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Abstract

Radiology reports contain detailed image de-
scription that is crucial for clinicians in
decision-making, and automated disease clas-
sification based on radiology reports can be
more effective than image-based classification.
Although deep learning achieves promising
performance on this task, existing approaches
struggle with increasing class complexity when
multi-class disease classification is considered,
where multiple distinct modes can coexist
within the feature distribution of a single class,
leading to highly complicated decision hyper-
surfaces. To address this challenge, we propose
Semantics-Guided Mixture of Experts (SG-
MOoE) for report-based multi-class disease clas-
sification. SGMOE specializes multiple clas-
sification experts in handling different disease
modes, each learning class boundaries within
a specific subspace of the feature distribution.
To guide the subspace allocation for each ex-
pert, SGMoE uses the report semantics to deter-
mine the expert assignment. This is achieved
by clustering the report semantic embedding,
and then an expert is assigned to determine
specific classes in a certain cluster or clusters.
Moreover, a gating network is designed to adap-
tively select appropriate experts for final clas-
sification, with a gating loss penalizing gating
that contradicts with the expert assignment for
model training. Experiments on an in-house
dataset of 11,864 reports and the public CT-
RATE dataset show that SGMOoE achieves more
accurate multi-class disease classification than
existing text classification approaches.

1 Introduction

Automated disease classification based on radi-
ology images, e.g., magnetic resonance imaging
(MRI), computed tomography (CT), and X-ray
imaging, has drawn considerable attention for its
potential to aid clinicians in making timely and pre-
cise diagnoses, ultimately improving patient out-
comes (Wolbarst and Hendee, 2006). In particular,

deep learning (DL) methods have led to promis-
ing progress in the classification task. For exam-
ple, convolutional neural network (CNN) models
have been applied to brain tumor classification, car-
diac disease detection, and chest radiograph diag-
nosis (Akkus et al., 2016; Choi et al., 2021; Korfi-
atis et al., 2017; Xu et al., 2023; Rajpurkar et al.,
2018). Similarly, Transformer-based models have
also demonstrated superior performance in tumor
molecular status prediction, breast cancer classifica-
tion, and chest X-ray diagnosis (Chen et al., 2024;
Wang et al., 2022; Park et al., 2022). Despite these
advancements, it can still be challenging for these
image-based methods to achieve high classification
accuracy, as the image dimension is usually high
and it is difficult to learn an optimal association
between disease types and image appearances (Lit-
jens et al., 2017; Zhang et al., 2019).

Recent studies have explored disease classifi-
cation based on radiology reports (Chen et al.,
2018; Kim et al., 2019; Tang et al., 2020), and
it is shown in (Gao et al., 2024) that report-based
disease classification can be more accurate than
image-based classification. In clinical practice, ra-
diology reports written by radiologists accompany
radiology images, and they provide detailed de-
scriptions about the important observations, e.g.,
anomalies, in the image. As report drafting is re-
quired by clinical routine, report-based classifica-
tion does not introduce additional human work-
load. In the report-based disease classification, the
findings part that describe the image appearance
is used without the impressions part that give po-
tential diagnostic suggestions, as it is easier for
radiologists to describe the image than determine
the disease type. Even less experienced radiolo-
gists can provide high-quality image description,
but they are often unable to diagnose complicated
diseases. The report information has a much lower
dimension, which makes it easier to learn the as-
sociation between image appearances and disease



types. The report-based classification in (Gao et al.,
2024) encodes the text information with Bidirec-
tional Encoder Representations from Transform-
ers (BERT) model variants (Devlin, 2018), and the
classification accuracy is shown to be clearly better
than image-based models, including ResNet (He
et al., 2016), ViT (Dosovitskiy, 2020), Swin Trans-
former (Liu et al., 2021), etc.

The report-based disease classification may still
struggle to address multi-class scenarios when the
distribution of certain disease types can have mul-
tiple distinct modes in the feature space. For ex-
ample, different types of brain tumors may share
overlapping semantic or imaging characteristics,
while simultaneously displaying significant varia-
tions within the same type (Mirbabaie et al., 2021).
The multimodal distribution increases the difficulty
of finding a single classification boundary to dis-
criminate the disease (Ruff et al., 2021), and it
becomes even more challenging when there are a
considerable number of different disease types to
classify (Bilal et al., 2017).

To address the challenge of multimodal distribu-
tion in multi-class disease classification, we seek
to decompose the complex classification task into
smaller and more manageable subproblems. Ac-
cordingly, in this work we propose the Semantics-
Guided Mixture of Experts (SGMoE) framework
for multi-class classification based on radiology
reports.

In SGMoE multiple experts are used, each spe-
cializing in a specific subset of the problem space.
In this way, instead of finding a single set of com-
plex classification hypersurfaces, SGMoE deter-
mines multiple simple decision boundaries, greatly
simplifying the classification task. To determine
the assignment of the subspace to each expert, SG-
MoE develops a semantics-guided clustering strat-
egy, which explores the inherent structure of the
report data. In particular, the semantic embeddings
of the reports are clustered to partition the feature
space into different subspace. After denoising the
potential data noise, each cluster only comprises a
subset of all disease types, and each expert is dedi-
cated to classifying the diseases within one or a few
clusters. Note that when a disease type has multiple
modes, different modes can be separated in differ-
ent clusters and handled by different experts, and
the expert is no longer faced with the challenging
issue of multimodal feature distribution. Given the
class assignment of each expert, to determine how
experts are activated for an input sample, SGMoE

employs a gating network to dynamically feed the
input to appropriate experts. The gating network
considers both the input information and prior clus-
ter information.

To jointly train the experts and gating network,
SGMOoE further designs a gating loss that penalizes
expert activations that contradict with the class as-
signment, and it is used together with a standard
classification loss for model training. To validate
SGMOoE, experiments were performed on a private
dataset and the public CT-RATE dataset (Hamamci
et al., 2024a,b,c), where SGMoE outperforms com-
peting text-based classification models. The SG-
MoE code will be publicly available.

2 Related Work

2.1 DL Disease Classification Based on
Radiology Data

DL models have been widely applied to the diag-
nosis of various diseases, including neurological
diseases, chest diseases, heart diseases, etc. Con-
ventionally, radiology images such as MRI, CT, and
X-ray scans are used for disease classification. For
example, CNN-based models have been developed
to classify gliomas based on MRI by predicting the
isocitrate dehydrogenase mutation status, which
plays a crucial role in treatment planning (Choi
et al., 2021). Additionally, CNNs have been em-
ployed for the early diagnosis and classification of
Alzheimer’s disease using MRI (Salehi et al., 2020).
In the context of chest diseases, CNN-based mod-
els have shown high performance in identifying
pneumonia and diagnosing COVID-19 infections
from chest X-ray (Islam et al., 2020). Similarly, in
cardiovascular diseases, CNN-based models have
been utilized to detect coronary artery disease and
other heart abnormalities on CT scans (Xu et al.,
2023). Beyond CNN-base models, Transformer-
based models have emerged as a promising al-
ternative, demonstrating superior performance in
tasks such as tumor molecular status prediction
on MRI (Chen et al., 2024), breast cancer classi-
fication on mammography images (Abimouloud
et al., 2024), chest diseases diagnosis on X-ray
scans (Park et al., 2022), etc. However, radiol-
ogy images usually have a high dimension, and
the learning of effective feature extraction from
the high-dimensional data for disease classification
can be challenging, which limits the classification
performance for more difficult tasks.

In addition to radiology images, several existing
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Figure 1: An overview of SGMOoE: (a) semantic clustering of training data for expert assignment; (b) the overall

architecture of SGMOoE given the expert assignment.

works have explored the use of the findings part of
radiology reports for disease classification, with the
expectation that the lower dimension of the report
information can reduce the difficulty in learning
the association between image appearances and
disease types. For example, natural language pro-
cessing (NLP) algorithms powered by machine
learning have demonstrated success in identifying
acute ischemic stroke phenotypes from brain MRI
reports (Kim et al., 2019). CNN-based models
have been applied to classify pulmonary embolism
findings from thoracic CT reports, achieving high
accuracy and outperforming traditional NLP meth-
ods (Chen et al., 2018); they have also been used
to classify normal and abnormal chest radiographs
based on the findings part of the reports, with re-
markable diagnostic accuracy and high generaliz-
ability (Tang et al., 2020). Furthermore, in (Gao
etal., 2024), BERT-based language models are fine-
tuned for disease classification, and it is observed
that report-based classification is on average about
10% more accurate than image-based models.

These works show the promising potential of
using radiology reports for disease classification
and underscore the importance of advancing text-
based models in medical diagnosis.

2.2 Text Classification

Report-based disease diagnosis is closely related
to text classification, which is a foundational task
in NLP. Its applications include sentiment analysis,
topic modeling, spam detection, etc. Traditional
approaches to text classification typically rely on
hand-crafted features and shallow machine learn-
ing algorithms, for example, XGBoost (Chen and
Guestrin, 2016) and LightGBM (Ke et al., 2017).
With the development of DL techniques, text
classification performance has been drastically im-

proved.

Early advancements in this area are driven by
recurrent neural networks (RNNs), particularly the
long short-term memory (LSTM) network, which
effectively captures sequential dependencies in
text (Yu et al., 2019). The LSTM network is use-
ful for processing medical reports with detailed
contextual information (Liu et al., 2022).

More advanced Transformer architectures are
also used for text classification, and the BERT
model (Devlin, 2018) is a notable example.
BioBERT (Lee et al., 2020), RadBERT (Yan et al.,
2022), and Clinical BERT (Huang et al., 2019) ex-
tend BERT to biomedical and clinical domains
based on domain-specific corpora such as PubMed
abstracts and electronic health records, and they
achieve superior performance in medical text anal-
ysis. RoOBERTa (Liu, 2019) improves upon BERT
with dynamic masking during pretraining, leading
to enhanced contextual understanding, and it may
be extended to the medical domain as well.

3 Method

3.1 Method Overview

An overview of the SGMoE framework that clas-
sifies multiple disease types based on radiology
reports is shown in Fig. 1. Instead of addressing
the multi-class problem with one single classifier,
SGMOoE uses different classification experts that are
responsible for different subsets of diseases, which
decomposes the challenging multi-class classifica-
tion task into manageable subproblems. SGMoE
first uses semantic clustering to determine the ex-
pert assignment of disease classes as illustrated in
Fig. 1a.

Then, the overall architecture of SGMoE given
the expert assignment is shown in Fig. 1b. SGMoE



comprises multiple experts determined by the se-
mantic clustering, and they are followed by class
routing to merge the classification results for dif-
ferent disease types. A gating network is used to
allocate the input sample to appropriate experts,
where the gating is decided by both prior knowl-
edge from semantic clustering and input-specific
features. The detailed design of SGMOoE is pre-
sented below.

3.2 Expert Assignment Guided by Semantic
Clustering

Before constructing the network of SGMOoE, the
specific roles of the experts should be determined.
SGMOoE seeks to partition the feature space so that
each expert excels in the classification of a subset
of disease types within a subspace, where multi-
modal disease distributions can be decomposed
into multiple simple distributions handled by dif-
ferent experts. To this end, a pretrained ROBERTa
model (Cui et al., 2020, 2019) is used to obtain the
semantic embeddings of radiology reports, and se-
mantic clustering is performed based on the embed-
dings for expert assignment. Specifically, the sim-
ple k-means clustering algorithm (Jain and Dubes,
1988) is applied to the training reports, for which
the disease type is known, and the optimal number
N of clusters is determined based on the silhouette
coefficient (Rousseeuw, 1987).

As the semantic embeddings may contain noise
and/or inaccuracy, each cluster can comprise dis-
ease types with a very small number of samples,
and directly assigning all classes in the cluster to
the same classification expert may lead to high
class imbalance. Therefore, expert assignment is
performed after class denoising, where for the j-th
cluster (j € {1,...,N}), the corresponding set
§; of assigned classes only include those with a
sufficient number of samples:

n; 5 1
sjz{ai s zN}. (M

Here, a; denotes the i-th disease type, n; ; is the
total number of training samples of a;, and n; ; is
the number of training samples of a; in the j-th
cluster. Eq. (1) removes samples that are clustered
likely due to noise and also ensures that each class
appears at least in the assignment of one cluster.
Note that some clusters can only contain one
single disease type after the denoising, and the
classification becomes trivial for the expert. To
address the problem, the classes in those clusters

with a single class are grouped and assigned to a
single expert, as the samples in these clusters are
compact in the feature space and easy to separate.

3.3 SGMOoE Architecture

The expert assignment guided by semantic cluster-
ing leads to M (M < N) experts, where the m-th
expert F,,, handles the class set Cp,.

For an input sample =z, FE, out-
puts the classification probability vector
Pm = [pm,17pm727 cee 7pm,\Cm|} for its as-

signed classes, where |C,| is the cardinality of
Cn- As it is possible that multiple experts may
be activated for a sample, the results of different
experts need to be fused. However, different p,,,’s
are associated with different combinations of
classes, and they cannot be directly fused.

To address the problem, we first develop a
class routing mechanism as follows for expert fu-
sion. Specifically, p,, is mapped back to a vec-
tor of length D, where D is the number of dis-
ease types of interest, with a permutation matrix
P,, € RICmIXD 44

Pl = PmPm. 2)

if a; € Cp, and index(a;,Cp,) = k

The entries Py,* in P,,, are determined as
. )
otherwise

Pk),i — 17
m 0’
3)

where index(a;, C,,,) represents the index of a; in
Cpn- In this way, all expert outputs are reshaped
as D-length vectors p/,,, and their entries are now
aligned, with non-assigned classes having zero val-
ues.

To fuse the expert outputs, we develop a gat-
ing network. It gives a weight vector w =

(wy,...,wy) and aggregates p.,,’s as
M
Dfinal = Z wmp;na 4)
m=1

where pgpq 1 the final classification result. This
aggregation ensures that the final classification de-
cision integrates the specialized knowledge of all
experts while prioritizing the contributions of the
most relevant experts based on the gating output.
Unlike standard mixture of experts, the gating
here considers prior knowledge from semantic clus-
tering in addition to input data, so that expert ac-
tivation both conforms to the semantic priors and



allows data-driven flexibilities. First, for the m-
th expert, a prior gating weight w}, is computed
by the Euclidean distance d,,, between its cluster
centroid and the semantic embedding of the input
x:

WP — nexp(—dm) .
" Zm’:l exp(—dm/)
Note that for experts associated with multiple clus-
ters with single disease types, the smallest distance
to their centroids is selected.

Second, the embedding of x is concatenated with
the encoding of all experts and processed by a sim-
ple feedforward neural network. This produces the
data-driven gating weights w® = (w¢,... , wd).
The final gating weights are computed as the aver-
age of the two:

(&)

1
Wy = 5 (wh, + wj,). (©)

3.4 Model Training

The experts and gating network of SGMoE are
jointly trained with the training reports and their
disease labels. To improve the learning of the
gating network, in additional to the commonly
used cross-entropy classification loss L., we also
develop a gating loss L, that guides the gating
based on the prior knowledge of expert assignment.
Specifically, for an input sample = with a true label
y € {a1,...,ap}, the gating loss L, is designed
to encourage greater gating weights w,, of experts
E,, that are assigned the class y:

M
L, = —log Z I(y € Cin) - Wi, (7
m=1

where I(y € C,,) is an indicator function that
equals one if y € C,, and zero otherwise. The
total loss function £ combines L. and £, with a
weighting factor A:

A is empirically set to 0.1 so that the primary focus
remains on classification while encouraging desired
expert activation.

3.5 Implementation Details

The experts in SGMoE use the RoOBERTa back-
bone (Cui et al., 2020, 2019), but other architecture
may also be used. The pretrained ROBERTa ex-
tracts the semantic embedding of reports for clus-
tering. It is then fine-tuned with the parameter ef-
ficient fine-tuning method LoRA (Hu et al., 2021)

Disease Type Count Disease Type Count
Lymphoma 579 Metastases 1,250
Glioblastoma 1,231 Circumscribed glioma 534
Acoustic neuroma 778 Cavernous angioma 627
Neuronal tumor 697 Ependymoma 372
Medulloblastoma 308 Germinoma 622
Meningioma 1,250 Craniopharyngioma 1,096
Pituitary adenoma 1,250 Epidermoid cyst 541
Chordoma 361 Hemangioblastoma 368
Total 11,864 -

Table 1: Composition of the In-house Dataset

based on training data with a rank of 16 and an al-
pha of 32, where task-specific classification layers
are attached and also learned. Different experts are
initialized with unique random seeds. The gating
network employs three fully connected layers. The
AdamW optimizer is used for training with a learn-
ing rate of 2 X 10~°, a batch size of 32, and 100
epochs.

4 Experiments

4.1 Dataset and Task Description

We performed experiments on two datasets. The
first one was an in-house dataset consisting of
11,864 radiology reports of brain MRI, covering
16 different types of brain tumors, as summarized
in Table 1. The ground truth classification was
obtained with pathological analysis. The second
dataset was the public CT-RATE dataset, contain-
ing radiology reports of chest CT images annotated
with 18 different clinical manifestations. Each com-
bination of the manifestations was considered a
class. Only combinations with at least three dis-
tinct clinical manifestations were kept, which led to
40 classes with 1,862 samples. The detailed com-
position of these different classes is summarized in
Table 2, where for convenience each manifestation
combination is given a class index.

Both datasets were divided into training, valida-
tion, and test sets with a 8:1:1 ratio for each class.
The number of experts in SGMoE determined by
the semantic clustering results was seven for the
in-house dataset and 12 for the CT-RATE dataset.
The detailed expert assignments are shown in Ta-
bles 3 and 4 for the in-house and public datasets,
respectively.

4.2 Disease Classification Results

SGMOoE was compared with several text classi-
fication models based on popular text encoders,



Class (Manifestation Combination) Index Count Class (Manifestation Combination) Index Count
AWC/AT/CAWC 1 27 AT/LN/LO/MM 21 21
AWC/AT/CAWC/EM/HH/LN/LA 2 20 AT/LN/LA/PFS 22 26
AWC/AT/CAWC/EM/LN/PFS 3 40 AT/LN/PFS 23 100
AWC/AT/CAWC/LN 4 52 AT/MM/PE 24 32
AWC/AT/CAWC/LN/LO 5 22 BR/EM/LN 25 38
AWC/AT/CAWC/LN/PFS 6 22 BR/LN/LO 26 34
AWC/AT/CAWC/LO 7 35 BR/LN/PBT 27 64
AWC/CO/CAWC/HH/LO 8 20 BR/LN/PFS 28 88
AWC/CO/CAWC/LO 9 59 CO/HH/LO 29 55
AWC/CAWC/EM/HH/LN/PFS 10 24 CO/LN/LO/PFS 30 58
AWC/CAWC/EM/LN 11 55 CO/LO/MM/PE 31 20
AWC/CAWC/EM/LN/LA/PFS 12 43 EM/LN/LA 32 60
AWC/CAWC/EM/LN/PBT/PES 13 22 EM/LN/LA/PFS 33 46
AWC/CAWC/EM/PFS 14 32 HH/LN/LO 34 43
AWC/CAWC/LN 15 100 HH/LN/LA 35 44
AWC/CAWC/LN/LA/PES 16 36 HH/LN/PFS 36 100
AWC/LN/PFS 17 67 HH/LO/LA 37 34
AT/CO/LN 18 20 LN/LO/PFS 38 100
AT/CO/LO 19 96 LN/LA/MM 39 33
AT/EM/LN/PFS 20 33 LN/MA/PFS 40 41
Total - 1,862 -

Table 2: Composition of the public CT-RATE dataset with manifestation combinations. AWC=Arterial Wall Cal-
cification, AT=Atelectasis, CAWC=Coronary Artery Wall Calcification, EM=Emphysema, HH=Hiatal Hernia,
LN=Lung Nodule, LA=Lymphadenopathy, PFS=Pulmonary Fibrotic Sequela, CO=Consolidation, LO=Lung Opac-
ity, MM=Medical Material, PE=Pleural Effusion, BR=Bronchiectasis, PBT=Peribronchial Thickening, MA=Mosaic

Attenuation Pattern.

Expert Class Assignment Expert Class Assignment
Expert 1 Lymphoma | Metastases | Glioblastoma | Expert 1 1131415161718191101111121131141
Ependymoma 15116
Expert 2 Cavernous angioma | Epidermoid cyst Expert 2 114119123125127128129130133139
Expert 3 Circumscribed glioma | Germinoma | Expert 3 21124131139
Craniopharyngioma Expert 4 22132133135137139
Expert 4 Circumscribed glioma | Neuronal tumor | Expert 5 S5118119120122123126127128130134 1
Ependymoma 38140
Expert 5 Circumscribed glioma | Hemangioblastoma ~ Expert 6 819119129130131
Expert 6 Circumscribed glioma | Ependymoma | Expert 7 10129134135136137
Medulloblastoma Expert 8 13125127
Expert 7 Lymphoma | Metastases | Acoustic Expert 9 213111112114132
neuroma | Germinoma | Meningioma | Expert 10 6110112114117
Pituitary adenoma | Chordoma Expert 11 2112117
Expert 12 11416113115117118119120122123125

Table 3: Expert Assignment for In-house Dataset

including LSTM (Hochreiter and Schmidhuber,
1997), BioBERT (Lee et al., 2020), Clinical-
BERT (Huang et al., 2019), and RoBERTa (Cui
et al., 2020, 2019). LSTM represents a traditional
sequential model commonly used for text clas-
sification, whereas BioBERT and ClinicalBERT
are Transformer-based models pretrained specifi-
cally on biomedical and clinical text, respectively.
RoBERTa is a robustly optimized general-purpose
language model, often serving as a strong baseline
for NLP tasks. The same task-specific classifica-
tion layers of SGMoE were attached to these en-
coders for disease classification based on radiology

126127128129130132133134135136137
138139140

Table 4: Expert assignment for CT-RATE dataset. In-
dexes in Table 2 are used to indicate the corresponding

categories.

reports, and the competing models were trained on
the same training data and under the same settings
with LoRA (except for the small-capacity LSTM
with full-parameter fine-tuning) as SGMOoE to en-
sure fair comparison.

The classification performance was quantita-
tively measured by the average classification ac-
curacy (ACC) and average Fl-score. The results
are shown in Table 5, where SGMoE shows clear



Model In-house CT-RATE
ACC (%) F1(%) ACC (%) F1 (%)
LSTM 54.6 55.0 72.7 73.6
BioBERT 53.3 51.1 69.0 65.4
ClinicalBERT 62.4 614 73.8 69.0
RoBERTa 70.1 69.3 88.2 87.7
SGMoE 72.0 71.4 925 92.5

Table 5: Classification performance comparison of SG-
MoE with baseline models

advantages over the competing methods. For the in-
house dataset, SGMoE achieves an average ACC of
72.0% and an average F1-score of 71.4%, outper-
forming the best competing method RoOBERTa by
1.9 and 2.1 percentage points, respectively; com-
pared with other competing methods, the improve-
ment in ACC and Fl-score is close to or even
greater than 10 percentage points. For the pub-
lic CT-RATE dataset, SGMoE achieves an aver-
age ACC of 92.5% and an average Fl-score of
92.5%, outperforming the best competing method
RoBERTa by 4.3 and 4.8 percentage points, respec-
tively; compared with other competing methods,
the improvement in ACC and F1-score is close to
or even greater than 20 percentage points.

As SGMOoE also uses the RoOBERTa backbone,
the comparison between SGMoE and RoBERTa di-
rectly indicates the benefit of expert specialization
guided by semantic clustering, where the decom-
position of the multi-class disease classification
problem has led to improve classification perfor-
mance.

4.3 Comparison with Medical Expert

In addition, we compared the performance of SG-
MOoE with the classification made by a medical
expert based on the report. As the radiologist eval-
uation was manual, only a subset of the test set was
selected from the in-house dataset. Specifically, 96
cases were randomly selected (six samples for each
disease type). The results are shown in Table 6.
SGMOoE achieved better accuracy than the radiol-
ogists with an improvement of 14.5% (63.5% vs.
49.0%). The improvement indicates that SGMoE
not only is superior to other automated methods but
also can surpass medical experts when addressing
the multi-class classification problem.

4.4 Ablation Study

To verify the contributions of the key components
in SGMOoE, we performed a series of ablation exper-
iments on the in-house dataset. Each ablation set-

Evaluator Acc (%)
SGMoE 63.5
Medical expert 49.0

Table 6: Classification performance comparison be-
tween SGMOoE and a medical expert

Variant ACC (%) F1 (%)
SGMOoE (Full) 72.0 714
Without prior gating weight 71.6 70.9
Without gating loss 70.3 69.6
Without class routing 71.4 70.8
Random class allocation 69.9 69.4

Table 7: Ablation study on the in-house dataset

ting isolated the effect of a specific component. The
results are summarized in Table 7 and explained
below.

Prior Gating Weight First, we removed the se-
mantic prior gating weights from the gating net-
work. This forced the gating mechanism to rely
solely on sample-specific features to determine ex-
pert activations without guidance from the semantic
clustering results. The removal led to a decrease in
performance, with ACC dropping from 72.0% to
71.6% and F1-score from 71.4% to 70.9%. The per-
formance decrease indicates that the gating prior is
beneficial to the activation of appropriate experts.

Gating Loss Next, we removed the gating loss
and trained the whole network with the classifica-
tion loss only. This adjustment removed the explicit
constraint that aligns the gating weight with the
predefined expert assignments. The ACC dropped
to 70.3% and F1-Score dropped to 69.6%. This
result demonstrates that the gating loss is impor-
tant for the gating network to learn how to activate
relevant experts, thereby improving the overall per-
formance.

Class Routing We also removed the class rout-
ing mechanism, allowing each expert to predict all
16 classes. This change reduced the ability of the
experts to specialize in semantically meaningful
clusters, leading to decreased ACC (71.4%) and
F1-score (70.8%). The performance decrease high-
lights the importance of class routing in ensuring
that each expert focuses on a specific subset of the
problem space, which reduces the complexity of
the classification task.



Expert Assignment SGMOoE uses semantic clus-
tering to guide expert assignment. To show the ben-
efit of this assignment, we replaced the semantics-
guided assignment with random assignment, where
we generated random disease type groups while
retaining the number of classes for each expert and
ensuring all disease types were covered.

This resulted in the largest performance degra-
dation among all settings, with ACC dropping to
69.9% and F1-score dropping to 69.4%. The per-
formance is even worse than that of RoBERTa.
These results emphasize the critical role of seman-
tic clustering in defining distinct and meaningful
subspaces for the experts, enabling them to spe-
cialize and collectively improve the classification
performance.

4.5 Cluster Analysis

As we assume that semantic clustering allows mul-
timodal distributions to be decomposed into sim-
pler distributions, to verify the assumption, we per-
formed cluster analysis on the in-house dataset.
Specifically, we selected the circumscribed glioma
that had multiple modes in the space of semantic
embeddings and used t-SNE (Van der Maaten and
Hinton, 2008) to project the high-dimensional em-
beddings of circumscribed glioma samples into a
two-dimensional space for visualization. The visu-
alization result is shown in Fig. 2. The data points
belonging to different clusters are colored differ-
ently, and they are distributed across four clusters
(Cluster 3, 4, 5, and 6). The samples scatter in the
embedding space but in each cluster the samples
are relatively compact.

The visualization shows that our assumption is
valid and it is reasonable to assign different experts
to handle different distribution modes.

5 Conclusion

In this paper, we have proposed the SGMoE frame-
work for multi-class disease classification based
on radiology reports. SGMoE comprises multiple
experts that handle different subproblems decom-
posed from the original challenging problem. In
particular, semantic clustering is applied to guide
the expert assignment. With the given assignment,
SGMOoE further develops a gating mechanism that
takes the prior clustering knowledge into considera-
tion and a gating loss that facilitates the learning of
gating. Experimental results on an in-house dataset
and a public dataset show that SGMoE consistently
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Figure 2: Visualization of sample distributions for cir-
cumscribed glioma with a t-SNE plot. Different modes
can be assigned to different clusters obtained with se-
mantic embeddings.

outperforms competing text classification models.

Limitations

There are limitations of SGMOoE. First, it handles
scenarios with complex class distributions, and for
simple classification problems its gains may be-
come minimal. Second, in this work the medical
expert compared with SGMoE was a junior radiol-
ogist. It may be interesting to further incorporate
senior radiologists for comparison in future work
and evaluate how SGMoE compares with more
experienced experts.

Ethical statement

All the experiments strictly follow the ACL Code
of Ethics. The in-house dataset was accessed with
a formal data-sharing agreement with xxx hospital.
The study was in accordance with the Declaration
of Helsinki and approved by each center and their
local ethics committees. All participants were in-
formed of the details of this study and signed in-
formed consent forms before the interviews; the
data usage was strictly limited to this research. The
public dataset was cited in Section 1, adhering to
its original license terms. The dataset was retro-
spectively collected with approval from xxx Institu-
tional Review Board. No direct interaction with pa-
tients occurred in this study. The publicly available
code for the competing methods is cited in Sec-
tion 4.2, which follows their original license. Our
implementation code will be open-sourced upon
acceptance, excluding in-house data preprocessing
scripts due to confidentiality agreements.
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