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ABSTRACT

Tabular data is ubiquitous across real-world applications. While self-supervised
learning has advanced representation learning for tabular data, most methods as-
sume the unrealistic IID setting. In practice, tabular data often exhibits distribution
shifts, including both label and covariate shifts, rendering existing domain gen-
eralization or test-time adaptation techniques from computer vision ineffective.
To address this, we propose a simple yet effective Online Test-Time Adaptation
approach for Tabular data (OT3A). It leverages high-confidence and domain-
consistent pseudo-labels to estimate and correct for target label distribution shifts.
Subsequently, it employs self-training and entropy minimization, guided by these
confident samples, to adapt the model to the out-of-distribution test data. Ex-
tensive experiments across diverse distribution shift scenarios demonstrate that
OT3A significantly outperforms existing methods, highlighting its efficacy and
practicality for adapting to real-world tabular data. Our code will be released in
the supplemental material and will be open to the public in the future.

1 INTRODUCTION

Tabular data is widely utilized across numerous real-world application scenarios (Zhou et al., 2018;
Guo et al., 2021; Chen et al., 2016; Sadar et al., 2023; Abdou & Pointon, 2011). In recent years, deep
neural network models (Chen et al., 2022; Yoon et al., 2020; Popov et al., 2020; Huang et al., 2020;
Somepalli et al., 2021), have demonstrated remarkable performance in the field of self-supervised
learning. However, these models are developed and trained under the assumption that the training
and test data follow an independent and identically distributed (IID) paradigm. In the real world,
structured tabular data often encounters the issue of distribution shift. Over time or due to environ-
mental changes, the distribution of the test set of tabular data is likely to differ significantly from that
of the training set. Such discrepancies can lead to a substantial degradation in the model’s perfor-
mance when deployed in real-world scenarios. To address these challenges, Test-Time Adaptation
(TTA) has emerged as a promising solution for handling distribution shifts in structured tabular data.

Test-Time Adaptation (TTA) has been widely applied across various domains, such as computer
vision (Sun et al., 2020b; Wang et al., 2021; Niu et al., 2022), natural language processing (Hardt &
Sun, 2024; Banerjee et al., 2021), and speech processing (Bai et al., 2023; Huang et al., 2024). How-
ever, the application of TTA to tabular data remains largely unexplored. When existing TTA methods
from other domains are directly applied to tabular data, their performance is often suboptimal. In
this work, we conduct an in-depth analysis of this phenomenon and identify two primary underly-
ing challenges: (1)- High imbalance in tabular data: Tabular data often exhibits highly imbalanced
class distributions, which leads to model predictions during the test phase frequently being biased
toward the source (training) domain distribution. This bias hinders the model’s ability to adapt to
the true distribution of the target domain, resulting in a significant performance degradation. (2)-
Complexity of distribution shifts in tabular data: Distribution shifts in tabular data typically involve
a mixture of multiple types of shifts, such as covariate shift, label shift, and concept drift. Existing
methods, however, are usually based on a single underlying assumption (e.g., only considering label
shift or covariate shift). Such approaches fail to effectively handle the complex and diverse nature
of distribution changes in tabular data, thus limiting their effectiveness.

In real-world tabular data, the distribution at each time may dynamically change. To address this,
we adopt OTTA (Online Test-Time Adaptation) (Azizzadenesheli et al., 2019; Park et al., 2023;
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Alexandari et al., 2020), a stepwise adaptation framework. During the testing phase, OTTA pro-
cesses incoming data in batches and makes online adjustments to the model based on each new test
sample. Pseudo-label learning and entropy minimization are commonly used methods for OTTA.
Pseudo-label based approachs (Lee, 2013) assigns pseudo-labels to unlabeled target domain data
and uses these pseudo-labeled samples for adapting the pre-trained model to the target domain. En-
tropy minimization is a commonly used loss function in test-time adaptation (TTA). Related studies
(Niu et al., 2022; 2023) have shown that low-entropy samples contribute more to model adaptation
compared to high-entropy samples. Focusing on low-entropy samples can effectively accelerate
the convergence of the model to the target domain distribution. We have defined high consistent
and confidence sample points in tabular data. The pseudo-labels of these sample points have high
certainty and can be effectively used to guide model adjustments.

In this work, we propose a novel uncertainty-based pseudo-labeling framework for Online Test-
Time Tabular Adaptation, termed OT3A. Our method leverages high-confidence and domain-
consistent pseudo-labels to estimate and correct for target label distribution shifts. Subsequently,
it employs self-training and entropy minimization strategies, guided by these confident samples, to
adapt the model to out-of-distribution test data. OT3A operates in an online algorithm: the model
updates sequentially as each test mini-batch arrives, which is crucial for dynamic environments
where data distribution may drift over time. Our main contributions are as follows:

• We investigate the OTTA problem for tabular data with detailed analysis to highlight its
core challenges: The co-existence of label and covariate distribution shifts, and even class
imbalance.

• We propose a novel and practical method, OT3A, which leverages high-certainty samples
to estimate the label distribution and integrates entropy minimization with pseudo-label
learning to simultaneously address both label and covariate shifts.

• We demonstrate through extensive experiments that OT3A achieves significant perfor-
mance improvements over existing methods under various distribution shift settings.

2 PRELIMINARY

2.1 PROBLEM SETUP

In the online test adaptation problem of tabular classification, the input space is X ∈ Rd, where d
represents the number of features, and each feature can be a continuous or discrete value. The label
space is Y ∈ {0, 1}K , where K is the number of classes. We assume that we can access a pre-trained
source model and adjust this model for test inputs during testing to make final predictions. The
source model fθS parameterized by θS is pre-trained on a labeled source domain DS = {(xS , yS)},
and the source domain is formed by i.i.d. (independent and identically distributed) sampling from
the source distribution pS . The unlabeled test data DT = {x1

T , x
2
T , x

t
T , . . . , x

n
T } arrives in batches,

where t represents the current time step and n is the total number of time steps (i.e., the number
of batches). During the Test Time Adaptation (TTA) process, we update the model parameters for
the t-th batch to obtain an adapted model fθt . At the t-th step, the received dataset is denoted by
Dt

T = {xt
i|1 ≤ i ≤ n}, where the received instance xt

i ∈ X and its unobserved correct label yti are
from the distribution pT (x, y) that is misaligned with pS(x, y), that is, pT (x, y) ̸= pS(x, y). The
goal of Online Test Time Adaptation (OTTA) is that the model no longer depends on any known
label information. Instead, by observing the unlabeled test data Dt arriving in batches, the model
iteratively updates its parameters from θt to θt+1 at each time point t to adapt to the new data
distribution.

2.2 PROBLEM ANALYSIS

The co-existence of covariate and label shifts of TTA in tabular data. We analyzed distri-
bution shifts across multiple benchmark datasets, employing the Wasserstein distance to measure
covariate and label distribution shifts, respectively, as shown in Figure 1 (a). The results indi-
cate varying degrees of shift across different datasets. Specifically, the HELOC and ASSISTments
datasets exhibit significant shifts in both covariate and label distributions, suggesting substantial dif-
ferences in their underlying data characteristics. In contrast, the Hospital Readmission and Voting
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Figure 1: (a) The label and covariate distribution shifts between IID and OOD testing in tabular
data. (b) Label distribution of source, target, and predicted (pseudo-labeled) samples on HELOC.
(c) Accuracy of high-confidence predictions on HELOC, showing superior performance compared
to all data.

datasets show smaller shifts, indicating greater consistency in their data distributions. In addition,
The observed variations in shift magnitude likely represent a key factor contributing to performance
challenges. For example, the transition from DIABETES to HELOC is accompanied by an increase
in label shift, which correlates with decreased performance on test data. Similarly, the shift from
HELOC to ASSIST, characterized by a pronounced increase in covariate shift, also confirms that
distribution changes are detrimental to model generalization. While existing robust TTA methods
(such as ODS (Zhou et al., 2023)) aim to mitigate the impact of such shifts, experimental results
demonstrate their limited effectiveness. The diversity and varying degrees of shifts across differ-
ent datasets likely explain why current TTA techniques struggle to effectively address both types of
distribution change simultaneously in tabular data.

Class Imbalance Exacerbates Challenges in Test-Time Adaptation Class imbalance exacer-
bates the challenges of test-time adaptation, as shown in Figure 1 (b). In the HELOC dataset, the
source data distribution shows a significant imbalance, with Category 0 accounting for approxi-
mately 0.76, leading the model to predict a similarly biased distribution (around 0.82 for Category
0). However, the target data distribution differs, with Category 1 having a higher proportion (approx-
imately 0.58). This indicates that the model relies on the source data distribution for predictions,
resulting in biased outputs. Figure 1 (b) highlights how class imbalance causes a mismatch between
training and testing distributions, emphasizing the importance of addressing both label distribution
shift and class imbalance to develop effective test-time adaptation methods for the tabular domain.

Due to the class imbalance in the source model’s predictions, we focus on high-confidence predic-
tions within each class to evaluate its discriminative ability. Specifically, for each class, we select
instances with the highest prediction scores (e.g., the top 20% predictions for Class 1) and assess
their accuracy. This helps analyze the model’s performance on high-confidence predictions. As
shown in Figure 1 (c), high-score predictions in the minority class demonstrate relatively high ac-
curacy (0.67 at 20% head labels), but accuracy drops significantly as lower-confidence predictions
are included (falling to 0.53 at 100% head labels). This indicates that, despite the impact of class
imbalance, high-confidence predictions still exhibit reliable discriminative power.

3 METHODOLOGY

In this paper, the proposed algorithm OT3A optimizes label assignment for target domain data, par-
ticularly addressing label shift and covariate shift issues. The algorithm consists of three key steps:
determination of consistency-confident points, propagation of labels, and correction for covariate
shifts. Each step is designed to gradually enhance the label information of target domain data to
improve model accuracy in the target domain.

3.1 CONSISTENCY-CONFIDENT POINTS

In this step, we determine consistency-confident points (C2P) based on the logits of target do-
main data. These points are then used for subsequent label distribution estimation and covariate
shift correction. The determination of high-confidence points relies on two criteria: the maxi-
mum difference between the top two logits and the consistency among neighboring points. For
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each target domain instance xt
i ∈ Dt

T , we obtain its logits via the predictive model f(xt
i; θt) =

[f1(x
t
i; θt), f2(x

t
i; θt), . . . , fK(xt

i; θt)], where K is the number of classes. Due to the class imbal-
ance, we define high-confidence points based on the quantiles of each predicted class. Specifically,
the set of high-confidence points (CFP) is defined as:

CFP = {xt
i | fp(xt

i; θt) ≥ τp}

where p = argmaxj∈Y fj(x
t
i; θt) and τp is the value corresponding to the τp quantile in the confi-

dence distribution for each class.

To further validate the reliability of high-confidence points, we introduce the concept of consistency
points. For each target point xt

i, we consider its neighborhood set B(xt
i, D

t
T ) = {xt

j |∥xt
i − xt

j∥ ≤
ht, x

t
j ∈ Dt

T }, where ∥·, ·∥ is one of distance functions. We define the consistency measure as:
C(xt

i) =
1

|B(xt
i,D

t
T )|

∑
j∈B(xt

i,D
t
T ) I[ŷti = ŷtj ], where ŷtj is the pseudo-label of the neighbor xt

j , and
I[·] is the indicator function, which equals 1 when ŷri = ŷrj and 0 otherwise. We define the set of
high-consistency points (CSP) as :

CSP = {xt
i | C(xt

i) ≥ τc}

where τc is the value corresponding to the τc quantile in the consistency distribution. The final set
of consistency-confidence points C2P consists of points that satisfy both conditions, that is C2P =
CFP ∩ CSP. C2P will be used as the foundation for the subsequent steps.

3.2 LABEL SHIFT CORRECTION

In Section 4.3, we analyzed the mixture of label shift and covariate shift in tabular data. Existing
methods such as ODS fail to accurately estimate the label distribution for each batch, leading to
biased model predictions. When label shift occurs continuously, a significant discrepancy remains
between the conditional probabilities learned by the model and the true conditional probabilities of
test samples.

To address this issue, we adopt the approach proposed by (Berthelot et al., 2019) and calibrate
predictions by aligning marginal label distributions. Specifically, we use the ratio of the current
label distribution pt(y) to the original label distribution ps(y) to weight the model’s conditional
probability predictions.

Given the model’s conditional probability prediction at time t, for sample xt
i as pt(y|xt

i) =
softmax(f(xt

i; θt)), the calibrated prediction is calculated as:

p̃t(y|xt
i) = norm

(
pt(y|xt

i) ·
pt(y)
ps(y)

)
where norm(z)i =

zi∑
i′ zi′

is a normalization operation to ensure the adjusted probability distribu-
tion sums to 1. Accurately estimating the label distribution pt(y) during testing remains a critical
challenge.

Due to class imbalance in the source domain as the analysis in Section 2.2, the model’s conditional
probability predictions pt(y|x) are biased toward the majority class, yet high-confidence samples
(e.g., top-ranked minority-class predictions) maintain higher accuracy than the overall pt(y). Lever-
aging the fundamental assumption of semi-supervised and unsupervised learning, we propose to
optimize predictions using latent structural information. Specifically, we refine the model output by
iteratively adjusting predictions, starting from the predictions of highly reliable samples, and con-
straining both the prediction consistency and feature similarity among samples. To achieve this, we
select pseudo-labels from points in C2P for label propagation.

The specific formulas for label propagation are as follows. Two types of affinity matrices are used
to model sample relationships, and the details of affinity between samples i and j are as follows:

• k-Nearest Neighbor (kNN) Affinity Matrix: ŝij =
I{xj is a k-NN of xi}

k where I{·} is an indi-
cator function that equals 1 if fj is among the k nearest neighbors of fi, and 0 otherwise.
This matrix encodes feature-space proximity.

4
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• Radial Basis Function (RBF) Affinity Matrix: ŝij = I{i ̸= j} exp
(
−∥xi−xj∥2

2σ2

)
where σ is

a variance parameter controlling the Gaussian kernel width. The matrix is row-normalized
to ensure probability conservation formulated as sij =

ŝij∑
j ŝij

.

The label propagation process is formalized as follows: The initial label matrix Y is defined us-
ing one-hot pseudolabels from samples in C2P, The label distribution matrix F is then updated
iteratively via:

F (t+1) = α · SF (t) + (1− α) · Y
where α ∈ (0, 1) balances the influence of neighboring samples and the initial one-hot pseudolabels
from C2P. For computational convenience and to establish a neutral starting point, we choose to ini-
tialize F (0) = 0,the convergence point formula for label propagation is F ∗ = (1−α)(I−αS)−1Y .
Upon convergence yied F ∗, the class distribution pLt (y) is estimated by the latent structural infor-
mation, here pLt (y) =

1
|F |

∑|F |
1 I{argmax(F ∗) = y}.

Furthermore, to accurately estimate pt(y), we combine the label distribution pLt (y) determined by
label propagation with the imbalanced pIt (y) = 1

B

∑B
i pt(y|xt

i) calculated by the model on the
batch. We introduce a dynamic coefficient ζ to adaptively weight two label distributions. The moti-
vation is that the label distribution within the Consistency–Confidence Point (C2P) set is relatively
reliable: its degree of imbalance indicates how likely the true batch-level label distribution deviates
from uniformity. Consequently, when the C2P distribution is more imbalanced, we place greater
emphasis on label propagation. Formally, let q be the empirical class proportion vector over the
C2P set, q(y) = 1

|C2P|
∑

xi∈C2P I{argmaxj pt(j|xi) = y}. We define an imbalance coefficient ζ to

quantify this discrepancy, ζ =
[∑l=K

l=1

(
q(y)− 1

K

)2] 1
2

. In the end, we combined pLt (y) and pIt (y)

to yield the final distribution as pt(y) = ζ ∗ pLt (y) + (1− ζ) ∗ pIt (y).

3.3 COVARIATE SHIFT CORRECTION

Inspired by the TENT (Wang et al., 2021), we improve classic pseudo-label learning with entropy
minimization to address covariate shift. We perform supervised learning on C2P to enhance the
model’s adaptation to target domain data. For each consistency-confident point xt

i ∈ C2P, we use
its pseudo-label ŷti as the ground truth label for supervised learning: Lpseudo(x

t
i) = L(ŷti , f(xt

i; θt)),
where L(·) is the cross-entropy loss function.

Entropy minimization has been a common loss function for the TTA task (Niu et al., 2022; 2023).
Intuitively, low-entropy samples contribute more to model adaptation than high-entropy samples.
Given that points in C2P correspond to high-confidence samples, which are equivalent to low-
entropy samples. Our objective is to minimize the entropy of the predicted distribution for these
points, encouraging the model to make more confident predictions on them, thus, we employ en-
tropy minimization on C2P as follows: Lentropy(x

t
i) = −

∑K
c=1 fc(x

t
i; θt) log(fc(x

t
i; θt)), where

fc(x
t
i; θt) is the predicted probability of class c for target domain instance xt

i. Therefore, we can
finally update θt by:

min
θt

Ext
i∈C2PLpseudo(x

t
i) + Lentropy(x

t
i).

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation. In our implementation, we follow the online test-time adaptation set-
ting, where the source model is trained on training data and adapted to shifted test data without any
access to the source training data. Specifically, we train the source model on source data and select
the best model based on the validation set. Then, our OT3A approach and existing TTA methods are
evaluated on the shifted test set. To demonstrate our approach across various test-time distribution
shifts, we test our method under six natural distribution shifts datasets – HELOC, Voting, Diabetes,
ASSISTments, Hospital Readmission, and Childhood Lead in TableShift benchmark (Gardner et al.,
2023). As shown in Figure 1 (b), tabular data often exhibit extreme class imbalance. Since accuracy

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

may not be effective in these cases, we use macro F1 score (F1) and balanced accuracy (bAcc.) as
the primary evaluation metrics.

Baselines. We compare OT3A with 6 baselines—PL (Lee, 2013) updates entire networks by min-
imizing the cross-entropy between prediction and the pseudo label; TTT (Sun et al., 2020a) miti-
gate deterioration of test-time adaptation performance through feature alignment strategies; TENT
(Wang et al., 2021) updates the model parameters with entropy minimization loss; EATA (Niu et al.,
2022) performs activate sample selection for adaptation and Fisher regularization for anti-forgetting
to achieve strong predicting performance; SAR (Niu et al., 2023) conducts sample filtering based
on test entropy and update model parameters to a flat minimum to achieve well and robust perfor-
mance; ODS (Zhou et al., 2023) decouples the mixed distribution shift and then addresses covariate
and label distribution shifts accordingly.

4.2 MAIN RESULTS
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Figure 2: The average performance of OT3A ap-
proach and comparison methods using MLP & Tab-
Transformer.

Table 7 summarizes the experimental results us-
ing MLP as the backbone network. Figure 2
illustrates the performance improvement of the
proposed method across different backbone net-
works (MLP and Transformer). Figure 3 shows
the estimation of the label distribution by our
method in each batch. All reported values are the
mean and standard error of three repeated exper-
iments. More experimental results and details
are in the Supplemental Material.

OT3A outperforms existing TTA methods.
To evaluate the effectiveness of OT3A, we re-
port the detailed experimental results using MLP
as backbone model in Table 7. Across a di-
verse set of six datasets and measured by both
balanced accuracy and Marco F1 score, OT3A
consistently achieves the best performance, of-
ten by a significant margin, compared to a model without adaptation (Source) and several existing
state-of-the-art TTA methods. This strongly supports the claim that OT3A is a superior method for
addressing distribution shifts in tabular data.

OT3A stably improves model performance under shifts. Figure 2 clearly illustrates that our
proposed OT3A method achieves substantial performance improvements over other Test-Time
Adaptation (TTA) approaches across two backbone network architectures: MLP and Transformer.
Specifically, for the MLP architecture, OT3A delivers an approximate 7 percentage point gain in
balanced accuracy, increasing from around 59% to approximately 66% compared to the ”Source”
baseline. Similarly, for the Transformer architecture, OT3A achieves a comparable improvement,
with balanced accuracy rising from roughly 58% to around 66%. In contrast, other TTA methods
such as PL, TTT, TENT, EATA, LAME, ODS, and SAR show minimal improvements. This clearly
demonstrates that regardless of the underlying model architecture, OT3A method consistently en-
hances the performance in tackling tabular test time shift problem.

OT3A achieves accurate label distribution correction. We adopt KL-divergence (Kullback &
Leibler, 1951) to measure the error between the ground-truth label distribution and the estimated
label distribution at each timestamp t. While ODS (Zhou et al., 2023) attempts to address both
covariate and label distribution shifts, it underperforms OT3A in most scenarios. A key reason
for this performance difference is OT3A’s superior ability to accurately estimate the shifted label
distribution pt(y) over time. As demonstrated in Figure 3, OT3A achieves a significantly lower KL-
divergence compared to ODS at each timestamp, indicating a more precise estimation of the true
label distribution.

6
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Table 1: Performance of the OT3A approach and compared baselines on 6 datasets using MLP. The best
performance is in Bold. More experimental results are in the Supplemental Material.

Method HELOC Voting Diabetes

bAcc F1 bAcc F1 bAcc F1

Source 53.25 ±3.5 40.02 ±5.3 75.66 ±0.4 77.24 ±0.2 55.22 ±0.1 55.50 ±0.0

PL 51.82 ±1.3 34.92 ±2.3 75.61 ±0.3 76.63 ±0.5 55.10 ±0.1 55.30 ±0.1

TTT 53.20 ±1.5 38.21 ±3.6 76.80 ±0.5 77.64 ±0.2 55.41 ±0.2 55.73 ±0.1

TENT 54.24 ±5.8 39.91 ±2.6 74.09 ±0.6 74.76 ±0.3 55.00 ±0.0 55.00 ±0.0

EATA 54.25 ±3.6 40.02 ±1.6 76.20 ±0.5 77.79 ±0.1 55.20 ±0.4 55.50 ±0.1

LAME 50.00 ±0.0 30.10 ±0.6 54.60 ±0.4 46.80 ±0.1 54.82 ±0.2 54.80 ±0.6

ODS 50.00 ±0.0 30.10 ±0.0 54.60 ±0.5 46.80 ±0.0 54.80 ±0.1 54.80 ±0.3

SAR 54.74 ±0.9 33.16 ±2.9 64.20 ±0.5 59.79 ±0.1 53.48 ±0.4 54.81 ±0.9

OT3A 64.12 ±0.9 63.97 ±0.7 78.32 ±0.5 78.97 ±0.2 71.29 ±0.5 67.87 ±0.2

Method ASSISTments Hospital Readmission Childhood Lead

bAcc F1 bAcc F1 bAcc F1

Source 60.81 ±3.3 46.42 ±1.8 60.59 ±0.2 59.12 ±1.6 50.00 ±0.0 47.90 ±0.0

PL 57.30 ±0.3 44.49 ±0.5 60.65 ±0.0 59.16 ±0.6 50.00 ±0.0 47.90 ±0.0

TTT 60.02 ±0.6 45.92 ±0.2 60.46 ±0.0 59.62 ±0.1 50.00 ±0.0 47.90 ±0.0

TENT 56.41 ±0.3 63.99 ±0.2 60.15 ±0.3 53.75 ±1.0 50.00 ±0.0 47.90 ±0.0

EATA 60.81 ±0.2 46.42 ±0.1 60.16 ±0.3 53.68 ±0.9 50.00 ±0.0 47.90 ±0.0

LAME 51.30 ±0.1 41.40 ±0.1 54.90 ±0.3 46.69 ±1.4 50.00 ±0.0 47.90 ±0.0

ODS 51.30 ±0.1 41.40 ±0.1 54.90 ±0.3 46.69 ±1.4 50.00 ±0.0 47.90 ±0.0

SAR 60.81 ±0.1 46.42 ±0.1 57.19 ±0.3 51.98 ±0.9 50.00 ±0.0 47.90 ±0.0

OT3A 63.97 ±1.1 61.89 ±0.6 61.03 ±0.2 59.92 ±0.9 61.29 ±0.1 66.79 ±0.2
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Figure 3: The KL-divergence between the estimated and ground-truth label distributions for ODS and OT3A
at each batch during test-time adaptation.

4.3 ABLATION ANALYSIS

Parameter sensitivity We analyze the parameter sensitivity of our method as Figure 4, which
illustrates the effect of varying τp, τc, batch size, and learning rate on performance, measured by
Balanced Accuracy and F1 Score. Specifically, we focus on: (1) the parameters τp and τc, which
determine the selection of C2P; (2) the model’s training hyperparameters, batch size and learning
rate; (3) parameters related to the label propagation, include different affinity matrix and weighting
factor for label propagation α. OT3A demonstrates a degree of robustness to parameter selection.
The performance is not highly sensitive to changes in τp, τc, and batch size within the tested ranges.
The learning rate has a more pronounced effect, highlighting its importance in the optimization
process.

Robustness of affinity matrices. Table 2 further analyzes the introduced affinity matrices for per-
forming output adaptation, which is RBF affinity with parameter σ and kNN affinity with parameter
k with their weighting factor α. We conduct experiments to predict the HELOC dataset using adja-
cency matrices constructed with both the Radial Basis Function (RBF) with σ ∈ {0.1, 1.0, 2.5, 5.0}
and k-Nearest Neighbors (kNN) with k ∈ {3, 5, 10, 15}, under various settings of the weighting
factor α ∈ {0.2, 0.5, 0.8}. And the results are demonstrated in Table 2. We observe that, for RBF
affinity, the results remain largely consistent when σ > 0.1. This stability arises because, with a
large σ value, the RBF matrix behaves similarly to a uniform dense matrix, leading to similar re-
sults. Meanwhile, when we set σ = 0.1, the RBF matrix becomes notably sparse, making it less
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Figure 4: Robustness of batch size and hyperparameters on the Voting dataset using the MLP backbone
model. The results indicate that minor perturbations to the hyperparameters of OT3A do not significantly affect
its performance, demonstrating the practical robustness of OT3A.

Table 2: Performance of different affinity matrices (RBF affinity σ and kNN affinity k) and weighting factors
α on the HELOC dataset. The gray row color indicates the largest impact parameters.

α = 0.2 α = 0.5 α = 0.8

bAcc F1 bAcc F1 bAcc F1

σ = 0.1 60.96 ±0.1 60.07 ±0.1 60.20 ±0.1 58.89 ±0.1 57.62 ±0.1 54.11 ±0.2

σ = 0.5 63.41 ±0.0 63.50 ±0.0 63.41 ±0.0 63.51 ±0.0 63.25 ±0.1 63.32 ±0.1

σ = 1.0 63.46 ±0.1 63.57 ±0.1 63.28 ±0.0 63.37 ±0.0 63.39 ±0.0 63.48 ±0.0

σ = 2.5 63.57 ±0.0 63.66 ±0.0 63.51 ±0.1 63.60 ±0.1 63.53 ±0.1 63.63 ±0.1

σ = 5.0 63.66 ±0.0 63.73 ±0.0 63.56 ±0.1 63.64 ±0.1 63.53 ±0.1 63.62 ±0.1

k = 3 63.56 ±0.1 63.61 ±0.0 63.50 ±0.2 63.61 ±0.2 63.21 ±0.1 63.30 ±0.1

k = 5 63.37 ±0.1 63.46 ±0.1 63.54 ±0.2 63.64 ±0.2 63.27 ±0.2 63.37 ±0.1

k = 10 63.43 ±0.3 63.52 ±0.3 63.55 ±0.1 63.65 ±0.1 63.53 ±0.2 63.47 ±0.0

k = 15 63.33 ±0.2 63.42 ±0.3 63.50 ±0.3 63.74 ±0.1 63.47 ±0.1 63.56 ±0.1

suitable for leveraging latent structure information. The results demonstrate that OT3A is robust to
slight changes in all hyperparameters.

Effect of each component The ablation study, detailed in Table 3, provides critical insights into
the contribution of individual components within our proposed OT3A framework. Across a diverse
set of tabular datasets, the removal of any core module consistently resulted in a degradation of
performance, as measured by both balanced accuracy (bAcc) and F1 score. This underscores the
integral role each component plays in the overall effectiveness of OT3A in mitigating test-time
domain shift. Notably, the absence of Label Shift Correction (LSC) mechanisms (w/o CFP, w/o
CSP) generally led to a more pronounced decline in bAcc. This highlights the importance of aligning
the model’s class predictions with the target domain’s distribution, particularly in scenarios with
potential class imbalance. Conversely, the exclusion of Covariate Shift Correction (CSC) strategies
(w/o EM, w/o PL) typically resulted in a more significant reduction in the F1 score, indicating the
necessity of adapting the feature representations learned from the source domain to better suit the
characteristics of the target data, thereby maintaining a balance between precision and recall. The
synergistic effect of these components is further evidenced by the fact that the complete OT3A
method consistently outperforms any of its ablated variants. These findings collectively validate the
design choices within OT3A, demonstrating that both label and covariate shift correction are crucial
for achieving robust and effective test-time adaptation on tabular data.

5 RELATED WORK

Test-Time Adaptation. Machine learning models often suffer performance drops when confronted
with distribution shifts between training and test data (Wang et al., 2024; Gong et al., 2012; Ganin
et al., 2016; Tzeng et al., 2017; Saito et al., 2020; Lee et al., 2019; Xiao et al., 2023). Online Test-
Time Adaptation (OTTA) addresses this challenge by adapting a pre-trained model to new, unseen
test distributions on the fly, using only unlabeled test inputs during inference (Azizzadenesheli et al.,
2019; Park et al., 2023; Alexandari et al., 2020). Pioneering OTTA methods in computer vision
predominantly tackle covariate shifts–changes in the input feature distribution pT (x) while the label
conditional p(y|x) remains stable (Cao et al., 2019; Cui et al., 2019; Kang et al., 2020; Hong et al.,
2021). To mitigate these covariate shifts, early approaches update model parameters or normaliza-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study of our OT3A approach with its variants. ”LSC” indicates Label Shift Correction
in Section 3.2 and ”CSC” indicates Covariant Shift Correction in Section 3.3. ”CFP” and ”CSP” belong to
consistency-confident points ”C2P” in Section 3.1. The gray row color indicates the largest impact components.

Method Ablation HELOC Voting Diabetes
CFP CSP EM PL bAcc F1 bAcc F1 bAcc F1

OT3A " " " " 64.12 ±0.9 63.97 ±0.7 78.32 ±0.5 78.97 ±0.2 71.29 ±0.5 67.87 ±0.2

– w/o LSC
% % " " 57.78 ±0.3 50.03 ±0.1 74.87 ±0.2 75.84 ±0.2 56.57 ±0.1 57.55 ±0.0

% " " " 63.64 ±0.5 62.35 ±0.6 76.16 ±0.5 77.14 ±0.3 66.25 ±0.1 64.21 ±0.1

" % " " 63.87 ±0.8 63.87 ±0.6 78.51 ±0.6 79.09 ±0.2 69.92 ±0.2 67.89 ±0.1

– w/o CSC
" " % % 64.07 ±0.3 63.97 ±0.3 77.87 ±0.4 78.59 ±0.1 69.71 ±0.0 67.82 ±0.1

" " % " 63.97 ±0.4 63.86 ±0.3 77.88 ±0.5 78.59 ±0.1 69.97 ±0.3 67.82 ±0.2

" " " % 64.14 ±0.1 64.06 ±0.1 77.86 ±0.5 78.57 ±0.4 69.90 ±0.1 67.89 ±0.1

Source - - - - 53.25 ±3.5 40.02 ±5.3 75.66 ±0.4 77.24 ±0.2 55.22 ±0.1 55.50 ±0.0

Method Ablation ASSISTments Hospital Readmission Childhood Lead
CFP CSP EM PL bAcc F1 bAcc F1 bAcc F1

OT3A " " " " 63.97 ±1.1 61.89 ±0.6 61.03 ±0.2 59.92 ±0.9 61.58 ±0.1 67.18 ±0.2

– w/o LSC
% % " " 63.04 ±0.7 54.53 ±0.5 60.41 ±0.4 59.10 ±0.2 50.00 ±0.0 47.90 ±0.0

% " " " 59.54 ±0.6 48.87 ±0.4 57.21 ±0.4 51.65 ±0.3 61.45 ±0.4 67.01 ±0.3

" % " " 63.67 ±0.5 61.93 ±0.4 58.78 ±0.4 55.46 ±0.3 61.45 ±0.1 67.01 ±0.1

– w/o CSC
" " % % 62.65 ±0.4 55.94 ±0.3 56.21 ±0.7 49.37 ±0.2 61.48 ±0.1 66.94 ±0.3

" " % " 63.20 ±0.5 61.71 ±0.4 56.62 ±0.3 50.26 ±0.1 61.35 ±0.3 66.86 ±0.5

" " " % 63.69 ±0.8 62.12 ±0.3 56.44 ±0.3 49.86 ±0.4 61.29 ±0.2 66.94 ±0.3

Source - - - - 60.81 ±3.3 46.42 ±1.8 60.59 ±0.2 59.12 ±1.6 50.00 ±0.0 47.90 ±0.0

tion statistics at test time. For example, TENT adapts a model by updating batch normalization
parameters via entropy minimization on each test batch (Wang et al., 2021). TTT optimizes a self-
supervised auxiliary task (e.g., predicting image rotations) on each unlabeled test sample to improve
robustness under shifts (Sun et al., 2020a). More generally, prior test-time adaptation techniques
employ strategies like recalibrating batch norm statistics, minimizing prediction entropy, or per-
forming self-supervised learning on test data (Schneider et al., 2020; Lim et al., 2023; Gong et al.,
2022). Several methods also incorporate pseudo-labeling, treating high-confidence model predic-
tions on unlabeled test examples as surrogate labels to further adapt the model (Niu et al., 2022;
Wang et al., 2021; Lee, 2013). Such optimization-based OTTA methods have proven effective for
covariate shifts, especially in vision tasks, and they can significantly improve robustness without
requiring any source data during inference. By contrast, OTTA for tabular data has been relatively
underexplored and poses distinct challenges. Tabular datasets are ubiquitous in real-world domains
such as finance and healthcare, with heterogeneous feature types and no clear spatial or sequential
structure (Ren et al., 2024; Fang et al., 2024; Bahri et al., 2022). Methods that work well for test-
time adaptation in computer vision often fail to transfer to tabular tasks, which is a key motivation
for our work. Crucially, OOD issues in tabular data are pervasive in industry, yet effective adaptation
solutions remain scarce.

6 CONCLUSION AND LIMITATION

In this paper, we address the challenge of OTTA for tabular data. This is a significant and highly
challenging problem, particularly due to the presence of class imbalance in tabular data and the
mixture of multi-types of shifts. Our OT3A method identifies a subset of high-confidence pseudo-
labeled samples to correct label shift and further utilizes entropy minimization and pseudo-label
learning techniques to address covariate shift. Experimental results demonstrate that OT3A signif-
icantly outperforms existing adaptation methods. Besides, our method also has some limitations.
It is constrained to extend this method to tasks beyond classification. Since OT3A relies on the
generation of pseudo-labels, adapting it to continuous predictions (e.g., regression tasks) is non-
trivial. Note that other methods also face similar challenges, since estimating prediction entropy for
continuous outputs remains difficult.

9
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Our research focuses on the fundamental machine learning challenge of domain generalization and
test-time adaptation for tabular data. We primarily utilized publicly available benchmark datasets,
and our work does not involve personally identifiable or sensitive data. During the preparation
of this manuscript, we employed large language models (e.g., GPT) for language polishing and
grammatical correction to enhance readability.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made our code and experimental setup publicly
available. The full source code for our proposed method, OT3A, along with the scripts used to
conduct all experiments reported in this paper, will be included in the supplementary materials and
released publicly upon publication. Our paper provides detailed descriptions of the model archi-
tecture, training procedures, and the specific distribution shift scenarios created for evaluation (see
Sections 4.) The Appendix B further contains details on hyperparameter settings for all compared
methods, ensuring that our results can be fully replicated.
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Table 4: Summary of the datasets used in our experiments, including the total number of instances
(Total Instances), the number of instances allocated to training, validation, and test sets (Training
Set, Validation Set, Test Set), the total number of features (Total Features), and a breakdown into
numerical and categorical features (Numerical Features, Categorical Features). All tasks involve
binary classification.

Statistic HELOC Voting Hospital Readmission ASSISTments Childhood Lead Diabetes

Total Instances 9,412 60,376 89,542 24,00998 24,749 1,299,758
Training Set 2,220 34,796 34,288 21,3256 11,807 969,229
Validation Set 278 4,349 4,286 26,6566 1,476 121,154
Test Set 6,914 21,231 50,968 1,906 11,466 209,375

Total Features 22 54 46 26 7 25
Numerical Features 20 8 12 9 4 6
Categorical Features 2 46 34 17 3 19

A.1 DATASETS

In our experiments, we verify our method across six different datasets—HELOC, Voting, Hospital
Readmission, ASSISTmments, Childhood Lead, and Diabetes—within the Tableshift Benchmark,
all of which include natural distribution shifts between training and test data. We give the details of
each dataset as follows and detailed statistics specifications of each dataset are listed in Table 4.

• HELOC: Home Equity Line of Credit dataset is the dataset to predict whether the appli-
cant will repay their HELOC account within two years; which is a line of credit typically
offered by a bank as a percentage of home equity. Data is split with respect to external risk
estimation value; lower ones are used for test data.

• Voting: American National Election Studies provide classification task of U.S. presidential
election participation. Domain shift is given by the geographic region of surveyees.

• Hospital Readmisson: Diabetes Readmission represents ten years (1999-2008) of clinical
care at 130 US hospitals and integrated delivery networks. Each row concerns hospital
records of patients diagnosed with diabetes, who underwent laboratory, medications, and
stayed up to 14 days. The goal is to determine the early readmission of the patient within
30 days of discharge. Admission sources are different between train and test data.

• Childhood Lead: This task predicts elevated blood lead levels in children using NHANES
data, with 27,499 observations. A distribution shift is introduced by splitting the data based
on poverty using the poverty-income ratio (PIR) as a threshold. Those with a PIR of 1.3 or
lower are held out for testing, simulating risk assessment in lower-income households.

• Diabetes: This task predicts diabetes using BRFSS data, focusing on racial shifts across 1.4
million observations. Distribution shift occurs by focusing on the differences in diabetes
risk between racial and ethnic groups, particularly highlighting the higher risk faced by
non-white groups compared to White non-Hispanic individuals.

• ASSISTments. ASSISTMENTS dataset in education field. The ASSISTments tutoring
platform is a free, web-based, data-driven tutoring platform for students in grades 3-12. AS-
SISTMENTS dataset contains affect predictions such as such as boredom, confusion, frus-
tration, and engaged problem-solving behavior on students who use the ASSISTMENTS
tutoring platform.

A.2 BASELINE DETAILS

To compare with our method OT3A, we have selected the following Test-Time Adaptation (TTA)
methods. Detailed descriptions of these methods are provided below.

• PL: Pseudo-Labeling (PL) leverages a pseudo-labeling strategy to update model parameters
during test time.

• TTT: Test-time training adapts to a new test distribution on the fly by optimizing a model
for each test input using self-supervision.
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• TENT: Test Entropy minimization (TENT) updates the scale and bias parameters in the
batch normalization layer during test time by minimizing entropy within a given test batch.

• EATA: Efficient Anti-forgetting Test-time Adaptation (EATA) mitigates the risk of unre-
liable gradients by filtering out high-entropy samples and applying a Fisher regularizer to
constrain key model parameters during adaptation.

• SAR: Sharpness-Aware and Reliable optimization (SAR) builds on TENT by filtering sam-
ples with large entropy, which can cause model collapse during test time, using a predefined
threshold.

• LAME: Laplacian Adjusted Maximum-likelihood Estimation (LAME) employs an output
adaptation strategy during test-time, focusing on adjusting the model’s output probabilities
rather than tuning its parameters.

• ODS: An algorithm that decouples the mixed distribution shift and then separately ad-
dresses covariate and label distribution shifts.

B IMPLEMENTATION DETAILS

In this section, we provide the details of backbone model, configuration of training and testing phase
to enhance the reporducibility. All experiments are conducted on a Linux server with one NVIDIA
GeForce RTX 3050Ti GPU.

Backbone Models. For all experiments, we use two representative deep tabular models: MLP,
Tabtransformer as the backbone model.

• MLP: Multi-Layer Perceptron (MLP) is a foundational deep learning architecture charac-
terized by multiple layers of interconnected nodes, where each node applies a non-linear
activation function to a weighted sum of its inputs. In the tabular domain, MLP is often
employed as a default deep learning model, with each input feature corresponding to a node
in the input layer.

• TabTransformer: TabTransformer is a deep learning architecture specifically designed for
processing tabular data. It leverages the power of transformer-based attention mechanisms
to model complex interactions between categorical and numerical features. The model en-
codes categorical data using embedding layers and applies self-attention to capture feature
dependencies, providing an alternative to traditional approaches like MLP for tabular data
tasks.

B.1 HYPERPARAMETERS FOR TRAINING PHASE.

For training the source model, we follow the TableShift benchmark for all setting of training hyper-
parameters. Specifically, we train each backbone model with a batch size of 512 for several epochs,
depending on the model’s convergence as evaluated on the validation set. The AdamW optimizer is
used with a learning rate of 0.01 and a weight decay of 0.01.

B.2 HYPERPARAMETERS FOR TTA BASELINES

In this subsection, we present the parameter settings for baseline methods. PL, TENT , and SAR
require three main hyperparameters: the learning rate, the number of adaptation steps per batch,
and the option for episodic adaptation (i.e., resetting the model after processing each batch of data).
Specifically, PL and TENT were configured with a learning rate of 0.0001, 1 adaptation step, and
episodic updates. Additionally, SAR requires a threshold to filter high-entropy samples, with the
learning rate set to 0.001, 1 adaptation step, and episodic updates.

For the TTT method, a proxy task needs to be defined during training. We adopted a self-supervised
proxy task similar to VIME, in which 15% of values in each column are randomly replaced with
other values from the same column. Then, an MLP is used as a discriminator network to identify
the replaced values and recover them.
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Table 5: The Notation for the parameters in the OT3A method and the parameter settings used in
the main experiments.

Notation Meaning Value

τp The quantile in the confident distribution 0.25
τc The quantile in the consistent distribution 0.7
α Weighting factor for label propagation 1.0
σ Variance parameter in RBF Affinity Matrix 1.0
k k-Nearest Neighbor in KNN Affinity Matrix -

Table 6: Performance of the OT3A approach and compared baselines on 6 datasets using MLP. The best
performance is in Bold. More experimental results are in the Supplemental Material.

Method HELOC Voting Diabetes

Acc bAcc F1 Acc bAcc F1 Acc bAcc F1

Source 53.21 ±4.3 53.25 ±3.5 40.02 ±5.3 78.69 ±0.3 75.66 ±0.4 77.24 ±0.2 83.32 ±0.2 55.22 ±0.1 55.50 ±0.0

PL 54.78 ±1.1 51.82 ±1.3 34.92 ±2.3 75.87 ±0.4 75.61 ±0.3 76.63 ±0.5 83.81 ±0.3 55.10 ±0.1 55.30 ±0.1

TTT 53.05 ±3.1 53.20 ±1.5 38.21 ±3.6 76.08 ±0.5 76.80 ±0.5 77.64 ±0.2 83.29 ±0.0 55.41 ±0.2 55.73 ±0.1

TENT 54.35 ±2.3 54.24 ±5.8 39.91 ±2.6 78.07 ±0.6 74.09 ±0.6 74.76 ±0.3 83.32 ±0.0 55.00 ±0.0 55.00 ±0.0

EATA 54.37 ±2.1 54.25 ±3.6 40.02 ±1.6 78.13 ±0.3 76.20 ±0.5 77.79 ±0.1 83.50 ±0.3 55.20 ±0.4 55.50 ±0.1

LAME 43.10 ±4.6 50.00 ±0.0 30.10 ±0.6 63.50 ±2.1 54.60 ±0.4 46.80 ±0.1 83.24 ±0.1 54.82 ±0.2 54.80 ±0.6

ODS 43.10 ±4.6 50.00 ±0.0 30.10 ±0.0 63.50 ±2.1 54.60 ±0.5 46.80 ±0.0 83.24 ±0.1 54.80 ±0.1 54.80 ±0.3

SAR 52.32 ±2.6 54.74 ±0.9 33.16 ±2.9 78.13 ±0.6 64.20 ±0.5 59.79 ±0.1 82.98 ±0.2 53.48 ±0.4 54.81 ±0.9

OT3A 64.56 ±1.9 64.12 ±0.9 63.97 ±0.7 80.21 ±0.4 78.32 ±0.5 78.97 ±0.2 79.91 ±0.2 71.29 ±0.5 67.87 ±0.2

Method ASSISTments Hospital Readmission Childhood Lead

Acc bAcc F1 Acc bAcc F1 Acc bAcc F1

Source 51.57 ±3.2 60.81 ±3.3 46.42 ±1.8 60.65 ±0.3 60.59 ±0.2 59.12 ±1.6 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

PL 56.45 ±0.4 57.30 ±0.3 44.49 ±0.5 60.27 ±0.2 60.65 ±0.0 59.16 ±0.6 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

TTT 55.86 ±1.3 60.02 ±0.6 45.92 ±0.2 61.02 ±0.3 60.46 ±0.0 59.62 ±0.1 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

TENT 50.87 ±0.3 56.41 ±0.3 63.99 ±0.2 61.34 ±0.3 60.15 ±0.3 53.75 ±1.0 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

EATA 55.86 ±0.2 60.81 ±0.2 46.42 ±0.1 61.36 ±0.3 60.16 ±0.3 53.68 ±0.9 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

LAME 45.12 ±0.2 51.30 ±0.1 41.40 ±0.1 61.39 ±0.1 54.90 ±0.3 46.69 ±1.4 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

ODS 45.12 ±0.2 51.30 ±0.1 41.40 ±0.1 61.39 ±0.1 54.90 ±0.3 46.69 ±1.4 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

SAR 55.86 ±0.2 60.81 ±0.1 46.42 ±0.1 61.38 ±0.2 57.19 ±0.3 51.98 ±0.9 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

OT3A 62.28 ±0.4 63.97 ±1.1 61.89 ±0.6 61.03 ±0.2 61.03 ±0.2 59.92 ±0.9 93.76 ±0.0 61.29 ±0.1 66.79 ±0.2

For TTT, EATA and LAME , we followed the original authors’ hyperparameter settings, except
for the learning rate and adaptation steps. TTT and EATA were configured with a learning rate of
0.00001, 10 adaptation steps, and episodic updates. LAME and ODS only adjust output logits and
therefore do not require hyperparameters related to gradient updates.

B.3 HYPERPARAMETERS FOR OT3A

In Section 4.3, we analyze the impact of various parameters in the OT3A method. The parameter
settings for our main experiments are listed in Table 5. From the ablation studies, we observe that
our experiments exhibit considerable robustness to most parameters within a certain range.

C ADDITIONAL EXPERIMENTS

In Section 4, we omitted the presentation of the Acc(accuracy) metric. Here, we supplement the Acc
results from our experiments and additionally provide the baseline results using TabTransformer.

D LIMITATIONS AND BROADER IMPACTS

D.1 LIMITATIONS

Our OT3A method can identify high-confidence pseudo-labeled subsets to mitigate label shift and
further leverage entropy minimization and pseudo-label learning techniques to address covariate
shift. Experimental results demonstrate that OT3A significantly outperforms existing adaptation
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Table 7: Performance of the OT3A approach and compared baselines on 6 datasets using TabTransformer.
The best performance is in Bold. More experimental results are in the Supplemental Material.

Method HELOC Voting Diabetes

Acc bAcc F1 Acc bAcc F1 Acc bAcc F1

Source 55.13 ±1.5 59.31 ±0.5 50.12 ±0.3 77.89 ±0.1 73.87 ±0.0 74.74 ±0.2 83.23 ±0.1 54.42 ±0.1 54.08 ±0.0

PL 54.26 ±0.1 58.72 ±0.3 51.44 ±0.3 77.25 ±0.4 72.97 ±0.3 73.53 ±0.5 83.00 ±0.3 52.39 ±0.1 50.32 ±0.2

TTT 54.15 ±0.5 58.21 ±0.4 49.31 ±0.6 77.18 ±0.5 74.10 ±0.5 73.64 ±0.2 83.10 ±0.0 52.13 ±0.2 52.41 ±0.1

TENT 54.35 ±2.3 57.24 ±5.8 49.93 ±2.6 78.07 ±0.6 74.05 ±0.6 74.16 ±0.3 83.12 ±0.0 52.00 ±0.0 52.20 ±0.0

EATA 55.07 ±0.1 57.25 ±0.2 50.02 ±0.6 78.03 ±0.1 76.20 ±0.5 74.79 ±0.1 83.00 ±0.3 52.12 ±0.4 52.05 ±0.1

LAME 49.15 ±0.6 56.05 ±0.0 50.10 ±0.6 73.50 ±0.1 74.60 ±0.4 74.80 ±0.1 82.54 ±0.1 52.83 ±0.2 52.56 ±0.6

ODS 54.10 ±0.6 57.00 ±0.0 51.14 ±0.2 77.50 ±2.1 74.60 ±0.5 74.80 ±0.0 82.26 ±0.1 54.16 ±0.1 52.06 ±0.1

SAR 54.32 ±2.6 56.74 ±0.9 48.18 ±2.9 77.13 ±0.6 74.20 ±0.5 73.79 ±0.1 82.98 ±0.2 53.48 ±0.4 52.81 ±0.9

OT3A 63.39 ±0.7 62.67 ±0.6 62.67 ±0.5 79.96 ±0.1 79.00 ±0.1 79.12 ±0.2 76.52 ±0.2 73.62 ±0.1 67.67 ±0.2

Method ASSISTments Hospital Readmission Childhood Lead

Acc bAcc F1 Acc bAcc F1 Acc bAcc F1

Source 45.22 ±3.2 51.34 ±3.3 33.72 ±1.8 61.49 ±0.3 61.03 ±0.2 60.44 ±1.6 96.68 ±0.8 85.67 ±0.4 90.07 ±0.5

PL 44.12 ±0.4 50.41 ±0.3 31.32 ±0.5 60.29 ±0.2 60.00 ±0.0 57.83 ±0.6 96.93 ±0.4 86.85 ±0.1 91.07 ±0.2

TTT 44.16 ±1.3 50.02 ±0.6 35.92 ±0.2 60.46 ±0.3 59.46 ±0.0 59.62 ±0.1 96.83 ±0.2 85.00 ±0.0 90.90 ±0.0

TENT 40.87 ±0.3 46.41 ±0.3 33.99 ±0.2 61.12 ±0.3 60.15 ±0.3 53.75 ±1.0 91.93 ±0.0 84.48 ±0.0 90.15 ±0.0

EATA 45.86 ±0.2 50.81 ±0.2 36.42 ±0.1 61.36 ±0.3 60.16 ±0.3 53.68 ±0.9 91.93 ±0.0 84.98 ±0.0 90.02±0.0

LAME 45.12 ±0.2 48.79 ±0.1 31.40 ±0.1 60.05 ±0.1 58.90 ±0.3 46.69 ±1.4 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

ODS 45.12 ±0.2 51.30 ±0.1 32.08 ±0.1 61.39 ±0.1 60.12 ±0.3 59.25 ±1.4 91.93 ±0.0 50.00 ±0.0 47.90 ±0.0

SAR 45.86 ±0.2 50.81 ±0.1 36.42 ±0.1 60.38 ±0.2 57.89 ±0.3 58.48 ±0.9 97.08 ±0.0 86.58 ±0.0 91.00 ±0.0

OT3A 56.93 ±0.4 53.94 ±1.1 52.55 ±0.6 61.70 ±0.2 61.71 ±0.2 61.70 ±0.9 95.88 ±0.0 97.76 ±0.1 88.69±0.2

methods in terms of performance. However, our method also has some limitations. First, the ap-
plication of OT3A is currently restricted to classification tasks, and extending it to other types of
tasks (e.g., regression) remains challenging. Since OT3A depends on the generation of pseudo-
labels, adapting it for continuous value predictions (such as regression tasks) is not straightforward.
It is worth noting that similar challenges are faced by other methods as well, given the difficulty in
effectively estimating prediction entropy for continuous outputs.

Secondly, OT3A cannot perform adaptation at the single-sample level. This is because some key
steps in the method (such as determining pseudo-labels in the C2P stage through uncertainty estima-
tion and performing label propagation) require batch-based computation, which makes the method
inapplicable directly in single-sample inference scenarios. In the future, we will further explore
instance-level adaptation methods and extend this research framework to a wider range of applica-
tion scenarios.

D.2 BROADER IMPACTS

Our research addresses the critical yet underexplored challenge of distribution shifts in tabular data,
a problem that has not received sufficient attention. We believe that our approach can significantly
enhance the performance of machine learning models in various industries by improving model
adaptation to tabular data, thereby creating meaningful value in practical applications. Through our
data-centric analysis in Section 2.2, we identify why existing TTA methods fail in the tabular domain
and introduce a tabular-specific approach for handling label distribution shifts in Section 3.2. We
hope this work will provide valuable insights for future research on test-time adaptation in tabular
data. Additionally, by making our source code publicly available, we aim to support real-world
applications across various fields, benefiting both academia and industry.
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