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Abstract
Encoded text representations often cap-001
ture sensitive attributes about individuals002
(e.g., gender, race or age), which can raise003
privacy concerns and contribute to mak-004
ing downstream models unfair to certain005
groups. In this work, we propose FEDERATE,006
an approach that combines ideas from dif-007
ferential privacy and adversarial learning008
to learn private text representations which009
also induces fairer models. We empirically010
evaluate the trade-off between the privacy011
of the representations and the fairness and012
accuracy of the downstream model on two013
challenging NLP tasks. Our results show014
that FEDERATE consistently improves upon015
previous methods.016

1 Introduction017

Algorithmically-driven decision-making sys-018

tems have raised several fairness con-019

cerns (Raghavan et al., 2020; van den Broek020

et al., 2019) as they can be discriminatory021

against specific groups of people. On the other022

hand, these systems can leak sensitive infor-023

mation about the data of individuals used for024

training or inference and thus pose privacy risks025

(Shokri et al., 2017). Societal pressure as well026

as recent regulations like GDPR push for en-027

forcing both privacy and fairness in real-world028

deployments, which is challenging as these no-029

tions are multi-faceted concepts that need to be030

tailored to the context. Furthermore, privacy031

and fairness can be at odds with one another.032

For instance, recent empirical and theoretical033

studies have shown that actively preventing034

a model from leaking information about its035

training data negatively impacts the fairness of036

the model and vice versa (Bagdasaryan et al.,037

2019; Pujol et al., 2020; Cummings et al., 2019;038

Chang and Shokri, 2020).039

This paper studies these two notions and040

their interplay in the context of NLP, where041

fairness and privacy have often been consid- 042

ered independently from one another. Modern 043

NLP heavily relies on learning or fine-tuning 044

encoded representations of text, typically ob- 045

tained as intermediate representations of a ma- 046

chine learning model. Unfortunately, such rep- 047

resentations often leak sensitive attributes (e.g., 048

gender, race, or age) present explicitly or im- 049

plicitly in the input text, even when such at- 050

tributes are known to be irrelevant to the task. 051

Moreover, the presence of such information in 052

the representations may lead to more unfair 053

models downstream. For instance, even after 054

scrubbing explicit gender indicators from text 055

such as names and pronouns, De-Arteaga et al. 056

(2019) found that occupation prediction mod- 057

els still show a large correlation between accu- 058

racy and gender, indicating the use of implicit 059

gender information. Zhao et al. (2018) and Kir- 060

itchenko and Mohammad (2018) observed a 061

similar phenomenon in coreference resolution 062

and sentiment analysis. Privatizing encoded 063

representations is thus an important, yet chal- 064

lenging problem for which existing approaches 065

based on adversarial learning (Li et al., 2018; 066

Coavoux et al., 2018; Han et al., 2021) or sub- 067

space projection (Bolukbasi et al., 2016; Wang 068

et al., 2020; Karve et al., 2019; Ravfogel et al., 069

2020) do not provide a satisfactory solution. 070

In particular, these methods lack any formal 071

privacy guarantee, and it has been shown that 072

an adversary can recover sensitive attributes 073

from the resulting representations with high 074

accuracy (Elazar and Goldberg, 2018). 075

In this work, we propose a novel approach 076

(called FEDERATE) to learn private text repre- 077

sentations by combining ideas from differen- 078

tial privacy (DP), a mathematical definition of 079

privacy which comes with rigorous guarantees 080

(Dwork and Roth, 2014), with an adversarial 081

training mechanism. More specifically, we pro- 082
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pose a flexible architecture in which (i) the083

output of an arbitrary text encoder is normal-084

ized and perturbed using random noise to make085

the resulting private encoder differentially pri-086

vate, and (ii) on top of the encoder, we combine087

a classifier branch with an adversarial branch088

to actively induce fairness, improve accuracy089

and further hide specific sensitive attributes.090

This architecture is trained end-to-end and can091

accommodate any type of text encoder while092

ensuring formal DP guarantees for the result-093

ing text representations. This is in contrast094

to recent attempts at using DP in NLP (Lyu095

et al., 2020; Plant et al., 2021), for which we096

uncover a critical error in the privacy analysis.097

We empirically evaluate the privacy-fairness-098

accuracy trade-off provided by FEDERATE on099

two NLP tasks: occupation prediction from100

bios (De-Arteaga et al., 2019) and sentiment101

analysis from tweets (Blodgett et al., 2016),102

where the sensitive attributes we consider are103

gender and race respectively. In contrast to104

previous studies which performed hyperparam-105

eter selection based only on validation accu-106

racy, we propose a new criterion (applicable107

to all methods) which allows to obtain signifi-108

cant improvements in fairness or privacy for a109

small cost in accuracy. Our results show that110

FEDERATE simultaneously leads to more private111

representations and fairer models compared112

to state-of-the-art methods while maintaining113

comparable accuracy, and demonstrate that114

privacy and fairness are compatible in our set-115

ting and even mutually reinforce each other.116

Additionally, we find that FEDERATE provides117

better and smoother fairness-accuracy (resp.118

privacy-accuracy) trade-offs than purely adver-119

sarial (resp. purely noise-based) approaches on120

the large spectrum of possible trade-offs.121

The paper is organized as follows. Section 2122

provides some useful background on differential123

privacy. In Section 3, we present our approach.124

Section 4 reviews some related work. We de-125

scribe our experimental results in Section 5,126

and conclude with final remarks in Section 6.127

2 Background: Differential Privacy128

Differential Privacy (DP) (Dwork et al., 2006)129

provides a rigorous mathematical definition of130

the privacy leakage associated with an algo-131

rithm. It does not depend on assumptions of132

the attacker’s capabilities and comes with a 133

powerful algorithmic framework. For these rea- 134

sons, it has become a de-facto standard in pri- 135

vacy and has been deployed in various settings, 136

notably by the US Census Bureau (Abowd, 137

2018) and several big tech companies (Erlings- 138

son et al., 2014; Fanti et al., 2016; Ding et al., 139

2017). This section gives a brief overview of 140

DP, focusing on the aspects needed to under- 141

stand our approach. We refer to Dwork and 142

Roth (2014) for an in-depth review of DP. 143

Over the last few years, two main mod- 144

els for DP have emerged: (i) Central DP 145

(CDP) (Dwork et al., 2006), where raw user 146

data is collected and processed by a trusted 147

curator, which then releases the result of the 148

computation to a third party or the public, and 149

(ii) Local DP (LDP) (Kasiviswanathan et al., 150

2011) which removes the need for a trusted 151

curator by having each user locally perturb its 152

data before sharing it. Our work aims to create 153

an encoder that leads to a private representa- 154

tion of user text, which can then be shared with 155

an untrusted curator for learning or inference. 156

We thus consider LDP, defined as follows. 157

Definition 2.1 (Local Differential Privacy). 158

A randomized algorithm M : X → O is ε- 159

differentially private if for all pairs of inputs 160

x, x′ ∈ X and all possible outputs o ∈ O: 161

Pr[M(x) = o] ≤ eε Pr[M(x′) = o]. (1) 162

LDP ensures that the probability of observing 163

a particular output o of M should not depend 164

too much on whether the input is x or x′. The 165

strength of privacy is controlled by ε, which 166

bounds the log-ratio of these probabilities for 167

any x, x′. Setting ε = 0 corresponds to per- 168

fect privacy, while ε → ∞ does not provide 169

any privacy guarantees (as one may be able 170

to uniquely associate an observed output to a 171

particular input). In our approach described 172

in Section 3, x will be an input user text and 173

M will be an encoding function that the user 174

applies to transform their text into a private 175

representation before sharing it with untrusted 176

parties. Among other desirable properties, DP 177

is robust to post-processing: any function F 178

applied over M is still ε-differential private. 179

Laplace mechanism. As clearly seen from 180

Definition 2.1, an algorithm needs to be ran- 181

domized to satisfy DP. A classical approach 182
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to achieve ε-DP for vector data is the Laplace183

mechanism (Dwork et al., 2006). Given the de-184

sired privacy guarantee ε and an input vector185

x ∈ RD, this mechanism adds Laplace noise186

independently to each dimension in the input:187

xpriv ← x + `, (2)188

where each entry of the vector ` ∈ RD is sam-189

pled independently from a centered Laplace190

distribution with scale ∆
ε , denoted by Lap(∆

ε ).191

The noise scale is calibrated to ε and the L1-192

sensitivity ∆ of the inputs defined as:193

∆ = max
x,x′∈X

‖x− x′‖1. (3)194

In our work, we will apply the Laplace mecha-195

nism on top of a learned encoder to get private196

representations of input texts.197

3 Approach198

We consider a scenario similar to Coavoux et al.199

(2018), where a user locally encodes its input200

data (text) x into an intermediate representa-201

tion Epriv(x) which is then shared with an un-202

trusted curator to predict the label y associated203

with x using a classifier C. Additionally, an204

attacker (which may be the untrusted curator205

or an eavesdropper) may observe the interme-206

diate representation Epriv(x) and try to infer207

some sensitive (discrete) attribute z about x208

(e.g., gender or race). Our goal is to learn an209

encoder Epriv and classifier C such that (i) the210

attacker performs poorly at inferring z from211

Epriv(x), (ii) the classifier C(Epriv(x)) is fair212

with respect to z according to some fairness213

metric, and (iii) C accurately predicts label y.214

To achieve the above goals we introduce215

FEDERATE (for Fair modEls with DiffERen-216

tiAlly private Text Encoders), which combines217

ideas from DP and adversarial learning by inte-218

grating a randomized mapping into the encoder219

and modeling the adversary in the training220

phase to improve the fairness of the classifier.221

Encoder architecture. We propose a222

generic encoder construction Epriv = priv ◦ E223

composed of two main components. The first224

component E can be any deterministic encoder225

which maps the user input to some vector space226

of dimension D. It can be a pre-trained lan-227

guage model along with a few trainable layers,228

or it can be trained from scratch. The sec- 229

ond component priv is a randomized mapping 230

which transforms the encoded input to a dif- 231

ferentially private representation. Given the 232

desired privacy guarantee ε > 0, this mapping 233

is obtained by applying the Laplace mechanism 234

(see Section 2) to a normalized version of E(x): 235

236

priv(E(x)) = E(x)/‖E(x)‖1 + `, (4) 237

where each entry of ` ∈ RD is sampled inde- 238

pendently from Lap(2
ε ). As the L1 sensitivity 239

of the normalized representation is bounded by 240

2 for any E, Epriv = priv ◦ E is ε-DP. 241

Training phase. The objective of the train- 242

ing phase is to learn the parameters of the 243

encoder Epriv and the classifier C from a set 244

of tuples (x, y, z). During training, we model 245

the adversary by a classifier A which aims to 246

predict z, while the encoder Epriv is optimized 247

to fool A while maximizing the accuracy of the 248

downstream classifier C. Given λ ≥ 0, we train 249

Epriv, C and A (parameterized by θE , θC , and 250

θA respectively) to optimize the objective: 251

min
θE ,θC

max
θA

Lclass(θE , θC)− λLadv(θE , θA), 252

where Lclass(θE , θC) is the cross-entropy loss 253

for the C ◦Epriv branch and Ladv(θE , θA) is the 254

cross-entropy loss for the A ◦Epriv branch. We 255

solve the problem with backpropagation using 256

a gradient reversal layer (Ganin and Lempit- 257

sky, 2015), which acts like an identity function 258

in the forward pass and scales the gradients 259

passed through it by −λ in the backward pass. 260

This results in Epriv receiving opposite gradi- 261

ents to A. We give pseudo-code in Appendix A. 262

Inference phase. Once trained, Epriv can 263

be used to privately encode new data points 264

which can then be fed into the classifier C for in- 265

ference. Note that by the post-processing prop- 266

erty of DP, applying C or any other function 267

on top to Epriv preserves the ε-DP guarantee of 268

Epriv. In our experiments, we will empirically 269

evaluate the privacy of Epriv(·) and the fair- 270

ness of C(Epriv(·)) and show that our approach 271

consistently provides better privacy-fairness- 272

accuracy trade-offs than previous methods. 273

4 Related Work 274

This section reviews related lines of work, high- 275

lighting the main differences with our approach. 276
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Adversarial learning. In order to improve277

the fairness of a model or to prevent its inter-278

mediate representations from leaking sensitive279

attributes of the input, several approaches in280

NLP also employ an adversarial-based train-281

ing mechanism. For instance, Li et al. (2018)282

propose to use a different adversary for each283

protected attribute, while Coavoux et al. (2018)284

consider additional loss components to improve285

the privacy-accuracy trade-off of the learned286

representation. Han et al. (2021) improve upon287

these approaches by introducing multiple ad-288

versaries focusing on different aspects of the289

representation. Their loss function encourages290

orthogonality between pairs of adversaries and291

leads to some improvements in the fairness of292

downstream models at the cost of higher train-293

ing complexity. Unlike our approach, these294

methods do not offer formal privacy guaran-295

tees. Elazar and Goldberg (2018) have shown296

that it is often possible to recover the sensitive297

attributes from the representations by train-298

ing a post-hoc classifier. This is also what we299

observe in our experiments (see Section 5).300

Sub-space projection. A related line of301

work focuses on debiasing text representations302

using projection methods (Bolukbasi et al.,303

2016; Wang et al., 2020; Karve et al., 2019).304

The general approach involves identifying and305

removing a sub-space associated with sensitive306

attributes. A key advantage over adversarial307

learning is that these methods do not use a task-308

specific loss. They instead rely on a manual309

selection of words in the vocabulary to estimate310

the sensitive sub-space, making them difficult311

to generalize to new attributes. Furthermore,312

Gonen and Goldberg (2019) found bias to be313

deeply ingrained in these representations, and314

showed that sensitive attributes remain present315

even after applying these approaches.316

In order to circumvent these issues, Ravfogel317

et al. (2020) propose Iterative Null space Pro-318

jection (INLP). It involves iteratively training319

a linear classifier to predict sensitive attributes320

followed by projecting the representation on the321

classifier’s null space. Although they show sig-322

nificant improvements in privacy and fairness323

over other projection approaches, the method324

is designed to remove linear information from325

the representation. As a result, a nonlinear ad-326

versary can still retrieve a significant amount327

of sensitive information. By leveraging DP, our 328

approach provides robust guarantees that do 329

not depend on the expressiveness of the ad- 330

versary, thereby providing effective protection 331

against a wider range of attacks. 332

DP and fairness. Recent work has studied 333

the interplay between DP and (group) fairness 334

in the setting where one seeks to prevent a 335

model from leaking information about the indi- 336

vidual points used to train it. Empirically, this 337

can be evaluated through membership inference 338

attacks, where an attacker with access to the 339

model seeks to determine whether a given data 340

point was part of the training set (Shokri et al., 341

2017). While Kulynych et al. (2022) observed 342

that DP helps to reduce disparate vulnerability 343

to such attacks, several empirical studies have 344

shown that DP can disproportionately impact 345

the accuracy of the model for some groups and 346

thus exacerbate unfairness (Bagdasaryan et al., 347

2019; Pujol et al., 2020). Conversely, Chang 348

and Shokri (2020) showed that enforcing a fair 349

model leads to more privacy leakage for mem- 350

bers of the unprivileged group. This tension 351

between DP and fairness is further confirmed 352

by a formal incompatibility result between ε- 353

DP and fairness proved by Cummings et al. 354

(2019), albeit in a restrictive setting. Some re- 355

cent work attempts to train models under both 356

DP and fairness constraints (Cummings et al., 357

2019; Xu et al., 2020; Liu et al., 2020), but this 358

typically comes at the cost of enforcing weaker 359

privacy guarantees for some groups. Finally, 360

Jagielski et al. (2019) considered the problem 361

of training a fair model under DP constraints 362

only for the sensitive attribute. 363

A fundamental difference between the above 364

line of work and our approach lies in the kind 365

of privacy we provide. While the above ap- 366

proaches study DP as a way to design privacy- 367

preserving learning algorithms which protect 368

training points from membership inference at- 369

tacks on the model, our goal is to construct a 370

private encoder such that the encoded represen- 371

tations of two different points do not differ too 372

much. Thus, unlike previous work, we provide 373

privacy guarantees with respect to the model’s 374

intermediate representation for data unseen at 375

training time, and empirically observe that in 376

our setting privacy and fairness are compatible 377

and even tend to mutually reinforce each other. 378
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DP representations for NLP. In a setting379

similar to ours, Lyu et al. (2020) propose to380

use DP to privatize model’s intermediate rep-381

resentation. Unlike their method, we actively382

promote fair models by using an adversarial383

training mechanism. Our experiments show384

that our approach leads to more private repre-385

sentations and fairer models in practice. We386

also found a critical error in their privacy analy-387

sis, where they incorrectly bound the sensitivity388

of their representation by 1 while it can in fact389

be as large as D (the dimension of the repre-390

sentation, which is typically in the hundreds).391

As a result, the privacy guarantees are signif-392

icantly weaker than the authors claim: the ε393

values they report should be multiplied by D.394

We provide more details in Appendix B.395

Concurrent to and independently from396

our work, Plant et al. (2021) proposed an397

adversarial-driven DP training mechanism.398

However, they do not consider fairness, whereas399

our focus is on the combination of fairness and400

privacy. Moreover, their method reproduces401

the same incorrect analysis as Lyu et al. (2020)402

and provide similarly inflated privacy claims.403

5 Experiments404

In this section, we present experiments aim-405

ing to (i) assess the privacy-fairness-accuracy406

trade-offs of different approaches and (ii) an-407

alyze privacy-accuracy and fairness-accuracy408

tradeoffs separately. We begin by describing409

the setup, datasets, and metrics.410

Datasets. We consider two datasets.411

Twitter Sentiment (Blodgett et al., 2016)412

consists of 200k tweets annotated with a bi-413

nary sentiment label and a binary “race” at-414

tribute corresponding to African American415

English (AAE), Standard American English416

(SAE) speakers. The initial representation417

of tweets are obtained from a Deepmoji en-418

coder (Felbo et al., 2017). The dataset is evenly419

balanced with respect to the four sentiment-420

race subgroup combinations. To create bias in421

the training data, we follow Elazar and Gold-422

berg (2018) and change the race proportion in423

each sentiment class to have 40% AAE-happy,424

10% AAE-sad, 10% SAE-happy, and 40% SAE-425

sad. Test data remains balanced. This setup426

is particularly challenging regarding privacy427

and fairness, as the model may exploit the cor-428

relation between the protected attribute and 429

the main class label, which is reinforced due 430

to skewing. The mismatch between the train- 431

test distribution is also relevant for our setup, 432

where the system may be trained on publicly 433

available datasets or collected via an opt-in 434

policy and may therefore not closely resemble 435

the test distribution. 436

Bias in Bios (De-Arteaga et al., 2019) con- 437

sists of 393,423 textual biographies annotated 438

with an occupation label (28 classes) and a 439

binary gender attribute. Similar to Ravfogel 440

et al. (2020), we encode each biography with 441

BERT (Devlin et al., 2019), using the last hid- 442

den state over the CLS token. We use the same 443

train-valid-test split as De-Arteaga et al. (2019). 444

As the dataset was collected by scrapping the 445

web, it tends to reflect common gender stereo- 446

types and contains explicit gender indicators 447

(e.g., pronouns), making it more challenging to 448

prevent models from relying on these gendered 449

words. It is also more complex than Twitter 450

Sentiment in terms of the number of classes. 451

Fairness metrics. For Twitter Sentiment 452

we report True Positive Rate Gap (TPR-gap), 453

which measures the true positive rate difference 454

between the two sensitive groups (gender/race) 455

and is closely related to the notion of equal op- 456

portunity. We also report False Positive Rate 457

Gap (FPR-gap), which, coupled with TPR-gap, 458

corresponds to equalized odds (Hardt et al., 459

2016). Formally, for a dataset with binary label 460

y ∈ {0, 1} and sensitive attribute z ∈ {g,¬g}, 461

TPR-gap is defined as: 462

TPR-gap = Pg(ŷ = 1|y = 1)−P¬g(ŷ = 1|y = 1), 463

where ŷ is the predicted class. FPR-gap is 464

defined similarly (see Appendix C.1). 465

For Bias in Bios, which has 28 classes, we 466

follow Romanov et al. (2019) and report the 467

root mean square of TPR-gaps (GRMS) over all 468

occupations y ∈ O to obtain a single number: 469

GRMS =
√

(1/|O|) ∑
y∈O(TPR-gapy)2. (5) 470

Privacy metric. To measure the privacy 471

of a text encoder, we use the accuracy of a 472

two-layer adversarial network which predicts 473

the sensitive attribute from the representation 474

(Leakage). This classifier is trained on the vali- 475

dation set and evaluated on the test set. 476
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Figure 1: Fairness, accuracy, and privacy of various approaches for different RT on the validation set of
Twitter Sentiment. For increasing RT, fairness improves for all approaches with little change in accuracy.

Method Accuracy ↑ TPR-gap ↓ TNR-gap ↓ Leakage ↓
Random 50.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -
Unconstrained 72.09 ± 0.73 26.26 ± 0.87 44.98 ± 1.82 86.56 ± 0.83

INLP 67.62 ± 0.57 9.19 ± 1.08 35.14 ± 1.26 80.27 ± 2.5
Noise 71.52 ± 0.51 21.23 ± 2.5 41.97 ± 2.02 66.29 ± 3.55
Adversarial 75.16 ± 0.65 5.03 ± 2.94 22.1 ± 4.23 88.06 ± 0.2
Adversarial + Differentiated 75.32 ± 0.6 2.09 ± 1.18 18.58 ± 1.25 88.03 ± 0.47

FEDERATE 75.15 ± 0.59 1.75 ± 1.41 16.48 ± 0.38 61.74 ± 5.05

Table 1: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=1.0).

Methods and model architectures. We477

compare FEDERATE to the following competing478

methods: (i) Adversarial implements stan-479

dard adversarial learning, which is equivalent480

to our approach without the priv layer, (ii)481

Adversarial + Differentiated (Han et al.,482

2021) implements multiple adversaries,1 (iii)483

INLP (Ravfogel et al., 2020) is a subspace pro-484

jection approach, and (iv) Noise learns DP text485

representations as proposed by Lyu et al. (2020)486

but with corrected privacy analysis: this corre-487

sponds to our approach without the adversarial488

component. We also report the performance of489

two simple baselines: Random simply predicts490

a random label, and Unconstrained optimizes491

the classification performance without special492

consideration for privacy or fairness.493

To provide a fair comparison, all methods494

use the same architecture for the encoder, the495

classifier and (when applicable) the adversarial496

branches. In order to evaluate across varying497

model complexities, we employ different archi-498

tectures for the two datasets. In case of Twitter499

Sentiment dataset, we follow the architecture500

employed by Han et al. (2021), while for Bias501

in Bios we use a deeper architecture. The exact502

1We do not evaluate Adversarial +
Differentiated on Bias in Bios as it is expen-
sive to train due to the multiple adversaries.

architecture, hyperparameters, and their tun- 503

ing details are provided in Appendix C.2-C.3. 504

5.1 Accuracy-Fairness-Privacy 505

Trade-off 506

In this first set of experiments, we explore the 507

tridimensional trade-off between accuracy, fair- 508

ness and privacy and the inherent tension be- 509

tween them. This trade-off is influenced by 510

the choice of method but also some of its hy- 511

perparameters (e.g., the value of ε and λ in 512

our approach). Previous studies (Han et al., 513

2021; Lyu et al., 2020) essentially selected hy- 514

perparameter values that maximize validation 515

accuracy, which may lead to undesirable or sub- 516

optimal trade-offs. For instance, we found that 517

this strategy does not always induce a fairer 518

model than the Unconstrained baseline, and 519

that it is often possible to obtain significantly 520

more fair models at a negligible cost in accu- 521

racy. Based on these observations, we propose 522

to use a Relaxation Threshold (RT): instead 523

of selecting the hyperparameters with highest 524

validation accuracy α∗, we consider all mod- 525

els with accuracy in the range [α∗ − RT, α∗]. 526

We then select the hyperparameters with best 527

fairness score within that range.2 528

2We can also incorporate privacy into our hyper-
parameter selection strategy but, for the datasets and
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Method Accuracy ↑ GRMS ↓ Leakage ↓
Random 3.53 ± 0.01 0.00 ± 0.00 -
Unconstrained 79.29 ± 0.32 15.88 ± 0.80 75.92 ± 2.73

INLP 75.96 ± 0.47 12.81 ± 0.09 59.91 ± 0.08
Adversarial 79.02 ± 0.20 13.06 ± 0.39 69.47 ± 1.64
Noise 77.88 ± 0.32 13.89 ± 0.31 62.23 ± 0.99

FEDERATE 77.79 ± 0.11 11.02 ± 0.55 56.92 ± 0.98

Table 2: Test set results on Bias in Bios dataset (scores averaged over 5 different seeds, RT= 1.0).

Figure 1 presents the (validation) accuracy,529

fairness and privacy scores related to different530

RT for each method on Twitter Sentiment. The531

first thing to note is that FEDERATE achieves532

the best fairness and privacy results with ac-533

curacy higher or comparable to competing ap-534

proaches. We also observe that setting RT= 0.0535

(i.e., choosing the model with highest valida-536

tion accuracy) leads to a significantly more537

unfair model in all approaches, while fairness538

generally improves with increasing RT. This539

improvement comes at a negligible or small540

cost in accuracy. In terms of privacy, we find541

no significant differences across RTs.542

We now showcase detailed results with RT543

fixed to 1.0 (found to provide good trade-offs544

for all approaches in Figure 1), see Table 1545

for Twitter Sentiment and Table 2 for Bias in546

Bios (see also Appendix C.4 for additional re-547

sults). For both datasets, we observe that all548

adversarial approaches induce a fairer model549

than Unconstrained or Noise, with FEDERATE550

performing best. In terms of accuracy, all ad-551

versarial approaches perform similarly over the552

Twitter Sentiment. Interestingly, these accu-553

racies are higher than that of Unconstrained554

and Noise. We attribute this to a significant555

mismatch in the train and test distribution556

due to skewing. Over Bias in Bios, we ob-557

serve a small drop in accuracy of our proposed558

approach in comparison to Adversarial, al-559

beit with a corresponding gain in fairness. We560

hypothesize it to be due to the choice of possi-561

ble hyperparameters for FEDERATE (we did not562

consider very large values of ε which would re-563

cover Adversarial), meaning that FEDERATE564

pushes for more fairness (and privacy) at a565

methods in our study, we found no significant change in
Leakage across the considered RT values, see Figure 1.

potential cost of some accuracy. We explore 566

the pairwise trade-offs (fairness-accuracy and 567

privacy-accuracy) in more detail in Section 5.2. 568

In terms of privacy, FEDERATE significantly 569

outperforms all other adversarial approaches 570

on both datasets. In fact, the leakage of 571

purely adversarial approaches similar to that 572

of Unconstrained, which is in line with pre- 573

vious studies (Han et al., 2021). Over Bias 574

in Bios, INLP provides a similar level of pri- 575

vacy to FEDERATE, albeit with a worse accu- 576

racy. However, in the case of Twitter Senti- 577

ment, our proposed approach leaks significantly 578

less information while also having higher accu- 579

racy. Finally, on both datasets, Noise achieves 580

slightly weaker privacy than FEDERATE with 581

much worse accuracy and fairness. 582

Overall, the results suggest that, although 583

there are methods which can provide either 584

privacy or fairness, FEDERATE stands out as the 585

only approach that can simultaneously induce 586

a fairer model and make its representation pri- 587

vate. Furthermore, these results empirically 588

demonstrate that our notions of privacy and 589

fairness are indeed compatible with one another 590

and can even reinforce each other. 591

5.2 Pairwise Trade-offs 592

In the previous experiments, we considered ac- 593

curacy, privacy, and fairness at the same time 594

and found our approach to attain better trade- 595

offs than all other approaches. Here, we take 596

a closer look at the pairwise fairness-accuracy 597

and privacy-accuracy trade-offs separately and 598

show that FEDERATE outperforms the purely 599

Adversarial or Noise approach in the corre- 600

sponding dimension. This section can be seen 601

as an ablation study which validates the supe- 602

riority of combining adversarial learning and 603
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Figure 2: Fairness-accuracy trade-off on Twitter
Sentiment (top) and Bias in Bios (bottom). A miss-
ing point means that the accuracy interval was not
found within our hyperparameter search.

noise addition over using either approach alone.604

Fairness-accuracy trade-off. We plot best605

validation fairness scores over different accu-606

racy intervals for the two datasets in Figure 2.607

The interval is denoted by mean accuracy, for608

instance, accuracy interval between 71.5 and609

72.5 is represented with 72 and then we find610

the corresponding best validation fairness score.611

We find that our proposed approach provides612

better fairness than the Adversarial approach613

for almost all the accuracy intervals. In the614

case of Bias in Bios, Adversarial is able to615

achieve higher accuracy (albeit with a loss in616

fairness). We note that this high accuracy617

regime can be matched by FEDERATE with a618

larger ε. Interestingly, we find that FEDERATE619

enables a smoother exploration of the accuracy-620

fairness trade-off space than Adversarial,621

which shows much more erratic trajectories.622

Adversarial models are notoriously difficult to623

train, and this suggests that the introduction of624

DP noise has a stabilizing effect on the training625

dynamics of the adversarial component.626

Privacy-accuracy trade-off. We plot pri-627

vacy and accuracy with respect to ε, the pa-628

rameter controlling the theoretical privacy level629

in Figure 3. In general, the value of ε corre-630

lates well with the empirical leakage. On Bias631

in Bios, FEDERATE and Noise are comparable632

in both accuracy and privacy. However, for633

Twitter Sentiment, our approach outperforms634

Noise in both accuracy and privacy for every ε.635
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Figure 3: Privacy-accuracy trade-off on Twitter
Sentiment (top) and Bias in Bios (bottom), with
associated values of ε.

We hypothesize this difference in the accuracy 636

to be a case of mismatch between train-test 637

split, suggesting FEDERATE to be more robust to 638

these distributional shifts. These observations 639

suggest that FEDERATE either improves upon 640

Noise in privacy-accuracy tradeoff or remains 641

comparable. For completeness, we also present 642

the same results as a table in Appendix C.4. 643

6 Conclusion and Perspectives 644

This work proposed a DP-driven adversarial 645

learning mechanism for NLP. Through our ex- 646

periments, we showed that our approach can 647

simultaneously induce private representations 648

and fair models, with a mutually reinforcing ef- 649

fect between privacy and fairness. We also find 650

that our method improves upon competitors on 651

each dimension separately. While we focused 652

on privatizing certain sensitive attributes like 653

race or gender, our approach could easily be 654

used to remove other types of unwanted in- 655

formation from text representations, such as 656

tenses or POS tag information, which might 657

not be relevant for certain NLP tasks. 658

A possible limitation of this work is that 659

it not tailored to a specific definition of fair- 660

ness like equal odds. Instead, it enforces fair- 661

ness by removing certain protected information, 662

which can correlate with specific fairness no- 663

tions. Similarly, we do not provide any formal 664

fairness guarantees for our method, as we do 665

for privacy. In the future, we aim to investigate 666

fairness methods that explicitly optimize for 667

a specific fairness definition and explore other 668

privacy threats (e.g., reconstruction attacks). 669
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APPENDIX948

A Training Algorithm949

We provide the pseudo-code of the training950

procedure of FEDERATE in Algorithm 1. Note951

that the combination of Steps 2-3-4 corresponds952

to Epriv in Section 3.953

B Error in Privacy Analysis of954

Previous Work955

As briefly mentioned in Section 4, we found a956

critical error in the differential privacy analysis957

made in previous work by Lyu et al. (2020).958

This error is then reproduced in subsequent959

work by Plant et al. (2021). In this section, we960

explain this error and its consequences for the961

formal privacy guarantees of these methods,962

and provide a correction.963

Recall from Section 2 that to achieve ε-DP964

with the Laplace mechanism, one must cali-965

brate the scale of the Laplace noise needed to966

the L1 sensitivity of the encoded representation967

(see Eq. 3). This sensitivity bounds the worst-968

case change in L1 norm for any two arbitrary969

encoded user inputs x and x′ of dimension D.970

In order to bound the L1 sensitivity, Lyu971

et al. (2020) and Plant et al. (2021) propose to972

bound each entry of the encoded input x ∈ RD973

in the [0, 1] range. Specifically, they normalize974

as follows:975

x← x−min(x)/(max(x)−min(x)), (6)976

where min(x) and max(x) are respectively the977

minimum and maximum values in the vector x.978

Lyu et al. (2020) and Plant et al. (2021) incor-979

rectly claim that this allows to bound the L1980

sensitivity by 1 and thus add Laplace noise of981

scale 1
ε . In fact, the sensitivity can be as large982

as D, as can be seen by considering the two983

inputs x = [0, 1, . . . , 1]D and x′ = [1, 0, . . . , 0]984

for which ‖x−x′‖1 = D. Therefore, to achieve985

ε-DP, the scale of the Laplace noise should be986
D
ε (i.e., D times larger than what the authors987

use). As a consequence, the differential privacy988

provided by their method are D times worse989

than claimed by Lyu et al. (2020) and Plant990

et al. (2021): the ε values they report should991

be multiplied by D, which leads to essentially992

void privacy guarantees.993

While Lyu et al. (2020) claim to follow the994

approach of Shokri and Shmatikov (2015), they995

missed the fact that Shokri and Shmatikov 996

(2015) do account for multiple dimensions by 997

scaling the noise to the number of entries (de- 998

noted by c in their paper) that are submitted 999

to the server, see pseudo-code in Figure 12 of 1000

Shokri and Shmatikov (2015). 1001

In contrast to Lyu et al. (2020) and Plant 1002

et al. (2021), our normalization in Eq. 4 guar- 1003

antees by design that the L1 sensitivity is 1004

bounded by 2. 1005

C Experiments 1006

This section gives more information on the 1007

experimental setup and also provides additional 1008

results. 1009

C.1 Fairness Measure 1010

FPR-gap: Formally, for a classifier C, with 1011

binary labels y ∈ {0, 1} and protected attribute 1012

z ∈ {g,¬g} , FPR-gap is defined as: 1013

FPR-gap = Pg(Ŷ = 0|Y = 0)−P¬g(Ŷ = 0|Y = 0)
(7) 1014

where Ŷ is the predicted class. 1015

C.2 Model Architecture 1016

Twitter Sentiment. The encoder consists 1017

of two layers with ReLU activation and a fixed 1018

dropout of 0.1. The classifier is linear, and the 1019

adversarial branch consists of three layers. We 1020

use a fixed dropout of 0.1 in all the layers with 1021

ReLU activation, apart from the last layer. 1022

Bias in Bios. The encoder consists of three 1023

layers and a fixed dropout of 0.1. The classifier 1024

also consists of three layers, and the adversarial 1025

branch consists of two layers. We use a fixed 1026

dropout of 0.1 in all the layers with ReLU 1027

activation, apart from the last layer. 1028

C.3 Hyperparameters 1029

For all our experiments, we use Adam opti- 1030

mizer with a learning rate of 0.001 and batch 1031

size of 2000. We give additional tuning de- 1032

tails of the different methods below. We will 1033

also provide the PyTorch model description 1034

in the README of the source code for easier 1035

reproduction. 1036

• Adversarial: We perform a grid search 1037

over λ varying it between 0.1 to 3.0 with 1038

an interval of 0.2. Moreover, following pre- 1039

vious work (Lample et al., 2017; Adi et al., 1040
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Algorithm 1: Training procedure of FEDERATE (one epoch).
Input: Model architecture composed of encoder E (parameterized by θE), classifier C

(parameterized by θC), adversary A (parameterized by θA), loss function L
Output: Trained model
Data: Samples S={xi, yi, zi}mi=1 where xi is the input text, yi is the task label, and zi is

the sensitive attribute.
1 for i← 0 to m do

// For each sample in the dataset. This can be batch too.

2 Encode: xi ← E(xi)
3 Normalize: xi ← xi

‖xi‖1

4 Privatize: xipriv ← xi + `, where each entry of the vector ` ∈ RD is sampled
independently from a centered Laplace distribution with scale 2

ε
5 Adversarial prediction: ẑi ← A(xipriv)
6 Update θA by backpropagating the loss L(zi, ẑi)
7 Task classification: ŷi ← C(xipriv)
8 Update θE and θC by backpropagating the loss L(yi, ŷi)− λ · L(zi, ẑi)

2019), instead of a constant λ, we increase1041

it over the epochs using the update scheme1042

λi = 2/(1+e−pi)−1, where pi is the scaled1043

version of the epoch number. We also ex-1044

perimented with increasing the λ linearly,1045

as well as keeping it constant, but found1046

the above update scheme to perform the1047

best in various settings. We also use this1048

scheme in all other adversarial approaches.1049

• Adversarial + Differentiated: Simi-1050

lar to Adversarial, we vary λ between 0.11051

to 3.0 with an interval of 0.2. Apart from1052

λ, Adversarial + Differentiated has1053

an additional hyperparameter λort which1054

corrresponds to the weight given to the1055

orthogonality loss component. We vary1056

λort between 0.1 and 1.0. Here, we do a1057

simultaneous grid search over λ and λort1058

resulting in 150 runs for each seed. We1059

fix the number of the adversary to three1060

which is the same as the original imple-1061

mentation by (Han et al., 2021).1062

• FEDERATE: In order to have compara-1063

ble number of runs to Adversarial1064

+ Differentiated, we experi-1065

ments with following ε values:1066

8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0,1067

20.0. Similar to above approach, we do1068

a simultaneous grid search over λ and ε1069

resulting in 150 runs for each seed.1070

• INLP: In the case of INLP, we always debias1071

the representation after the penultimate 1072

classifier layer and before the final layer, 1073

which is consistent with the setting consid- 1074

ered by the authors (Ravfogel et al., 2020). 1075

We also observe that this choice empiri- 1076

cally led to the best results. We vary the 1077

number of iterations as a part of hyperpa- 1078

rameter tuning. For Bias in Bios we vary 1079

the iterations between 15 and 45, while for 1080

Twitter Sentiment we vary between 2 to 1081

7. We found that in case of Bias in Bios, 1082

performing less than 15 iterations resulted 1083

in the same behaviour as Unconstrained 1084

model over validation set while more than 1085

45 iterations resulted in a random classi- 1086

fier. We observed the same in the Twitter 1087

Sentiment before 2 and after 7 iterations, 1088

respectively. 1089

C.4 Additional Results 1090

Tables 3–5 present detailed results on Twitter 1091

Sentiment with different relaxation thresholds, 1092

which were summarized in Figure 1. 1093

Table 6 provides the detailed privacy-fairness 1094

results which were summarized in Figure 3. 1095

1096

1097

1098

1099
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Method Accuracy ↑ TPR-gap ↓ TNR-gap ↓ Leakage ↓
Unconstrained 72.54 ± 0.57 27.17 ± 1.76 46.32 ± 1.01 87.18 ± 0.32

Noise 71.87 ± 0.56 25.14 ± 3.47 43.99 ± 1.55 71.75 ± 2.99
Adversarial 75.49 ± 0.71 8.47 ± 3.5 25.43 ± 4.27 88.03 ± 0.24
Adversarial + Differentiated 75.6 ± 0.53 7.74 ± 4.17 25.09 ± 4.19 88.01 ± 0.28

FEDERATE 75.34 ± 0.56 5.46 ± 3.59 20.44 ± 5.2 62.31 ± 5.69

Table 3: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=0.0).

Method Accuracy ↑ TPR-gap ↓ TNR-gap ↓ Leakage ↓
Unconstrained 70.57 ± 0.98 20.68 ± 0.99 42.4 ± 2.2 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 44.25 ± 2.38 66.83 ± 3.32
Adversarial 74.09 ± 1.56 3.03 ± 2.65 18.69 ± 4.56 88.14 ± 0.18
Adversarial + Differentiated 74.44 ± 0.62 1.07 ± 0.74 16.43 ± 2.1 87.98 ± 0.36

FEDERATE 74.24 ± 1.25 0.89 ± 0.46 16.69 ± 0.98 61.92 ± 5.04

Table 4: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=3.0).

Method Accuracy ↑ TPR-gap ↓ TNR-gap ↓ Leakage ↓
Unconstrained 70.57 ± 0.98 20.68 ± 0.99 42.4 ± 2.2 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 44.25 ± 2.38 66.83 ± 3.32
Adversarial 70.8 ± 2.77 1.72 ± 1.5 11.6 ± 4.86 88.2 ± 0.24
Adversarial + Differentiated 67.39 ± 1.16 1.0 ± 0.8 8.6 ± 3.47 88.01 ± 0.12

FEDERATE 73.97 ± 1.6 1.4 ± 1.22 14.69 ± 2.33 60.38 ± 5.46

Table 5: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=10.0).

Method ε
Twitter Sentiment Bias in Bios

Accuracy ↑ Leakage ↓ Accuracy ↑ Leakage ↓

Noise 8.0 71.3 60.59 64.75 56
FEDERATE 8.0 74.89 56.91 64.78 54.4

Noise 10.0 71.63 65.57 70.86 57.7
FEDERATE 10.0 75.25 60.55 70.97 56.5

Noise 12.0 71.76 66.04 75.01 58.4
FEDERATE 12.0 75.31 53.31 75.01 57

Noise 14.0 71.7 67.98 76.74 59
FEDERATE 14.0 75.3 57.29 76.83 56.3

Noise 16.0 71.7 67.69 77.77 60.3
FEDERATE 16.0 75.56 61.98 77.89 57.9

Table 6: Accuracy-privacy trade-off for different noise level (as captured by ε).
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