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Abstract001

Radiology reports contain detailed image de-002
scription that is crucial for clinicians in003
decision-making, and automated disease clas-004
sification based on radiology reports can be005
more effective than image-based classification.006
Although deep learning achieves promising007
performance on this task, existing approaches008
struggle with increasing class complexity when009
multi-class disease classification is considered,010
where multiple distinct modes can coexist011
within the feature distribution of a single class,012
leading to highly complicated decision hyper-013
surfaces. To address this challenge, we propose014
Semantics-Guided Mixture of Experts (SG-015
MoE) for report-based multi-class disease clas-016
sification. SGMoE specializes multiple clas-017
sification experts in handling different disease018
modes, each learning class boundaries within019
a specific subspace of the feature distribution.020
To guide the subspace allocation for each ex-021
pert, SGMoE uses the report semantics to deter-022
mine the expert assignment. This is achieved023
by clustering the report semantic embedding,024
and then an expert is assigned to determine025
specific classes in a certain cluster or clusters.026
Moreover, a gating network is designed to adap-027
tively select appropriate experts for final clas-028
sification, with a gating loss penalizing gating029
that contradicts with the expert assignment for030
model training. Experiments on an in-house031
dataset of 11,864 reports and the public CT-032
RATE dataset show that SGMoE achieves more033
accurate multi-class disease classification than034
existing text classification approaches.035

1 Introduction036

Automated disease classification based on radi-037

ology images, e.g., magnetic resonance imaging038

(MRI), computed tomography (CT), and X-ray039

imaging, has drawn considerable attention for its040

potential to aid clinicians in making timely and pre-041

cise diagnoses, ultimately improving patient out-042

comes (Wolbarst and Hendee, 2006). In particular,043

deep learning (DL) methods have led to promis- 044

ing progress in the classification task. For exam- 045

ple, convolutional neural network (CNN) models 046

have been applied to brain tumor classification, car- 047

diac disease detection, and chest radiograph diag- 048

nosis (Akkus et al., 2016; Choi et al., 2021; Korfi- 049

atis et al., 2017; Xu et al., 2023; Rajpurkar et al., 050

2018). Similarly, Transformer-based models have 051

also demonstrated superior performance in tumor 052

molecular status prediction, breast cancer classifica- 053

tion, and chest X-ray diagnosis (Chen et al., 2024; 054

Wang et al., 2022; Park et al., 2022). Despite these 055

advancements, it can still be challenging for these 056

image-based methods to achieve high classification 057

accuracy, as the image dimension is usually high 058

and it is difficult to learn an optimal association 059

between disease types and image appearances (Lit- 060

jens et al., 2017; Zhang et al., 2019). 061

Recent studies have explored disease classifi- 062

cation based on radiology reports (Chen et al., 063

2018; Kim et al., 2019; Tang et al., 2020), and 064

it is shown in (Gao et al., 2024) that report-based 065

disease classification can be more accurate than 066

image-based classification. In clinical practice, ra- 067

diology reports written by radiologists accompany 068

radiology images, and they provide detailed de- 069

scriptions about the important observations, e.g., 070

anomalies, in the image. As report drafting is re- 071

quired by clinical routine, report-based classifica- 072

tion does not introduce additional human work- 073

load. In the report-based disease classification, the 074

findings part that describe the image appearance 075

is used without the impressions part that give po- 076

tential diagnostic suggestions, as it is easier for 077

radiologists to describe the image than determine 078

the disease type. Even less experienced radiolo- 079

gists can provide high-quality image description, 080

but they are often unable to diagnose complicated 081

diseases. The report information has a much lower 082

dimension, which makes it easier to learn the as- 083

sociation between image appearances and disease 084
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types. The report-based classification in (Gao et al.,085

2024) encodes the text information with Bidirec-086

tional Encoder Representations from Transform-087

ers (BERT) model variants (Devlin, 2018), and the088

classification accuracy is shown to be clearly better089

than image-based models, including ResNet (He090

et al., 2016), ViT (Dosovitskiy, 2020), Swin Trans-091

former (Liu et al., 2021), etc.092

The report-based disease classification may still093

struggle to address multi-class scenarios when the094

distribution of certain disease types can have mul-095

tiple distinct modes in the feature space. For ex-096

ample, different types of brain tumors may share097

overlapping semantic or imaging characteristics,098

while simultaneously displaying significant varia-099

tions within the same type (Mirbabaie et al., 2021).100

The multimodal distribution increases the difficulty101

of finding a single classification boundary to dis-102

criminate the disease (Ruff et al., 2021), and it103

becomes even more challenging when there are a104

considerable number of different disease types to105

classify (Bilal et al., 2017).106

To address the challenge of multimodal distribu-107

tion in multi-class disease classification, we seek108

to decompose the complex classification task into109

smaller and more manageable subproblems. Ac-110

cordingly, in this work we propose the Semantics-111

Guided Mixture of Experts (SGMoE) framework112

for multi-class classification based on radiology113

reports.114

In SGMoE multiple experts are used, each spe-115

cializing in a specific subset of the problem space.116

In this way, instead of finding a single set of com-117

plex classification hypersurfaces, SGMoE deter-118

mines multiple simple decision boundaries, greatly119

simplifying the classification task. To determine120

the assignment of the subspace to each expert, SG-121

MoE develops a semantics-guided clustering strat-122

egy, which explores the inherent structure of the123

report data. In particular, the semantic embeddings124

of the reports are clustered to partition the feature125

space into different subspace. After denoising the126

potential data noise, each cluster only comprises a127

subset of all disease types, and each expert is dedi-128

cated to classifying the diseases within one or a few129

clusters. Note that when a disease type has multiple130

modes, different modes can be separated in differ-131

ent clusters and handled by different experts, and132

the expert is no longer faced with the challenging133

issue of multimodal feature distribution. Given the134

class assignment of each expert, to determine how135

experts are activated for an input sample, SGMoE136

employs a gating network to dynamically feed the 137

input to appropriate experts. The gating network 138

considers both the input information and prior clus- 139

ter information. 140

To jointly train the experts and gating network, 141

SGMoE further designs a gating loss that penalizes 142

expert activations that contradict with the class as- 143

signment, and it is used together with a standard 144

classification loss for model training. To validate 145

SGMoE, experiments were performed on a private 146

dataset and the public CT-RATE dataset (Hamamci 147

et al., 2024a,b,c), where SGMoE outperforms com- 148

peting text-based classification models. The SG- 149

MoE code will be publicly available. 150

2 Related Work 151

2.1 DL Disease Classification Based on 152

Radiology Data 153

DL models have been widely applied to the diag- 154

nosis of various diseases, including neurological 155

diseases, chest diseases, heart diseases, etc. Con- 156

ventionally, radiology images such as MRI, CT, and 157

X-ray scans are used for disease classification. For 158

example, CNN-based models have been developed 159

to classify gliomas based on MRI by predicting the 160

isocitrate dehydrogenase mutation status, which 161

plays a crucial role in treatment planning (Choi 162

et al., 2021). Additionally, CNNs have been em- 163

ployed for the early diagnosis and classification of 164

Alzheimer’s disease using MRI (Salehi et al., 2020). 165

In the context of chest diseases, CNN-based mod- 166

els have shown high performance in identifying 167

pneumonia and diagnosing COVID-19 infections 168

from chest X-ray (Islam et al., 2020). Similarly, in 169

cardiovascular diseases, CNN-based models have 170

been utilized to detect coronary artery disease and 171

other heart abnormalities on CT scans (Xu et al., 172

2023). Beyond CNN-base models, Transformer- 173

based models have emerged as a promising al- 174

ternative, demonstrating superior performance in 175

tasks such as tumor molecular status prediction 176

on MRI (Chen et al., 2024), breast cancer classi- 177

fication on mammography images (Abimouloud 178

et al., 2024), chest diseases diagnosis on X-ray 179

scans (Park et al., 2022), etc. However, radiol- 180

ogy images usually have a high dimension, and 181

the learning of effective feature extraction from 182

the high-dimensional data for disease classification 183

can be challenging, which limits the classification 184

performance for more difficult tasks. 185

In addition to radiology images, several existing 186
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Figure 1: An overview of SGMoE: (a) semantic clustering of training data for expert assignment; (b) the overall
architecture of SGMoE given the expert assignment.

works have explored the use of the findings part of187

radiology reports for disease classification, with the188

expectation that the lower dimension of the report189

information can reduce the difficulty in learning190

the association between image appearances and191

disease types. For example, natural language pro-192

cessing (NLP) algorithms powered by machine193

learning have demonstrated success in identifying194

acute ischemic stroke phenotypes from brain MRI195

reports (Kim et al., 2019). CNN-based models196

have been applied to classify pulmonary embolism197

findings from thoracic CT reports, achieving high198

accuracy and outperforming traditional NLP meth-199

ods (Chen et al., 2018); they have also been used200

to classify normal and abnormal chest radiographs201

based on the findings part of the reports, with re-202

markable diagnostic accuracy and high generaliz-203

ability (Tang et al., 2020). Furthermore, in (Gao204

et al., 2024), BERT-based language models are fine-205

tuned for disease classification, and it is observed206

that report-based classification is on average about207

10% more accurate than image-based models.208

These works show the promising potential of209

using radiology reports for disease classification210

and underscore the importance of advancing text-211

based models in medical diagnosis.212

2.2 Text Classification213

Report-based disease diagnosis is closely related214

to text classification, which is a foundational task215

in NLP. Its applications include sentiment analysis,216

topic modeling, spam detection, etc. Traditional217

approaches to text classification typically rely on218

hand-crafted features and shallow machine learn-219

ing algorithms, for example, XGBoost (Chen and220

Guestrin, 2016) and LightGBM (Ke et al., 2017).221

With the development of DL techniques, text222

classification performance has been drastically im-223

proved. 224

Early advancements in this area are driven by 225

recurrent neural networks (RNNs), particularly the 226

long short-term memory (LSTM) network, which 227

effectively captures sequential dependencies in 228

text (Yu et al., 2019). The LSTM network is use- 229

ful for processing medical reports with detailed 230

contextual information (Liu et al., 2022). 231

More advanced Transformer architectures are 232

also used for text classification, and the BERT 233

model (Devlin, 2018) is a notable example. 234

BioBERT (Lee et al., 2020), RadBERT (Yan et al., 235

2022), and ClinicalBERT (Huang et al., 2019) ex- 236

tend BERT to biomedical and clinical domains 237

based on domain-specific corpora such as PubMed 238

abstracts and electronic health records, and they 239

achieve superior performance in medical text anal- 240

ysis. RoBERTa (Liu, 2019) improves upon BERT 241

with dynamic masking during pretraining, leading 242

to enhanced contextual understanding, and it may 243

be extended to the medical domain as well. 244

3 Method 245

3.1 Method Overview 246

An overview of the SGMoE framework that clas- 247

sifies multiple disease types based on radiology 248

reports is shown in Fig. 1. Instead of addressing 249

the multi-class problem with one single classifier, 250

SGMoE uses different classification experts that are 251

responsible for different subsets of diseases, which 252

decomposes the challenging multi-class classifica- 253

tion task into manageable subproblems. SGMoE 254

first uses semantic clustering to determine the ex- 255

pert assignment of disease classes as illustrated in 256

Fig. 1a. 257

Then, the overall architecture of SGMoE given 258

the expert assignment is shown in Fig. 1b. SGMoE 259
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comprises multiple experts determined by the se-260

mantic clustering, and they are followed by class261

routing to merge the classification results for dif-262

ferent disease types. A gating network is used to263

allocate the input sample to appropriate experts,264

where the gating is decided by both prior knowl-265

edge from semantic clustering and input-specific266

features. The detailed design of SGMoE is pre-267

sented below.268

3.2 Expert Assignment Guided by Semantic269

Clustering270

Before constructing the network of SGMoE, the271

specific roles of the experts should be determined.272

SGMoE seeks to partition the feature space so that273

each expert excels in the classification of a subset274

of disease types within a subspace, where multi-275

modal disease distributions can be decomposed276

into multiple simple distributions handled by dif-277

ferent experts. To this end, a pretrained RoBERTa278

model (Cui et al., 2020, 2019) is used to obtain the279

semantic embeddings of radiology reports, and se-280

mantic clustering is performed based on the embed-281

dings for expert assignment. Specifically, the sim-282

ple k-means clustering algorithm (Jain and Dubes,283

1988) is applied to the training reports, for which284

the disease type is known, and the optimal number285

N of clusters is determined based on the silhouette286

coefficient (Rousseeuw, 1987).287

As the semantic embeddings may contain noise288

and/or inaccuracy, each cluster can comprise dis-289

ease types with a very small number of samples,290

and directly assigning all classes in the cluster to291

the same classification expert may lead to high292

class imbalance. Therefore, expert assignment is293

performed after class denoising, where for the j-th294

cluster (j ∈ {1, . . . , N}), the corresponding set295

Sj of assigned classes only include those with a296

sufficient number of samples:297

Sj =

{
ai |

ni,j

ni
≥ 1

N

}
. (1)298

Here, ai denotes the i-th disease type, ni,j is the299

total number of training samples of ai, and ni,j is300

the number of training samples of ai in the j-th301

cluster. Eq. (1) removes samples that are clustered302

likely due to noise and also ensures that each class303

appears at least in the assignment of one cluster.304

Note that some clusters can only contain one305

single disease type after the denoising, and the306

classification becomes trivial for the expert. To307

address the problem, the classes in those clusters308

with a single class are grouped and assigned to a 309

single expert, as the samples in these clusters are 310

compact in the feature space and easy to separate. 311

3.3 SGMoE Architecture 312

The expert assignment guided by semantic cluster- 313

ing leads to M (M ≤ N ) experts, where the m-th 314

expert Em handles the class set Cm. 315

For an input sample x, Em out- 316

puts the classification probability vector 317

pm = [pm,1, pm,2, . . . , pm,|Cm|] for its as- 318

signed classes, where |Cm| is the cardinality of 319

Cm. As it is possible that multiple experts may 320

be activated for a sample, the results of different 321

experts need to be fused. However, different pm’s 322

are associated with different combinations of 323

classes, and they cannot be directly fused. 324

To address the problem, we first develop a 325

class routing mechanism as follows for expert fu- 326

sion. Specifically, pm is mapped back to a vec- 327

tor of length D, where D is the number of dis- 328

ease types of interest, with a permutation matrix 329

Pm ∈ R|Cm|×D as 330

p′
m = pmPm. (2) 331

The entries P k,i
m in Pm are determined as 332

P k,i
m =

{
1, if ai ∈ Cm and index(ai, Cm) = k

0, otherwise
,

(3) 333

where index(ai, Cm) represents the index of ai in 334

Cm. In this way, all expert outputs are reshaped 335

as D-length vectors p′
m, and their entries are now 336

aligned, with non-assigned classes having zero val- 337

ues. 338

To fuse the expert outputs, we develop a gat- 339

ing network. It gives a weight vector w = 340

(w1, . . . , wM ) and aggregates p′
m’s as 341

pfinal =

M∑
m=1

wmp′
m, (4) 342

where pfinal is the final classification result. This 343

aggregation ensures that the final classification de- 344

cision integrates the specialized knowledge of all 345

experts while prioritizing the contributions of the 346

most relevant experts based on the gating output. 347

Unlike standard mixture of experts, the gating 348

here considers prior knowledge from semantic clus- 349

tering in addition to input data, so that expert ac- 350

tivation both conforms to the semantic priors and 351
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allows data-driven flexibilities. First, for the m-352

th expert, a prior gating weight wp
m is computed353

by the Euclidean distance dm between its cluster354

centroid and the semantic embedding of the input355

x:356

wp
m =

exp(−dm)∑n
m′=1 exp(−dm′)

. (5)357

Note that for experts associated with multiple clus-358

ters with single disease types, the smallest distance359

to their centroids is selected.360

Second, the embedding of x is concatenated with361

the encoding of all experts and processed by a sim-362

ple feedforward neural network. This produces the363

data-driven gating weights wd = (wd
1, . . . , w

d
m).364

The final gating weights are computed as the aver-365

age of the two:366

wm =
1

2
(wp

m + wd
m). (6)367

3.4 Model Training368

The experts and gating network of SGMoE are369

jointly trained with the training reports and their370

disease labels. To improve the learning of the371

gating network, in additional to the commonly372

used cross-entropy classification loss Lc, we also373

develop a gating loss Lg that guides the gating374

based on the prior knowledge of expert assignment.375

Specifically, for an input sample x with a true label376

y ∈ {a1, . . . , aD}, the gating loss Lg is designed377

to encourage greater gating weights wm of experts378

Em that are assigned the class y:379

Lg = − log

M∑
m=1

I(y ∈ Cm) · wm, (7)380

where I(y ∈ Cm) is an indicator function that381

equals one if y ∈ Cm and zero otherwise. The382

total loss function L combines Lc and Lg with a383

weighting factor λ:384

L = Lc + λLg. (8)385

λ is empirically set to 0.1 so that the primary focus386

remains on classification while encouraging desired387

expert activation.388

3.5 Implementation Details389

The experts in SGMoE use the RoBERTa back-390

bone (Cui et al., 2020, 2019), but other architecture391

may also be used. The pretrained RoBERTa ex-392

tracts the semantic embedding of reports for clus-393

tering. It is then fine-tuned with the parameter ef-394

ficient fine-tuning method LoRA (Hu et al., 2021)395

Disease Type Count Disease Type Count

Lymphoma 579 Metastases 1,250
Glioblastoma 1,231 Circumscribed glioma 534
Acoustic neuroma 778 Cavernous angioma 627
Neuronal tumor 697 Ependymoma 372
Medulloblastoma 308 Germinoma 622
Meningioma 1,250 Craniopharyngioma 1,096
Pituitary adenoma 1,250 Epidermoid cyst 541
Chordoma 361 Hemangioblastoma 368

Total 11,864 -

Table 1: Composition of the In-house Dataset

based on training data with a rank of 16 and an al- 396

pha of 32, where task-specific classification layers 397

are attached and also learned. Different experts are 398

initialized with unique random seeds. The gating 399

network employs three fully connected layers. The 400

AdamW optimizer is used for training with a learn- 401

ing rate of 2 × 10−5, a batch size of 32, and 100 402

epochs. 403

4 Experiments 404

4.1 Dataset and Task Description 405

We performed experiments on two datasets. The 406

first one was an in-house dataset consisting of 407

11,864 radiology reports of brain MRI, covering 408

16 different types of brain tumors, as summarized 409

in Table 1. The ground truth classification was 410

obtained with pathological analysis. The second 411

dataset was the public CT-RATE dataset, contain- 412

ing radiology reports of chest CT images annotated 413

with 18 different clinical manifestations. Each com- 414

bination of the manifestations was considered a 415

class. Only combinations with at least three dis- 416

tinct clinical manifestations were kept, which led to 417

40 classes with 1,862 samples. The detailed com- 418

position of these different classes is summarized in 419

Table 2, where for convenience each manifestation 420

combination is given a class index. 421

Both datasets were divided into training, valida- 422

tion, and test sets with a 8:1:1 ratio for each class. 423

The number of experts in SGMoE determined by 424

the semantic clustering results was seven for the 425

in-house dataset and 12 for the CT-RATE dataset. 426

The detailed expert assignments are shown in Ta- 427

bles 3 and 4 for the in-house and public datasets, 428

respectively. 429

4.2 Disease Classification Results 430

SGMoE was compared with several text classi- 431

fication models based on popular text encoders, 432
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Class (Manifestation Combination) Index Count Class (Manifestation Combination) Index Count

AWC/AT/CAWC 1 27 AT/LN/LO/MM 21 21
AWC/AT/CAWC/EM/HH/LN/LA 2 20 AT/LN/LA/PFS 22 26
AWC/AT/CAWC/EM/LN/PFS 3 40 AT/LN/PFS 23 100
AWC/AT/CAWC/LN 4 52 AT/MM/PE 24 32
AWC/AT/CAWC/LN/LO 5 22 BR/EM/LN 25 38
AWC/AT/CAWC/LN/PFS 6 22 BR/LN/LO 26 34
AWC/AT/CAWC/LO 7 35 BR/LN/PBT 27 64
AWC/CO/CAWC/HH/LO 8 20 BR/LN/PFS 28 88
AWC/CO/CAWC/LO 9 59 CO/HH/LO 29 55
AWC/CAWC/EM/HH/LN/PFS 10 24 CO/LN/LO/PFS 30 58
AWC/CAWC/EM/LN 11 55 CO/LO/MM/PE 31 20
AWC/CAWC/EM/LN/LA/PFS 12 43 EM/LN/LA 32 60
AWC/CAWC/EM/LN/PBT/PFS 13 22 EM/LN/LA/PFS 33 46
AWC/CAWC/EM/PFS 14 32 HH/LN/LO 34 43
AWC/CAWC/LN 15 100 HH/LN/LA 35 44
AWC/CAWC/LN/LA/PFS 16 36 HH/LN/PFS 36 100
AWC/LN/PFS 17 67 HH/LO/LA 37 34
AT/CO/LN 18 20 LN/LO/PFS 38 100
AT/CO/LO 19 96 LN/LA/MM 39 33
AT/EM/LN/PFS 20 33 LN/MA/PFS 40 41

Total - 1,862 -

Table 2: Composition of the public CT-RATE dataset with manifestation combinations.AWC=Arterial Wall Cal-
cification, AT=Atelectasis, CAWC=Coronary Artery Wall Calcification, EM=Emphysema, HH=Hiatal Hernia,
LN=Lung Nodule, LA=Lymphadenopathy, PFS=Pulmonary Fibrotic Sequela, CO=Consolidation, LO=Lung Opac-
ity, MM=Medical Material, PE=Pleural Effusion, BR=Bronchiectasis, PBT=Peribronchial Thickening, MA=Mosaic
Attenuation Pattern.

Expert Class Assignment

Expert 1 Lymphoma | Metastases | Glioblastoma |
Ependymoma

Expert 2 Cavernous angioma | Epidermoid cyst
Expert 3 Circumscribed glioma | Germinoma |

Craniopharyngioma
Expert 4 Circumscribed glioma | Neuronal tumor |

Ependymoma
Expert 5 Circumscribed glioma | Hemangioblastoma
Expert 6 Circumscribed glioma | Ependymoma |

Medulloblastoma
Expert 7 Lymphoma | Metastases | Acoustic

neuroma | Germinoma | Meningioma |
Pituitary adenoma | Chordoma

Table 3: Expert Assignment for In-house Dataset

including LSTM (Hochreiter and Schmidhuber,433

1997), BioBERT (Lee et al., 2020), Clinical-434

BERT (Huang et al., 2019), and RoBERTa (Cui435

et al., 2020, 2019). LSTM represents a traditional436

sequential model commonly used for text clas-437

sification, whereas BioBERT and ClinicalBERT438

are Transformer-based models pretrained specifi-439

cally on biomedical and clinical text, respectively.440

RoBERTa is a robustly optimized general-purpose441

language model, often serving as a strong baseline442

for NLP tasks. The same task-specific classifica-443

tion layers of SGMoE were attached to these en-444

coders for disease classification based on radiology445

Expert Class Assignment

Expert 1 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16

Expert 2 1 | 4 | 19 | 23 | 25 | 27 | 28 | 29 | 30 | 33 | 39
Expert 3 21 | 24 | 31 | 39
Expert 4 22 | 32 | 33 | 35 | 37 | 39
Expert 5 5 | 18 | 19 | 20 | 22 | 23 | 26 | 27 | 28 | 30 | 34 |

38 | 40
Expert 6 8 | 9 | 19 | 29 | 30 | 31
Expert 7 10 | 29 | 34 | 35 | 36 | 37
Expert 8 13 | 25 | 27
Expert 9 2 | 3 | 11 | 12 | 14 | 32
Expert 10 6 | 10 | 12 | 14 | 17
Expert 11 2 | 12 | 17
Expert 12 1 | 4 | 6 | 13 | 15 | 17 | 18 | 19 | 20 | 22 | 23 | 25

| 26 | 27 | 28 | 29 | 30 | 32 | 33 | 34 | 35 | 36 | 37
| 38 | 39 | 40

Table 4: Expert assignment for CT-RATE dataset. In-
dexes in Table 2 are used to indicate the corresponding
categories.

reports, and the competing models were trained on 446

the same training data and under the same settings 447

with LoRA (except for the small-capacity LSTM 448

with full-parameter fine-tuning) as SGMoE to en- 449

sure fair comparison. 450

The classification performance was quantita- 451

tively measured by the average classification ac- 452

curacy (ACC) and average F1-score. The results 453

are shown in Table 5, where SGMoE shows clear 454
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Model In-house CT-RATE

ACC (%) F1 (%) ACC (%) F1 (%)

LSTM 54.6 55.0 72.7 73.6
BioBERT 53.3 51.1 69.0 65.4
ClinicalBERT 62.4 61.4 73.8 69.0
RoBERTa 70.1 69.3 88.2 87.7
SGMoE 72.0 71.4 92.5 92.5

Table 5: Classification performance comparison of SG-
MoE with baseline models

advantages over the competing methods. For the in-455

house dataset, SGMoE achieves an average ACC of456

72.0% and an average F1-score of 71.4%, outper-457

forming the best competing method RoBERTa by458

1.9 and 2.1 percentage points, respectively; com-459

pared with other competing methods, the improve-460

ment in ACC and F1-score is close to or even461

greater than 10 percentage points. For the pub-462

lic CT-RATE dataset, SGMoE achieves an aver-463

age ACC of 92.5% and an average F1-score of464

92.5%, outperforming the best competing method465

RoBERTa by 4.3 and 4.8 percentage points, respec-466

tively; compared with other competing methods,467

the improvement in ACC and F1-score is close to468

or even greater than 20 percentage points.469

As SGMoE also uses the RoBERTa backbone,470

the comparison between SGMoE and RoBERTa di-471

rectly indicates the benefit of expert specialization472

guided by semantic clustering, where the decom-473

position of the multi-class disease classification474

problem has led to improve classification perfor-475

mance.476

4.3 Comparison with Medical Expert477

In addition, we compared the performance of SG-478

MoE with the classification made by a medical479

expert based on the report. As the radiologist eval-480

uation was manual, only a subset of the test set was481

selected from the in-house dataset. Specifically, 96482

cases were randomly selected (six samples for each483

disease type). The results are shown in Table 6.484

SGMoE achieved better accuracy than the radiol-485

ogists with an improvement of 14.5% (63.5% vs.486

49.0%). The improvement indicates that SGMoE487

not only is superior to other automated methods but488

also can surpass medical experts when addressing489

the multi-class classification problem.490

4.4 Ablation Study491

To verify the contributions of the key components492

in SGMoE, we performed a series of ablation exper-493

iments on the in-house dataset. Each ablation set-494

Evaluator Acc (%)

SGMoE 63.5
Medical expert 49.0

Table 6: Classification performance comparison be-
tween SGMoE and a medical expert

Variant ACC (%) F1 (%)

SGMoE (Full) 72.0 71.4

Without prior gating weight 71.6 70.9
Without gating loss 70.3 69.6
Without class routing 71.4 70.8
Random class allocation 69.9 69.4

Table 7: Ablation study on the in-house dataset

ting isolated the effect of a specific component. The 495

results are summarized in Table 7 and explained 496

below. 497

Prior Gating Weight First, we removed the se- 498

mantic prior gating weights from the gating net- 499

work. This forced the gating mechanism to rely 500

solely on sample-specific features to determine ex- 501

pert activations without guidance from the semantic 502

clustering results. The removal led to a decrease in 503

performance, with ACC dropping from 72.0% to 504

71.6% and F1-score from 71.4% to 70.9%. The per- 505

formance decrease indicates that the gating prior is 506

beneficial to the activation of appropriate experts. 507

Gating Loss Next, we removed the gating loss 508

and trained the whole network with the classifica- 509

tion loss only. This adjustment removed the explicit 510

constraint that aligns the gating weight with the 511

predefined expert assignments. The ACC dropped 512

to 70.3% and F1-Score dropped to 69.6%. This 513

result demonstrates that the gating loss is impor- 514

tant for the gating network to learn how to activate 515

relevant experts, thereby improving the overall per- 516

formance. 517

Class Routing We also removed the class rout- 518

ing mechanism, allowing each expert to predict all 519

16 classes. This change reduced the ability of the 520

experts to specialize in semantically meaningful 521

clusters, leading to decreased ACC (71.4%) and 522

F1-score (70.8%). The performance decrease high- 523

lights the importance of class routing in ensuring 524

that each expert focuses on a specific subset of the 525

problem space, which reduces the complexity of 526

the classification task. 527
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Expert Assignment SGMoE uses semantic clus-528

tering to guide expert assignment. To show the ben-529

efit of this assignment, we replaced the semantics-530

guided assignment with random assignment, where531

we generated random disease type groups while532

retaining the number of classes for each expert and533

ensuring all disease types were covered.534

This resulted in the largest performance degra-535

dation among all settings, with ACC dropping to536

69.9% and F1-score dropping to 69.4%. The per-537

formance is even worse than that of RoBERTa.538

These results emphasize the critical role of seman-539

tic clustering in defining distinct and meaningful540

subspaces for the experts, enabling them to spe-541

cialize and collectively improve the classification542

performance.543

4.5 Cluster Analysis544

As we assume that semantic clustering allows mul-545

timodal distributions to be decomposed into sim-546

pler distributions, to verify the assumption, we per-547

formed cluster analysis on the in-house dataset.548

Specifically, we selected the circumscribed glioma549

that had multiple modes in the space of semantic550

embeddings and used t-SNE (Van der Maaten and551

Hinton, 2008) to project the high-dimensional em-552

beddings of circumscribed glioma samples into a553

two-dimensional space for visualization. The visu-554

alization result is shown in Fig. 2. The data points555

belonging to different clusters are colored differ-556

ently, and they are distributed across four clusters557

(Cluster 3, 4, 5, and 6). The samples scatter in the558

embedding space but in each cluster the samples559

are relatively compact.560

The visualization shows that our assumption is561

valid and it is reasonable to assign different experts562

to handle different distribution modes.563

5 Conclusion564

In this paper, we have proposed the SGMoE frame-565

work for multi-class disease classification based566

on radiology reports. SGMoE comprises multiple567

experts that handle different subproblems decom-568

posed from the original challenging problem. In569

particular, semantic clustering is applied to guide570

the expert assignment. With the given assignment,571

SGMoE further develops a gating mechanism that572

takes the prior clustering knowledge into considera-573

tion and a gating loss that facilitates the learning of574

gating. Experimental results on an in-house dataset575

and a public dataset show that SGMoE consistently576

Distribution of Circumscribed Glioma Samples in Different Clusters

Cluster
3
4
5
6

Figure 2: Visualization of sample distributions for cir-
cumscribed glioma with a t-SNE plot. Different modes
can be assigned to different clusters obtained with se-
mantic embeddings.

outperforms competing text classification models. 577

Limitations 578

There are limitations of SGMoE. First, it handles 579

scenarios with complex class distributions, and for 580

simple classification problems its gains may be- 581

come minimal. Second, in this work the medical 582

expert compared with SGMoE was a junior radiol- 583

ogist. It may be interesting to further incorporate 584

senior radiologists for comparison in future work 585

and evaluate how SGMoE compares with more 586

experienced experts. 587

Ethical statement 588

All the experiments strictly follow the ACL Code 589

of Ethics. The in-house dataset was accessed with 590

a formal data-sharing agreement with xxx hospital. 591

The study was in accordance with the Declaration 592

of Helsinki and approved by each center and their 593

local ethics committees. All participants were in- 594

formed of the details of this study and signed in- 595

formed consent forms before the interviews; the 596

data usage was strictly limited to this research. The 597

public dataset was cited in Section 1, adhering to 598

its original license terms. The dataset was retro- 599

spectively collected with approval from xxx Institu- 600

tional Review Board. No direct interaction with pa- 601

tients occurred in this study. The publicly available 602

code for the competing methods is cited in Sec- 603

tion 4.2, which follows their original license. Our 604

implementation code will be open-sourced upon 605

acceptance, excluding in-house data preprocessing 606

scripts due to confidentiality agreements. 607
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