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Abstract

Long-term multi-agent systems inevitably generate vast amounts of trajectories1

and historical interactions, which makes efficient memory management essential2

for both performance and scalability. Existing methods typically depend on vector3

retrieval and hierarchical storage, yet they are prone to noise accumulation, uncon-4

trolled memory expansion, and limited generalization across domains. To address5

these challenges, we present SEDM, Self-Evolving Distributed Memory, a verifi-6

able and adaptive framework that transforms memory from a passive repository into7

an active, self-optimizing component. SEDM integrates verifiable write admission8

based on reproducible replay, a self-scheduling memory controller that dynamically9

ranks and consolidates entries according to empirical utility, and cross-domain10

knowledge diffusion that abstracts reusable insights to support transfer across11

heterogeneous tasks. Evaluations on benchmark datasets demonstrate that SEDM12

improves reasoning accuracy while reducing token overhead compared with strong13

memory baselines, and further enables knowledge distilled from fact verification14

to enhance multi-hop reasoning. The results highlight SEDM as a scalable and15

sustainable memory mechanism for open-ended multi-agent collaboration. The16

code will be released in the later stage of this project.17

1 Introduction18

In recent years, the rapid development of large-scale multi-agent systems (MAS) Wooldridge [2009],19

Lowe et al. [2017], Foerster et al. [2016], Yang et al. [2018a], Buşoniu et al. [2008]. has expanded their20

application in diverse domains, including collaborative reasoning, decision-making, and autonomous21

planning Shoham et al. [2007]. A central challenge in these open-ended and long-term tasks is the22

ability of agents to manage, interpret, and reuse information accumulated from continuous interaction23

with both peers and the environment Yang et al. [2018a]. Without effective memory mechanisms, the24

sheer scale of historical interactions can easily overwhelm computational resources and compromise25

decision quality Foerster et al. [2018].26

In open-ended and long-term multi-agent tasks, each agent relies on its past memories, the observed27

states of other agents, and the current environment to determine subsequent actions or responses Das28

et al. [2017]. During continuous interaction between agents and their environment, the MAS29

gradually accumulates extensive logs of interactions, invocation trajectories, and high-level policy30

memories OpenAI [2023]. Such overwhelming amounts of information directly impact the efficiency31

and cost of decision-making, often leading to higher monetary costs and longer contextual require-32

ments for inference Shuster et al. [2020]. Therefore, designing an efficient and sustainable memory33

mechanism has become a critical issue for modern long-term multi-agent systems.34

Current methods primarily adopt vector retrieval and hierarchical memory structures to manage35

storage and retrieval efficiently Johnson et al. [2019b]. Vector retrieval Johnson et al. [2019a],36
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Karpukhin et al. [2020], Izacard and Grave [2021], Lewis et al. [2020], Guo et al. [2016] leverages37

semantic similarity to identify relevant entries, while hierarchical organization arranges information38

in layered structures according to abstraction levels Rae et al. [2021]. These approaches have39

shown promise in improving retrieval accuracy and managing memory scalability Chen et al. [2016].40

However, in complex collaborative multi-agent tasks, their effectiveness diminishes, as the underlying41

assumptions of stability and linear growth do not hold Wang et al. [2020]. This gap between42

theoretical promise and practical performance highlights several critical limitations that hinder their43

long-term applicability.44

One major challenge is the inevitable accumulation of noise, which severely degrades retrieval qual-45

ity Fan et al. [2018]. As the memory size expands without constraint, the system faces exponentially46

increasing computational costs in both retrieval and context construction Izacard and Grave [2021].47

This not only reduces overall efficiency but also amplifies the interference caused by redundant48

information Lewis et al. [2020]. In particular, the presence of low-value or semantically irrelevant49

entries dilutes the contribution of high-quality information in retrieval results, impairing downstream50

task performance and leading to measurable declines in metrics Chen et al. [2017]. In addition, the51

cumulative noise effect increases response latency and accelerates the nonlinear consumption of52

computational and storage resources Karpukhin et al. [2020], ultimately threatening both scalability53

and stability in long-term MAS operations Press et al. [2020].54

To overcome these limitations, we introduce Scalable Self-Evolving Distributed Memory (SEDM),55

a framework that transforms memory from a passive repository into an adaptive, self-optimizing,56

and verifiable component for multi-agent systems. Unlike conventional designs that treat memory57

as a static store, SEDM continually refines knowledge to enhance learning and decision-making58

efficiency in dynamic task environments. It operationalizes memory as an active mechanism by59

integrating verifiability and continuous self-improvement into the memory lifecycle. At its core,60

memory items undergo a rigorous admission process based on self-contained execution contexts61

(SCECs), such as Docker and ReproZip Merkel [2014], Chirigati et al. [2016], which package all62

necessary information for environment-free replay and offline validation. This mechanism provides63

empirical evidence for utility at write time, ensuring that only useful, high-quality experiences64

enter the memory repository. Once admitted, memory items are dynamically managed by a self-65

scheduling controller and enhanced through cross-domain knowledge diffusion. The controller66

leverages admission-derived weights, combined with semantic similarity, to schedule retrieval-time67

usage without costly reranking, while consolidation and progressive evolution continuously refine68

the repository by promoting stable items, merging redundancies, and pruning harmful ones. Beyond69

single-task settings, SEDM abstracts reusable insights into general forms, enabling knowledge70

distilled in one domain to be safely transferred and re-validated in others. Together, these components71

establish a scalable and auditable memory mechanism that enhances reasoning accuracy, reduces72

overhead, and supports sustainable long-term multi-agent collaboration.73

We evaluate SEDM on two representative benchmarks, FEVER Thorne et al. [2018] for fact verifica-74

tion and HotpotQA Yang et al. [2018b] for multi-hop reasoning, comparing against no-memory and75

G-Memory baselines Zhang et al. [2025]. The results show that SEDM consistently improves task76

accuracy while significantly reducing token overhead, thereby achieving a better balance between77

performance and efficiency. Ablation studies confirm that both the verifiable admission mechanism78

and the self-scheduling controller contribute progressively to this gain, with the latter playing a79

key role in constraining prompt growth without sacrificing accuracy. Furthermore, cross-domain80

evaluation demonstrates that memory distilled from one dataset can transfer to another, with factual81

knowledge from FEVER notably boosting performance on HotpotQA. These findings highlight82

SEDM as a scalable, adaptive, and generalizable memory framework for long-term multi-agent83

reasoning.84

Our contributions are summarized as follows:85

• We propose Scalable Self-Evolving Distributed Memory (SEDM), a novel framework that trans-86

forms memory from a passive repository into an adaptive, verifiable, and continuously improving87

component, introducing self-contained execution contexts (SCECs) for reproducible admission and88

utility-based memory weighting.89

• We design a self-scheduling memory controller that selectively manages memory at retrieval90

time and continuously refines the repository through consolidation, redundancy suppression, and91

progressive evolution, thereby balancing accuracy and efficiency.92

2



• We conduct extensive evaluations on FEVER and HotpotQA benchmarks, demonstrating that93

SEDM consistently improves task accuracy while significantly reducing token overhead.94

2 Related Work95

Self-Evolving Agents. Recent efforts in building self-evolving agents have focused on enabling96

systems to improve their reasoning or behavior over time without explicit retraining. Approaches97

such as Reflexion Shinn et al. [2023] and Voyager Wang et al. [2023] allow agents to iteratively refine98

their strategies by leveraging self-reflection and accumulated trajectories. Similarly, MEMIT Meng99

et al. [2022] demonstrates the feasibility of localized knowledge editing within large language models,100

suggesting a pathway for agents to evolve by continuously updating their internal representations.101

These studies highlight the importance of mechanisms that support autonomous adaptation and102

progressive self-improvement in dynamic environments.103

Agent Memory. In parallel, research on agent memory has investigated how to store, retrieve,104

and utilize knowledge efficiently across long-horizon interactions. Episodic memory systems, such105

as those proposed by Park et al. Park et al. [2023], emulate human-like memory consolidation106

to support consistent long-term behavior in simulated social environments. Memory-augmented107

neural networks Graves et al. [2016] and differentiable neural dictionaries Kaiser et al. [2017]108

further demonstrate how structured memory access can enhance reasoning and generalization. More109

recently, retrieval-augmented generation frameworks tailored for interactive agents Mialon et al.110

[2023] have shown that dynamically grounding responses in curated external memories improves111

both interpretability and task success. Together, these works underscore the need for memory systems112

that are not only scalable but also adaptive to the agent’s evolving operational context.113

3 Methodology114

3.1 System Overview115
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Figure 1: Illustration of different memory strategies. No Memory: the agent interacts with the
environment without retaining past information. Fixed Memory: the agent retrieves from a static
memory pool, which may grow excessively. SEDM: introduces verifiable write admission, parallel
simulation, and adaptive scheduling to build high-quality, self-evolving memory that supports efficient
and transferable knowledge use.
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Figure 1 illustrates the differences between no memory, fixed memory, and our proposed SEDM116

framework, highlighting how SEDM achieves verifiable admission, adaptive scheduling, and sustain-117

able knowledge evolution.118

Figure 2 gives an end-to-end view of SEDM. The system introduces verifiability and self-improvement119

into the memory life cycle and consists of three tightly integrated modules. (i) SCEC-based Verifiable120

Write Admission packages each run into a Self-Contained Execution Context (SCEC) and performs121

environment-free A/B replay to estimate the marginal utility of a candidate memory item; only items122

with positive evidence are admitted and assigned an initial weight. (ii) Self-Scheduling in the Memory123

Controller uses admission-derived weights together with semantic similarity to score candidates at124

retrieval time, while also maintaining the repository by updating weights from observed outcomes,125

merging near duplicates, and pruning harmful entries. (iii) Cross-Domain Knowledge Diffusion126

abstracts admitted items into conservative general forms and re-validates them in other tasks, allowing127

knowledge to transfer safely across domains.128
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{
  "scec_id": "0cc7cf...",
  "input": { "task": "Claim: T2 Trainspotting is...", 
            "injected_memories": [...] 
           },
  "trace": [
    { "thought": "I need to search...", 
       "action": "Search[...]", "observation": "..."
    },
    { "thought": "...", "action": 
       "Finish['REFUTES']", "observation": "..."
    }
           ],
  "output": { "final_answer": "REFUTES", 
             "is_correct": true 
            },
  "metadata": { "latency_ms": 2350, 
                 "token_usage": 874, 
               ...
              }
 }

Figure 2: SEDM architecture. Left: task execution generates traces that are packaged into a
Self-Contained Execution Context (SCEC) with inputs, outputs, tool summaries, seeds, and hashes.
Bottom: from each SCEC, a candidate memory is extracted and evaluated via paired A/B replay
(Original vs. Injected); distributed verification computes ∆Reward, ∆Latency, and ∆Tokens, and an
admission gate accepts the item and assigns its initial weight if the score is positive, else discards it.
Right: the memory controller performs (a) memory scheduling using s(q,m) = sim(q,m)× w(m)
for retrieval and injection, (b) consolidation and evolution by updating weights from outcomes
and merging near-duplicate items (mmerged = Merge(mi,mj)), and (c) knowledge diffusion by
abstracting reusable insights (mgeneral = Abstract(mspecific)). Linked trajectory, query, and insight
graphs track the vertical evolution of memory and preserve provenance. The dashed loop indicates
retrieval and injection during inference, closing the self-improving cycle.

3.2 SCEC-based Verifiable Write Admission129

We formulate write admission as a verifiable, environment-free procedure that assigns an initial130

utility weight to each candidate memory item before it enters the repository. The process is based131

on a Self-Contained Execution Context (SCEC), a minimal and standardized package that enables132

validation, parallel replay, and offline auditing. By placing admission behind paired A/B evaluations133

within SCECs, the system produces reproducible evidence for weight initialization while filtering out134

negative or noisy experiences.135
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3.2.1 Self-Contained Packaging and Distributed Replay136

Each task execution is encapsulated into an SCEC to support reproducible validation and analy-137

sis without requiring the original environment. An SCEC includes all necessary inputs, outputs,138

tool summaries, seeds, and configuration hashes, ensuring (i) self-contained representation, (ii)139

environment-free replay by summarizing external tool calls, (iii) deterministic reproduction across140

model versions and seeds, and (iv) minimal sufficiency by storing only essential information.141

Treating an SCEC as an independent job enables large-scale distributed A/B replay on arbitrary142

workers. Only aggregated statistics, along with integrity hashes and version stamps, are uploaded,143

preserving auditability while controlling cost. This environment-free design eliminates the need to144

reconstruct complex environments or interact with real agents during validation, thereby allowing145

memory effectiveness to be tested through parallel replay at scale. As a result, admission decisions146

can be made rapidly and consistently, significantly reducing computational overhead while ensuring147

that only high-quality experiences enter the memory repository.148

3.2.2 SCEC-grounded A/B Test for Memory Item Initialization149

From each SCEC, we extract one candidate memory item m, represented as a concise, independently150

injectable snippet. The extraction process identifies decisive reasoning or corrective steps, performs151

deduplication and canonicalization, and attaches provenance information.152

To evaluate its utility, we conduct a paired A/B test within the same SCEC. The control condition (A)153

uses the original prompt, while the treatment condition (B) augments the prompt with the candidate154

memory m. This setup isolates the marginal effect of m and provides empirical evidence for its155

contribution. For a query q, the constructed prompts are defined as156

IA = f(q), IB = f(q;m), (1)

where f(·) denotes prompt construction and IB injects m into the SCEC’s dedicated slot together157

with summarized tool feedback. The model execution inside the SCEC is denoted by F :158

oA = F(IA), oB = F(IB). (2)

We then measure the deltas in reward, latency, and token usage:159

∆R = R(oB)−R(oA), ∆L = L(oB)− L(oA), ∆T = T (oB)− T (oA), (3)

where R(·) is the task-specific reward, and L(·) and T (·) denote latency and token overhead, respec-160

tively. A composite admission score balances utility and cost:161

S = ∆R− λL∆L− λT∆T, (4)

with λL, λT ≥ 0 controlling the trade-offs.162

The admission decision and initial weight are then defined as163

accept(m) ⇐⇒ S ≥ η, w0(m) = max{0, S}, (5)

where η is the acceptance threshold. Multiple runs may be averaged to mitigate variance.164

Accepted items are stored together with their initial weights and full provenance (hashes, seeds,165

versions, and A/B fingerprints), while rejected or ambiguous items are excluded. This procedure166

yields a compact, auditable admission signal that can be validated offline and efficiently executed in167

parallel without dependence on the original environment.168

3.3 Self-Scheduling in the Memory Controller169

The memory controller manages and optimizes the repository through a self-scheduling policy.170

Unlike traditional systems that depend on costly per-query reranking Nogueira and Cho [2019],171

Ren et al. [2021], Ni et al. [2022], our approach establishes an evidence-based mechanism for both172

selecting memory items during retrieval and continuously refining the repository. It comprises two173

core functions: retrieval-time scheduling, which determines how to use memories effectively for an174

incoming query, and consolidation and progressive evolution, which curates a compact, high-quality175

memory set. Together, these components ensure that memory usage is grounded in verifiable utility176

signals, improving both efficiency and performance.177
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3.3.1 Retrieval-time Scheduling178

The controller’s scheduling policy relies on a ranking signal aligned with realized utility, avoiding179

the instability and computational cost of on-the-fly large language model reranking Qin et al. [2023].180

Prior approaches typically use vector similarity or ad-hoc prompt-based scoring, but semantic181

similarity alone does not guarantee actual task benefit, and repeated reranking adds latency and182

variance Karpukhin et al. [2020], Izacard and Grave [2021] or ad-hoc prompt-based scoring Nogueira183

and Cho [2019], Qin et al. [2023].184

In our design, we incorporate evidence collected at write time via A/B validation on Self-Contained185

Execution Contexts (SCECs). These statistics, particularly the measured changes in reward and186

latency, are mapped into a stable admission-derived weight w(m) for each memory item. At retrieval187

time, this weight is combined with semantic similarity to form a utility-aligned score:188

s(q,m) = sim(q,m)× w(m), (6)

where sim(q,m) denotes the semantic similarity between query q and memory m, and w(m) reflects189

its empirically validated utility.190

This coupling of semantic relevance with admission-grounded evidence stabilizes selection and191

reduces overhead, ensuring that memory items are injected into prompts not only because they are192

similar, but because they have demonstrated measurable benefit. As a result, retrieval decisions are193

both efficient and aligned with the system’s long-term objectives.194

3.3.2 Consolidation and Progressive Evolution195

The consolidation and progressive evolution module maintains a compact yet effective memory196

repository by suppressing redundancy, preserving items with stable gains, and eliminating or recycling197

items that show conflicts or sustained negative contributions. While retrieval-time scheduling focuses198

on selecting memories for specific queries, consolidation and evolution aim to improve the repository199

itself so that subsequent scheduling operates on a cleaner and more reliable basis.200

Progressive evolution is achieved by tracking usage and outcome signals and applying conservative201

updates to utility weights over time. Items that are rarely retrieved or consistently fail to provide202

positive utility are gradually decayed, reducing their influence in future selections. Conversely,203

items that repeatedly yield positive gains across related contexts are promoted. Promotion increases204

their weights and, when consistency is observed across multiple items, may trigger abstraction into205

higher-level insights. Such abstractions enable representative entries to replace families of consistent206

low-level experiences Goyal et al. [2019], Parisotto et al. [2019]. If observed outcomes diverge207

significantly from admission-time evidence, items are demoted or queued for cleanup. All updates208

are logged with provenance to ensure the evolution process remains auditable Buneman et al. [2001],209

Lebo et al. [2013], Chirigati et al. [2016].210

The weight update for a memory item m depends on its current weight w(m), usage frequency211

fuse(m), and average realized utility Ū(m) since the last update:212

wt+1(m) = wt(m) + α · Ūt(m)− β · fuse,t(m), (7)

where α and β control the influence of observed utility and usage. This ensures weights evolve from213

admission-derived values toward refined, usage-aware estimates.214

Conflict detection is integral to this loop. A memory is marked as conflicting when repeated injections215

consistently reduce task reward or when its implications contradict other rules. Such items undergo216

progressive weight reduction, and if their weight falls below a threshold, they are demoted or removed.217

All decisions retain version traces and evidence chains to support rollback and inspection.218

Semantic consolidation addresses redundancy among items from different SCECs. When two or219

more items, mi and mj , show high semantic similarity without conflicting applicability, they are220

merged:221

mmerged = Merge(mi,mj). (8)
The merged entry preserves essential content while aggregating evidence from the originals, and its222

weight w(mmerged) is reconciled to reflect combined support without double counting. Contributing223

items are archived or soft-deleted, preserving provenance if needed. By collapsing near-duplicates224

into single representatives, the repository reduces retrieval noise and strengthens utility signals Broder225

et al. [1997], Manku et al. [2007], Charikar [2002], Zhang et al. [2019].226
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Through these routines, the controller maintains a concise but reliable set of memories. Redundant227

entries are consolidated Manku et al. [2007], stable positives are promoted Kaelbling et al. [1996],228

abstractions generalize recurring insights Goyal et al. [2019], and harmful items are isolated or229

removed Toneva et al. [2019]. As a result, the repository remains aligned with realized utility,230

ensuring that retrieval decisions exploit empirical evidence rather than ad-hoc reranking.231

3.4 Cross-Domain Knowledge Diffusion232

This component exploits the environment-free and verifiable properties of the SCEC method, treating233

memory entries as portable and re-verifiable assets across domains. Tasks from diverse domains234

continuously supply evidence to refine memory weights, thereby improving both universality and235

robustness of the repository. The process follows a loop of migrate, re-validate, and re-incorporate:236

transfer is initiated through retrieval and weighted injection; subsequent usage allows re-estimation237

of weights via SCEC-compatible procedures; and the updates inform later scheduling and admission238

decisions. Throughout, retrieval signals remain unchanged: similarity-based relevance, sim(q,m) for239

query q and memory item m, combined with the admission-derived weight w(m). This design avoids240

evidence-free cold starts and eliminates the need for additional scoring components at runtime.241

Immediately after admission, each specific entry mspecific generates a conservative general form242

mgeneral through a lightweight abstraction operator:243

mgeneral = Abstract(mspecific). (9)

This yields a dual-linked pair in which the general form strips domain-specific features while244

preserving transferable essence. The general form serves as a low-risk candidate for cross-domain245

retrieval, while the specific form remains primary within its source domain.246

The abstraction process is rule-governed and minimal. Entities and domain-specific terms are replaced247

with typed placeholders, retaining actionable task–action structures while removing non-essential248

detail Goyal et al. [2019], Lake et al. [2015], Liang et al. [2017]. The result is a compact snippet249

suitable for direct injection and controlled comparisons. To minimize orchestration cost, abstraction250

is generated alongside the SCEC-based A/B assessment within the distributed pipeline Chirigati et al.251

[2016].252

For weight inheritance, the general form is initialized conservatively as a scaled version of the specific253

weight, wgeneral = α · wspecific with α < 1. This prior encodes caution against over-abstraction while254

preserving provenance for later auditing and weight updates.255

At retrieval, both forms compete in the candidate set with a unified score:256

s(q,m) = sim(q,m)× w(m). (10)

In-domain queries typically favor specific forms due to higher semantic match and weight, while257

cross-domain queries benefit from the more stable similarity of general forms. This mechanism258

enables knowledge diffusion across domains without introducing extra runtime complexity, while259

maintaining auditability, portability, and stability. Subsequent use further refines the weights, allowing260

knowledge to propagate adaptively across diverse tasks.261

4 Experiment262

4.1 Experimental Setup263

Datasets. Experiments are conducted on two widely used benchmark datasets: FEVER[Thorne264

et al., 2018] and HotpotQA[Yang et al., 2018b].HotpotQA is a large-scale question-answering265

benchmark designed to evaluate the ability of systems to perform multi-hop reasoning across diverse266

natural language inputs. FEVER is a fact-checking dataset that provides human-written claims about267

Wikipedia entities, each labeled as Supported, Refuted, or NotEnoughInfo. Both datasets present268

significant challenges for testing long-term reasoning and memory utilization in language agents.269

Baselines. The proposed SEDM is compared with the following baselines: (1) No Memory:270

the model only relies on the query input without any memory augmentation, serving as the basic271

performance reference; (2) G-Memory[Zhang et al., 2025]: a memory-augmented method that stores272

all past information in a global memory pool and retrieves by similarity search. Although effective, it273
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incurs high inference cost due to the large number of prompt tokens; (3) SEDM (ours): our scalable274

self-evolving distributed memory, which introduces memory scheduling and selection mechanisms to275

maintain a compact and adaptive working set, thereby balancing performance and efficiency.276

Configurations. All experiments run on the same backbone LLM (GPT-4o-mini) OpenAI [2023].277

Dense retrieval is handled by ALL-MINILM-L6-V2 Reimers and Gurevych [2019], which embeds278

both knowledge snippets and queries for similarity search. On the evaluation side, we use FEVER279

accuracy for fact-checking and HotpotQA exact-match (EM) for multi-hop QA. Efficiency is tracked280

by counting prompt and completion tokens consumed during inference. To ensure fair comparisons,281

every method is granted the same memory budget; the proposed SEDM does not expand this budget,282

but instead adaptively schedules which entries are kept in memory.283

4.2 Result Analysis284

The overall performance on FEVER and HotpotQA is summarized in Table 1. In the FEVER dataset,285

the baseline model achieved only 57 without memory, reflecting limited reasoning ability in the286

absence of external knowledge and prior memory. G-Memory improved the score to 62, but this287

gain came at the cost of a dramatic increase in the number of prompt tokens, leading to significantly288

higher inference costs. In contrast, SEDM achieved the highest score of 66 while consuming far289

fewer tokens than G-Memory. This demonstrates that our method successfully balances the trade-off290

between performance and efficiency through its memory selection and scheduling mechanisms.291

In the HotpotQA dataset, the trend is similar to that observed in FEVER. The no-memory baseline292

scored only 34, while G-Memory increased the score to 38. SEDM further improved performance,293

reaching a score of 39 while simultaneously reducing computational overhead, confirming its effec-294

tiveness in multi-hop reasoning tasks.295

Moreover, we evaluate the transfer ability of SEDM between FEVER and HotpotQA, two distinct296

downstream tasks. Specifically, the agent collects experience on the HotpotQA task using SEDM and297

then evaluates it on FEVER to measure knowledge transfer and prompting effects. Under this setting,298

the score on FEVER reached 64. Compared with G-Memory, which scored 62, and the no-memory299

baseline, which scored 57, our results demonstrate that SEDM enables adaptive memory selection300

that leverages previously collected experiences to improve performance across tasks.301

Table 1: Performance comparison on FEVER (fact verification) and HotpotQA (multi-hop reasoning).
We report task accuracy (Score) along with efficiency metrics (Prompt Tokens and Completion
Tokens). SEDM achieves the best accuracy on both benchmarks while substantially reducing
token consumption compared with G-Memory, highlighting its ability to balance effectiveness and
efficiency.

Method FEVER HotpotQA

Score Prompt
Tokens

Completion
Tokens

Score Prompt
Tokens

Completion
Tokens

No Memory 57 1.65M 24K 34 2.46M 29K
G-Memory 62 3.62M 109K 38 4.63M 114K

SEDM
(Ours) 66 2.47M 53K 39 3.88M 55K

4.3 Ablation Study302

To evaluate the contribution of individual SEDM components, we conduct ablation studies on both303

HotpotQA and FEVER. Table 2 reports results under three configurations: (i) the baseline without304

memory, (ii) the addition of SCEC-based verifiable write admission (+SCEC), and (iii) the full SEDM305

with the memory controller’s self-scheduling mechanism (+SCEC + Self-Scheduling).306

On HotpotQA, introducing +SCEC improves the score from 34 to 37, but also increases prompt307

tokens by 43% (2.46M → 3.52M) and completion tokens from 29K to 52K. With +Self-Scheduling,308

the score further rises to 39, while prompt tokens grow only by 10% (3.52M → 3.88M), showing309

that scheduling effectively controls token overhead relative to the accuracy gain. On FEVER, the310
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Table 2: Ablation study on HotpotQA and FEVER, showing the progressive contribution of SEDM
components.

Dataset Setting Score Prompt tokens Completion tokens

HotpotQA
No Memory 34 2.46M 29K

+ SCEC 37 3.52M 52K
+ SCEC + Self-Scheduling 39 3.88M 55K

FEVER
No Memory 57 1.65M 24K

+ SCEC 64 2.19M 53K
+ SCEC + Self-Scheduling 66 2.47M 53K

baseline achieves 57. Adding +SCEC raises the score to 64, accompanied by an increase in prompt311

tokens from 1.65M to 2.19M (+33%) and completion tokens from 24K to 53K. With scheduling,312

performance improves to 66, while prompt tokens rise only to 2.47M (+13%), and completion tokens313

remain unchanged, confirming that the controller filters relevant memory without inflating responses.314

In summary, across both datasets, SCEC consistently yields substantial accuracy gains at the cost315

of increased token usage, while the self-scheduling mechanism provides further improvements with316

relatively minor overhead. This demonstrates that SEDM not only enhances reasoning accuracy but317

also achieves a more favorable trade-off between performance and efficiency.318

4.4 Cross-Domain Evaluation319

To further assess the generalization ability of SEDM across domains, we conduct a cross-domain320

experiment in which memory is collected on one dataset and evaluated on another. Table 3 reports321

the results on both FEVER and HotpotQA.322

Table 3: Cross-domain evaluation of SEDM. Rows indicate the dataset used for memory collection,
and columns indicate the dataset used for testing.

Collect ↓ / Test → Fever HotpotQA
Fever 66 41

HotpotQA 64 39

The results highlight two key findings. First, in-domain settings (diagonal entries) achieve the323

strongest performance, with scores of 66 on FEVER and 39 on HotpotQA, confirming that SEDM324

effectively distills and leverages domain-specific memory. Second, cross-domain transfer (off-325

diagonal entries) reveals an interesting asymmetry. When memory distilled from FEVER is applied326

to HotpotQA, the model achieves a score of 41, which even surpasses the in-domain HotpotQA327

result (39). This indicates that factual knowledge captured in FEVER has strong generalization328

capacity and can support reasoning tasks that require grounding in factual claims. By contrast,329

memory distilled from HotpotQA transfers less effectively to FEVER (64 vs. 66), suggesting that330

multi-hop reasoning knowledge is less directly reusable for fact verification. Overall, these findings331

demonstrate that SEDM not only excels in in-domain scenarios but also exhibits promising cross-332

domain generalization, particularly when transferring from simpler fact verification tasks to more333

complex multi-hop reasoning tasks.334

5 Conclusion335

This paper introduces SEDM, Scalable Self-Evolving Distributed Memory, which transforms mem-336

ory in multi-agent systems from a passive repository into an adaptive and verifiable component337

by integrating SCEC-based admission, self-scheduling refinement, and cross-domain knowledge338

diffusion. Through this principled design, SEDM addresses the challenges of noise accumulation,339

uncontrolled growth, and weak generalization that limit existing methods. Experiments on FEVER340

and HotpotQA confirm that SEDM improves reasoning accuracy while reducing computational and341

token overhead, demonstrating its potential as a scalable and sustainable memory mechanism for342

long-term multi-agent collaboration.343
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-689

eration due to laws or regulations in their jurisdiction).690

10. Broader impacts691

Question: Does the paper discuss both potential positive societal impacts and negative692

societal impacts of the work performed?693

Answer: [Yes]694

Justification: The paper discusses the broader societal impacts in a dedicated section. We695

highlight the positive impacts of our memory system, such as improving the efficiency696

and reliability of large language models for complex tasks, which could benefit areas like697

scientific research and education. We also acknowledge potential negative impacts, such as698

the technology’s possible use in generating misleading information, and discuss how our699

core mechanisms for verification and auditable weight assignment can serve as a form of700

mitigation.701

Guidelines:702

• The answer NA means that there is no societal impact of the work performed.703

• If the authors answer NA or No, they should explain why their work has no societal704

impact or why the paper does not address societal impact.705

• Examples of negative societal impacts include potential malicious or unintended uses706

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations707

(e.g., deployment of technologies that could make decisions that unfairly impact specific708

groups), privacy considerations, and security considerations.709

• The conference expects that many papers will be foundational research and not tied710

to particular applications, let alone deployments. However, if there is a direct path to711

any negative applications, the authors should point it out. For example, it is legitimate712

to point out that an improvement in the quality of generative models could be used to713

generate deepfakes for disinformation. On the other hand, it is not needed to point out714

that a generic algorithm for optimizing neural networks could enable people to train715

models that generate Deepfakes faster.716

• The authors should consider possible harms that could arise when the technology is717

being used as intended and functioning correctly, harms that could arise when the718

technology is being used as intended but gives incorrect results, and harms following719

from (intentional or unintentional) misuse of the technology.720

• If there are negative societal impacts, the authors could also discuss possible mitigation721

strategies (e.g., gated release of models, providing defenses in addition to attacks,722

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from723

feedback over time, improving the efficiency and accessibility of ML).724

11. Safeguards725

Question: Does the paper describe safeguards that have been put in place for responsible726

release of data or models that have a high risk for misuse (e.g., pretrained language models,727

image generators, or scraped datasets)?728

Answer: [NA]729

Justification: The paper focuses on a methodological contribution and does not release a730

new model or dataset. It utilizes existing, well-established public benchmarks that are not731

considered high-risk for misuse.732

Guidelines:733

• The answer NA means that the paper poses no such risks.734

• Released models that have a high risk for misuse or dual-use should be released with735

necessary safeguards to allow for controlled use of the model, for example by requiring736

that users adhere to usage guidelines or restrictions to access the model or implementing737

safety filters.738

• Datasets that have been scraped from the Internet could pose safety risks. The authors739

should describe how they avoided releasing unsafe images.740
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• We recognize that providing effective safeguards is challenging, and many papers do741

not require this, but we encourage authors to take this into account and make a best742

faith effort.743

12. Licenses for existing assets744

Question: Are the creators or original owners of assets (e.g., code, data, models), used in745

the paper, properly credited and are the license and terms of use explicitly mentioned and746

properly respected?747

Answer: [Yes]748

Justification: All benchmark datasets used in this study are widely used in the research749

community and are properly cited in the paper. The code is a novel contribution from the750

authors, and its license will be specified upon public release.751

Guidelines:752

• The answer NA means that the paper does not use existing assets.753

• The authors should cite the original paper that produced the code package or dataset.754

• The authors should state which version of the asset is used and, if possible, include a755

URL.756

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.757

• For scraped data from a particular source (e.g., website), the copyright and terms of758

service of that source should be provided.759

• If assets are released, the license, copyright information, and terms of use in the760

package should be provided. For popular datasets, paperswithcode.com/datasets761

has curated licenses for some datasets. Their licensing guide can help determine the762

license of a dataset.763

• For existing datasets that are re-packaged, both the original license and the license of764

the derived asset (if it has changed) should be provided.765

• If this information is not available online, the authors are encouraged to reach out to766

the asset’s creators.767

13. New assets768

Question: Are new assets introduced in the paper well documented and is the documentation769

provided alongside the assets?770

Answer: [No]771

Justification: This paper does not introduce any new datasets or models. The core contri-772

bution is a novel methodology, and all experiments were conducted on existing, publicly773

available benchmark datasets.774

Guidelines:775

• The answer NA means that the paper does not release new assets.776

• Researchers should communicate the details of the dataset/code/model as part of their777

submissions via structured templates. This includes details about training, license,778

limitations, etc.779

• The paper should discuss whether and how consent was obtained from people whose780

asset is used.781

• At submission time, remember to anonymize your assets (if applicable). You can either782

create an anonymized URL or include an anonymized zip file.783

14. Crowdsourcing and research with human subjects784

Question: For crowdsourcing experiments and research with human subjects, does the paper785

include the full text of instructions given to participants and screenshots, if applicable, as786

well as details about compensation (if any)?787

Answer: [NA]788

Justification: This research does not involve crowdsourcing or any form of research with789

human subjects. All experiments are based on a computational method applied to pre-790

existing, publicly available benchmark datasets.791

Guidelines:792
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• The answer NA means that the paper does not involve crowdsourcing nor research with793

human subjects.794

• Including this information in the supplemental material is fine, but if the main contribu-795

tion of the paper involves human subjects, then as much detail as possible should be796

included in the main paper.797

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,798

or other labor should be paid at least the minimum wage in the country of the data799

collector.800

15. Institutional review board (IRB) approvals or equivalent for research with human801

subjects802

Question: Does the paper describe potential risks incurred by study participants, whether803

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)804

approvals (or an equivalent approval/review based on the requirements of your country or805

institution) were obtained?806

Answer: [NA]807

Justification: This research does not involve crowdsourcing, human subjects, or any data808

collection from human participants. All experiments are conducted on publicly available809

benchmark datasets that do not contain personally identifiable information.810

Guidelines:811

• The answer NA means that the paper does not involve crowdsourcing nor research with812

human subjects.813

• Depending on the country in which research is conducted, IRB approval (or equivalent)814

may be required for any human subjects research. If you obtained IRB approval, you815

should clearly state this in the paper.816

• We recognize that the procedures for this may vary significantly between institutions817

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the818

guidelines for their institution.819

• For initial submissions, do not include any information that would break anonymity (if820

applicable), such as the institution conducting the review.821

16. Declaration of LLM usage822

Question: Does the paper describe the usage of LLMs if it is an important, original, or823

non-standard component of the core methods in this research? Note that if the LLM is used824

only for writing, editing, or formatting purposes and does not impact the core methodology,825

scientific rigorousness, or originality of the research, declaration is not required.826

Answer: [Yes]827

Justification: The proposed method, Self-Evolving Distillation Memory (SEDM), is a mem-828

ory system designed to augment Large Language Models (LLMs). The core components,829

including verifiable write admission, memory scheduling, and knowledge diffusion, are all830

based on using LLMs as the underlying agent for knowledge distillation and reasoning. As831

such, LLMs are a central component of our methodology.832

Guidelines:833

• The answer NA means that the core method development in this research does not834

involve LLMs as any important, original, or non-standard components.835

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)836

for what should or should not be described.837
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