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Abstract

Encoded text representations often cap-
ture sensitive attributes about individuals
(e.g., gender, race or age), which can raise
privacy concerns and contribute to mak-
ing downstream models unfair to certain
groups. In this work, we propose FEDERATE,
an approach that combines ideas from dif-
ferential privacy and adversarial learning
to learn private text representations which
also induces fairer models. We empirically
evaluate the trade-off between the privacy
of the representations and the fairness and
accuracy of the downstream model on two
challenging NLP tasks. Our results show
that FEDERATE consistently improves upon
previous methods.

1 Introduction

Algorithmically-driven decision-making sys-
tems have raised several fairness con-
cerns (Raghavan et al., 2020; van den Broek
et al., 2019) as they can be discriminatory
against specific groups of people. On the other
hand, these systems can leak sensitive infor-
mation about the data of individuals used for
training or inference and thus pose privacy risks
(Shokri et al., 2017). Societal pressure as well
as recent regulations like GDPR push for en-
forcing both privacy and fairness in real-world
deployments, which is challenging as these no-
tions are multi-faceted concepts that need to be
tailored to the context. Furthermore, privacy
and fairness can be at odds with one another.
For instance, recent empirical and theoretical
studies have shown that actively preventing
a model from leaking information about its
training data negatively impacts the fairness of
the model and vice versa (Bagdasaryan et al.,
2019; Pujol et al., 2020; Cummings et al., 2019;
Chang and Shokri, 2020).

This paper studies these two notions and
their interplay in the context of NLP, where

fairness and privacy have often been consid-
ered independently from one another. Modern
NLP heavily relies on learning or fine-tuning
encoded representations of text, typically ob-
tained as intermediate representations of a ma-
chine learning model. Unfortunately, such rep-
resentations often leak sensitive attributes (e.g.,
gender, race, or age) present explicitly or im-
plicitly in the input text, even when such at-
tributes are known to be irrelevant to the task.
Moreover, the presence of such information in
the representations may lead to more unfair
models downstream. For instance, even after
scrubbing explicit gender indicators from text
such as names and pronouns, De-Arteaga et al.
(2019) found that occupation prediction mod-
els still show a large correlation between accu-
racy and gender, indicating the use of implicit
gender information. Zhao et al. (2018) and Kir-
itchenko and Mohammad (2018) observed a
similar phenomenon in coreference resolution
and sentiment analysis. Privatizing encoded
representations is thus an important, yet chal-
lenging problem for which existing approaches
based on adversarial learning (Li et al., 2018;
Coavoux et al., 2018; Han et al., 2021) or sub-
space projection (Bolukbasi et al., 2016; Wang
et al., 2020; Karve et al., 2019; Ravfogel et al.,
2020) do not provide a satisfactory solution.
In particular, these methods lack any formal
privacy guarantee, and it has been shown that
an adversary can recover sensitive attributes
from the resulting representations with high
accuracy (Elazar and Goldberg, 2018).

In this work, we propose a novel approach
(called FEDERATE) to learn private text repre-
sentations by combining ideas from differen-
tial privacy (DP), a mathematical definition of
privacy which comes with rigorous guarantees
(Dwork and Roth, 2014), with an adversarial
training mechanism. More specifically, we pro-



pose a flexible architecture in which (i) the
output of an arbitrary text encoder is normal-
ized and perturbed using random noise to make
the resulting private encoder differentially pri-
vate, and (ii) on top of the encoder, we combine
a classifier branch with an adversarial branch
to actively induce fairness, improve accuracy
and further hide specific sensitive attributes.
This architecture is trained end-to-end and can
accommodate any type of text encoder while
ensuring formal DP guarantees for the result-
ing text representations. This is in contrast
to recent attempts at using DP in NLP (Lyu
et al., 2020; Plant et al., 2021), for which we
uncover a critical error in the privacy analysis.

We empirically evaluate the privacy-fairness-
accuracy trade-off provided by FEDERATE on
two NLP tasks: occupation prediction from
bios (De-Arteaga et al., 2019) and sentiment
analysis from tweets (Blodgett et al., 2016),
where the sensitive attributes we consider are
gender and race respectively. In contrast to
previous studies which performed hyperparam-
eter selection based only on validation accu-
racy, we propose a new criterion (applicable
to all methods) which allows to obtain signifi-
cant improvements in fairness or privacy for a
small cost in accuracy. Our results show that
FEDERATE simultaneously leads to more private
representations and fairer models compared
to state-of-the-art methods while maintaining
comparable accuracy, and demonstrate that
privacy and fairness are compatible in our set-
ting and even mutually reinforce each other.
Additionally, we find that FEDERATE provides
better and smoother fairness-accuracy (resp.
privacy-accuracy) trade-offs than purely adver-
sarial (resp. purely noise-based) approaches on
the large spectrum of possible trade-offs.

The paper is organized as follows. Section 2
provides some useful background on differential
privacy. In Section 3, we present our approach.
Section 4 reviews some related work. We de-
scribe our experimental results in Section 5,
and conclude with final remarks in Section 6.

2 Background: Differential Privacy

Differential Privacy (DP) (Dwork et al., 2006)
provides a rigorous mathematical definition of
the privacy leakage associated with an algo-
rithm. It does not depend on assumptions of

the attacker’s capabilities and comes with a
powerful algorithmic framework. For these rea-
sons, it has become a de-facto standard in pri-
vacy and has been deployed in various settings,
notably by the US Census Bureau (Abowd,
2018) and several big tech companies (Erlings-
son et al., 2014; Fanti et al., 2016; Ding et al.,
2017). This section gives a brief overview of
DP, focusing on the aspects needed to under-
stand our approach. We refer to Dwork and
Roth (2014) for an in-depth review of DP.

Over the last few years, two main mod-
els for DP have emerged: (i) Central DP
(CDP) (Dwork et al., 2006), where raw user
data is collected and processed by a trusted
curator, which then releases the result of the
computation to a third party or the public, and
(ii) Local DP (LDP) (Kasiviswanathan et al.,
2011) which removes the need for a trusted
curator by having each user locally perturb its
data before sharing it. Our work aims to create
an encoder that leads to a private representa-
tion of user text, which can then be shared with
an untrusted curator for learning or inference.
We thus consider LDP, defined as follows.

Definition 2.1 (Local Differential Privacy).
A randomized algorithm M : X — O is e
differentially private if for all pairs of inputs
z,x’ € X and all possible outputs o € O:

Pr[M(z) = o] < e Pr[M(z') =0]. (1)

LDP ensures that the probability of observing
a particular output o of M should not depend
too much on whether the input is z or 2’. The
strength of privacy is controlled by e, which
bounds the log-ratio of these probabilities for
any x,z’. Setting ¢ = 0 corresponds to per-
fect privacy, while € — oo does not provide
any privacy guarantees (as one may be able
to uniquely associate an observed output to a
particular input). In our approach described
in Section 3, x will be an input user text and
M will be an encoding function that the user
applies to transform their text into a private
representation before sharing it with untrusted
parties. Among other desirable properties, DP
is robust to post-processing: any function F
applied over M is still e-differential private.

Laplace mechanism. As clearly seen from
Definition 2.1, an algorithm needs to be ran-
domized to satisfy DP. A classical approach



to achieve e-DP for vector data is the Laplace
mechanism (Dwork et al., 2006). Given the de-
sired privacy guarantee € and an input vector
x € RP, this mechanism adds Laplace noise
independently to each dimension in the input:

Xpriv < X + £, (2)

where each entry of the vector £ € RP is sam-
pled independently from a centered Laplace
distribution with scale %, denoted by Lap(%).
The noise scale is calibrated to € and the L1-
sensitivity A of the inputs defined as:

A= —X/||;. 3
max = 3)

In our work, we will apply the Laplace mecha-
nism on top of a learned encoder to get private
representations of input texts.

3 Approach

We consider a scenario similar to Coavoux et al.
(2018), where a user locally encodes its input
data (text) x into an intermediate representa-
tion Ejpyi,(2) which is then shared with an un-
trusted curator to predict the label y associated
with x using a classifier C'. Additionally, an
attacker (which may be the untrusted curator
or an eavesdropper) may observe the interme-
diate representation Ep.;,(x) and try to infer
some sensitive (discrete) attribute z about x
(e.g., gender or race). Our goal is to learn an
encoder E,,;, and classifier C' such that (i) the
attacker performs poorly at inferring z from
Epriv(x), (ii) the classifier C(Epri(x)) is fair
with respect to z according to some fairness
metric, and (iii) C' accurately predicts label y.

To achieve the above goals we introduce
FEDERATE (for Fair modEls with DiffERen-
tiAlly private Text Encoders), which combines
ideas from DP and adversarial learning by inte-
grating a randomized mapping into the encoder
and modeling the adversary in the training
phase to improve the fairness of the classifier.

Encoder architecture. We propose a
generic encoder construction E,.;,, = privo E
composed of two main components. The first
component E can be any deterministic encoder
which maps the user input to some vector space
of dimension D. It can be a pre-trained lan-
guage model along with a few trainable layers,

or it can be trained from scratch. The sec-
ond component priv is a randomized mapping
which transforms the encoded input to a dif-
ferentially private representation. Given the
desired privacy guarantee € > 0, this mapping
is obtained by applying the Laplace mechanism
(see Section 2) to a normalized version of E(z):

priv(E(z)) = E(z)/|E(z)[1 + £, (4)
where each entry of £ € R” is sampled inde-
pendently from Lap(%). As the L1 sensitivity
of the normalized representation is bounded by
2 for any E, Ep.;, = privo E is e-DP.

Training phase. The objective of the train-
ing phase is to learn the parameters of the
encoder Ej.;, and the classifier C' from a set
of tuples (x,y, z). During training, we model
the adversary by a classifier A which aims to
predict z, while the encoder E,;, is optimized
to fool A while maximizing the accuracy of the
downstream classifier C. Given A > 0, we train
Epriv, C and A (parameterized by g, 6¢, and
0 4 respectively) to optimize the objective:
min max Lass (08, 0c) — AMlaaw(0E,04),
Or.0c 6a

where Lqss(0g,0c) is the cross-entropy loss
for the C'o Epy.p, branch and L,4,(0E, 04) is the
cross-entropy loss for the Ao E,.;, branch. We
solve the problem with backpropagation using
a gradient reversal layer (Ganin and Lempit-
sky, 2015), which acts like an identity function
in the forward pass and scales the gradients
passed through it by —\ in the backward pass.
This results in E),;, receiving opposite gradi-
ents to A. We give pseudo-code in Appendix A.

Inference phase. Once trained, E.;, can
be used to privately encode new data points
which can then be fed into the classifier C' for in-
ference. Note that by the post-processing prop-
erty of DP, applying C or any other function
on top to F,.,, preserves the e-DP guarantee of
Epriv. In our experiments, we will empirically
evaluate the privacy of E,.i,(-) and the fair-
ness of C(Epyiy(-)) and show that our approach
consistently provides better privacy-fairness-
accuracy trade-offs than previous methods.

4 Related Work

This section reviews related lines of work, high-
lighting the main differences with our approach.



Adversarial learning. In order to improve
the fairness of a model or to prevent its inter-
mediate representations from leaking sensitive
attributes of the input, several approaches in
NLP also employ an adversarial-based train-
ing mechanism. For instance, Li et al. (2018)
propose to use a different adversary for each
protected attribute, while Coavoux et al. (2018)
consider additional loss components to improve
the privacy-accuracy trade-off of the learned
representation. Han et al. (2021) improve upon
these approaches by introducing multiple ad-
versaries focusing on different aspects of the
representation. Their loss function encourages
orthogonality between pairs of adversaries and
leads to some improvements in the fairness of
downstream models at the cost of higher train-
ing complexity. Unlike our approach, these
methods do not offer formal privacy guaran-
tees. Elazar and Goldberg (2018) have shown
that it is often possible to recover the sensitive
attributes from the representations by train-
ing a post-hoc classifier. This is also what we
observe in our experiments (see Section 5).

Sub-space projection. A related line of
work focuses on debiasing text representations
using projection methods (Bolukbasi et al.,
2016; Wang et al., 2020; Karve et al., 2019).
The general approach involves identifying and
removing a sub-space associated with sensitive
attributes. A key advantage over adversarial
learning is that these methods do not use a task-
specific loss. They instead rely on a manual
selection of words in the vocabulary to estimate
the sensitive sub-space, making them difficult
to generalize to new attributes. Furthermore,
Gonen and Goldberg (2019) found bias to be
deeply ingrained in these representations, and
showed that sensitive attributes remain present
even after applying these approaches.

In order to circumvent these issues, Ravfogel
et al. (2020) propose Iterative Null space Pro-
jection (INLP). It involves iteratively training
a linear classifier to predict sensitive attributes
followed by projecting the representation on the
classifier’s null space. Although they show sig-
nificant improvements in privacy and fairness
over other projection approaches, the method
is designed to remove linear information from
the representation. As a result, a nonlinear ad-
versary can still retrieve a significant amount

of sensitive information. By leveraging DP, our
approach provides robust guarantees that do
not depend on the expressiveness of the ad-
versary, thereby providing effective protection
against a wider range of attacks.

DP and fairness. Recent work has studied
the interplay between DP and (group) fairness
in the setting where one seeks to prevent a
model from leaking information about the indi-
vidual points used to train it. Empirically, this
can be evaluated through membership inference
attacks, where an attacker with access to the
model seeks to determine whether a given data
point was part of the training set (Shokri et al.,
2017). While Kulynych et al. (2022) observed
that DP helps to reduce disparate vulnerability
to such attacks, several empirical studies have
shown that DP can disproportionately impact
the accuracy of the model for some groups and
thus exacerbate unfairness (Bagdasaryan et al.,
2019; Pujol et al., 2020). Conversely, Chang
and Shokri (2020) showed that enforcing a fair
model leads to more privacy leakage for mem-
bers of the unprivileged group. This tension
between DP and fairness is further confirmed
by a formal incompatibility result between e-
DP and fairness proved by Cummings et al.
(2019), albeit in a restrictive setting. Some re-
cent work attempts to train models under both
DP and fairness constraints (Cummings et al.,
2019; Xu et al., 2020; Liu et al., 2020), but this
typically comes at the cost of enforcing weaker
privacy guarantees for some groups. Finally,
Jagielski et al. (2019) considered the problem
of training a fair model under DP constraints
only for the sensitive attribute.

A fundamental difference between the above
line of work and our approach lies in the kind
of privacy we provide. While the above ap-
proaches study DP as a way to design privacy-
preserving learning algorithms which protect
training points from membership inference at-
tacks on the model, our goal is to construct a
private encoder such that the encoded represen-
tations of two different points do not differ too
much. Thus, unlike previous work, we provide
privacy guarantees with respect to the model’s
intermediate representation for data unseen at
training time, and empirically observe that in
our setting privacy and fairness are compatible
and even tend to mutually reinforce each other.



DP representations for NLP. In a setting
similar to ours, Lyu et al. (2020) propose to
use DP to privatize model’s intermediate rep-
resentation. Unlike their method, we actively
promote fair models by using an adversarial
training mechanism. Our experiments show
that our approach leads to more private repre-
sentations and fairer models in practice. We
also found a critical error in their privacy analy-
sis, where they incorrectly bound the sensitivity
of their representation by 1 while it can in fact
be as large as D (the dimension of the repre-
sentation, which is typically in the hundreds).
As a result, the privacy guarantees are signif-
icantly weaker than the authors claim: the €
values they report should be multiplied by D.
We provide more details in Appendix B.
Concurrent to and independently from
our work, Plant et al. (2021) proposed an
adversarial-driven DP training mechanism.
However, they do not consider fairness, whereas
our focus is on the combination of fairness and
privacy. Moreover, their method reproduces
the same incorrect analysis as Lyu et al. (2020)
and provide similarly inflated privacy claims.

5 Experiments

In this section, we present experiments aim-
ing to (i) assess the privacy-fairness-accuracy
trade-offs of different approaches and (ii) an-
alyze privacy-accuracy and fairness-accuracy
tradeoffs separately. We begin by describing
the setup, datasets, and metrics.

Datasets. We consider two datasets.
Twitter Sentiment (Blodgett et al., 2016)
consists of 200k tweets annotated with a bi-
nary sentiment label and a binary “race” at-
tribute corresponding to African American
English (AAE), Standard American English
(SAE) speakers. The initial representation
of tweets are obtained from a Deepmoji en-
coder (Felbo et al., 2017). The dataset is evenly
balanced with respect to the four sentiment-
race subgroup combinations. To create bias in
the training data, we follow Elazar and Gold-
berg (2018) and change the race proportion in
each sentiment class to have 40% AAE-happy,
10% AAE-sad, 10% SAE-happy, and 40% SAE-
sad. Test data remains balanced. This setup
is particularly challenging regarding privacy
and fairness, as the model may exploit the cor-

relation between the protected attribute and
the main class label, which is reinforced due
to skewing. The mismatch between the train-
test distribution is also relevant for our setup,
where the system may be trained on publicly
available datasets or collected via an opt-in
policy and may therefore not closely resemble
the test distribution.

Bias in Bios (De-Arteaga et al., 2019) con-
sists of 393,423 textual biographies annotated
with an occupation label (28 classes) and a
binary gender attribute. Similar to Ravfogel
et al. (2020), we encode each biography with
BERT (Devlin et al., 2019), using the last hid-
den state over the CLS token. We use the same
train-valid-test split as De-Arteaga et al. (2019).
As the dataset was collected by scrapping the
web, it tends to reflect common gender stereo-
types and contains explicit gender indicators
(e.g., pronouns), making it more challenging to
prevent models from relying on these gendered
words. It is also more complex than Twitter
Sentiment in terms of the number of classes.

Fairness metrics. For Twitter Sentiment
we report True Positive Rate Gap (TPR-gap),
which measures the true positive rate difference
between the two sensitive groups (gender/race)
and is closely related to the notion of equal op-
portunity. We also report False Positive Rate
Gap (FPR~gap), which, coupled with TPR~gap,
corresponds to equalized odds (Hardt et al.,
2016). Formally, for a dataset with binary label
y € {0,1} and sensitive attribute z € {g, —g},
TPR-gap is defined as:
TPR-gap = Py(§ = 1ly = 1)=P-y(§ = 1ly = 1)
where ¢ is the predicted class. FPR-gap is
defined similarly (see Appendix C.1).

For Bias in Bios, which has 28 classes, we
follow Romanov et al. (2019) and report the
root mean square of TPR-gaps (GRMS) over all
occupations y € O to obtain a single number:

GRMS = /(1/|0]) ©c0(TPR-gap,)%.  (5)

Privacy metric. To measure the privacy
of a text encoder, we use the accuracy of a
two-layer adversarial network which predicts
the sensitive attribute from the representation
(Leakage). This classifier is trained on the vali-
dation set and evaluated on the test set.

Y
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Figure 1: Fairness, accuracy, and privacy of various approaches for different RT on the validation set of
Twitter Sentiment. For increasing RT, fairness improves for all approaches with little change in accuracy.

Method Accuracy ©  TPR-gap | TNR-gap | Leakage |
Random 50.00 + 0.00  0.00 &£ 0.00  0.00 £ 0.00 -
Unconstrained 72.09 + 0.73 26.26 + 0.87 44.98 + 1.82 86.56 + 0.83
INLP 67.62 £ 0.57 9.19 + 1.08 35.14 +£1.26 80.27 + 2.5
Noise 71.52 + 0.51  21.23 £ 2.5 41.97 + 2.02 66.29 £+ 3.55
Adversarial 75.16 = 0.65  5.03 £2.94 221 +4.23 88.06 = 0.2
Adversarial + Differentiated 75.32+ 0.6 2.09 £ 1.18 1858 £ 1.25 88.03 £ 0.47
FEDERATE 75.15 £ 0.59  1.75 +1.41 16.48 £ 0.38 61.74 £ 5.05

Table 1: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=1.0).

Methods and model architectures. We
compare FEDERATE to the following competing
methods: (i) Adversarial implements stan-
dard adversarial learning, which is equivalent
to our approach without the priv layer, (ii)
Adversarial + Differentiated (Han et al.,
2021) implements multiple adversaries,® (iii)
INLP (Ravfogel et al., 2020) is a subspace pro-
jection approach, and (iv) Noise learns DP text
representations as proposed by Lyu et al. (2020)
but with corrected privacy analysis: this corre-
sponds to our approach without the adversarial
component. We also report the performance of
two simple baselines: Random simply predicts
a random label, and Unconstrained optimizes
the classification performance without special
consideration for privacy or fairness.

To provide a fair comparison, all methods
use the same architecture for the encoder, the
classifier and (when applicable) the adversarial
branches. In order to evaluate across varying
model complexities, we employ different archi-
tectures for the two datasets. In case of Twitter
Sentiment dataset, we follow the architecture
employed by Han et al. (2021), while for Bias
in Bios we use a deeper architecture. The exact

We do not evaluate Adversarial +
Differentiated on Bias in Bios as it is expen-
sive to train due to the multiple adversaries.

architecture, hyperparameters, and their tun-
ing details are provided in Appendix C.2-C.3.

5.1 Accuracy-Fairness-Privacy
Trade-off

In this first set of experiments, we explore the
tridimensional trade-off between accuracy, fair-
ness and privacy and the inherent tension be-
tween them. This trade-off is influenced by
the choice of method but also some of its hy-
perparameters (e.g., the value of € and A in
our approach). Previous studies (Han et al.,
2021; Lyu et al., 2020) essentially selected hy-
perparameter values that maximize validation
accuracy, which may lead to undesirable or sub-
optimal trade-offs. For instance, we found that
this strategy does not always induce a fairer
model than the Unconstrained baseline, and
that it is often possible to obtain significantly
more fair models at a negligible cost in accu-
racy. Based on these observations, we propose
to use a Relaxation Threshold (RT): instead
of selecting the hyperparameters with highest
validation accuracy o, we consider all mod-
els with accuracy in the range [o* — RT, o].
We then select the hyperparameters with best
fairness score within that range.?

2We can also incorporate privacy into our hyper-
parameter selection strategy but, for the datasets and



Method Accuracy 1 GRMS | Leakage |
Random 3.53 £ 0.01 0.00 £ 0.00 -
Unconstrained 79.29 +0.32 15.88 + 0.80 75.92 + 2.73
INLP 75.96 £ 0.47 12.81 £ 0.09 59.91 £ 0.08
Adversarial 79.02 +£ 0.20 13.06 = 0.39 69.47 + 1.64
Noise 77.88 £0.32 13.89 £ 0.31 62.23 £+ 0.99
FEDERATE 77.79 £0.11 11.02 £ 0.55 56.92 £ 0.98

Table 2: Test set results on Bias in Bios dataset (scores averaged over 5 different seeds, RT= 1.0).

Figure 1 presents the (validation) accuracy,
fairness and privacy scores related to different
RT for each method on Twitter Sentiment. The
first thing to note is that FEDERATE achieves
the best fairness and privacy results with ac-
curacy higher or comparable to competing ap-
proaches. We also observe that setting RT'= 0.0
(i.e., choosing the model with highest valida-
tion accuracy) leads to a significantly more
unfair model in all approaches, while fairness
generally improves with increasing RT. This
improvement comes at a negligible or small
cost in accuracy. In terms of privacy, we find
no significant differences across RTs.

We now showcase detailed results with RT
fixed to 1.0 (found to provide good trade-offs
for all approaches in Figure 1), see Table 1
for Twitter Sentiment and Table 2 for Bias in
Bios (see also Appendix C.4 for additional re-
sults). For both datasets, we observe that all
adversarial approaches induce a fairer model
than Unconstrained or Noise, with FEDERATE
performing best. In terms of accuracy, all ad-
versarial approaches perform similarly over the
Twitter Sentiment. Interestingly, these accu-
racies are higher than that of Unconstrained
and Noise. We attribute this to a significant
mismatch in the train and test distribution
due to skewing. Over Bias in Bios, we ob-
serve a small drop in accuracy of our proposed
approach in comparison to Adversarial, al-
beit with a corresponding gain in fairness. We
hypothesize it to be due to the choice of possi-
ble hyperparameters for FEDERATE (we did not
consider very large values of € which would re-
cover Adversarial), meaning that FEDERATE
pushes for more fairness (and privacy) at a

methods in our study, we found no significant change in
Leakage across the considered RT values, see Figure 1.

potential cost of some accuracy. We explore
the pairwise trade-offs (fairness-accuracy and
privacy-accuracy) in more detail in Section 5.2.

In terms of privacy, FEDERATE significantly
outperforms all other adversarial approaches
on both datasets. In fact, the leakage of
purely adversarial approaches similar to that
of Unconstrained, which is in line with pre-
vious studies (Han et al., 2021). Over Bias
in Bios, INLP provides a similar level of pri-
vacy to FEDERATE, albeit with a worse accu-
racy. However, in the case of Twitter Senti-
ment, our proposed approach leaks significantly
less information while also having higher accu-
racy. Finally, on both datasets, Noise achieves
slightly weaker privacy than FEDERATE with
much worse accuracy and fairness.

Overall, the results suggest that, although
there are methods which can provide either
privacy or fairness, FEDERATE stands out as the
only approach that can simultaneously induce
a fairer model and make its representation pri-
vate. Furthermore, these results empirically
demonstrate that our notions of privacy and
fairness are indeed compatible with one another
and can even reinforce each other.

5.2 Pairwise Trade-offs

In the previous experiments, we considered ac-
curacy, privacy, and fairness at the same time
and found our approach to attain better trade-
offs than all other approaches. Here, we take
a closer look at the pairwise fairness-accuracy
and privacy-accuracy trade-offs separately and
show that FEDERATE outperforms the purely
Adversarial or Noise approach in the corre-
sponding dimension. This section can be seen
as an ablation study which validates the supe-
riority of combining adversarial learning and
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Figure 2: Fairness-accuracy trade-off on Twitter
Sentiment (top) and Bias in Bios (bottom). A miss-
ing point means that the accuracy interval was not
found within our hyperparameter search.

noise addition over using either approach alone.

Fairness-accuracy trade-off. We plot best
validation fairness scores over different accu-
racy intervals for the two datasets in Figure 2.
The interval is denoted by mean accuracy, for
instance, accuracy interval between 71.5 and
72.5 is represented with 72 and then we find
the corresponding best validation fairness score.
We find that our proposed approach provides
better fairness than the Adversarial approach
for almost all the accuracy intervals. In the
case of Bias in Bios, Adversarial is able to
achieve higher accuracy (albeit with a loss in
fairness). We note that this high accuracy
regime can be matched by FEDERATE with a
larger €. Interestingly, we find that FEDERATE
enables a smoother exploration of the accuracy-
fairness trade-off space than Adversarial,
which shows much more erratic trajectories.
Adversarial models are notoriously difficult to
train, and this suggests that the introduction of
DP noise has a stabilizing effect on the training
dynamics of the adversarial component.

Privacy-accuracy trade-off. We plot pri-
vacy and accuracy with respect to €, the pa-
rameter controlling the theoretical privacy level
in Figure 3. In general, the value of € corre-
lates well with the empirical leakage. On Bias
in Bios, FEDERATE and Noise are comparable
in both accuracy and privacy. However, for
Twitter Sentiment, our approach outperforms
Noise in both accuracy and privacy for every e.
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Figure 3: Privacy-accuracy trade-off on Twitter
Sentiment (top) and Bias in Bios (bottom), with
associated values of e.

We hypothesize this difference in the accuracy
to be a case of mismatch between train-test
split, suggesting FEDERATE to be more robust to
these distributional shifts. These observations
suggest that FEDERATE either improves upon
Noise in privacy-accuracy tradeoff or remains
comparable. For completeness, we also present
the same results as a table in Appendix C.4.

6 Conclusion and Perspectives

This work proposed a DP-driven adversarial
learning mechanism for NLP. Through our ex-
periments, we showed that our approach can
simultaneously induce private representations
and fair models, with a mutually reinforcing ef-
fect between privacy and fairness. We also find
that our method improves upon competitors on
each dimension separately. While we focused
on privatizing certain sensitive attributes like
race or gender, our approach could easily be
used to remove other types of unwanted in-
formation from text representations, such as
tenses or POS tag information, which might
not be relevant for certain NLP tasks.

A possible limitation of this work is that
it not tailored to a specific definition of fair-
ness like equal odds. Instead, it enforces fair-
ness by removing certain protected information,
which can correlate with specific fairness no-
tions. Similarly, we do not provide any formal
fairness guarantees for our method, as we do
for privacy. In the future, we aim to investigate
fairness methods that explicitly optimize for
a specific fairness definition and explore other
privacy threats (e.g., reconstruction attacks).
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APPENDIX
A Training Algorithm

We provide the pseudo-code of the training
procedure of FEDERATE in Algorithm 1. Note
that the combination of Steps 2-3-4 corresponds
to Epriy in Section 3.

B Error in Privacy Analysis of
Previous Work

As briefly mentioned in Section 4, we found a
critical error in the differential privacy analysis
made in previous work by Lyu et al. (2020).
This error is then reproduced in subsequent
work by Plant et al. (2021). In this section, we
explain this error and its consequences for the
formal privacy guarantees of these methods,
and provide a correction.

Recall from Section 2 that to achieve e-DP
with the Laplace mechanism, one must cali-
brate the scale of the Laplace noise needed to
the L1 sensitivity of the encoded representation
(see Eq. 3). This sensitivity bounds the worst-
case change in L1 norm for any two arbitrary
encoded user inputs x and x’ of dimension D.

In order to bound the L1 sensitivity, Lyu
et al. (2020) and Plant et al. (2021) propose to
bound each entry of the encoded input x € RP
in the [0, 1] range. Specifically, they normalize
as follows:

(6)

where min(x) and max(x) are respectively the
minimum and maximum values in the vector x.
Lyu et al. (2020) and Plant et al. (2021) incor-
rectly claim that this allows to bound the L1
sensitivity by 1 and thus add Laplace noise of
scale % . In fact, the sensitivity can be as large
as D, as can be seen by considering the two
inputs x = [0,1,...,1]p and x' = [1,0,...,0]
for which ||x — x’||; = D. Therefore, to achieve
e-DP, the scale of the Laplace noise should be
% (i.e., D times larger than what the authors
use). As a consequence, the differential privacy
provided by their method are D times worse
than claimed by Lyu et al. (2020) and Plant
et al. (2021): the e values they report should
be multiplied by D, which leads to essentially
void privacy guarantees.

While Lyu et al. (2020) claim to follow the
approach of Shokri and Shmatikov (2015), they

X < x — min(x)/(max(x) — min(x)),
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missed the fact that Shokri and Shmatikov
(2015) do account for multiple dimensions by
scaling the noise to the number of entries (de-
noted by c in their paper) that are submitted
to the server, see pseudo-code in Figure 12 of
Shokri and Shmatikov (2015).

In contrast to Lyu et al. (2020) and Plant
et al. (2021), our normalization in Eq. 4 guar-
antees by design that the L1 sensitivity is
bounded by 2.

C Experiments

This section gives more information on the
experimental setup and also provides additional
results.

C.1

FPR-gap: Formally, for a classifier C, with
binary labels y € {0, 1} and protected attribute
z € {g,—g} , FPR-gap is defined as:

Fairness Measure

A

FPR-gap = P,(Y = 0]Y = 0)— P, (V

where Y is the predicted class.

C.2 Model Architecture

Twitter Sentiment. The encoder consists
of two layers with ReLLU activation and a fixed
dropout of 0.1. The classifier is linear, and the
adversarial branch consists of three layers. We
use a fixed dropout of 0.1 in all the layers with
ReLU activation, apart from the last layer.

Bias in Bios. The encoder consists of three
layers and a fixed dropout of 0.1. The classifier
also consists of three layers, and the adversarial
branch consists of two layers. We use a fixed
dropout of 0.1 in all the layers with ReLLU
activation, apart from the last layer.

C.3 Hyperparameters

For all our experiments, we use Adam opti-
mizer with a learning rate of 0.001 and batch
size of 2000. We give additional tuning de-
tails of the different methods below. We will
also provide the PyTorch model description
in the README of the source code for easier
reproduction.

e Adversarial: We perform a grid search
over A varying it between 0.1 to 3.0 with
an interval of 0.2. Moreover, following pre-
vious work (Lample et al., 2017; Adi et al.,



Algorithm 1: Training procedure of FEDERATE (one epoch).

o] N O »

Input: Model architecture composed of encoder E (parameterized by 6g), classifier C
(parameterized by 0¢), adversary A (parameterized by 64), loss function L

Output: Trained model

Data: Samples S={z¢, ’, zl}z’il where 2’ is the input text, 3/° is the task label, and 2’ is

the sensitive attribute.

for i < 0 to m do
// For each sample in the dataset.

Encode: x! + E(x?)

x?

Normalize: x" + =
. (B[R
Y2

Privatize: x,.;,

Adversarial prediction: 2% «+ A(xém-v)

Task classification: ¢ < C (X i)

This can be batch too.

— x' + £, where each entry of the vector £ € RP is sampled
independently from a centered Laplace distribution with scale %

Update 64 by backpropagating the loss L(z%, 5%)

Update 0 and 6c by backpropagating the loss L(y*, §%) — X - L(2%, %)

2019), instead of a constant A\, we increase
it over the epochs using the update scheme
Ai = 2/(14e7Pi)—1, where p; is the scaled
version of the epoch number. We also ex-
perimented with increasing the A linearly,
as well as keeping it constant, but found
the above update scheme to perform the
best in various settings. We also use this
scheme in all other adversarial approaches.

e Adversarial + Differentiated: Simi-
lar to Adversarial, we vary A between 0.1
to 3.0 with an interval of 0.2. Apart from
A, Adversarial + Differentiated has
an additional hyperparameter A,.; which
corrresponds to the weight given to the
orthogonality loss component. We vary
Aort between 0.1 and 1.0. Here, we do a
simultaneous grid search over A and A,
resulting in 150 runs for each seed. We
fix the number of the adversary to three
which is the same as the original imple-
mentation by (Han et al., 2021).

e FEDERATE: In order to have compara-
ble number of runs to Adversarial
+ Differentiated,
ments  with  following €  values:
8.0,9.0,10.0,11.0,12.0,13.0,14.0, 15.0, 16.0,
20.0. Similar to above approach, we do
a simultaneous grid search over A and e
resulting in 150 runs for each seed.

we experi-

e INLP: In the case of INLP, we always debias
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the representation after the penultimate
classifier layer and before the final layer,
which is consistent with the setting consid-
ered by the authors (Ravfogel et al., 2020).
We also observe that this choice empiri-
cally led to the best results. We vary the
number of iterations as a part of hyperpa-
rameter tuning. For Bias in Bios we vary
the iterations between 15 and 45, while for
Twitter Sentiment we vary between 2 to
7. We found that in case of Bias in Bios,
performing less than 15 iterations resulted
in the same behaviour as Unconstrained
model over validation set while more than
45 iterations resulted in a random classi-
fier. We observed the same in the Twitter
Sentiment before 2 and after 7 iterations,
respectively.

C.4 Additional Results

Tables 3-5 present detailed results on Twitter
Sentiment with different relaxation thresholds,
which were summarized in Figure 1.

Table 6 provides the detailed privacy-fairness
results which were summarized in Figure 3.



Method Accuracy 1 TPR-gap | TNR-gap | Leakage |
Unconstrained 72.54 + 0.57 27.17 + 1.76 46.32 £ 1.01 87.18 + 0.32
Noise 71.87 + 0.56 25.14 + 3.47 43.99 + 1.55 71.75 + 2.99
Adversarial 75.49 + 0.71 8.47 £ 3.5 2543 +4.27 88.03 £ 0.24
Adversarial + Differentiated 75.6 + 0.53  7.74 +4.17 25.09 +4.19 88.01 £ 0.28
FEDERATE 75.34 +£ 0.56  5.46 + 3.59 20.44 + 5.2 62.31 £+ 5.69

Table 3: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=0.0).

Method Accuracy © TPR-gap ]  TNR-gap | Leakage |
Unconstrained 70.57 + 0.98 20.68 4+ 0.99 424 + 2.2 8291 £+ 1.65
Noise 70.47 + 0.43 19.84 + 0.91 44.25 £+ 2.38 66.83 £ 3.32
Adversarial 74.09 + 1.56  3.03 + 2.65 18.69 4+ 4.56 88.14 £+ 0.18
Adversarial + Differentiated 74.44 4+ 0.62 1.07+0.74 1643 £2.1 87.98 £+ 0.36
FEDERATE 7424 + 1.25  0.89 + 0.46 16.69 + 0.98 61.92 + 5.04

Table 4: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=3.0).

Method Accuracy ©  TPR-gap | TNR-gap | Leakage |
Unconstrained 70.57 + 0.98 20.68 £+ 0.99 424 + 2.2 8291 £ 1.65
Noise 70.47 £ 0.43 19.84 & 0.91 44.25 + 2.38 66.83 &+ 3.32
Adversarial 70.8 £+ 2.77 1.72 + 1.5 11.6 + 4.86 83.2 +0.24
Adversarial + Differentiated 67.39 & 1.16 1.0 £ 0.8 8.6 & 3.47 &88.01 £ 0.12
FEDERATE 73.97 £ 1.6 1.4 +£1.22 14.69 &+ 2.33 60.38 + 5.46

Table 5: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=10.0).

Twitter Sentiment

Bias in Bios

Method Accuracy 1 Leakage | Accuracy T Leakage |
Noise 8.0 71.3 60.59 64.75 56
FEDERATE 8.0 74.89 56.91 64.78 54.4
Noise 10.0 71.63 65.57 70.86 57.7
FEDERATE 10.0 75.25 60.55 70.97 56.5
Noise 12.0 71.76 66.04 75.01 58.4
FEDERATE 12.0 75.31 53.31 75.01 57
Noise 14.0 TL.7 67.98 76.74 59
FEDERATE 14.0 75.3 57.29 76.83 56.3
Noise 16.0 1.7 67.69 77T 60.3
FEDERATE 16.0 75.56 61.98 77.89 57.9

Table 6: Accuracy-privacy trade-off for different noise level (as captured by e).
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