© © N O O A~ W N =

8

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35
36

SEDM: Scalable Self-Evolving Distributed Memory
for Agents

Anonymous Author(s)
Affiliation
Address

email

Abstract

Long-term multi-agent systems inevitably generate vast amounts of trajectories
and historical interactions, which makes efficient memory management essential
for both performance and scalability. Existing methods typically depend on vector
retrieval and hierarchical storage, yet they are prone to noise accumulation, uncon-
trolled memory expansion, and limited generalization across domains. To address
these challenges, we present SEDM, Self-Evolving Distributed Memory, a verifi-
able and adaptive framework that transforms memory from a passive repository into
an active, self-optimizing component. SEDM integrates verifiable write admission
based on reproducible replay, a self-scheduling memory controller that dynamically
ranks and consolidates entries according to empirical utility, and cross-domain
knowledge diffusion that abstracts reusable insights to support transfer across
heterogeneous tasks. Evaluations on benchmark datasets demonstrate that SEDM
improves reasoning accuracy while reducing token overhead compared with strong
memory baselines, and further enables knowledge distilled from fact verification
to enhance multi-hop reasoning. The results highlight SEDM as a scalable and
sustainable memory mechanism for open-ended multi-agent collaboration. The
code will be released in the later stage of this project.

1 Introduction

In recent years, the rapid development of large-scale multi-agent systems (MAS) Wooldridge| [2009],
Lowe et al.|[2017],|[Foerster et al.|[2016]), Yang et al.|[2018al], Busoniu et al.|[2008]]. has expanded their
application in diverse domains, including collaborative reasoning, decision-making, and autonomous
planning|Shoham et al.|[2007]]. A central challenge in these open-ended and long-term tasks is the
ability of agents to manage, interpret, and reuse information accumulated from continuous interaction
with both peers and the environment|Yang et al. [2018a]]. Without effective memory mechanisms, the
sheer scale of historical interactions can easily overwhelm computational resources and compromise
decision quality [Foerster et al.| [2018]].

In open-ended and long-term multi-agent tasks, each agent relies on its past memories, the observed
states of other agents, and the current environment to determine subsequent actions or responses [Das
et al.| [2017]]. During continuous interaction between agents and their environment, the MAS
gradually accumulates extensive logs of interactions, invocation trajectories, and high-level policy
memories OpenAl| [[2023]]. Such overwhelming amounts of information directly impact the efficiency
and cost of decision-making, often leading to higher monetary costs and longer contextual require-
ments for inference [Shuster et al.| [2020]. Therefore, designing an efficient and sustainable memory
mechanism has become a critical issue for modern long-term multi-agent systems.

Current methods primarily adopt vector retrieval and hierarchical memory structures to manage
storage and retrieval efficiently Johnson et al.| [2019b]]. Vector retrieval Johnson et al.| [2019al],

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84

85

87
88
89

90
91

Karpukhin et al.| [2020], [zacard and Grave]|[2021]], Lewis et al.|[2020]],|Guo et al.|[2016]] leverages
semantic similarity to identify relevant entries, while hierarchical organization arranges information
in layered structures according to abstraction levels Rae et al|[2021]. These approaches have
shown promise in improving retrieval accuracy and managing memory scalability |(Chen et al.|[2016].
However, in complex collaborative multi-agent tasks, their effectiveness diminishes, as the underlying
assumptions of stability and linear growth do not hold [Wang et al.| [2020]. This gap between
theoretical promise and practical performance highlights several critical limitations that hinder their
long-term applicability.

One major challenge is the inevitable accumulation of noise, which severely degrades retrieval qual-
ity [Fan et al.|[2018]]. As the memory size expands without constraint, the system faces exponentially
increasing computational costs in both retrieval and context construction |Izacard and Grave|[2021]].
This not only reduces overall efficiency but also amplifies the interference caused by redundant
information Lewis et al.|[2020]. In particular, the presence of low-value or semantically irrelevant
entries dilutes the contribution of high-quality information in retrieval results, impairing downstream
task performance and leading to measurable declines in metrics|Chen et al.|[2017]. In addition, the
cumulative noise effect increases response latency and accelerates the nonlinear consumption of
computational and storage resources |[Karpukhin et al.|[2020], ultimately threatening both scalability
and stability in long-term MAS operations |Press et al.|[2020].

To overcome these limitations, we introduce Scalable Self-Evolving Distributed Memory (SEDM),
a framework that transforms memory from a passive repository into an adaptive, self-optimizing,
and verifiable component for multi-agent systems. Unlike conventional designs that treat memory
as a static store, SEDM continually refines knowledge to enhance learning and decision-making
efficiency in dynamic task environments. It operationalizes memory as an active mechanism by
integrating verifiability and continuous self-improvement into the memory lifecycle. At its core,
memory items undergo a rigorous admission process based on self-contained execution contexts
(SCECs), such as Docker and ReproZip Merkel| [2014], |Chirigati et al.|[2016]], which package all
necessary information for environment-free replay and offline validation. This mechanism provides
empirical evidence for utility at write time, ensuring that only useful, high-quality experiences
enter the memory repository. Once admitted, memory items are dynamically managed by a self-
scheduling controller and enhanced through cross-domain knowledge diffusion. The controller
leverages admission-derived weights, combined with semantic similarity, to schedule retrieval-time
usage without costly reranking, while consolidation and progressive evolution continuously refine
the repository by promoting stable items, merging redundancies, and pruning harmful ones. Beyond
single-task settings, SEDM abstracts reusable insights into general forms, enabling knowledge
distilled in one domain to be safely transferred and re-validated in others. Together, these components
establish a scalable and auditable memory mechanism that enhances reasoning accuracy, reduces
overhead, and supports sustainable long-term multi-agent collaboration.

We evaluate SEDM on two representative benchmarks, FEVER |Thorne et al.|[2018]] for fact verifica-
tion and HotpotQA |Yang et al.|[2018b] for multi-hop reasoning, comparing against no-memory and
G-Memory baselines|Zhang et al.[[2025]. The results show that SEDM consistently improves task
accuracy while significantly reducing token overhead, thereby achieving a better balance between
performance and efficiency. Ablation studies confirm that both the verifiable admission mechanism
and the self-scheduling controller contribute progressively to this gain, with the latter playing a
key role in constraining prompt growth without sacrificing accuracy. Furthermore, cross-domain
evaluation demonstrates that memory distilled from one dataset can transfer to another, with factual
knowledge from FEVER notably boosting performance on HotpotQA. These findings highlight
SEDM as a scalable, adaptive, and generalizable memory framework for long-term multi-agent
reasoning.

Our contributions are summarized as follows:

* We propose Scalable Self-Evolving Distributed Memory (SEDM), a novel framework that trans-
forms memory from a passive repository into an adaptive, verifiable, and continuously improving
component, introducing self-contained execution contexts (SCECs) for reproducible admission and
utility-based memory weighting.

* We design a self-scheduling memory controller that selectively manages memory at retrieval
time and continuously refines the repository through consolidation, redundancy suppression, and
progressive evolution, thereby balancing accuracy and efficiency.

96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113

114

115

* We conduct extensive evaluations on FEVER and HotpotQA benchmarks, demonstrating that
SEDM consistently improves task accuracy while significantly reducing token overhead.

2 Related Work

Self-Evolving Agents. Recent efforts in building self-evolving agents have focused on enabling
systems to improve their reasoning or behavior over time without explicit retraining. Approaches
such as Reflexion |Shinn et al.| [2023]] and Voyager Wang et al.|[2023]] allow agents to iteratively refine
their strategies by leveraging self-reflection and accumulated trajectories. Similarly, MEMIT Meng
et al.|[2022] demonstrates the feasibility of localized knowledge editing within large language models,
suggesting a pathway for agents to evolve by continuously updating their internal representations.
These studies highlight the importance of mechanisms that support autonomous adaptation and
progressive self-improvement in dynamic environments.

Agent Memory. In parallel, research on agent memory has investigated how to store, retrieve,
and utilize knowledge efficiently across long-horizon interactions. Episodic memory systems, such
as those proposed by Park et al. |Park et al.| [2023]], emulate human-like memory consolidation
to support consistent long-term behavior in simulated social environments. Memory-augmented
neural networks |Graves et al.| [2016] and differentiable neural dictionaries |Kaiser et al.| [2017]]
further demonstrate how structured memory access can enhance reasoning and generalization. More
recently, retrieval-augmented generation frameworks tailored for interactive agents [Mialon et al.
[2023] have shown that dynamically grounding responses in curated external memories improves
both interpretability and task success. Together, these works underscore the need for memory systems
that are not only scalable but also adaptive to the agent’s evolving operational context.

3 Methodology

3.1 System Overview

(" N [—_————————— ~
No Memory Fixed ‘ ‘
Task Agent gerieval & Injection I
00 Task
= - ‘ ; —> gF\eLuuon |. i
Task Agent Environment Result Memory
memory item
‘Tons of memory
Environment
- AN /
N
SEDM
e T ————— ——
{ Retrieval & Injection \
' High-quality memory
a——— Execution . e . he eduling
N LI self-evolving heduling
Tas Agem_) Environment Memory
Memory
- Controller ,wledge diffusion
Parallel simulation >
3 A

SCEC Package ~ H

- /

Figure 1: Illustration of different memory strategies. No Memory: the agent interacts with the
environment without retaining past information. Fixed Memory: the agent retrieves from a static
memory pool, which may grow excessively. SEDM: introduces verifiable write admission, parallel
simulation, and adaptive scheduling to build high-quality, self-evolving memory that supports efficient
and transferable knowledge use.

116
117
118

119
120
121
122
123
124
125
126
127
128

129

130
131
132
133
134
135

Figure [I] illustrates the differences between no memory, fixed memory, and our proposed SEDM
framework, highlighting how SEDM achieves verifiable admission, adaptive scheduling, and sustain-
able knowledge evolution.

Figure[2)gives an end-to-end view of SEDM. The system introduces verifiability and self-improvement
into the memory life cycle and consists of three tightly integrated modules. (i) SCEC-based Verifiable
Write Admission packages each run into a Self-Contained Execution Context (SCEC) and performs
environment-free A/B replay to estimate the marginal utility of a candidate memory item; only items
with positive evidence are admitted and assigned an initial weight. (ii) Self-Scheduling in the Memory
Controller uses admission-derived weights together with semantic similarity to score candidates at
retrieval time, while also maintaining the repository by updating weights from observed outcomes,
merging near duplicates, and pruning harmful entries. (iii) Cross-Domain Knowledge Diffusion
abstracts admitted items into conservative general forms and re-validates them in other tasks, allowing
knowledge to transfer safely across domains.

Retrieval & Injection

o e e e e e e S T — — —— ——— ——
(|
/ T \ / \
? knowledge diffusion Insight
Graph
m_general=Abstract(m_specific) @. b”“__\
Task Agent Task Execution Environment 2E>® @ T I
|
Z
I)
=
| H
Context =
Packaging 9\ |/e Query g
T e w = f(AReward, Alatency) o | g
Gra
Wk I =
I 5
2
——— . g
‘ \“ m_merged=Merge(mi,mj) I 2
SCEC (8 »)
I Package ———
I . Memory Scheduling Trajectory
\ I , } / Graph
| \
H
I A(Control) 3 {AReward, AlLatency, '} T (w <= 0) I
l Original Prompt I l
OReward A>0?) ST
) A Alatency X N —_———————)
B(Injected) ATokens ® o0
Prompt A/Btest e Access Determination
Candidate Memory © — -~
Extraction Simulated injection Distributed Verfication

Figure 2: SEDM architecture. Left: task execution generates traces that are packaged into a
Self-Contained Execution Context (SCEC) with inputs, outputs, tool summaries, seeds, and hashes.
Bottom: from each SCEC, a candidate memory is extracted and evaluated via paired A/B replay
(Original vs. Injected); distributed verification computes AReward, ALatency, and ATokens, and an
admission gate accepts the item and assigns its initial weight if the score is positive, else discards it.
Right: the memory controller performs (a) memory scheduling using s(q, m) = sim(q, m) x w(m)
for retrieval and injection, (b) consolidation and evolution by updating weights from outcomes
and merging near-duplicate items (Mmerged = Merge(m;, m;)), and (c) knowledge diffusion by
abstracting reusable insights (Mgeneral = Abstract(mspeciic)). Linked trajectory, query, and insight
graphs track the vertical evolution of memory and preserve provenance. The dashed loop indicates
retrieval and injection during inference, closing the self-improving cycle.

3.2 SCEC-based Verifiable Write Admission

We formulate write admission as a verifiable, environment-free procedure that assigns an initial
utility weight to each candidate memory item before it enters the repository. The process is based
on a Self-Contained Execution Context (SCEC), a minimal and standardized package that enables
validation, parallel replay, and offline auditing. By placing admission behind paired A/B evaluations
within SCECs, the system produces reproducible evidence for weight initialization while filtering out
negative or noisy experiences.

136

137
138
139
140
141

142
143
144
145
146
147
148

149

150
151
152

153
154
155
156

157
158

159

160
161

162

163

164

165
166
167
168

169

170
171
172
173
174
175
176
177

3.2.1 Self-Contained Packaging and Distributed Replay

Each task execution is encapsulated into an SCEC to support reproducible validation and analy-
sis without requiring the original environment. An SCEC includes all necessary inputs, outputs,
tool summaries, seeds, and configuration hashes, ensuring (i) self-contained representation, (ii)
environment-free replay by summarizing external tool calls, (iii) deterministic reproduction across
model versions and seeds, and (iv) minimal sufficiency by storing only essential information.

Treating an SCEC as an independent job enables large-scale distributed A/B replay on arbitrary
workers. Only aggregated statistics, along with integrity hashes and version stamps, are uploaded,
preserving auditability while controlling cost. This environment-free design eliminates the need to
reconstruct complex environments or interact with real agents during validation, thereby allowing
memory effectiveness to be tested through parallel replay at scale. As a result, admission decisions
can be made rapidly and consistently, significantly reducing computational overhead while ensuring
that only high-quality experiences enter the memory repository.

3.2.2 SCEC-grounded A/B Test for Memory Item Initialization

From each SCEC, we extract one candidate memory item m, represented as a concise, independently
injectable snippet. The extraction process identifies decisive reasoning or corrective steps, performs
deduplication and canonicalization, and attaches provenance information.

To evaluate its utility, we conduct a paired A/B test within the same SCEC. The control condition (A)
uses the original prompt, while the treatment condition (B) augments the prompt with the candidate
memory m. This setup isolates the marginal effect of m and provides empirical evidence for its
contribution. For a query ¢, the constructed prompts are defined as

Is :f(Q)7 Ip :f(Q;m)a (D

where f(-) denotes prompt construction and I injects m into the SCEC’s dedicated slot together
with summarized tool feedback. The model execution inside the SCEC is denoted by F:

OAZ.F(IA), OB:]:(IB). (2)

We then measure the deltas in reward, latency, and token usage:
AR = R(op) — R(0a), AL = L(og)—L(oa), AT =T(op)—T(0a), 3)

where R(+) is the task-specific reward, and L(-) and 7'(-) denote latency and token overhead, respec-
tively. A composite admission score balances utility and cost:

S=AR—- A, AL — A\pAT, “
with Az, Ar > 0 controlling the trade-offs.
The admission decision and initial weight are then defined as
accept(m) <= S >, wo(m) = max{0, S}, 5)
where 7 is the acceptance threshold. Multiple runs may be averaged to mitigate variance.

Accepted items are stored together with their initial weights and full provenance (hashes, seeds,
versions, and A/B fingerprints), while rejected or ambiguous items are excluded. This procedure
yields a compact, auditable admission signal that can be validated offline and efficiently executed in
parallel without dependence on the original environment.

3.3 Self-Scheduling in the Memory Controller

The memory controller manages and optimizes the repository through a self-scheduling policy.
Unlike traditional systems that depend on costly per-query reranking Nogueira and Cho| [2019],
Ren et al|[2021]], N1 et al.| [2022], our approach establishes an evidence-based mechanism for both
selecting memory items during retrieval and continuously refining the repository. It comprises two
core functions: retrieval-time scheduling, which determines how to use memories effectively for an
incoming query, and consolidation and progressive evolution, which curates a compact, high-quality
memory set. Together, these components ensure that memory usage is grounded in verifiable utility
signals, improving both efficiency and performance.

178

179
180
181
182
183
184

185
186
187
188

189
190

191
192
193
194

195

196
197
198
199
200

201
202
203
204
205
206
207
208
209
210

211
212

213
214

215
216
217
218

219
220
221

222
223
224
225
226

3.3.1 Retrieval-time Scheduling

The controller’s scheduling policy relies on a ranking signal aligned with realized utility, avoiding
the instability and computational cost of on-the-fly large language model reranking Qin et al.| [2023].
Prior approaches typically use vector similarity or ad-hoc prompt-based scoring, but semantic
similarity alone does not guarantee actual task benefit, and repeated reranking adds latency and
variance [Karpukhin et al.|[2020]], [zacard and Grave|[2021] or ad-hoc prompt-based scoring |Nogueira
and Cho|[2019]], Qin et al.| [2023]].

In our design, we incorporate evidence collected at write time via A/B validation on Self-Contained
Execution Contexts (SCECs). These statistics, particularly the measured changes in reward and
latency, are mapped into a stable admission-derived weight w(m) for each memory item. At retrieval
time, this weight is combined with semantic similarity to form a utility-aligned score:

s(g,m) = sim(q,m) x w(m), (©)

where sim(q, m) denotes the semantic similarity between query ¢ and memory m, and w(m) reflects
its empirically validated utility.

This coupling of semantic relevance with admission-grounded evidence stabilizes selection and
reduces overhead, ensuring that memory items are injected into prompts not only because they are
similar, but because they have demonstrated measurable benefit. As a result, retrieval decisions are
both efficient and aligned with the system’s long-term objectives.

3.3.2 Consolidation and Progressive Evolution

The consolidation and progressive evolution module maintains a compact yet effective memory
repository by suppressing redundancy, preserving items with stable gains, and eliminating or recycling
items that show conflicts or sustained negative contributions. While retrieval-time scheduling focuses
on selecting memories for specific queries, consolidation and evolution aim to improve the repository
itself so that subsequent scheduling operates on a cleaner and more reliable basis.

Progressive evolution is achieved by tracking usage and outcome signals and applying conservative
updates to utility weights over time. Items that are rarely retrieved or consistently fail to provide
positive utility are gradually decayed, reducing their influence in future selections. Conversely,
items that repeatedly yield positive gains across related contexts are promoted. Promotion increases
their weights and, when consistency is observed across multiple items, may trigger abstraction into
higher-level insights. Such abstractions enable representative entries to replace families of consistent
low-level experiences |Goyal et al.| [2019], [Parisotto et al.| [2019]. If observed outcomes diverge
significantly from admission-time evidence, items are demoted or queued for cleanup. All updates
are logged with provenance to ensure the evolution process remains auditable Buneman et al.|[2001],
Lebo et al.|[2013]], Chirigati et al.| [2016].

The weight update for a memory item m depends on its current weight w(m), usage frequency
fuse(m), and average realized utility U (m) since the last update:

w1 (m) = wi(m) + o - Up(m) — B+ fuse,t(m), (7

where « and (3 control the influence of observed utility and usage. This ensures weights evolve from
admission-derived values toward refined, usage-aware estimates.

Conflict detection is integral to this loop. A memory is marked as conflicting when repeated injections
consistently reduce task reward or when its implications contradict other rules. Such items undergo
progressive weight reduction, and if their weight falls below a threshold, they are demoted or removed.
All decisions retain version traces and evidence chains to support rollback and inspection.

Semantic consolidation addresses redundancy among items from different SCECs. When two or
more items, m; and m;, show high semantic similarity without conflicting applicability, they are
merged:

Mimerged = Merge(m;, m;). (8)
The merged entry preserves essential content while aggregating evidence from the originals, and its
weight w(Minerged) i reconciled to reflect combined support without double counting. Contributing
items are archived or soft-deleted, preserving provenance if needed. By collapsing near-duplicates
into single representatives, the repository reduces retrieval noise and strengthens utility signals|Broder
et al. [1997], Manku et al.|[2007], Charikar| [2002], [Zhang et al.|[2019].

227
228
229
230
231

232

233
234

236
237
238
239
240
241

242
243

244
245
246

247
248
249
250
251
252

253
254
255

256

257
258
259
260
261

262

270
271
272
273

Through these routines, the controller maintains a concise but reliable set of memories. Redundant
entries are consolidated Manku et al.[[2007]], stable positives are promoted |[Kaelbling et al.|[1996],
abstractions generalize recurring insights |Goyal et al| [2019], and harmful items are isolated or
removed [Toneva et al.| [2019]]. As a result, the repository remains aligned with realized utility,
ensuring that retrieval decisions exploit empirical evidence rather than ad-hoc reranking.

3.4 Cross-Domain Knowledge Diffusion

This component exploits the environment-free and verifiable properties of the SCEC method, treating
memory entries as portable and re-verifiable assets across domains. Tasks from diverse domains
continuously supply evidence to refine memory weights, thereby improving both universality and
robustness of the repository. The process follows a loop of migrate, re-validate, and re-incorporate:
transfer is initiated through retrieval and weighted injection; subsequent usage allows re-estimation
of weights via SCEC-compatible procedures; and the updates inform later scheduling and admission
decisions. Throughout, retrieval signals remain unchanged: similarity-based relevance, sim(q, m) for
query ¢ and memory item m, combined with the admission-derived weight w(m). This design avoids
evidence-free cold starts and eliminates the need for additional scoring components at runtime.

Immediately after admission, each specific entry mgpecific generates a conservative general form
Mygeneral through a lightweight abstraction operator:

Mgeneral = AbStraCt(mspeciﬁc)~)

This yields a dual-linked pair in which the general form strips domain-specific features while
preserving transferable essence. The general form serves as a low-risk candidate for cross-domain
retrieval, while the specific form remains primary within its source domain.

The abstraction process is rule-governed and minimal. Entities and domain-specific terms are replaced
with typed placeholders, retaining actionable task—action structures while removing non-essential
detail (Goyal et al.|[2019], |Lake et al.|[2015]], Liang et al.|[2017]]. The result is a compact snippet
suitable for direct injection and controlled comparisons. To minimize orchestration cost, abstraction
is generated alongside the SCEC-based A/B assessment within the distributed pipeline [Chirigati et al.
[2016].

For weight inheritance, the general form is initialized conservatively as a scaled version of the specific
weight, Weeneral = O - Wepecific With @ < 1. This prior encodes caution against over-abstraction while
preserving provenance for later auditing and weight updates.

At retrieval, both forms compete in the candidate set with a unified score:
s(g,m) = sim(g, m) x w(m). (10)

In-domain queries typically favor specific forms due to higher semantic match and weight, while
cross-domain queries benefit from the more stable similarity of general forms. This mechanism
enables knowledge diffusion across domains without introducing extra runtime complexity, while
maintaining auditability, portability, and stability. Subsequent use further refines the weights, allowing
knowledge to propagate adaptively across diverse tasks.

4 Experiment

4.1 Experimental Setup

Datasets. Experiments are conducted on two widely used benchmark datasets: FEVER[Thorne
et al.| 2018]] and HotpotQA|[Yang et al., 2018b].HotpotQA is a large-scale question-answering
benchmark designed to evaluate the ability of systems to perform multi-hop reasoning across diverse
natural language inputs. FEVER is a fact-checking dataset that provides human-written claims about
Wikipedia entities, each labeled as Supported, Refuted, or NotEnoughlnfo. Both datasets present
significant challenges for testing long-term reasoning and memory utilization in language agents.

Baselines. The proposed SEDM is compared with the following baselines: (1) No Memory:
the model only relies on the query input without any memory augmentation, serving as the basic
performance reference; (2) G-Memory[Zhang et al.,[2025]]: a memory-augmented method that stores
all past information in a global memory pool and retrieves by similarity search. Although effective, it

274
275
276

277
278
279
280
281
282
283

284

285

287
288
289
290
291

292
293
294

296
297

299
300
301

302

303
304

306

307
308
309
310

incurs high inference cost due to the large number of prompt tokens; (3) SEDM (ours): our scalable
self-evolving distributed memory, which introduces memory scheduling and selection mechanisms to
maintain a compact and adaptive working set, thereby balancing performance and efficiency.

Configurations. All experiments run on the same backbone LLM (GPT-40-mini) |(OpenAll [2023]].
Dense retrieval is handled by ALL-MINILM-L6-V2 Reimers and Gurevych| [2019]], which embeds
both knowledge snippets and queries for similarity search. On the evaluation side, we use FEVER
accuracy for fact-checking and HotpotQA exact-match (EM) for multi-hop QA. Efficiency is tracked
by counting prompt and completion tokens consumed during inference. To ensure fair comparisons,
every method is granted the same memory budget; the proposed SEDM does not expand this budget,
but instead adaptively schedules which entries are kept in memory.

4.2 Result Analysis

The overall performance on FEVER and HotpotQA is summarized in Table[T] In the FEVER dataset,
the baseline model achieved only 57 without memory, reflecting limited reasoning ability in the
absence of external knowledge and prior memory. G-Memory improved the score to 62, but this
gain came at the cost of a dramatic increase in the number of prompt tokens, leading to significantly
higher inference costs. In contrast, SEDM achieved the highest score of 66 while consuming far
fewer tokens than G-Memory. This demonstrates that our method successfully balances the trade-off
between performance and efficiency through its memory selection and scheduling mechanisms.

In the HotpotQA dataset, the trend is similar to that observed in FEVER. The no-memory baseline
scored only 34, while G-Memory increased the score to 38. SEDM further improved performance,
reaching a score of 39 while simultaneously reducing computational overhead, confirming its effec-
tiveness in multi-hop reasoning tasks.

Moreover, we evaluate the transfer ability of SEDM between FEVER and HotpotQA, two distinct
downstream tasks. Specifically, the agent collects experience on the HotpotQA task using SEDM and
then evaluates it on FEVER to measure knowledge transfer and prompting effects. Under this setting,
the score on FEVER reached 64. Compared with G-Memory, which scored 62, and the no-memory
baseline, which scored 57, our results demonstrate that SEDM enables adaptive memory selection
that leverages previously collected experiences to improve performance across tasks.

Table 1: Performance comparison on FEVER (fact verification) and HotpotQA (multi-hop reasoning).
We report task accuracy (Score) along with efficiency metrics (Prompt Tokens and Completion
Tokens). SEDM achieves the best accuracy on both benchmarks while substantially reducing
token consumption compared with G-Memory, highlighting its ability to balance effectiveness and
efficiency.

Method \ FEVER \ HotpotQA
Score Prompt Completion Score Prompt Completion
Tokens Tokens Tokens Tokens
No Memory 57 1.65M 24K 34 2.46M 29K
G-Memory 62 3.62M 109K 38 4.63M 114K
SEDM 66 2.47M 53K 39 3.88M 55K
(Owurs)

4.3 Ablation Study

To evaluate the contribution of individual SEDM components, we conduct ablation studies on both
HotpotQA and FEVER. Table []reports results under three configurations: (i) the baseline without
memory, (ii) the addition of SCEC-based verifiable write admission (+SCEC), and (iii) the full SEDM
with the memory controller’s self-scheduling mechanism (+SCEC + Self-Scheduling).

On HotpotQA, introducing +SCEC improves the score from 34 to 37, but also increases prompt
tokens by 43% (2.46M — 3.52M) and completion tokens from 29K to 52K. With +Self-Scheduling,
the score further rises to 39, while prompt tokens grow only by 10% (3.52M — 3.88M), showing
that scheduling effectively controls token overhead relative to the accuracy gain. On FEVER, the

311
312

314

315

317
318

319

320
321
322

323
324
325
326
327
328
329
330
331
332
333
334

335

336
337
338
339
340
341
342
343

Table 2: Ablation study on HotpotQA and FEVER, showing the progressive contribution of SEDM
components.

Dataset Setting Score Prompt tokens Completion tokens
No Memory 34 2.46M 29K
HotpotQA + SCEC 37 3.52M 52K
+ SCEC + Self-Scheduling 39 3.88M 55K
No Memory 57 1.65M 24K
FEVER + SCEC 64 2.19M 53K
+ SCEC + Self-Scheduling 66 2.47M 53K

baseline achieves 57. Adding +SCEC raises the score to 64, accompanied by an increase in prompt
tokens from 1.65M to 2.19M (+33%) and completion tokens from 24K to 53K. With scheduling,
performance improves to 66, while prompt tokens rise only to 2.47M (+13%), and completion tokens
remain unchanged, confirming that the controller filters relevant memory without inflating responses.

In summary, across both datasets, SCEC consistently yields substantial accuracy gains at the cost
of increased token usage, while the self-scheduling mechanism provides further improvements with
relatively minor overhead. This demonstrates that SEDM not only enhances reasoning accuracy but
also achieves a more favorable trade-off between performance and efficiency.

4.4 Cross-Domain Evaluation

To further assess the generalization ability of SEDM across domains, we conduct a cross-domain
experiment in which memory is collected on one dataset and evaluated on another. Table |3|reports
the results on both FEVER and HotpotQA.

Table 3: Cross-domain evaluation of SEDM. Rows indicate the dataset used for memory collection,
and columns indicate the dataset used for testing.

Collect | / Test — | Fever HotpotQA
Fever 66 41
HotpotQA 64 39

The results highlight two key findings. First, in-domain settings (diagonal entries) achieve the
strongest performance, with scores of 66 on FEVER and 39 on HotpotQA, confirming that SEDM
effectively distills and leverages domain-specific memory. Second, cross-domain transfer (off-
diagonal entries) reveals an interesting asymmetry. When memory distilled from FEVER is applied
to HotpotQA, the model achieves a score of 41, which even surpasses the in-domain HotpotQA
result (39). This indicates that factual knowledge captured in FEVER has strong generalization
capacity and can support reasoning tasks that require grounding in factual claims. By contrast,
memory distilled from HotpotQA transfers less effectively to FEVER (64 vs. 66), suggesting that
multi-hop reasoning knowledge is less directly reusable for fact verification. Overall, these findings
demonstrate that SEDM not only excels in in-domain scenarios but also exhibits promising cross-
domain generalization, particularly when transferring from simpler fact verification tasks to more
complex multi-hop reasoning tasks.

5 Conclusion

This paper introduces SEDM, Scalable Self-Evolving Distributed Memory, which transforms mem-
ory in multi-agent systems from a passive repository into an adaptive and verifiable component
by integrating SCEC-based admission, self-scheduling refinement, and cross-domain knowledge
diffusion. Through this principled design, SEDM addresses the challenges of noise accumulation,
uncontrolled growth, and weak generalization that limit existing methods. Experiments on FEVER
and HotpotQA confirm that SEDM improves reasoning accuracy while reducing computational and
token overhead, demonstrating its potential as a scalable and sustainable memory mechanism for
long-term multi-agent collaboration.

344

345
346
347

349
350

351
352
353

354
355
356

357
358

359
360

361
362

363
364

365
366

367
368

369
370

371
372
373

374
375

376
377

378
379

380

381
382

383

385
386

388
389

References

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. On the resemblance
and containment of documents. In Proceedings of the Compression and Complexity of Sequences
(SEQUENCES), pages 21-29, 1997. doi: 10.1109/SEQUEN.1997.666900.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characterization of
data provenance. In Proceedings of the 8th International Conference on Database Theory (ICDT),
pages 316-330, 2001. doi: 10.1007/3-540-44503-x_20.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent
reinforcement learning. I[EEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156-172, 2008. doi: 10.1109/TSMCC.2007.913919.

Moses Charikar. Similarity estimation techniques from rounding algorithms. Proceedings of the
34th Annual ACM Symposium on Theory of Computing (STOC), pages 380-388, 2002. doi:
10.1145/509907.509965.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. In ACL, pages 1870-1879, 2017.

Xie Chen, Percy Liang, and Le Song. Hierarchical memory networks. arXiv preprint
arXiv:1605.07427, 2016.

Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. Reprozip: Computational
reproducibility with ease, 2016.

Abhishek Das, Satwik Kottur, José M. FE. Moura, Stefan Lee, and Dhruv Batra. Learning cooperative
visual dialog agents with deep reinforcement learning. In /CCV, pages 2951-2960, 2017.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Jakob Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate
with deep multi-agent reinforcement learning. In NeurIPS, pages 2137-2145, 2016.

Jakob Foerster, Richard Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. In AAMAS, pages 122-130, 2018.

Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Shakir Mohamed. Abstraction in reinforcement
learning: A state of the art survey. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 4394-4401, 2019.

Alex Graves, Greg Wayne, and Ivo Danihelka. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471-476, 2016. doi: 10.1038/nature20101.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance matching model for
ad-hoc retrieval. In CIKM, pages 55-64, 2016. doi: 10.1145/2983323.2983769.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In EACL, pages 874-880, 2021. doi: 10.18653/v1/2021.eacl-main.74.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus, 2019a.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. In IEEE
Transactions on Big Data, volume 7, pages 535-547, 2019b.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996. doi: 10.1613/jair.301.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to remember rare events. In
International Conference on Learning Representations (ICLR), 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP,
pages 6769-6781, 2020. doi: 10.18653/v1/2020.emnlp-main.550.

10

390
391
392

393
394
395

396
397

398
399
400
401

402
403
404

405
406
407

408

410

411
412

413
414
415
416
417

418
419
420
421

422
423

424

425
426

427
428
429

430
431

432

434

435
436

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. In Science, volume 350, pages 1332-1338, 2015. doi:
10.1126/science.aab3050.

Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James Cheney, Daniel Garijo,
Simon Miles, Stian Soiland-Reyes, Stephan Zednik, and Jun Zhao. Prov-o: The prov ontology.
W3C Recommendation, 2013. URL https://www.w3.org/TR/prov-o/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. In NeurlIPS, 2020.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL), Volume 1 (Long Papers), pages
23-33,2017. doi: 10.18653/v1/P17-1003.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems (NeurIPS), pages 6379-6390, 2017.

Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of the 16th International Conference on World Wide Web (WWW), pages
141-150, 2007. doi: 10.1145/1242572.1242592.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Advances in Neural Information Processing Systems (NeurIPS), volume 35,

pages 17359-17372, 2022.

Dirk Merkel. Docker: Lightweight linux containers for consistent development and deployment,
2014.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christos Nalmpantis, Alexandre Ramé, Vivek Ja-
yaram, Ugur Dogan, Yi Tay Wang, Thomas Scialom, Timo Schick, Roberta Raileanu, Baptiste
Roziere, Xavier Bresson, Hervé Jegou, Hugo Touvron, Edouard Grave, Armand Joulin, Guil-
laume Lample, and Koustuv Sinha. Augmented language models: a survey. arXiv preprint
arXiv:2302.07842, 2023.

Jianmo Ni, Chenghao Lu, Jing Ma, Bo Huang, Adam McLean, Zeyu Xu, Eric Wallace, and Wen-tau
Yih. Large dual encoders are generalizable retrievers. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 9844-9855, 2022. doi:
10.18653/v1/2022.emnlp-main.666.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2019. URL https://arxiv,
org/abs/1901.04085.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Emilio Parisotto, Jack Song, and Yann Dauphin. Stabilizing transformers for reinforcement learning.
arXiv preprint arXiv:1910.06764, 2019.

Joon Sung Park, Carrie J O’Brien, Carrie J Cai, Meredith Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology (UIST), pages 1-22, 2023.

Ofir Press, Noah A. Smith, and Omer Levy. Improving transformer models by reordering their
sublayers. In ACL, pages 2996-3005, 2020.

Zhen Qin, Rolf Jagerman, Kai Hui, Chenyan Xiong, Bhaskar Mitra, Fernando Diaz, and Nick
Craswell. Large language models are effective text rankers with pairwise ranking prompting. arXiv
preprint arXiv:2306.17563, 2023.

Jack Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

11

https://www.w3.org/TR/prov-o/
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085

437
438
439

440
441
442
443

444
445

446
447

448
449
450
451

452
453
454
455
456
457

458
459
460
461

462
463
464
465

467

468
469

470
471
472

473
474
475

476
477
478

479
480
481

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 3982-3992, 2019. doi: 10.18653/v1/D19-1410.

Shuhuai Ren, Yuchen Qu, Jing Liu, Wayne Xin Zhao, Qi She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. Rocketqav2: A joint training method for dense passage retrieval and passage re-ranking.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 2825-2835, 2021. doi: 10.18653/v1/2021.emnlp-main.225.

Noah Shinn, Brandon Labash, and Ashwin Gopinath. Reflexion: Language agents with verbal
reinforcement learning. arXiv preprint arXiv:2303.11366, 2023.

Yoav Shoham, Rob Powers, and Trond Grenager. Multi-agent systems: A survey. Foundations and
Trends in Artificial Intelligence, 1(1-2):1-122, 2007.

Kurt Shuster, Da Ju, Stephen Roller, Emily Dinan, Douwe Kiela, and Jason Weston. The dialogue
dodecathlon: Open-domain knowledge and image grounding for multi-task dialogue systems. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 2453-2470, 2020.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-
scale dataset for fact extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda Stent,
editors, Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
809-819, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1074. URL https://aclanthology.org/N18-1074/.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations (ICLR), 2019. URL https:
//openreview.net/forum?id=BJ1xm30cKm.

Guanzhi Wang, Shunyu Wang, Yuxiang Wang, Xufeng Liu, Chuangi Chen, Yunfan Ling, Jiaming Wu,
Yutong Li, Han Yu, Zhiyu Dai, Zhiwei Liu, Xin Wang, Jiajun Li, Yizhou Wu, Leonidas Guibas,
Li Fei-Fei, and Yuke Zhu. Voyager: An open-ended embodied agent with large language models,
2023. URL https://arxiv.org/abs/2305.16291,

Tonghan Wang, Jianhao Zhang, Yi Wu, and Chongjie Wang. Influence-based multi-agent exploration.
In ICLR, 2020.

Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2 edition, 2009.
ISBN 978-0470519462.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, and Weinan Zhang. Mean field multi-agent
reinforcement learning. In Proceedings of the 35th International Conference on Machine Learning
(ICML), pages 5571-5580, 2018a.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018b. URL https://arxiv.org/abs/1809.09600.

Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory:
Tracing hierarchical memory for multi-agent systems, 2025. URL https://arxiv.org/abs/
2506.07398.

Zhao Zhang, Ruichu Cai, Ying Xu, Kun Zhang, Shoujin Wang, and Qiang Yang. Duplicate question
detection with deep learning. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI), pages 5469-5475, 2019. doi: 10.24963/ijcai.2019/759.

12

https://aclanthology.org/N18-1074/
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2506.07398

482

483

484

486

487
488
489
490

491

492

494
495
496
497
498

499
500

501

502

503

504
505

506

507
508
509
510
511
512
513
514
515
516
517

518
519
520
521
522

523
524

525
526
527
528
529
530
531
532

533

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contributions,
including a verifiable write admission procedure, a self-scheduling memory controller, and
a cross-domain knowledge diffusion mechanism. These claims are directly supported by the
methodology and experimental results presented in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the key limitations and boundary conditions of our
approach within the relevant sections of the text.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

13

534
535

536

537
538

539

540

541
542

543

544
545
546

547
548

550

551

553

554

555
556
557
558

559

560

561
562
563

564
565

566
567
568
569
570
571
572
573
574

575
576
577

578
579
580
581
582
583
584
585

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper presents a novel system design and a series of empirical experiments.
It does not contain any formal theoretical results or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our methodology is a novel algorithm, and the paper fully describes its
components, from the SCEC framework to the memory controller’s self-scheduling and
evolution policies. All key design choices and parameters are detailed in the main text,
ensuring that a skilled researcher can replicate our core findings.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

14

586 (d) We recognize that reproducibility may be tricky in some cases, in which case

587 authors are welcome to describe the particular way they provide for reproducibility.
588 In the case of closed-source models, it may be that access to the model is limited in
589 some way (e.g., to registered users), but it should be possible for other researchers
590 to have some path to reproducing or verifying the results.

591 5. Open access to data and code

592 Question: Does the paper provide open access to the data and code, with sufficient instruc-
593 tions to faithfully reproduce the main experimental results, as described in supplemental
594 material?

595 Answer:

596 Justification: While the paper’s core contribution is a novel methodology, we do not provide
597 code or data at this time to maintain anonymity for the double-blind review process. However,
598 as noted above, our paper includes detailed instructions and descriptions of the experimental
599 setup to enable faithful reproduction of the results.

600 Guidelines:

601 * The answer NA means that paper does not include experiments requiring code.

602 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
603 public/guides/CodeSubmissionPolicy) for more details.

604 * While we encourage the release of code and data, we understand that this might not be
605 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
606 including code, unless this is central to the contribution (e.g., for a new open-source
607 benchmark).

608 * The instructions should contain the exact command and environment needed to run to
609 reproduce the results. See the NeurIPS code and data submission guidelines (https |
610 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

611 * The authors should provide instructions on data access and preparation, including how
612 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
613 * The authors should provide scripts to reproduce all experimental results for the new
614 proposed method and baselines. If only a subset of experiments are reproducible, they
615 should state which ones are omitted from the script and why.

616 * At submission time, to preserve anonymity, the authors should release anonymized
617 versions (if applicable).

618 * Providing as much information as possible in supplemental material (appended to the
619 paper) is recommended, but including URLSs to data and code is permitted.

620 6. Experimental setting/details

621 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
622 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
623 results?

624 Answer: [Yes]

625 Justification: The experimental setup and key hyperparameters are described in the method-
626 ology and experimental sections.

627 Guidelines:

628 * The answer NA means that the paper does not include experiments.

629 * The experimental setting should be presented in the core of the paper to a level of detail
630 that is necessary to appreciate the results and make sense of them.

631 * The full details can be provided either with the code, in appendix, or as supplemental
632 material.

633 7. Experiment statistical significance

634 Question: Does the paper report error bars suitably and correctly defined or other appropriate
635 information about the statistical significance of the experiments?

636 Answer:

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

637
638
639

640

641

642
643
644

645
646
647

648
649

650

651
652

653
654
655

656
657
658

659
660
661

662
663
664

665

666
667

668

669

670
671

672
673

674
675
676

677

678
679

680

681
682
683
684

685

686

687
688

Justification: We do not report error bars for the primary results. However, our methodology
is designed to ensure statistical robustness through repeated A/B measurements, which is
discussed in the paper’s methods section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide an overview of the compute resources used for our experiments in
the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully adheres to the NeurIPS Code of Ethics. It does not
involve human subjects, sensitive data, or any applications with immediate ethical concerns.
All experiments use publicly available benchmark datasets and focus on methodological
advancements in a controlled research setting.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

16

https://neurips.cc/public/EthicsGuidelines

689 * The authors should make sure to preserve anonymity (e.g., if there is a special consid-

690 eration due to laws or regulations in their jurisdiction).

691 10. Broader impacts

692 Question: Does the paper discuss both potential positive societal impacts and negative
693 societal impacts of the work performed?

694 Answer: [Yes]

695 Justification: The paper discusses the broader societal impacts in a dedicated section. We
696 highlight the positive impacts of our memory system, such as improving the efficiency
697 and reliability of large language models for complex tasks, which could benefit areas like
698 scientific research and education. We also acknowledge potential negative impacts, such as
699 the technology’s possible use in generating misleading information, and discuss how our
700 core mechanisms for verification and auditable weight assignment can serve as a form of
701 mitigation.

702 Guidelines:

703 * The answer NA means that there is no societal impact of the work performed.

704 * If the authors answer NA or No, they should explain why their work has no societal
705 impact or why the paper does not address societal impact.

706 » Examples of negative societal impacts include potential malicious or unintended uses
707 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
708 (e.g., deployment of technologies that could make decisions that unfairly impact specific
709 groups), privacy considerations, and security considerations.

710 » The conference expects that many papers will be foundational research and not tied
711 to particular applications, let alone deployments. However, if there is a direct path to
712 any negative applications, the authors should point it out. For example, it is legitimate
713 to point out that an improvement in the quality of generative models could be used to
714 generate deepfakes for disinformation. On the other hand, it is not needed to point out
715 that a generic algorithm for optimizing neural networks could enable people to train
716 models that generate Deepfakes faster.

717 * The authors should consider possible harms that could arise when the technology is
718 being used as intended and functioning correctly, harms that could arise when the
719 technology is being used as intended but gives incorrect results, and harms following
720 from (intentional or unintentional) misuse of the technology.

721 « If there are negative societal impacts, the authors could also discuss possible mitigation
722 strategies (e.g., gated release of models, providing defenses in addition to attacks,
723 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
724 feedback over time, improving the efficiency and accessibility of ML).

725 11. Safeguards

726 Question: Does the paper describe safeguards that have been put in place for responsible
727 release of data or models that have a high risk for misuse (e.g., pretrained language models,
728 image generators, or scraped datasets)?

729 Answer: [NA]

730 Justification: The paper focuses on a methodological contribution and does not release a
731 new model or dataset. It utilizes existing, well-established public benchmarks that are not
732 considered high-risk for misuse.

733 Guidelines:

734 * The answer NA means that the paper poses no such risks.

735 * Released models that have a high risk for misuse or dual-use should be released with
736 necessary safeguards to allow for controlled use of the model, for example by requiring
737 that users adhere to usage guidelines or restrictions to access the model or implementing
738 safety filters.

739 * Datasets that have been scraped from the Internet could pose safety risks. The authors
740 should describe how they avoided releasing unsafe images.

17

741
742
743

744

745
746
747

748

749
750
751

752

753
754

755
756

757
758

760
761
762
763

764
765

766
767
768

769
770

771

772
773
774

775

776
777
778
779
780
781
782
783

784

785
786
787

788

789
790
791

792

12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All benchmark datasets used in this study are widely used in the research

community and are properly cited in the paper. The code is a novel contribution from the
authors, and its license will be specified upon public release.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: This paper does not introduce any new datasets or models. The core contri-
bution is a novel methodology, and all experiments were conducted on existing, publicly
available benchmark datasets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing or any form of research with
human subjects. All experiments are based on a computational method applied to pre-
existing, publicly available benchmark datasets.

Guidelines:

18

paperswithcode.com/datasets

793
794
795
796
797
798
799
800

801
802

803
804
805
806

807

808
809
810

811

812
813
814
815
816
817
818
819
820
821

822

823
824
825
826

827

828
829
830
831
832

833

834
835
836
837

15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing, human subjects, or any data
collection from human participants. All experiments are conducted on publicly available
benchmark datasets that do not contain personally identifiable information.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The proposed method, Self-Evolving Distillation Memory (SEDM), is a mem-
ory system designed to augment Large Language Models (LLMs). The core components,
including verifiable write admission, memory scheduling, and knowledge diffusion, are all
based on using LLMs as the underlying agent for knowledge distillation and reasoning. As
such, LLMs are a central component of our methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methodology
	System Overview
	SCEC-based Verifiable Write Admission
	Self-Contained Packaging and Distributed Replay
	SCEC-grounded A/B Test for Memory Item Initialization

	Self-Scheduling in the Memory Controller
	Retrieval-time Scheduling
	Consolidation and Progressive Evolution

	Cross-Domain Knowledge Diffusion

	Experiment
	Experimental Setup
	Result Analysis
	Ablation Study
	Cross-Domain Evaluation

	Conclusion

