
Published as a conference paper at ICLR 2024

GRAPH GAUSSIAN PROCESSES FOR EFFICIENT RO-
BUST MONTE CARLO TREE SEARCH

Dorina Weichert
Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS
53757 Sankt Augustin
Germany

Samuel Wiest & Sebastian Houben & Paul Ploeger
University of Applied Sciences Bonn-Rhein-Sieg
53757 Sankt Augustin
Germany

ABSTRACT

One of the major challenges in applying machine learning-based optimization al-
gorithms in practice is their efficiency, which is measured in runtime and sample
efficiency. Unfortunately, these two measures do not go hand in hand, but there
are two poles: model-based Reinforcement Learning (RL), which is fast but re-
quires many calls to some oracle, and Bayesian Optimization (BO), which has a
high computation time but is very sample efficient. Additionally, both methods
are at risk of oracle-misspecification: the oracle used for learning may differ from
the final application. We derive Graph Gaussian Process Monte Carlo Tree Search
(GUMTREES), an algorithm combining Monte Carlo Tree Search (MCTS), a
model-based RL method, with BO, leading to an efficient algorithm that is eas-
ily enhanced to the robust setting. In a simple experiment, we demonstrate the
superior performance of our algorithm.

1 INTRODUCTION

The practical application of methods from RL and BO is impeded by efficiency constraints. While
model-based RL in particular is often fast in training, it requires a high number of calls to an oracle
or even a real environment O; BO has a high runtime but is very sample efficient. We introduce
an approach combining the best of both worlds: GUMTREES. To do so, we combine ideas from
MCTS (please see Browne et al. (2012) for a review) with Combinatorial Bayesian Optimization
(COMBO) (Oh et al., 2019), resulting in an algorithm with (reasonable) tradeoff between sample-
efficiency and runtime. Additionally, we treat one of the most critical risks when applying RL in
real-world settings: the risk of a misspecified oracle O during training. This might even happen for
model-free methods like BO when the optimization process takes place in an environment different
from the final application or when facing concept drift. We implement this challenge by considering
a set of oraclesO instead of a single one. We evaluate our approach on a basic experiment, showing
its superior behavior in both efficiency and robustness against adversarial oracle definitions.

1.1 COMBO ALGORITHM

Graph Gaussian Processes Gaussian Processes (GP) Regression is a non-parametric method to
model an unknown function f(x) : X 7→ R by a distribution over functions. The GP prior is defined
such that any subset of function values is normally distributed with mean µ0(x) and covariance
k(x,x′) for any x,x′ ∈ X (w.l.o.g. we assume µ0(x) = 0, see e.g. Rasmussen & Williams
(2006)). Conditioning the prior on actual data Dt = {(x1, y1), . . . , (xt, yt)}, where y = f(x) + ϵ,
ϵ ∼ N (0, σ2

n), the predictive posterior distribution p(f) ∼ GP (m, v|Dt) is given by m(x|Dt) =
k(x)TK−1y, v(x|Dt) = k(x,x)−k(x)TK−1k(x) , with [k(x)]i = k(x,xi), Ki,j = k(xi,xj)+
δijσ

2
n, where δij is the Kronecker delta, and [y]i = yi.

1

Published as a conference paper at ICLR 2024

Typically, covariance functions are defined on continuous spaces. For combinatorial graphs G =
(V,E), with vertices V and edges E, Oh et al. (2019) define a covariance function to model a
function f on the vertices V as a Graph Gaussian Process (GRAPH GP). Given N complete sub-
graphs {G(Ci)} for categorical variables C1, . . . , CN , the full combinatorial graph is built via the
graph Cartesian product □iG(Ci). By Graph Fourier Transform (GFT), a smooth function on
a graph is defined using a linear combination of graph Fourier bases. Calculation of the GFT
is performed via the graph Laplacian L(G). Its eigenvalues {λ1, λ2, . . . , λ|V |} and eigenvectors
{u1, u2, . . . , u|V |} are the graph Fourier frequencies and bases. To penalize high (and therefore
expected less relevant) frequencies, a diffusion kernel is used: For vertices p and q, the kernel
is defined by k(p, q) =

∑n
i=1 e

−βλiui(p)ui(q) , where β is an additional hyperparameter: the
lengthscale. Unfortunately, calculating the graph Laplacian is infeasible for large graphs. For
combinatorial graphs, there is significant simplification by the graph Cartesian product, using the
Kronecker product ⊗ and the Kronecker sum ⊕. For c categorical variables Oh et al. (2019) find:
K = exp (−β ⊕c

i=1 L (G(Ci))) = ⊗c
i=1 exp (−βL (G(Ci))), making the calculation of the GFT

only necessary for the smaller subgraphs.

Learning a GRAPH GP is computationally heavy. The original authors propose to use slice sampling
to estimate the necessary hyperparameters β and σn Oh et al. (2019), which, despite being a powerful
method in contrast to traditional maximization of the marginal log-likelihood, leads to a high runtime
of the algorithm.

Solving Markov Decision Process (MDP)s by the COMBO algorithm Basic combinatorial BO
with GRAPH GPs is performed analogously to traditional BO: After definition of the search space,
consisting of the full combinatorial graph defined by the individual subgraphs for every categorical
variable, an acquisition function, such as Expected Improvement (EI) is applied to find the next
vertex V for evaluation. Given the corresponding response yt through the environment O, the
GRAPH GP is updated and the acquisition function is called again. This procedure is repeated until
some terminal condition is met and an optimal combination of variables is found. In general, BO
is known to be very sample efficient on the cost of a long runtime (Shahriari et al., 2016; Garnett,
2023).

COMBO is also suitable to solve simple MDPs with discrete action spaces A. After choosing
a maximum sequence length T , a combinatorial graph is generated from T identical subgraphs
C1, . . . , CT whose vertices V correspond to the individual actions a ∈ A. Given this combinatorial
graph that represents every possible combination of actions and their order, the cumulative reward
RT (V) is modeled by the GRAPH GP. BO is then used to find an optimal sequence of actions.

1.2 MCTS ALGORITHM

MCTS is a RL method for MDPs with large state spaces S that heavily uses an oracle (s′, r) ∼
O(s, a). The following introduction builds on the review by Browne et al. (2012). Basically, the
goal of MCTS is to find an optimal sequence of T actions maximizing the cumulative reward RT =∑T

t=0 rt. It builds a search tree, where each node of the search tree corresponds to a state s and
each edge to an action a. The tree is iteratively expanded from the root node that represents an
initial state s0. Each iteration consists of four main steps: selection, expansion, simulation, and
backpropagation.

Selection is performed via a so-called tree policy, which is similar to an acquisition function in BO,
trading off exploration and exploitation. Beginning from the root node, the tree policy is calculated
for all possible actions from the actual state, and the one with the maximum value of the tree policy
is chosen. Via the oracle, the subsequent state and the immediate reward (s′, r) ∼ O(s, a) are
calculated and s′ = s is set. This selection step is repeated until the actual node has unvisited
children, referring to actions that have yet to be explored. In the expansion step, one action from
the unvisited ones is randomly chosen and executed, and the result is used to extend the tree, again
making use of the oracle. Afterward, simulation follows: a default policy, typically a random action
selection up to a specific horizon, is used to estimate the cumulative reward corresponding to the
new node. Finally, the gained value is backpropagated to the tree’s root, i.e., adding all generated
future rewards on the path to the finally extended node to its parent node. This procedure is repeated
until a terminal criterion, usually a specific budget of iterations, is met.

2

Published as a conference paper at ICLR 2024

𝑝 𝑅𝑇 |𝑠 = 𝑠, 𝑎 = 𝑎1

𝑎0

𝑠

Graph

GP
𝑎1

𝑎2

𝑎3

𝑝 𝑅𝑇 |𝑠 = 𝑠, 𝑎 = 𝑎0

𝑝 𝑅𝑇 |𝑠 = 𝑠, 𝑎 = 𝑎2

𝑝 𝑅𝑇 |𝑠 = 𝑠, 𝑎 = 𝑎3

Figure 1: Basic idea of GUMTREES. We model the cumulative reward RT for each state s for each
action a ∈ A by a GRAPH GP. In the figure, we show a single state with four actions.

Afterward, the following action a to take on the real environment (which might be the cheap oracle,
but does not have to) is selected by some criterion, such as choosing the action with the highest cu-
mulative reward. In contrast to solving an MDP with COMBO, this is an online approach, meaning
that it does not return an entire action sequence but is short-sighted, considering the uncertainty of
long action sequences.

2 GUMTREES ALGORITHM FOR ROBUST SAMPLE-EFFICIENT RL

2.1 GENERAL METHOD

Our idea in GUMTREES is to combine sample-efficient BO with fast MCTS to generate a sample-
efficient and fast solver for MDPs that has the additional advantage of easily taking into account
model uncertainty. For each state s, we generate a GRAPH GP to model the distribution over cumu-
lative rewards p(RT |s, a) when taking out a sequence of actions that begins with the action a, so we
assume ps(RT) ∼ GP (ms, vs). Figure 1 emphasizes this basic idea for a single state s0 and four
actions a0, . . . , a3. For each vertex corresponding to an action a, we show the predictive distribu-
tion p(RT |s, a), which is individual for each action a. Please note that this predictive distribution
exists even if an action a has yet to be visited. In contrast to other RL methods, such as MCTS, we
work with a distribution over cumulative rewards instead of using some scalar measure. Assuming
a relatively small state space, we generate as many GRAPH GPs as states.

Searching for an optimal sequence of actions, we adopt the general idea of MCTS to search sequen-
tially in a “selection, expansion, simulation and backpropagation”-manner, beginning from some
initial state s0. Using the predictive distribution over cumulative rewards p(RT), we select the next
action a to take. Here, all kinds of acquisition functions, such as EI, Thompson Sampling (TS), or
Upper Confidence Bounds, are possible. Using the oracle O, we generate the next state s′ = O(s, a).
If the subsequent state s′ has not been visited before, we generate a new GRAPH GP (similar to the
expansion step in MCTS) and simulate via random action selection until some terminal state, as-
sociated with some cumulative return RT is reached. Finally, we propagate back the value of RT ,
update the cumulative reward for all vertices of GRAPH GPs in the search trajectory, and retrain
them.

After reaching a budget of evaluations B, we select the following action to take from the set of
GRAPH GPs G. Therefore, we extract the graph corresponding to the initial state s0 and find the
action with the highest predictive mean cumulative reward ms0 : a = argmaxa∈A ms0(a). We
summarize the described steps in algorithm 1.

Even though the method is similar to MCTS, there is one potential advantage of our approach.
As we model the cumulative rewards, we take into account their correlation via the lengthscale β.
Therefore, we can distinguish between states where the exact selected action is highly relevant, i.e.,
close to the terminal state, or states with room for freedom in which action to take, i.e., initial actions.
Therefore, we expect fewer calls to the oracle O than with MCTS.

3

Published as a conference paper at ICLR 2024

Algorithm 1 GUMTREES algorithm.

Input oracle O, action space A, evaluation budget B, initial state s0
Output optimal action a

1: G ← ∅, RT ← 0, s← s0
2: for b = 1, . . . , B do
3: if g(s) ∈ G then
4: a← SELECTACTION(g(s)) ▷ Select action using an acquisition function.
5: s′, r ← O(s, a)
6: s← s′, RT ← RT + r
7: else
8: if NOTTERMINAL(s) then ▷ Check if state s is terminal.
9: g(s)← GENERATEGGP(s) ▷ Generate new GRAPH GP.

10: G ← G ∪ g(s)
11: RT ← RT + SIMULATE(s) ▷ Simulate the future rewards.
12: BACKUP(RT), s← s0 ▷ Backup and restart from initial state.
13: else
14: BACKUP(RT), s← s0 ▷ Backup and restart from initial state.
15: end if
16: end if
17: end for
18: return BESTACTION(g(s0)) ▷ Select next action to take.

2.1.1 DEALING WITH MULTIPLE EVALUATIONS OF VERTICES

Critical for our approach is the multiple evaluation of vertices with (probably) different returns.
This is a problem for GPs, as the upcoming covariance matrix is not positive semidefinite anymore
due to duplicate entries, and no predictions can be made. However, multiple evaluations at the same
location also contain relevant information about the noise variance of the problem that is represented
by the covariance function’s hyperparameter σn. As σn impacts the posterior predictive distribution
GP (m, v), it influences the explorative behavior of the algorithm.

In the following, we describe three options to deal with this problem. While the first one, the use of
the mean cumulative reward for the multiple evaluations, is homoscedastic, the others (a heuristic
and a Bayesian approach) are not.

Application of Mean Cumulative Reward The simplest approach to treat multiple evaluations
at the same vertex is to apply the mean cumulative reward of the different evaluations. In the ex-
periments, this approach will be called “Mean RT ”. Despite its attractiveness due to its simplicity,
this approach has several drawbacks: First, it does not at all use the available information about the
noise variance, so the value found by fitting the GRAPH GP model might be far from the actual
value. Second, when using the defaults from COMBO’s GRAPH GPs, the model is homoscedastic,
meaning that the same noise parameter σn is applied for all vertices. Even though this assumption
might be valid for some states s, it is at least problematic close to a terminal state s, where one par-
ticular action leads to the end of the action sequence. We also tried to apply heteroscedastic σn,V for
each vertex. However, we could not run experiments with that approach due to the computationally
heavy slice sampling procedure of the hyperparameters.

Heuristic Approach Recognizing the relevance of assuming heteroscedasticity but trying to re-
duce computation time, we propose the following heuristic, relying on the number of evaluations of
the individual vertex NVs and the depth of the search path ds to the associated state s: σnV

= 1
ds·NVs

.
The basic ideas behind the heuristic are the following: the more often a vertex Vs is visited, the lower
the noise variance of the cumulative reward RT , especially as the samples are drawn non-iid, but in
favor of finding a high cumulative reward RT . Following the same rationale, the deeper the search
path ds to the associated state s, the higher the probability of being close to a terminal state. Even
though this approach is relatively simple and additionally leads to a vanishing noise variance σnV

for
a high depth and/or number of evaluations, instead of a constant value, experiments show promising
results. This approach will be called “Heuristic” in the experiments.

4

Published as a conference paper at ICLR 2024

Bayesian Approach In the spirit of the Bayesian background of GRAPH GPs in general, we fit
the individual vertices noise hyperparameter σnV

using conjugate priors. Conjugate priors are al-
gebraically convenient, allowing for an analytic expression of the posterior distribution for a given
likelihood. Assuming σnV

to be normally distributed, we apply a Normal-inverse gamma distri-
bution as conjugate prior. In preliminary tests, we found a disastrous behavior of this approach,
which could be fixed by changing the simulation step of the GUMTREES algorithm from random
action selection to best case action selection, meaning to simulate the trajectory leading to a positive
terminal state. In the experiments, this approach will be called “Bayesian”.

2.2 ROBUST ADAPTION OF ALGORITHM

Given the general idea of GUMTREES, it is easy to extend the algorithm to match our robustness
requirements, meaning to find the optimal action facing a finite set of possible oracles O. We define
the term optimal in a conservative way as being the action leading to the highest cumulative future
reward even under the worst-case assumed model, so a⋆ = argmaxa∈A minO∈O RT (s, a,O).

We leverage one of the advantages of COMBO: the simple augmentation of categorical variables
via subgraphs and add a fully connected subgraph where each vertex corresponds to one of the pos-
sible oracles. This generates an entire graph, where each vertex V corresponds to an action-oracle
tuple (a,O). Using the covariance function with a two-dimensional lengthscale hyperparameter
β = [βa, βo], where βa is associated with the actions and βo with the oracles, the GRAPH GPs
represent cumulative rewards RT (s, a,O) specifically for these parameters and a given state s. Ad-
vantageously, it can also learn the similarity of the models and actions via β: therefore, not all
combinations have to be visited to create a good prediction. Additionally, the selection step of
GUMTREES is adapted to match the multi-oracle setting: instead of only selecting an action via a
standard acquisition function, we take into account the robustness requirement and select an action
oracle tuple (a⋆, O⋆). Therefore, we use simple TS, meaning that we draw one sample R̂T (s, a,O)
from the predictive distributions at each vertex and select via a min-max criterion:

(a⋆, O⋆) = argmax
a∈A

argmin
O∈O

R̂T (s, a,O) . (1)

Alternatively, other robust acquisition functions, such as the variations by Bogunovic et al. (2018)
or Weichert & Kister (2020), could be used.

3 EXPERIMENTS

We benchmark our approach on a simple experimental setup against the COMBO algorithm and
MCTS: the frozen lake environment by Gymnasium (Towers et al., 2023). To compare the effi-
ciency of our algorithms, we limit the number of calls to the oracles O and analyze the reached
cumulative reward RT . We use 270 iterations for COMBO, which is the default and refers to
the maximum number of oracle calls being 270 times the mean problem-specific sequence length
T = 15, which allows for exploration. We show two metrics: the runtime of the individual algo-
rithms for training and application and their performance measured in terms of cumulative reward
RT when applying the resulting actions gained by the algorithms to the different environments. Due
to the high runtimes, especially of COMBO, we take a shortcut and directly evaluate an entire ac-
tion sequence instead of alternating between calculating the best action from the current state s and
applying it on an environment, leading to a new state s′. Therefore, we extract the best sequence
of actions from MCTS and GUMTREES instead of a single action, assuming that the search tree
built by the oracle indeed corresponds to the behavior of the environment. As we are mainly in-
terested in the robustness characteristics of GUMTREES, we use an experimental setup with two
oracles O = {O1, O2}. We train GUMTREES on both oracles simultaneously, while MCTS and
COMBO are trained on each oracle individually. We then apply the results separately to the oracles
so we can analyze the algorithms’ behavior when trained and applied with and without adversarial
oracles. Results for training on a single oracle O are given in appendix A.2.

Frozen Lake Experiment The frozen lake environment (Towers et al., 2023) is a simple environ-
ment where an agent has to find their way over a frozen lake with holes. There are 16 possible states
s, including the initial and the terminal ones, and 4 possible actions A = {a1, a2, a3, a4} indicat-
ing if the agent is moving up, down, left or right. There exist two versions of the environment: a

5

Published as a conference paper at ICLR 2024

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

Re
w

ar
d

(a) Training and testing on O1.

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

Re
w

ar
d

(b) Training on O1, testing on O2.

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

Re
w

ar
d

(c) Training and testing on O2.

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

Re
w

ar
d

(d) Training on O2, testing on O1.

Figure 2: Rewards for all algorithms for different combinations of oracles for training and testing.
GUMTREES always uses O = {O1, O2} for training. The horizontal line indicates the median.

non-slippery one O1 with deterministic actions, meaning that executing a specific action a from a
given state s leads to only one subsequent state s′. Alternatively, there is the slippery environment
O2, where the behavior of the actions is stochastic, meaning that stepping in a specific direction is
associated with a probability p̂ of moving in an orthogonal direction, e.g., if action a2, associated
with moving down is taken, there is a certain probability of instead moving left or right. We set p̂ to
the default of 0.3. Each action a is associated with an immediate reward rt = −0.1, falling into a
hole is associated with a reward rt = −1, and finding the positive terminal state is associated with
a reward rt = 10. In our version (please see figure 3 in appendix), there are two possible paths to
the terminal state where one entails more risk. The experiment’s goal is to test whether our robust
version of GUMTREES can find the less risky, lower path.

Figure 2 shows the performance results. While all algorithms perform well for the case of training
and testing on deterministic O1, MCTS and COMBO fail for training on O1 and testing on stochas-
tic O2 in most of the cases. This result is expected: while learning in O1 will return the less risky
path with a chance of 50%, its application may still lead to slipping in one of the holes, correspond-
ing to a negative terminal state. In contrast, GUMTREES seems to find the less risky path during
training on O = {O1, O2}, as the results for application on O2 indicate. The worse performance
of the Mean RT -version is due to its homoscedasticity assumption. Unfortunately, MCTS seldom
achieves the positive terminal state when training on stochastic O2, COMBO never. For COMBO,
this is due to the fact that it is not designed to work with stochastic oracles - an action sequence that
works during training may not work at application time. As COMBO does not revisit vertices, i.e.,
action sequences, the algorithm is unaware of that effect. For MCTS, there is one main reason for
its bad performance: the limitation of calls to the oracle. As the search tree becomes very broad, as
calling an action may lead to three different states, the number of visits in the later nodes becomes
small. Therefore, subsequent shares of the finally selected action sequence are unstable.

In table 1, we report the average computing time of the algorithm for the case of training and testing
on O1. As expected, the runtime of GUMTREES is between that of COMBO and MCTS. Similar
results for other combinations of oracles are given in appendix A.2.1.

4 CONCLUSION AND FUTURE WORK

We introduced GUMTREES, an algorithm for efficient and robust RL. It combines ideas from fast
MCTS with sample-efficient BO to find an algorithm that is also easily adapted to face the problem
of multi-oracle setups. In future work, we would like to further validate our approach using more
sophisticated real-life and large-scale experiments. Additionally, we like to adopt GUMTREES to

6

Published as a conference paper at ICLR 2024

Table 1: Average computation time per trial for testing on O1. Training on O1 for MCTS and
COMBO. Training of GUMTREES on {O1, O2}. We report the mean± standard deviation across
30 trials. All units are in seconds. Timing experiments was performed on 4 cores of a Intel(R)
Xeon(R) CPU E5-2667 v4.

MCTS COMBO GUMTREES,
Mean RT

GUMTREES,
Heuristic

GUMTREES,
Bayesian

0.53± 0.08 7228.57± 37.00 4977.59± 228.55 3909.31± 108.74 3805.17± 116.45

a more tree-like structure: instead of building on a set of graphs G that are associated with states s,
we like to associate the graphs with action sequences, similar to the tree in MCTS. We expect this
approach to enhance the scalability for large state-spaces, especially in stochastic settings.

AUTHOR CONTRIBUTIONS

Dorina Weichert developed the approach and the test setup. Additionally, she wrote the first draft of
the manuscript. Samuel Wiest implemented the approach and performed the experiments. Sebastian
Houben and Paul Ploeger helped with revising the manuscript.

ACKNOWLEDGMENTS

This research has been partly funded by the Federal Ministry of Education and Research of Germany
and the state of North Rhine-Westphalia as part of the Lamarr Institute for Machine Learning and
Artificial Intelligence, Sankt Augustin, Germany, and partly developed in the Fraunhofer Lighthouse
Project “SWAP”.

REFERENCES

I. Bogunovic, J. Scarlett, S. Jegelka, and V. Cevher. Adversarially robust optimization with gaussian
processes. In Advances in Neural Information Processing Systems, volume 31, 2018.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener, D. P.
Liebana, S. Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions Computational Intelligence and AI in Games, 4:1–43, 2012.

R. Garnett. Bayesian optimization. Cambridge University Press, 2023.

C. Oh, J. Tomczak, E. Gavves, and M. Welling. Combinatorial bayesian optimization using the
graph cartesian product. In Advances in Neural Information Processing Systems, volume 32,
2019.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT Press, 2006.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the Human Out of the
Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. de Cola, T. Deleu, M. Goulão, A. Kallinteris,
A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G.
Younis. Gymnasium, 2023.

D. Weichert and A. Kister. Bayesian optimization for min max optimization. In Workshop on Real
World Experiment Design and Active Learning at International Conference on Machine Learning,
2020.

7

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 ILLUSTRATION OF FROZEN LAKE PROBLEM

𝑠0

𝑠𝑇

Figure 3: Illustration of the used frozen lake problem. There are two optional paths from state s0 to
the terminal state sT , with the one through the upper right corner being less risky in the case of the
slippery model than the path through the lower left corner. s0: initial state, sT : terminal state.

A.2 USE OF GUMTREES ON A SINGLE ORACLE

The following shows the results for applying GUMTREES on a single oracle. We use the same
experiment as in the main paper; the only difference is that GUMTREES does not have access to
two oracles during training.

The runtimes, reported in table 2, change only slightly.

The performance results are given in figure 4. Overall, results become worse for all cases: the
possibility to call a slightly different model seems to help learning. Even though GUMTREES still
has a superior performance over MCTS and COMBO on mixed train-test settings, e.g., training on
O1 and testing on O2 and vice versa, its results are mixed for training and testing on the deterministic
environment. A hypothesis explaining this result lies in the heuristic behavior of the environment -
GPs usually require a certain amount of noise for a good fit - this is not provided for all actions a
leading to a terminal state. This idea is supported by the achieved median cumulative rewards, which
differ for all approaches; the Bayesian version has an advantage, as it combines our assumptions in
the prior with the data gained by exploration. We also find worse results for training on the stochastic
oracle O2 than training on two oracles. Here, the gain of a deterministic model to find an optimal
path is confirmed. Despite its disadvantages for purely deterministic applications, GUMTREES is
a good alternative for stochastic applications or those in which the exact environment is not known.

Table 2: Average computation time per trial of different algorithms for single-oracle training. We
report the mean ± standard deviation across 30 trials. All units are in seconds. Timing experiments
was performed on 4 cores of a Intel(R) Xeon(R) CPU E5-2667 v4.

Algorithm Train O1,
test O1

Train O1,
test O2

Train O2,
test O2

Train O2,
test O1

MCTS 0.53±0.08 0.58±0.11 0.52±0.13 0.51±0.11
COMBO 7228.57±37.00 7226.30±50.42 8634.10±1462.24 8408.63±1267.10
GUMTREES,
Mean RT

4212.26±153.76 4212.26±153.76 4864.00±249.58 4864.00±249.58

GUMTREES,
Heuristic 3124.76±26.14 3124.76±26.14 3640.41±114.07 3640.41±114.07

GUMTREES,
Bayesian 3183.55±39.91 3183.55±39.91 3823.08±249.58 3823.08±249.58

8

Published as a conference paper at ICLR 2024

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

R
ew

ar
d

(a) Training and testing on O1.

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

R
ew

ar
d

(b) Training on O1, testing on O2.

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

2

0

2

4

6

8

10

R
ew

ar
d

(c) Training and testing on O2.

MCTS COMBO GUMTREES,
 Mean RT

GUMTREES,
 Heuristic

GUMTREES,
 Bayesian

4

2

0

2

4

6

8

10

R
ew

ar
d

(d) Training on O2, testing on O1.

Figure 4: Rewards for nonrobust training of GUMTREES. The horizontal line indicates the median.

A.2.1 RUNTIME RESULTS FOR EXPERIMENT IN THE MAIN PAPER.

Table 3: Extended average computation time per trial of different algorithms for experiment in the
main paper. We report the mean ± standard deviation across 30 trials. All units are in seconds.
Timing experiments was performed on 4 cores of a Intel(R) Xeon(R) CPU E5-2667 v4.

Algorithm Train O1,
test O1

Train O1,
test O2

Train O2,
test O2

Train O2,
test O1

MCTS 0.53±0.08 0.58±0.11 0.52±0.13 0.51±0.11
COMBO 7228.57±37.00 7226.30±50.42 8634.10±1462.24 8408.63±1267.10
GUMTREES,
Mean RT

4977.59±228.55 4968.41±232.81 4968.41±232.81 4977.59±228.55

GUMTREES,
Heuristic 3909.31±108.74 3851.87±196.86 3851.87±196.86 3909.31±108.74

GUMTREES,
Bayesian 3805.17±116.45 3944.72±232.81 3944.72±232.81 3805.17±116.45

9

	Introduction
	COMBO Algorithm
	MCTS Algorithm

	GUMTREES Algorithm for Robust Sample-Efficient RL
	General Method
	Dealing with Multiple Evaluations of Vertices

	Robust Adaption of Algorithm

	Experiments
	Conclusion and Future Work
	Appendix
	Illustration of Frozen Lake Problem
	Use of GUMTREES on a Single Oracle
	Runtime Results for Experiment in the Main Paper.

