cision Process (MMDP), which is usually described by a tuple MG =< S,U ,P, r, n, γ >. Let Ŝ
and Û denote a subset of the state space and a non-empty proper subset of the joint action space,
respectively, i.e., Ŝ ⊂ S , Û ⫋ U and Û ̸= ∅. We introduce the decomposability of an MMDP.

Definition 3.1. Given an MMDP MG =< S,U ,P, r, n, γ >, if there exists {Ŝ1×Û1, · · · , Ŝk×Ûk}
(k ≥ 2; Ûi ̸= Ûj for i ̸= j (i, j ∈ [1, k])), such that ∀(st,ut) ∈ S × U

1 ∀i ∈ [1, k], P(ŝi,t+1|ŝi,t, ûi,t) = P(ŝi,t+1|st,ut), where (ŝi,t, ûi,t) ∈ Ŝi × Ûi

2 the reward function is linearly factorizable as r(st,ut) =
∑k
i=1 ri(ŝi,t, ûi,t)

then we say MG is decomposable on {Ŝ1 × Û1, · · · , Ŝk × Ûk}. {MG1, · · · ,MGk} is the cor-
responding decomposition of MG, where MGi :=< Ŝi, Ûi,P, ri, ni, γ > (i ∈ [1, k]). ni is the
number of agents involved in MGi. Specially, ∀i ∈ [1, k], if MGi is no longer decomposable, we
say {MG1, · · · ,MGk} is the minimum decomposition.

Note that the decomposition of a decomposable MMDP MG could be non-unique. To explore all
decompositions of MG, we propose the following property:
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Property 3.2. Given a decomposable MMDP MG =< S,U ,P, r, n, γ > and its decomposition
{MG1, · · · ,MGk}, where MGi =< Ŝi, Ûi,P, ri, ni, γ > (i ∈ [1, k]). Let Ŝ ′ × Û ′ denote a non-
empty proper subset of {Ŝ1×Û1, · · · , Ŝk×Ûk}. MG is also decomposable on {Ŝ ′

1×Û ′
1 · · · , Ŝ ′

ks
×

Û ′
ks
} if ∪ksi=1Û ′

i = ∪ki=1Ûi.

The proof of Property 3.2 is provided in Appendix B. Suppose {MG1, · · · ,MGk} is the mini-
mum decomposition of MG, we can obtain all decompositions of MG from the all permutations of
{MG1, · · · ,MGk}. For any decomposition of MG, the following theorem holds:
Theorem 3.3. Given an MMDP MG =< S,U ,P, r, n, γ >, ∀(s,u) ∈ S × U , the action-value
function is linearly factorizable as Q(s,u) =

∑k
i=1 Qi(ŝi, ûi) if and only if MG is decomposable

on {Ŝ1 × Û1, · · · , Ŝk × Ûk}, where (ŝi, ûi) ∈ Ŝi × Ûi (i ∈ [1, k]).

Figure 2: Examples of MMDP decomposing. 4 agents need to cover 2 landmarks, where each agent
has a target landmark with the same color of it. Agents would not collide with each other. The team
receives an instant reward when any agent arrives its target landmark. The task is a decomposable
MMDP since: (1) the reward function is linearly factorizable to the arrival rewards of 4 agents; (2)
the transition function of each agent is independent to the others’.

The proof of Theorem 3.3 is available in Appendix C. We provide intuitive differences between
decomposable and indecomposable MMDPs in Appendix D. Fig.2 presents two examples of MMDP
decomposing, where the minimum decomposition is marked with blue background. Theorem 3.3
indicates that if MMDP MG can be decomposed by a set of sub-MMDPs, the action-value functions
of these sub-MMDPs are additive, which yields the action-value function of MG.

3.2 DISCUSSIONS

LMF always suffers from representational limitation in indecomposable MMDP. There is no rep-
resentational limitation for LMF if the task can be modelled by the MMDP decomposable on
{S × U1, · · · ,S × Un}. In this case, the action-value function is linearly factorizable as Q(s,u) =∑n
a=1 Qa(s, ua), which is consistent with the decomposition of the joint Q value of LMF, i.e.,

Qtot(s,u) =
∑n
a=1 Qa(s, ua). Besides, LMF always suffers from representational limitation in

indecomposable MMDP, where the action-value function is not linearly factorizable on any combi-
nation of the subsets of S × U . From Definition 3.1, an MMDP involving cooperative rewards or
interactive transitions of all agents is indecomposable, which is the case of most MARL tasks.

LMF in indecomposable MMDP: unbiased estimation of Temporal Difference (TD) target un-
der sarsa value iteration. Consider LMF under discrete action space setting. The complete
representation of action-values under state s is equivalent to solving a linear equation system:
{Q(s,u) =

∑n
a=1 Qa(s, ua)}∀u∈U . Such equation system is always overdetermined for indecom-

posable MMDP (proof is available in Appendix E), which result in Qtot(s,u) ̸= Q(s,u), i.e., the
estimation of the action-values is biased. However, the estimation of the state value and TD tar-
get are still unbiased under sarsa value iteration (proof is available in Appendix F), which suggests
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the representational error would not accumulate across transitions. In this case, an indecomposable
MMDP is reducible along the trajectory into single-step matrix games, where approaches addressing
single-step matrix games are applicable to solve the optimal policy.

Related works. Detailed discussions of related works are available in Appendix G. The concept
of multi-agent game decomposition has also been discussed by previous works (Dou et al., 2022;
Castellini et al., 2021). Such works fails to figure out a reasonable relationship between game
decomposition and action-value factorization. In this section we investigate LMF, the most simple
case of Strictly Monotonic Mixing Function (SMMF). The SMMF proposed by QMIX (Rashid et al.,
2020b) extends the expressive capacity of LMF and is wildly applied in various value decomposition
methods. Such SMMF is only capable to represent the action-value functions which are also strictly
monotonic. We can easily raise examples where SMMF encounters representational limitation, such
as the two-agent matrix game with payoff matrix [[1, 0], [0, 1]].

4 MIXING FUNCTIONS WITH COMPLETE REPRESENTATIONAL CAPACITY

SMMF is incapable to completely represent the correct action-values across a wild range of MARL
tasks. In section 4.1, by expanding upon SMMF, we propose a two-stage mixing framework with
complete representational capacity. However, the capacity could be unrealized for the representa-
tional interference on the optimal action-values, which is introduced and addressed in section 4.2.

4.1 MIXING FOR UNBOUNDED DIFFERENCE

Since both IGM and complete representational capacity are critical for value decomposition, we
investigate the mixing function with complete representational capacity under the IGM constraint.
To formalize the problem, let R(fθ(x)) denote the range of function f under input x, i.e.,

R(fθ(x)) = {f(x; θ) | ∀θ ∈ Θ} (5)

where θ and Θ denote the parameter and the parameter space, respectively. We say a mix-
ing function has complete representational capacity under IGM constraint if Qtot(s,ugre) =
Fθ(∪na=1Qa,gre, s,ugre) = Q(s,u∗) and

∀s,u ∈ S × U , R(Fθ(∪na=1Qa, s,u)) = (−∞,Q(s,u∗)] (6)

We only consider monotonic mixing functions since non-monotonic ones suffer from poor con-
vergence (detailed discussion of this problem is available in Appendix H). Note that the Strictly
Monotonic Mixing Function (SMMF) satisfies both IGM and monotonicity, but suffers from repre-
sentational limitation. We consider completing the representational capacity of SMMF.

Suppose fθ : Rn × S × U → R is an SMMF. Let ∆fθ := fθ(∪na=1Qa,gre, s,ugre) −
fθ(∪na=1Qa, s,u). We have ∆fθ = 0 if u = ugre, otherwise ∆fθ ≥ 0. Substituting ∆fθ into
Eq.6, the complete representation of action-values requires

∀s,u ∈ S × U , R(∆fθ) = [0,+∞) (7)

Given u ∈ U , there exist u′ = {u′
1, · · · , u′

n} ∈ U , such that ∀a ∈ [1, n], Q′
a ≤ Qa ≤ Qa,gre,

where we abbreviate Qa(s, u
′
a) as Q′

a. Referring to the definition of SMMF (Eq.4), we have

∆f ′
θ ≥ ∆fθ ≥ ∆fθ,gre ≡ 0 (8)

where we abbreviate ∆fθ(∪na=1Q
′
a, s,u

′) and ∆fθ(∪na=1Qa,gre, s,ugre) as ∆f ′
θ and ∆fθ,gre, re-

spectively. According to Eq.8, we have R(∆fθ(∪na=1Qa, s,u)) = [0,∆f ′] (0 ≤ ∆f ′
θ < +∞),

which violates Eq.7. Therefore, an SMMF f suffers from the representational limitation due the
bounded difference between the joint Q values of the greedy and other actions, i.e., ∆f .

To complete the representational capacity of SMMF, we introduce a weight wϕ(s,u) and a bias
bψ(s,u) to rescale the bounded difference, where R(wϕ(s,u)) = [wmin, wmax] and R(bψ(s,u)) =
[bmin, bmax]. Let

∆Fθ,ϕ,ψ(∪na=1Qa, s,u) := wϕ(s,u) ·∆fθ + bψ(s,u) (9)

We have R (∆Fθ,ϕ,ψ(∪na=1Qa, s,u)) = [bmin, wmax ·∆f ′
θ + bmax]. The rescaled difference ∆F

is unbounded if bmin = 0 and wmax + bmax = +∞. To cover a wilder range of mixing functions,
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Figure 3: The pipeline of MUD. We omit the inputs and parameters. In multi-channel local Q mixing
stage, each SMMF mixes the local Q values in a channel, which yields a bounded differences ∆fi
(i ∈ [1, d]). In difference rescaling stage, we mix and rescale the bounded multi-channel differences
{∆f1, · · · ,∆fd} into unbounded ∆F .

we extend f to a functional vector of SMMFs, for which we have ∆Fθ,ϕ,ψ(∪na=1Qa, s,u) :=

w⃗ϕ(s,u) ×
−−→
∆fθ + bψ(s,u). w⃗ϕ = [wϕ,1, · · · , wϕ,d] and

−−→
∆fθ = [∆fθ,1, · · · ,∆fθ,d]

⊤. d is the
number of SMMFs. × denotes matrix product. The IGM requires ∆Fθ,ϕ,ψ(∪na=1Qa,gre, s,ugre) ≡
0. Note that ∀i ∈ [1, d], ∆fθ,gre,i ≡ 0. We require bψ(s,ugre) ≡ 0, for which we let bψ(s,ugre) =
|⃗h(s,u) − h⃗(s,ugre)|2. Besides, since ∂Qtot(s,u)

∂Qa
=
∑d
i=1 wϕ,i(s,u) ·

∂f
∂Qa

and ∂f
∂Qa

≥ 0, F is
monotonic if we let wϕ,i(s,u) ≥ 0, ∀i ∈ [1, d].

We name this framework Mixing for Unbounded Difference (MUD). The pipeline of MUD is shown
in Fig.3. The joint Q value function of MUD equals

Qtot(s,u) = Fθ,ϕ,ψ(∪na=1Qa, s,u) = V (s)− w⃗ϕ(s,u)×
−−→
∆fθ − bψ(s,u) (10)

Eq.10 degenerates to QPLEX (Wang et al., 2020b) when (1) wmin = 0 and wmax = +∞; (2)
bmax = 0 (i.e., bψ(s,u) ≡ 0); (3)

−−→
∆fθ = [∆fθ,1, · · · ,∆fθ,n]

⊤, where fθ,a(∪na=1Qa, s,u) = Qa

(a ∈ [1, n]); (4) V (s) =
∑n
a=1 Qa,gre.

4.2 ADDRESSING OPTIMAL REPRESENTATIONAL INTERFERENCE IN MUD

While MUD achieve complete representational capacity formally, it does not imply the correct
action-values can be represented completely. It also depends on the training. Such capacity could
remain unrealized due to optimal representational interference.

Figure 4: Example of repre-
sentational cross interference.
ua ∈ {1, 2} (a ∈ {1, 2}). The
trainings of Qtot(s, 1, 1) and
Qtot(s, 1, 2) affect each other
by shaping the shared local Q
value Q1(s, 1).

As shown in Fig.4, the training of Qtot(s, 1, 1) shapes
Q1(s, 1) by grad 1 = F ′

1(s, 1, 1), where Qtot(s, u1, u2) =
F(Q1(s, u1), Q2(s, u2), s,u). Since Q1(s, 1) is involved in
the mixing of Qtot(s, 1, 2), the training of Qtot(s, 1, 1) affects
Qtot(s, 1, 2). Similarly, the training of Qtot(s, 1, 2) also shapes
Q1(s, 1), which affects the training of Qtot(s, 1, 1). Therefore,
The training of Qtot(s, 1, 1) and Qtot(s, 1, 2) affects each other
by their shared local Q value Q1(s, 1). We name this problem
as representational cross interference. The gradient F ′

1(s, 1, 1)
determines how much the representation of Q(s, 1, 1) shapes
Q1(s, 1), which can be viewed as its representational weight. For
example, if F ′

1(s, 1, 1) = 1 while F ′
1(s, 1, 2) = 10−6, the gradi-

ent for the representation of Q(s, 1, 2) would be overwhelmed by
the interference from the representation of Q(s, 1, 1).

Formally, ∀u,u′ ∈ U , if u ∩ u′ ̸= ∅, we say the representations
of Q(s,u) and Q(s,u′) suffer from cross interference. The inter-
ference to the representation of the optimal action-value (Optimal
Representational Interference (ORI) for brevity) is a noteworthy
issue. Due to the IGM constraint, the joint Q value function of
MUD is only capable to represent the action-values lower than the greedy. In this case, the complete
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representation of action-values requires: the greedy action is also the optimal one. Therefore, a well
representation of the optimal action-value is critical, which would fail for the ORI. To evaluate the
ORI in MUD, we define the relative representational weight of the optimal action-value as optimal
representation ratio, which is denoted by

w∗ =
1

n

n∑
a=1

w∗
a , where w∗

a =
π(u|s) · F ′

a(s,u
∗)∑U\a

u\a
πa(u∗

a, u\a|s) · F ′
a(s, u

∗
a, u\a)

(11)

where F ′
a(s,u) =

∂Qtot(s,u)
∂Qa(s,ua)

. An example is provided in Appendix I, where the optimal represen-
tation ratio declines to almost 0 during training. As a result, the joint Q value function suffers from
poor convergence due to severe ORI.

To address the ORI, we shape the gradient to improve the representation weight of the optimal
action-value. Note that the mixed difference ∆F can be viewed as the evaluated performance of
current action. The action is better if ∆F is smaller. Therefore, we consider reducing the gradient
according to the value of ∆F to improve the optimal representational weight. Consider a basic
form of difference mixing in Eq.9. We replace the weight wϕ(s,u) with an exponentially decaying

multiplier e−bψ(s,u). Let fθ(∪na=1Qa, s,u) =
1
n

∑n
a=1

(
1− Qa

Qa,gre

)
. We have

∆Fψ(∪na=1Qa, s,u) = e−bψ(s,u) · 1
n

n∑
a=1

(
1− Qa

Qa,gre

)
+ bψ(s,u) (12)

Eq.12 is named MUD with Smooth Gradients (MUD-SmG). The representation weight equals ∂FQa =

1
ne

−bψ(s,u). Note that ∂∆F
∂bψ(s,u) = 1 − 1

n

∑n
a=1

(
1− Qa

Qa,gre

)
e−bψ(s,u) > 0. As a result, the

representation weight decreases monotonically with ∆F .

Eq.12 can be further simplified by replacing e−bψ(s,u) with a 1-0 step function w(bψ), where
w(bψ) = 1 for bψ(s,u) < α, otherwise w(bψ) = 0. α is a hyper-parameter. We have

∆Fθ,ϕ,ψ(∪na=1Qa, s,u) =

{ ∑n
a=1 (Qa,gre − SG(Qa)) + bψ(s,u) bψ(s,u) > α∑n
a=1 (Qa,gre −Qa) + bψ(s,u) otherwise

(13)

where SG denotes stopping gradient. Eq.13 is named MUD with Stepped Gradients (MUD-StG).
Both MUD-SmG and MUD-StG alleviate the ORI by reducing the representation weight of action-
values with high mixed difference ∆F . We will discuss the effects of both mixing functions in the
experimental parts. Related works can be found in Appendix G.

5 EXPERIMENTS

Our experiments consist of 3 parts: (1) Verification of the expressiveness of Linear Mixing Function
(LMF); (2) Evaluation of our proposed mixing functions; (3) Ablation studies.

5.1 VERIFICATION OF THE EXPRESSIVENESS OF LMF

Figure 5: Setup of the toy game.

Referring to Fig.2, we design toy games to verify the ex-
pressiveness of LMF. As shown in Fig.5. The map is
gridded by a 4 × 4 checkerboard. All agents are initial-
ized with the position (3, 0) and required to select actions
from {up, right} at each time step. The team receives an
instant reward of 1 when any agent arrives and gets ac-
cepted by a landmark. Each landmark only accepts the
agent with the same color as it and is limited to accept
no more than 2 agents. Invalid action, e.g, up at position
(0, 0) are masked. Detailed tasks and training setups are
available in Appendix J.1.

For the decomposable case, consider two decomposi-
tions of MG shown in Fig.2. According to Theo-
rem 3.3, the action-value function is linearly factoriz-
able as Q(s,u) =

∑n
a=1 Qa(s, ua) and Q(s,u) =

7
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Figure 6: Verification of the expressiveness of LMF. (a) Test RMSE; (b) Test mean return.

Q′
1(s, u1, u2, u3) + Q′

2(s, u1, u2, u4) for these two decompositions, respectively. We apply neu-
ral networks to model two joint Q value functions: (1) Qlmf (s,u) =

∑n
a=1 Qa(s, ua); (2)

Q33(s,u) = Q′
1(s, u1, u2, u3) + Q′

2(s, u1, u2, u4). We test the Root Mean Square representa-
tional Errors (RMSE) of both joint Q value functions. The actual action-values are approximated by
a non-factorized Q value function Qct(s,u)

After 6k iterations of training, RMSE33(s) and RMSElmf (s) are tested for the 98 states of the
first 3 time steps. The results are shown in Fig.6(a), where each bar denotes the a single state. Note
that both RMSE33(s) and RMSElmf (s) are negligible in decomposable case. In words, both
Qlmf (s,u) and Q33(s,u) are able to represent Q(s,u) (with negligible errors), which suggests
Q(s,u) is linearly factorizable in decomposable case. By contrast, we can infer that Q(s,u) is
not linearly factorizable in indecomposable case since none of Qlmf (s,u) and Q33(s,u) is able to
represent Q(s,u) concisely. Fig.6(b) presents the test return during training, where both Qlmf (s,u)
and Q33(s,u) achieve the largest return of 4 in the decomposable case but receive returns less than
4 in indecomposable case. In words, the linearly factorized joint Q value function is capable to solve
the decomposable MMDP but fails in the indecomposable MMDP.

We also evaluate the expressiveness of MUD (Eq.9). The experimental results indicate that MUD
is capable to completely represent the action-values in both decomposable and indecomposable
MMDPs. As shown in Fig.6(b), MUD achieves the highest return in both cases.

5.2 EVALUATION OF MIXING FUNCTIONS

Firstly, we evaluate the performance of different mixing functions in a 2-agent single-step matrix
game, where each agent chooses an action from {1, 2, 3} and receives a team reward according
to the payoff matrix in Fig.7. Detailed training setups are available in Appendix J.2. The mean
representational errors do not decrease for LMF and SMMF for the representational limitation. Both
LMF and SMMF are easily stuck in the sub-optimal point with the return of 6. By contrast, the
mean representational errors decline quickly for the mixing functions with complete representational
capability. However, since the optimal representational error remains high for declining optimal
representational ratio w∗, such capacity is unrealized for MUD (QPLEX), MUD(QPLEX-SG), and

8
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MUD (Eq.9). As a result, these methods are still easily stuck in the sub-optimal point. Both of our
proposed mixing functions (i.e., MUD-SmG and MUD-StG) overcome the ORI and jump out of the
sub-optimum. We can see w∗ of MUD-SmG and MUD-StG grows and approximates 1.

Figure 7: Evaluation of mixing functions on matrix game. The expressions of the involved mixing
functions are collected and presented in Appendix J.2. The optimal representational error refers to
the representational error of the optimal action-value. w∗ ∈ [0, 1] (Eq.11) is a qualification index of
ORI. The w∗ of LMF, SMMF, and MUD (QPLEX-SG) are constants, which are not presented here.

Figure 8: Evaluation of value decomposition methods in
predator prey with the punishments of -2 and -5.

To evaluate the scalability of propose
mixing functions, we exam MUD-SmG
and MUD-StG in predator prey en-
vironments under partial observation.
As shown in Fig.8, the direct imple-
mentations of LMF (i.e., VDN) and
SMMF (i.e., QMIX) fail in both tasks.
By contrast, QTRAN (implementation
of LMF) and WQMIX (implementa-
tion of SMMF) focus on the represen-
tation of underestimated action-values,
which alleviates the ORI. Therefore,
both QTRAN and WQMIX are able to
handle the task with mild punishments.
QPLEX has complete representational
capability but still fails in all tasks due
to the ORI. Only MUD-StG and MUD-SmG solve the task under the punishment of -5.

For additional experimental results, please consult Appendix K.

6 CONCLUSIONS

In this paper, we investigate the problem of representational limitation from the perspectives of task
property and mixing function, which yields the following findings: (1) LMF is free from repre-
sentational limitation only in a rare case of MARL problems, namely decomposable MMDP. The
action-value function of decomposable MMDP is linearly factorizable into the action-value function
of sub-MMDPs. (2) SMMF suffers from representational limitation for the bounded differences be-
tween the joint Q values of the greedy and other actions. We propose the framework of MUD, which
overcomes the limitation by mapping the differences into unbound variables. (3) The representation
of action-values encounters cross interferences for value decomposition. The cross interference to
the representation of the optimal action-values (i.e., ORI) would bring convergence difficulties. The
experimental results validate the expressiveness of LMF, reveals the importance of ORI, and demon-
strate the effectiveness of our methods to address the problem.

9
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A STRICTLY MONOTONIC MIXING FUNCTIONS SATISFY THE IGM

Suppose F is strictly monotonic and Qtot(s, τ ,u) = F (∪na=1Qa(τa, ua), s, τ ,u). Here we prove
that F satisfies the IGM.

Proof. Note that the local greedy action is defined as ua,gre := argmaxua Qa(τa, ua). We have
∀ua ∈ Ua, Qa(τa, ua,gre) > Qa(τa, ua). Referring to the definition of the strictly monotonic
mixing function (Eq.4), since F is strictly monotonic, we have ∀ua ∈ Ua,

Qtot(s, τ , ua,gre, u\a) > Qtot(s, τ , ua, u\a) (14)

where u\a denotes the set of actions except ua, i.e., u\a ∪ ua = u. It can be inferred from Eq.14
that ∀u = {u1, · · · , un} ∈ U ,

Qtot(s, τ , u1,gre, · · · , un,gre) > Qtot(s, τ , u1, · · · , un) (15)

Therefore, we have argmaxu Qtot(s, τ ,u) = ugre =
{argmaxu1 Q1(τ1, u1), · · · , argmaxun Qn(τn, un)}. According to the definition of IGM
(Eq.2), F satisfies the IGM.

B PROOF OF PROPERTY 3.2

Given a decomposable MMDP MG =< S,U ,P, r, n, γ > and its decomposition
{MG1, · · · ,MGk}, where MGi =< Ŝi, Ûi,P, ri, ni, γ > (i ∈ [1, k]). Let Ŝ ′ × Û ′ denote a
non-empty proper subset of {Ŝ1 × Û1, · · · , Ŝk × Ûk}. Assume ∪ksi=1Û ′

i = ∪ki=1Ûi. Here we prove
that MG is decomposable on {Ŝ ′

1 × Û ′
1, · · · , Ŝ ′

ks
× Û ′

ks
}.

11
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Proof. Let Ii,j = 1 if Ŝi × Ûi ⊂ Ŝ ′
j × Û ′

j (i ∈ [1, k], j ∈ [1, ks]), otherwise Ii,j = 0. We have
Û ′
j = ∪ki=1Ii,j · Ûi and Ŝ ′

j = ∪ki=1Ii,j · Ŝi. Note that ∪ksi=1Û ′
i = ∪ki=1Ûi. We have

∪ksj=1Û
′
j = ∪ksj=1

(
∪ki=1Ii,j · Ûi

)
= ∪ksj=1Ii,j · ∪

k
i=1Ûi = ∪ki=1Ûi

(16)

which indicates ∀j ∈ [1, k],
∑ks
j=1 Ii,j ≥ 1.

Let r′j(ŝ
′
j , û

′
j) denote a reward function defined on Ŝ ′

j × Û ′
j , which equals

r′j(ŝ
′
j , û

′
j) :=

k∑
i=1

Ii,j · ri(ŝi, ûi)∑ks
j=1 Ii,j

(17)

The sum of all reward functions defined on {Ŝ ′
1 × Û ′

1, · · · , Ŝ ′
ks

× Û ′
ks
} equals

ks∑
j=1

r′j(ŝ
′
j , û

′
j) =

ks∑
j=1

k∑
i=1

Ii,j · ri(ŝi, ûi)∑ks
j=1 Ii,j

=

k∑
i=1

 ks∑
j=1

Ii,j · ri(ŝi, ûi)∑ks
j=1 Ii,j


=

k∑
i=1

(∑ks
j=1 Ii,j

)
· ri(ŝi, ûi)∑ks

j=1 Ii,j
=

k∑
i=1

r(ŝi, ûi) = r(s,u)

(18)
We have proved that the reward function r(s,u) is linearly factorizable on {Ŝ ′

1×Û ′
1, · · · , Ŝ ′

ks
×Û ′

ks
}.

Since {MG1,MG2, · · · ,MGk} is a decomposition of MG, we have ∀i ∈ [1, k],
P(ŝi,t+1|ŝi,t, ûi,t) = P(ŝi,t+1|st,ut). Note that Û ′

j = ∪ki=1Ii,j · Ûi and Ŝ ′
j = ∪ki=1Ii,j · Ŝi.

We have ŝ′j = ∪ki=1Ii,j · ŝi and û′
j = ∪ki=1Ii,j · ûi. Therefore,

P(ŝ′j,t+1|ŝ′j,t, û′
j,t) = P(∪ki=1Ii,j · ŝi,t+1| ∪ki=1 Ii,j · ŝi,t,∪ki=1Ii,j · ûi,t)

= P(∪ki=1Ii,j · ŝi,t+1|st,ut) = P(ŝ′j,t+1|st,ut)
(19)

According to Definition 3.1, MG is decomposable on {Ŝ ′
1 × Û ′

1, · · · , Ŝ ′
ks

× Û ′
ks
}.

C PROOF OF THEOREM 3.3

C.1 PROOF OF SUFFICIENCY

Given a MMDP MG =< S,U ,P, r, n, γ >. MG is decomposable on {Ŝ1 × Û1, · · · , Ŝk × Ûk},
where ∀i, j ∈ [1, k], Ûi ̸= Ûj if i ̸= j. ∀i ∈ [1, k], Ŝi and Ûi denote a subset of the state space and
a non-empty proper subset of the joint action space, respectively, i.e., Ŝi ⊂ S, Ûi ⫋ U and Ûi ̸= ∅.
Here we prove that the action-value function is linearly factorizable as Q(s,u) =

∑k
i=1 Qi(ŝi, ûi)

under both sarsa and Q-learning value iteration, where (s,u) ∈ S × U and (ŝi, ûi) ∈ Ŝi × Ûi
(i ∈ [1, k]).

Proof. Firstly, consider the action-value function under the sarsa value iteration. Assume
Q(st+1,ut+1) is linearly factorizable as

Q(st+1,ut+1) =

k∑
i=1

Qi(ŝi,t+1, ûi,t+1) (20)

Note the environment is fully observable. We have Qi(ŝi,t+1, ûi,t+1) = Qi(st+1, ûi,t+1). The state
value function of st+1 equals

V (st+1) =

∫
ut+1

π(ut+1|st+1)Q(st+1,ut+1)dut+1 =

k∑
i=1

∫
ut+1

π(ut+1|st+1)Qi(ŝi,t+1, ûi,t+1)dut+1

(21)

12
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Since the local policies are decentralized, they are independent of each other. Let π̂i(ûi,t+1|st+1)
denote the joint policy of the agents involved in MGi. We have∫

ut+1

π(ut+1|st+1)Qi(ŝi,t+1, ûi,t+1)dut+1 =

∫
ûi,t+1

π̂i(ûi,t+1|st+1)Qi(ŝi,t+1, ûi,t+1)dûi,t+1

(22)
The policy π̂i(ûi,t+1|st+1) is generally defined and determined by Qi(st+1, ûi,t+1) for on-
policy data distribution, e.g., ϵ-greedy policy or multinomial distribution policy. Note that
Qi(st+1, ûi,t+1) = Qi(ŝi,t+1, ûi,t+1), which indicates π̂i(ûi,t+1|st+1) = π̂i(ûi,t+1|ŝi,t+1). Sub-
stituting Eq.22 into Eq.21, we have

V (st+1) =

k∑
i=1

∫
ûi,t+1

π̂i(ûi,t+1|ŝi,t+1)Qi(ŝi,t+1, ûi,t+1)dûi,t+1 (23)

Let Vi(ŝi,t+1) :=
∫
ûi,t+1

π̂i(ûi,t+1|ŝi,t+1)Qi(ŝi,t+1, ûi,t+1)dûi,t+1 denote the state value function

of MGi. We have V (st+1) =
∑k
i=1 Vi(ŝi,t+1).

Since MG is decomposable, the reward function is linearly factorizable as r(st,ut) =∑k
i=1 ri(ŝi,t, ûi,t). The action-value function at time step t equals

Q(st,ut) =r(st,ut) + γ

∫
st+1

P(st+1|st,ut)V (st+1)dst+1

=

k∑
i=1

ri(ŝi,t, ûi,t) + γ

k∑
i=1

∫
st+1

P(st+1|st,ut)Vi(ŝi,t+1)dst+1

(24)

Note that Si is a subset of S. We have∫
st+1

P(st+1|st,ut)Vi(ŝi,t+1)dst+1 =

∫
ŝi,t+1

P(ŝi,t+1|st,ut)Vi(ŝi,t+1)dŝi,t+1 (25)

Since MG is decomposable, we have P (ŝi,t+1|ŝi,t, ûi,t) = P (ŝi,t+1|st,ut). Substituting this
equality and Eq.25 into Eq.24, we have

Q(st,ut) =

k∑
i=1

(
ri(ŝi,t, ûi,t) + γ

∫
ŝi,t+1

P(ŝi,t+1|ŝi,t, ûi,t)Vi(ŝi,t)dŝi,t+1

)
=

k∑
i=1

Qi(ŝi,t, ûi,t)

(26)
where Qi(ŝi,t, ûi,t) := ri(ŝi,t, ûi,t) + γ

∫
ŝi,t+1

P(ŝi,t+1|ŝi,t+1, ûi,t+1)Vi(ŝi,t+1)dŝi,t+1 is defined
as the action-state value function of MGi.
For the joint Q value function under Q-learning value iteration, assume Q(st+1,ut+1) is linearly
factorizable as Eq.20. We have

max
ut+1∈ U

Q(st+1,ut+1) =

k∑
i=1

max
ûi,t+1∈ Ûi

Qi(ŝi,t+1, ûi,t+1) (27)

Referring to the deduction of the sarsa case, we have

Q(st,ut) =r(st,ut) + γ

∫
st+1

P(st+1|st,ut) · max
ut+1∈ U

Q(st+1,ut+1)dst+1

=

k∑
i=1

(
ri(ŝi,t, ûi,t) + γ

∫
st+1

P(st+1|st,ut) · max
ûi,t+1∈ Ûi

Qi(ŝi,t+1, ûi,t+1)dst+1

)

=

k∑
i=1

(
ri(ŝi,t, ûi,t) + γ

∫
ŝi,t+1

P(ŝi,t+1|ŝi,t, ûi,t) max
ûi,t+1∈ Ûi

Qi(ŝi,t+1, ûi,t+1)dŝi,t+1

)

=

k∑
i=1

Qi(ŝi,t, ûi,t)

(28)

13
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We have proved that if Q(st+1,ut+1) is linearly factorizable, Q(st,ut) is also linearly factorizable.
For a finite MMDP, let Q(sT ,uT ) = Qi(ŝi,T , ûi,T ) = 0 ∀i ∈ [1, k], where T is the terminal
time step. Note that Q(sT ,uT ) is linearly factorizable as Q(sT ,uT ) =

∑k
i=1 Qi(ŝi,T , ûi,T ) = 0.

Therefore, Q(st,ut) is linearly factorizable ∀t ∈ [0, T ].

C.2 PROOF OF NECESSITY

Given an MMDP MG =< S,U ,P, r, n, γ >, assume the action-value function Q(st,ut) is linearly
factorizable as Q(st,ut) =

∑k
i=1 Qi(ŝi,t, ûi,t), where (s,u) ∈ S × U , (ŝi, ûi) ∈ Ŝi × Ûi (i ∈

[1, k]), and ∀i, j ∈ [1, k], Ûi ̸= Ûj if i ̸= j. ∀i ∈ [1, k], Ŝi and Ûi denote a subset of the state space
and a non-empty proper subset of the joint action space, respectively, i.e., Ŝi ⊂ S, Ûi ⫋ U and
Ûi ̸= ∅. Here we prove that MG is decomposable by {MG1,MG2, · · · ,MGk}, where MGi :=<

Ŝi, Ûi,P, ri, ni, γ > (i ∈ [1, k]).

Proof. Firstly, consider the action-value function under sarsa value iteration. We have

Q(st,ut) =

k∑
i=1

Qi(ŝi,t, ûi,t)

= r(st,ut) + γ

∫
st+1

P(st+1|st,ut)V (st+1)dst+1

= r(st,ut) + γ

∫
st+1

P(st+1|st,ut)
∫
ut+1

π(ut+1|st+1)Q(st+1,ut+1)dut+1dst+1

= r(st,ut) + γ

k∑
i=1

∫
st+1

P(st+1|st,ut)
∫
ut+1

π(ut+1|st+1)Qi(ŝi,t+1, ûi,t+1)dut+1dst+1

(29)

Since the environment is fully observable, we have Qi(ŝi,t+1, ûi,t+1) = Qi(st+1, ûi,t+1). Let
π̂i(ûi,t+1|st+1) denote the joint policy of the agents whose actions are involved in ûi,t+1. Note
π̂i(ûi,t+1|st+1) is generally defined and determined by Qi(st+1, ûi,t+1) for on-policy data distri-
bution. Since Qi(ŝi,t+1, ûi,t+1) = Qi(st+1, ûi,t+1), we have π̂i(ûi,t+1|st+1) = π̂i(ûi,t+1|ŝi,t+1).
Substituting this equality into Eq.22, we have∫
ut+1

π(ut+1|st+1)Qi(ŝi,t+1, ûi,t+1)dut+1 =

∫
ûi,t+1

π̂i(ûi,t+1|ŝi,t+1)Qi(ŝi,t+1, ûi,t+1)dûi,t+1

(30)
Let Vi(ŝi,t+1) denote the right side of Eq.30. Substituting Vi(ŝi,t+1) into Eq.29, we have

k∑
i=1

Qi(ŝi,t, ûi,t) = r(st,ut) + γ

k∑
i=1

∫
st+1

P(st+1|st,ut)Vi(ŝi,t+1)dst+1

= r(st,ut) + γ

k∑
i=1

∫
ŝi,t+1

P(ŝi,t+1|st,ut)Vi(ŝi,t+1)dŝi,t+1

(31)

Let Q′(st,ut) =
∑k
i=1 Q′

i(ŝi,t, ûi,t) denote the action-value function with respect to policy
π′(ut+1|st+1). We have

Q′(st,ut)−Q(st,ut) =

k∑
i=1

[Q′
i(ŝi,t, ûi,t)−Qi(ŝi,t, ûi,t)]

= γ

k∑
i=1

∫
ŝi,t+1

P(ŝi,t+1|st,ut) [V ′
i (ŝi,t+1)− Vi(ŝi,t+1)] dŝi,t+1

(32)

where V ′
i (ŝi,t+1) =

∫
ûi,t+1

π̂′
i(ûi,t+1|ŝi,t+1)Q′

i(ŝi,t+1, ûi,t+1)dûi,t+1. A necessary condition of
the equality above is ∀p, q ∈ [1, k], P(ŝp,t+1|st,ut) = P(ŝp,t+1|ŝq,t, ûq,t).
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Assume ∃p, q ∈ [1, k] (p ̸= q), such that P(ŝp,t+1|st,ut) = P(ŝp,t+1|ŝq,t, ûq,t). Note
that Ûp ̸= Ûq since p ̸= q. If we let π̂′

q(ûq,t+1|ŝq,t+1) = π̂q(ûq,t+1|ŝq,t+1) while
π̂′
p(ûp,t+1|ŝp,t+1) ̸= π̂p(ûp,t+1|ŝp,t+1), the term with (ŝq,t, ûq,t) in the left side of Eq.32,

i.e., Q′
q(ŝq,t, ûq,t) − Qq(ŝq,t, ûq,t) is eliminated. However, the term with (ŝq,t, ûq,t) in

the right side of the equality, i.e.,
∫
ŝp,t+1

P(ŝp,t+1|st,ut) [V ′
i (ŝp,t+1)− Vi(ŝp,t+1)] dŝp,t+1 =∫

ŝp,t+1
P(ŝp,t+1|ŝq,t, ûq,t) [V ′

i (ŝp,t+1)− Vi(ŝp,t+1)] dŝp,t+1 remains. Therefore, Eq.32 holds only
if ∀p, q ∈ [1, k], P(ŝp,t+1|st,ut) = P(ŝp,t+1|ŝq,t, ûq,t) and p = q, i.e.,

• ∀i ∈ [1, k], P(ŝi,t+1|st,ut) = P(ŝi,t+1|ŝi,t, ûi,t)

Substituting the equality above into Eq.31, we have

r(st,ut) =

k∑
i=1

[
Qi(ŝi,t, ûi,t)− γ

∫
ŝi,t+1

P(ŝi,t+1|ŝi,t, ûi,t)Vi(ŝi,t+1)dŝi,t+1

]
(33)

Let ri(ŝi,t, ûi,t) := Qi(ŝi,t, ûi,t)− γ
∫
ŝi,t+1

P(ŝi,t+1|ŝi,t, ûi,t)Vi(ŝi,t+1)dŝi,t+1. We have

• r(st,ut) =
∑k
i=1 ri(ŝi,t, ûi,t)

According to Definition 3.1, MG is decomposable on {Ŝ1 × Û1, · · · , Ŝk × Ûk}.

For action-value function under the Q-learning value iteration, we have

Q(st,ut) =

k∑
i=1

Qi(ŝi,t, ûi,t)

= r(st,ut) + γ

∫
st+1

P(st+1|st,ut) max
ût+1∈ U

Q(st+1,ut+1)dst+1

= r(st,ut) + γ

k∑
i=1

∫
st+1

P(st+1|st,ut) max
ûi,t+1∈ Ûi

Qi(ŝi,t+1, ûi,t+1)dst+1

= r(st,ut) + γ

k∑
i=1

∫
ŝi,t+1

P(ŝi,t+1|st,ut) max
ûi,t+1∈ Ûi

Qi(ŝi,t+1, ûi,t+1)dŝi,t+1

(34)

Replacing Vi(ŝi,t+1) with maxûi,t+1∈ ÛiQi(ŝi,t+1, ûi,t+1) and following the deduction from Eq.31
to Eq.33, the decomposability of MG for Q-learning value iteration can be proved. Here we omit
the details.

D EXAMPLES OF DECOMPOSABLE & INDECOMPOSABLE MMDPS

E REPRESENTATION FOR LMF IN INDECOMPOSABLE MMDP: SOLVING AN
OVERDETERMINED LINEAR EQUATION SYSTEM

Consider the discrete action space setting. At each state, the complete representation of action-values
is equivalent to solving the following linear equation system{

Q(s,u) =

n∑
a=1

Qa(s, ua)

}
∀u∈U

(35)

Here we prove that the equation system is overdetermined.
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Figure 9: Examples of decomposable & indecomposable MMDPs. 4 agents (denoted by dots)
need to cover 2 landmarks (denoted by squares). The agents would not collide with each other or
any landmark. The team receives an instant reward when any agent arrives and gets accepted by a
landmark. Each landmark only accepts the agent with the same color as it and is limited to accepting
no more than 2 agents. The reward function is not linearly factorizable for the indecomposable case.

Proof. Let Ua := {1, 2, · · · ,m} (∀a ∈ [1, n]) denote the discrete local action space. Each equation
in Eq.35 can be represented by

Q(s,u) =I(u1 = 1) ·Q1(1) + I(u1 = 2) ·Q1(2) + · · ·+ I(u1 = m) ·Q1(m)

+ I(u2 = 1) ·Q2(1) + I(u2 = 2) ·Q2(2) + · · ·+ I(u2 = m) ·Q2(m)

+ · · ·
+ I(un = 1) ·Qn(1) + I(un = 2) ·Qn(2) + · · ·+ I(un = m) ·Qn(m)

=

[
agent 1︷ ︸︸ ︷

I(u1 = 1) · · · I(u1 = m) · · ·

agent n︷ ︸︸ ︷
I(un = 1) · · · I(un = m)

]
×
[

agent 1︷ ︸︸ ︷
Q1(1) · · · Q1(m) · · ·

agent n︷ ︸︸ ︷
Qn(1) · · · Qn(m)

]⊤
(36)

where the coefficient matrix
[

agent 1︷ ︸︸ ︷
I(u1 = 1) · · · I(u1 = m) · · ·

agent n︷ ︸︸ ︷
I(un = 1) · · · I(un = m)

]
is de-

termined by the permutation of local actions. Here we omit the states in the inputs of joint Q value
functions. The equation system (Eq.35) is equivalent to a set of equations (Eq.36) under the all
permutations of the joint action. For example, the all permutations of 2-agent local actions are (·,1)︷ ︸︸ ︷

(1, 1) (2, 1) · · · (m, 1)

(·,2)︷ ︸︸ ︷
(1, 2) (2, 2) · · · (m, 2) · · · · · ·

(·,m)︷ ︸︸ ︷
(1,m) (2,m) · · · (m,m)


⊤

(37)
By substituting Eq.37 into Eq.36, we obtain the matrix equation of Eq.35 in the two-agent case:

Q⃗2 = A2 × Q⃗2
loc (38)

where

A2 =



agent 1︷ ︸︸ ︷
1 0 · · · 0

agent 2︷ ︸︸ ︷
1 0 · · · 0

0 1 · · · 0 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 1 0 · · · 0

...
...

1 0 · · · 0 0 0 · · · 1
0 1 · · · 0 0 0 · · · 1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1


, Q⃗2

loc =



Q1(1)
Q1(2)

...
Q1(m)
Q2(1)
Q2(2)

...
Q2(m)


, Q⃗2 =



Q(1, 1)
Q(2, 1)

...
Q(m, 1)

...

...
Q(1,m)
Q(2,m)

...
Q(m,m)



(39)
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The coefficient matrix A2 can be represented by

A2 =


Em A2

1

Em A2
2

...
...

Em A2
m

 , A2
i =

[
O2
i− I⃗2 O2

i+

]
(40)

where Em is an m-dimensional unit matrix. O2
i− and O2

i+ are zero matrices of shape m × i and
m× (m− i−1) (i ∈ [0,m−1]), respectively. I⃗2 is a column vector of all 1 elements, whose length

is m. Note that rk
([

Em A2
1

Em A2
2

])
= m+1. We have rk(A2) = m+ (m− 1) = 2m− 1. Now we

extend the 2-agent case to the 3-agent, where

A3 =


A2 A3

1

A2 A3
2

...
...

A2 A3
m

 , A3
i =

[
O3
i− I⃗3 O3

i+

]
(41)

O3
i− and O3

i+ are zero matrices of shape m2×i and m2×(m−i−1) (i ∈ [0,m−1]), respectively. I⃗3

is a column vector of all 1 elements, whose size is m2. We have rk(A3) = rk(A2)+m−1 = 3m−2.
For the n-agent case, we can infer that

rk(An) = rk(An−1) +m− 1 = rk(A2) + (n− 2) · (m− 1) = n(m− 1) + 1 (42)

For an indecomposable MMDP, the maximum number of independent equations is mn. Note that
mn > n(m− 1) + 1 ∀m,n ≥ 2. Therefore, the equation system is overdetermined.

F LMF IN INDECOMPOSABLE MMDP: UNBIASED TD TARGET UNDER
SARSA VALUE ITERATION

Proof. At each state, the representation of the action-values by the joint Q value function of LMF is
equivalent to solving a linear equation system as Eq.35. Referring to Eq.36, such an equation system
can be represented by the following matrix equation in the n-agent case:

Q⃗n = An × Q⃗n
loc (43)

The expressions of An, Q⃗n
loc and Q⃗n can be inferred from Eq.35 and Eq.41. We consider the worst

case where the augment matrix is full rank, i.e., rk(
[
An Q⃗n

]
) = mn. Note that ∀m,n ≥ 2,

mn > n(m− 1) + 1. The equation system is overdetermined, which can be solved by least square
method. Let π⃗n denote the vector of the probabilities of the joint action’s all permutations. We have√
π⃗n · (An × Q⃗n

loc) = (
√
π⃗n · An)× Q⃗n

loc. The aim of the least square method is

min π⃗n · ||An × Q⃗n
loc − Q⃗n|| = min ||(

√
π⃗n · An)× Q⃗n

loc −
√
π⃗n · Q⃗n|| (44)

According to the properties of the least square solution, Q⃗n∗
loc is the least square solution if and only

if
(
√
π⃗n · An)⊤ × (

√
π⃗n · An)× Q⃗n∗

loc = (
√
π⃗n · An)⊤ × (

√
π⃗n · Q⃗n) (45)

Let Q⃗n∗
tot denote the vector of the joint Q values of the joint action’s all permutations under the least

square solution. We have Q⃗n∗
tot = An × Q⃗n∗

loc. Therefore,

(
√
π⃗n · An)⊤ × (

√
π⃗n · An)× Q⃗n∗

loc = (
√
π⃗n · An)⊤ × (

√
π⃗n · Q⃗n

tot) (46)

Note the left sides of Eq.45 and Eq.46 are the same. We have

(
√
π⃗n · An)⊤ × (

√
π⃗n · Q⃗n) = An⊤ × (π⃗n · Q⃗n)

=(
√
π⃗n · An)⊤ × (

√
π⃗n · Q⃗n

tot) = An⊤ × (π⃗n · Q⃗n
tot)

(47)
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Referring to Eq.41, the coefficient matrix of the n-agent case equals

An⊤ =

[
An−1⊤ An−1⊤ · · · An−1⊤

An⊤1 An⊤2 · · · An⊤m

]
, An⊤i =

On⊤
i−

I⃗n⊤

On⊤
i+

 (48)

where On⊤
i− and On⊤

i+ are zero matrices of shape i×mn−1 and (m− i−1)×mn−1 (i ∈ [0,m−1]),
respectively. I⃗n⊤ is a row vector of all 1 elements, whose length is mn−1. Substituting Eq.48 into
Eq.47, we have[

An⊤1 An⊤2 · · · An⊤m
]
× (π⃗n · Q⃗n

tot) =
[
An⊤1 An⊤2 · · · An⊤m

]
× (π⃗n · Q⃗n) (49)

Omit the zero elements in An⊤i (i ∈ [1,m]). We have ∀i ∈ [1,m],

U\1∑
u\1

π(u1 = i, u\1|s)Q(s, u1 = i, u\1) =

U\1∑
u\1

π(u1 = i, u\1|s)Q(s, u1 = i, u\1) (50)

where u\1 denotes the set of all actions except u1, i.e., u\1 ∪ u1 = u. Summing up the equations
from u1 = 1 to u1 = m, we have

m∑
i=1

U\1∑
u\1

π(u1 = i, u\1|s)Q(s, u1 = i, u\1) =

U∑
u

π(u|s)Q(s,u)

=

m∑
i=1

U\1∑
u\1

π(u1 = i, u\1|s)Q(s, u1 = i, u\1) =

U∑
u

π(u|s)Q(s,u)

(51)

Let V (s) =
∑U

u π(u|s)Q(s,u) denote the actual state value function and Ṽ (s) =∑U
u π(u|s)Q(s,u) denote the expectation of the joint Q value function obtained by LMF. Ac-

cording to Eq.51, we have V (s) = Ṽ (s). Temporal-Difference (TD) learning target of the joint Q
value function under sarsa value iteration (i.e., sarsa target) is

ysarsa(st,ut) = rt + γ

S∑
st+1

P(st+1|st,ut) · Ṽ (st+1)

= rt + γ

S∑
st+1

P(st+1|st,ut) · V (st+1) = Q(st,ut)

(52)

Therefore, the sarsa target is an unbiased estimation of the action-value.

G RELATED WORKS

G.1 DECOMPOSITION OF MULTI-AGENT GAMES

A previous work (Dou et al., 2022) also discusses the limitation of Linear Mixing Function (LMF)
from the perspective of task properties and gives a definition to the decomposability of Multi-Agent
Markov Game (MAMG). For convenience, let this work be referred to as W1. In W1, a decompos-
able game is defined as a MAMG with linearly factorizable reward and transition functions. The
difference between W2 and our work lies in:

1. A decomposable game defined by W1 can only be decomposed agent by agent. By contrast,
in our definition of decomposable MMDP, the task is decomposable by independent agent
groups. Each group involves more than one agent.

2. The definition of the decomposable game defined by W1 involves the linear factorizabil-
ity of the transition function, which is not intuitively explainable. The transition function
describes the distribution of the next state conditioned on current state-action pair, which
can not be linearly factorized. By contrast, our defined decomposability of MMDP is intu-
itively explicable. By decomposing the state-action space and reward function, the task is
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decomposed into multiple independent sub-tasks. As a result, the action-value function of
the whole task equals the sum of the action-value functions of all sub-tasks (as shown in
Fig.2).

3. W1 only proves that LMF is free from representational limitation in decomposable games,
but does not prove in what task the representational limitation occurs for LMF. By contrast,
this paper prove a sufficient and necessary condition between the decomposability of an
MMDP and the linear factorizability of the action-value function. Given the reward and
transition functions, our definition of decomposable MMDP can be applied to distinguish
whether the representational limitation occurs for LMF.

Besides, another work (Castellini et al., 2021) empirically investigate the learning power of various
network architectures on a series of one-shot games. Let this work be referred to as W2. The
difference between W2 and our work lies in:

1. W2 only carries out empirical evaluations to the learning power of different MARL meth-
ods, while our work carries out both theoretical analysis and empirical evaluations to the
expressiveness of LMF.

2. W2 does not investigate learning strategies for repeated play, but only for the one-shot
game. By contrast, our investigation is on the background of value iteration, which is a
more complex case.

3. The investigated games in W2 are classified into factored and non-factored games, which
are different to the decomposable and indecomposable MMDPs in our work. Firstly, the
factored game in W2 is defined as the game with factorizable reward under specific condi-
tions. But the decomposable MMDP in our work requires linearly factorizable reward and
self-contained transitions.

G.2 VALUE DECOMPOSITION

An early solution to fully cooperative multi-agent tasks is independent learning, e.g., Independent
Q Learning (IQL) (Tan, 1993a). In tasks with a small number of agents, independent learning
with agent-specific reward functions is able to acquire strategies on the level of human experts
(de Witt et al., 2020; Berner et al., 2019). For better scalability, recent works turn to automatic credit
assignment methods, e.g., value decomposition. Here we introduce value decomposition methods
from the perspective of mixing functions. Note that the notations could be different from the original
papers.

Linear Mixing Function (LMF). LMF is firstly applied by VDN (Sunehag et al., 2017). The
joint Q value function of VDN Qtot(τ ,u) =

∑n
a=1 Qa(τa, ua) is trained to approximate the

action-value function by Q-learning value iteration. QTRAN (Son et al., 2019) applies the LMF
in another way. Specifically, a central Q value function Qct(τ ,u) (with complete representa-
tional capability) is introduced to approximate the action-value function by Q-learning value it-
eration. The difference between Qct(τ ,u) and Qtot(τ ,ugre) is denoted by Vct(τ ), i.e., Vct(τ ) :=
Qct(τ ,ugre) − Qtot(τ ,ugre). Qtot(τ ,u) is trained with the target y := Qct(τ ,u) − Vct(τ )
and would not updated if Qtot(τ ,u) > y. QTRAN introduces the target y to distinguish whether
Q(s,u) is underestimated by Qtot(τ ,u). Qtot(τ ,u) is updated only in underestimated cases. Since
the optimal action-value is more likely to be underestimated, QTRAN alleviates the optimal repre-
sentation interference (ORI) to some extent.

Strictly Monotonic Mixing Function (SMMF). QMIX (Rashid et al., 2020b) introduces SMMF
in value decomposition. The joint Q value function of QMIX is trained to approximate the action-
value function by Q-learning value iteration. SMIX Yao et al. (2021), Qatten Yang et al. (2020)
and WQMIX (Rashid et al., 2020a) apply the same mixing function with QMIX. SMIX replaces the
TD(0) Q-learning target with a TD(λ) sarsa target. Qatten introduces an attention network before
the mixing network. WQMIX (Rashid et al., 2020a) implements the mixing function of QMIX in
a QTRAN-like manner. Specifically, WQMIX introduces a central Q value function Qct(s, τ ,u)
(with complete representational capability) to approximate the action-value function by Q-learning
value iteration. Qct(s, τ ,u) and the joint Q value function Qtot(s, τ ,u) are trained with the same
target y = r(s,u) + γQct(s

′, τ ′,u′
gre). WQMIX introduces a small weight to the loss function if

Qct(s, τ ,ugre) > y (CW-QMIX) or Qtot(ss, τ ,u) > y (OW-QMIX). In words, WQMIX places
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more importance on the representation of underestimated action-values, which also alleviates the
ORI to some extent. Both QTRAN and WQMIX rely on the accurate discrimination of underesti-
mated action-values.

Other Mixing Functions. DCG (Böhmer et al., 2020) introduces the concept of a coordination
graph, which factorizes the joint Q value function by nodes (local Q value functions) and edges (Q
value function conditioned on agent groups). The mixing function of DCG has complete representa-
tional capability only if the graph is fully connected. Otherwise, DCG suffers from representational
limitation in indecomposable MMDPs, where the action-value functions are not linearly factorizable
by any group of agents. However, a fully connected graph brings high computational cost. QPLEX
(Wang et al., 2020b) propose a dueling mixing network. As discussed in Section 4.1, the mixing
function of QPLEX can be viewed as an implementation of the difference mixing framework. The
mixing function of QPLEX has complete representational capability but would suffer from severe
Optimal Representational Interference (ORI). Detailed discussion of the ORI of QPLEX mixing
function can be found in Appendix I.

A summary of value decomposition methods is provided in Tab.1.

Table 1: A summary of value decomposition methods. LMF: Linear Mixing Function. SMMF:
Strictly Monotonic Mixing Function. MUD: Mixing for Unbounded Difference. ORI: Optimal
Representation Interference. FC: Fully Connected.

Method Mixing
Function Monotonic IGM Complete

Expressiveness
Addressing

ORI
VDN LMF

√ √
× ×

QTRAN LMF
√ √

×
√

QMIX SMMF
√ √

× ×
SMIX SMMF

√ √
× ×

Qatten SMMF
√ √

× ×
WQMIX SMMF

√ √
×

√

DCG N/A
√ √

FC graph ×
QPLEX MUD

√ √ √
×

MUD-SmG (ours) MUD
√ √ √ √

MUD-StG (ours) MUD
√ √ √ √

H NON-MONOTONIC MIXING FUNCTIONS SUFFERS FROM POOR
CONVERGENCE

Figure 10: The joint Q value function is easily stuck in sub-optimums for non-monotonic mixing
functions.

Consider the value decomposition in fully cooperative MARL problem. Suppose all agents except
agent 1 take their greedy actions, which we omit in the notation. Let u∗

1 = argmaxu1
Q(s, u1) and

u1,gre = argmaxu1
Qtot(s, u1) denote the optimal and greedy actions, respectively. As shown in

Fig.10:

20



Under review as a conference paper at ICLR 2024

(a) Qtot(s, u
∗
1) (blue cross) is trained to represent its target Q(s, u∗

1) (black cross)
(b) For the monotonic mixing function, Qtot(s, u

∗
1) is able to reach the target under the IGM

constraint.
(c) For the non-monotonic mixing function, we have argmaxu1 Qtot(s, u1) = u∗

1 but
argmaxu1 Q1(s, u1) = u1,gre if Qtot(s, u

∗
1) reaches the target, for which the IGM (Eq.2)

would be violated.
(d) Since the IGM constraint holds, Qtot(s, u

∗
1) could not reach the target, but would be stuck

in the sub-optimum (hollow blue cross) for the non-monotonic mixing function.

I EXAMPLE OF THE ORI IN MUD: QPLEX MIXING FUNCTION (WITHOUT
STOPPED GRADIENT)

An example of ORI is the mixing function of QPLEX (Wang et al., 2020b) without stopped gradient.
Consider the fully observable setup. The joint Q value function of QPLEX is

Qtot(s,u) =

n∑
a=1

Qa(s, ua,gre)−
n∑
a=1

wa(s,u) · [Qa(s, ua,gre)−Qa(s, ua)] (53)

where wa(s,u) ≥ 0. Note that F ′
a(s,u) = wa(s,u) and Qtot(s,u)

wa(s,u) =

− [Qa(s, ua,gre)−Qa(s, ua)] < 0. Therefore, F ′
a(s,u) decreases as Qtot(s,u). As a re-

sult, the optimal representation ratio w∗ could be extremely small, which leads to sever ORI.

Figure 11: Failure cases of QPLEX mixing function (without stopped gradient) on a 2-agent matrix
game. (a) the optimal representation ratio w∗ decreases to an extremely low level (around 10e-8).
(b) as a result, the representational error of the optimal action-value does not decrease.

Here we introduce an example to illustrate the problem. Consider a two-agent matrix game with
the payoff matrix (i.e., action-value matrix) [[1,−1], [−1, 0]]. Assume the initial greedy action is
ugre = {2, 2}, where u1, u2 ∈ {1, 2}. The representation of the matrix is equivalent to solving the
following equation system:

−w1(1, 1) · [Q1(2)−Q1(1)]− w2(1, 1) · [Q2(2)−Q2(1)] +Q1(2) +Q2(2) = 1
−w1(1, 2) · [Q1(2)−Q1(1)] +Q1(2) +Q2(2) = −1

−w2(2, 1) · [Q2(2)−Q2(1)] +Q1(2) +Q2(2) = −1
Q1(2) +Q2(2) = 0

(54)

where we omit the input states. The first equality is unachievable without the change of the greedy
action. Assuming the other 3 equalities hold and the action distribution is uniform, the optimal
representation ratio w∗ equals

w∗ =
1

2

[
w1(1, 1)

w1(1, 1) + w1(1, 2)
+

w2(1, 1)

w2(1, 1) + w2(2, 1)

]
(55)

which can be approximated by

w̃∗ =
1

2

[
w1(1, 1) · [Q1(2)−Q1(1)]

w1(1, 1) · [Q1(2)−Q1(1)] + 1
+

w2(1, 1) · [Q2(2)−Q2(1)]

w2(1, 1) · [Q2(2)−Q2(1)] + 1

]
≈ w∗ (56)
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Such approximation is evaluated in Fig.11(b). To approximate the first equality in Eq.54, ∀a ∈
{1, 2}, wa(1, 1) · [Qa(2)−Qa(1)] would decrease to 0, which leads to an extremely low w∗. As a
result, the representation of Q(1, 1) is overwhelmed by the representation of Q(1, 2) and Q(2, 1).

We carry out experiments to verify the ORI of QPLEX mixing function (without stopped gradient).
The joint Q value function is implemented by neural networks. Each module is implemented by a 2-
layer MLP. Qtot(s,u) is trained by Q-learning value iteration in an on-policy manner. We adopt the
ϵ-greedy strategy to sample the joint action and set ϵ = 0.2 throughout the training. In 50 times of
independent training, the greedy action gets trapped in ugre = {1, 1} for 24 times. We visualize the
training process of the 24 failure cases, which is shown in Fig.11. Actually, to avoid w∗ decreasing,
QPLEX applies the following mixing function

Qtot(s,u) =

n∑
a=1

Qa(s, ua)−
n∑
a=1

[wa(s,u)− 1] · [Qa(s, ua,gre)− SG (Qa(s, ua))] (57)

where SG refers to stopping gradient. For Eq.57, we have F ′
a(s,u) =

Qtot(s,u)
Qa(s,ua)

= 1. According to
Eq.11, w∗ depends only on the action distribution, (i.e., policy π(u|s)).

J EXPERIMENTAL SETUPS

J.1 VERIFICATION OF THE EXPRESSIVENESS OF LMF

Detailed Task setup. Referring to Fig.2 and the examples in Fig.9, we design toy games for both
decomposable and indecomposable MMDPs. 4 agents (denoted by dots) need to cover 2 landmarks
(denoted by squares) in pairs. The map is gridded by a 4×4 checkerboard. All agents are initialized
with the position (3, 0) and required to select actions from {up, right} at each time step. We mask
invalid actions, e.g., up at position (0, 0). The task is fully observable and the state consists of
the positions of all agents. The agents would not collide with each other or any landmark. The
team receives an instant reward of 1 when any agent arrives and gets accepted by a landmark. Each
landmark only accepts the agent with the same color as it and is limited to accept no more than 2
agents. As explained in Fig.9, the reward function is not linearly factorizable for the indecomposable
case.

Training setup. We introduce a central Q value function Qct(s,u) modelled by a 5-layer neu-
ral network to learn the action-value function. Besides, we also apply neural networks to model
two joint Q value functions: (1) Qlmf (s,u) =

∑4
a=1 Qa(s, ua); (2) Q33 = Q′

1(s, u1, u2, u3) +
Q′

2(s, u1, u2, u4). Qct(s,u), Qlmf (s,u) and Q33 are trained by both sarsa and Q-learning value
iteration. We test the Root Mean Square Errors (RMSE) of Qlmf (s,u) and Q33(s,u) to Q(s,u).
Formally,

RMSE33(s) =

(
1

mn

U∑
u

[Qct(s,u)−Q33(s,u))]
2

) 1
2

(58)

Note we approximate Q(s,u) with a central joint Q value function Qct(s,u). RMSElmf (s) can
be obtained by replacing Q33(s,u) with Qlmf (s,u) in Eq.58. The RMSE is compared with the test
mean action-value Vct(s), which is defined as Vct(s) := 1

mn

∑Un
u Qct(s,u). For the experiment of

Fig.6(b), we adopt the ϵ-greedy exploration strategy and set ϵ = 0.2 through out the training. For
the experiment of Fig.6(c), all agents follow random policies. For the experiments of Fig.12, actions
are sampled from a predefined action distribution, which is randomly generated at the beginning of
training.

J.2 SINGLE-STEP MATRIX GAMES

All modules of the joint Q value functions are implemented by 2-layer neural networks. We adopt
the ϵ-greedy exploration strategy and set ϵ = 0.2 through out the training. All joint Q value functions
are trained in an on-policy manner. The expressions of the mixing functions are provided in Tab.2.
α = 1.0 for MUD-StG. For better stability, we implement the central bias b(s,u) in Eq.12 and Eq.13
by 2-layer MLPs directly and constrain that b(s,u) > 0 by an absolute value function. Note that
consequently, the IGM would be violated. To approximate the IGM, the regularization b(s,ugre) =
0 is applied to the loss function.
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Table 2: The expressions of the mixing functions. For brevity, we denote Q(s, ua) and Q(s, ua,gre)

by Qa and Qa,gre, respectively. Q⃗locs = [Q1, · · · , Qn]. × denotes matrix product. fac is a mono-
tonic activation function. b(s,u) = |⃗h− h⃗gre|2, where h⃗ and h⃗gre are vectors generated from (s,u)
and (s,ugre), respectively. SG refers to stopped gradient. α is a hyper-parameter. The following
variables are constraint to be absolute values: (1) elements of w⃗1(s) and w⃗2(s) (SMMF); (2) w(s,u)
(MUD); (3) wa(s,u) (MUD (QPLEX) and MUD (QPLEX-SG)); (4) Qa and Qa,gre (MUD-SmG).
The shapes of the variables of SMMF is provided in Tab.3.

Mixing Function Expressions of Qtot(s,u)

LMF
∑n
a=1 Qa

SMMF w⃗2(s)× fac

(
Q⃗locs × w⃗1(s) + b⃗1(s)

)⊤
+ b2(s)

MUD (Eq.9) V (s)−
∑n
a=1 w(s,u) · (Qa,gre −Qa) + b(s,u)

MUD (QPLEX)
∑n
a=1 Qa,gre −

∑n
a=1 wa(s,u) · (Qa,gre −Qa)

MUD (QPLEX-SG)
∑n
a=1 Qa −

∑n
a=1 [wa(s,u)− 1] · (Qa,gre − SG(Qa))

MUD-SmG
∑n
a=1 Qa,gre − e−b(s,u) · 1

n

∑n
a=1

(
1− Qa

Qa,gre

)
− b(s,u)

MUD-StG
∑n
a=1 (Qa,gre − SG(Qa)) + b(s,u) b(s,u) > α∑n
a=1 (Qa,gre −Qa) + b(s,u) otherwise

Table 3: Shapes of the variables of SMMF. h ∈ {1, 2, 3, · · · }.

variable Q⃗locs w⃗1(s) b1(s) w⃗2(s) b2(s)

shape (1, n) (n, h) (1, h) (1, h) (1, 1)

J.3 PREDATOR PREY AND SMAC

We adopt the same task and training setups as WQMIX (Rashid et al., 2020a) in all experiments.

K ADDITIONAL EXPERIMENTS

K.1 ESTIMATION BIAS OF THE STATE VALUE FOR LMF IN INDECOMPOSABLE MMDP

We apply our designed toy game (Fig.5) to verify our finding in Appendix F, i.e., the sarsa target is an
unbiased estimation of the action-value for LMF in indecomposable MMDP. To be specific, we test
the difference between Vct(s) =

∑U
u π(u|s)Qct(s,u) and Ṽlmf (s) =

∑U
u π(u|s)Qlmf (s,u) un-

der sarsa value iteration in the indecomposable case. Qlmf (s,u) =
∑n
a=1 Qa(s, ua). Qct(s,u)

is a central joint Q value function applied to approximate the action-value function. We also
test the estimation error of Q-learning targets, i.e., ∆QQ

max,lmf (s) = maxu∈UQlmf (s,u) −
maxu∈UQct(s,u) under Q-learning value iteration. Only the 98 states of first 3 time steps are
recorded. We visualize the test results after 6k iterations of training, which are shown in Fig.12.
Each bar denotes the test result of a single state. Detailed task and training setups are available in
Appendix J.1.

K.2 STARCRAFT MULTI-AGENT CHALLENGE

we compare MUD-SmG and MUD-StG with other value decomposition methods on challenging
tasks of the StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). We set α = 1.0
for MUD-StG. The experimental results are shown in Fig.13. Fig.13 demonstrates that MUD-StG
outperforms the other methods.
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Figure 12: The estimation error of state values (sarsa) and maximal action-values (Q-learning) in
decomposable & indecomposable MMDPs, where ∆V sarsa(s) = Ṽlmf (s)− Vct(s).

Figure 13: Mean test win rate of value decomposition methods on SMAC.

K.3 ABLATION STUDIES

We carry out ablation studies to evaluate the effect of gradient shaping. Specifically, we compare two
MUD mixing functions with gradient shaping (i.e., MUD-SmG and MUD-StG) and MUD without
gradient shaping in predator prey environments. The expression of the mixing function without
gradient shaping is Qtot(s,u) =

∑n
a=1 Qa(τa,ua) − b(s,u). The experimental results are shown
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Figure 14: Evaluation of gradient shaping in predator prey environments.

in Fig.14. Besides, we further evaluate the influence of the hyper-parameter α to MUD-StG in
predator prey environment with the punishment of -2. The experimental result is shown in Fig.15.

Figure 15: MUD-SmG with different α in predator prey environment with the punishment of -2.

Difference between decomposable MMDP and decomposable games proposed by previous works.
The decomposability of multi-agent games has also been discussed by previous works. (Dou
et al., 2022) defines decomposable game with an unexplainable factorization of transition function.
(Castellini et al., 2021) empirically investigates the learning power of different MARL methods on
one-shot games. Such works decompose the game agent by agent. In our definition of decompos-
able MMDP, the game is decomposable by agent groups. Besides, our defined decomposability of
MMDP is intuitively explicable. By decomposing the state-action space, the task is decomposed
into multiple independent sub-tasks. As a result, the action-value function of the whole task equals
the sum of the action-value functions of all sub-tasks. Most importantly, we are the first to prove a
sufficient and necessary condition between the decomposability of an MMDP and the linear factor-
izability of the action-value function.
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