
Published as a conference paper at COLM 2025

Self-Evolving Critique Abilities in Large Language Models

Zhengyang Tang1,4∗ Ziniu Li1,2∗ Zhenyang Xiao1∗ Tian Ding2,3† Ruoyu Sun1,2,3

Benyou Wang1† Dayiheng Liu4† Fei Huang4 Tianyu Liu4 Bowen Yu4 Junyang Lin4

1The Chinese University of Hong Kong, Shenzhen
2Shenzhen Research Institute of Big Data
3Shenzhen International Center for Industrial and Applied Mathematics
4Qwen Team, Alibaba Inc.
dingtian@sribd.cn, wangbenyou@cuhk.edu.cn, liudayiheng.ldyh@alibaba-inc.com

Abstract

Despite their remarkable performance, Large Language Models (LLMs)
face a critical challenge: providing feedback for tasks where human evalu-
ation is difficult or where LLMs potentially outperform humans. In such
scenarios, leveraging the critique ability of LLMs themselves—identifying
and correcting flaws—shows considerable promise. This paper explores
enhancing critique abilities of LLMs, noting that current approaches rely
on human annotations or more powerful models, leaving the challenge
of improving critique abilities without external supervision unresolved. We
introduce SCRIT (Self-evolving CRITic), a framework that trains LLMs with
self-generated data to evolve their critique abilities. To address the low
quality of naively generated data, we propose a contrastive-critic approach
that uses reference solutions during data synthesis to enhance the model’s
understanding of key concepts, and incorporates a self-validation scheme to
ensure data quality. The final trained model operates without any reference
solutions at inference time. Implemented with Qwen2.5-72B-Instruct, a
leading LLM, SCRIT demonstrates consistent improvements across a wide
range of benchmarks spanning both mathematical and scientific reasoning:
achieving a 10.0% relative gain in critique-correction accuracy and a 19.0%
relative improvement in error identification F1-score. Our analysis reveals
that SCRIT’s performance scales positively with data and model size and
enables continuous improvement through multi-round iterations.

1 Introduction
Large Language Models (LLMs) (Achiam et al., 2023; Anthropic, 2024; Qwen-Team, 2024)
represent significant milestones in the development of artificial intelligence. They rely on
human supervision through methods such as Supervised Fine-Tuning (SFT) (Wei et al.,
2021; Li et al., 2025) and Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022; Bai et al., 2022; Li et al., 2024). As a result, these models have evolved at an un-
precedented pace, surpassing human capabilities in certain challenging domains. However,
this framework encounters a fundamental challenge: how to provide effective and scalable
feedback for LLMs in tasks that are not only difficult for humans to evaluate but where
LLMs may outperform humans. This challenge, known as scalable oversight (Bowman
et al., 2022), remains critical, yet progress in this area has been limited.

To address this challenge, leveraging LLMs for evaluation can help refine model out-
puts (Saunders et al., 2022; McAleese et al., 2024). Central to this approach is the critique
ability—identifying and correcting flaws in responses. Accurate critique feedback enables
LLMs to improve, advancing toward higher-order intelligence. Yet, studies show LLMs
underperform in critique tasks (Zheng et al., 2024b; Yang et al., 2024; Tang et al., 2025). Thus,
enhancing critique abilities is a key research problem, which this paper aims to tackle.

∗Equal contribution.
†Corresponding author.

1

Published as a conference paper at COLM 2025

Error
Overlooked

Misled
Correction

Wrong
Conclusion

Key Concepts & Solving
Strategies Found

Error Located & Correct
Suggestion

Accurate Correction &
Answer

Figure 1: Direct critic (baseline) v.s. contrastive critic (ours). Left panel: input materials
prepared for critique generation. Right panel: outputs from both approaches. The direct
critic exhibits ”rubber-stamping” behavior, incorrectly validating flawed solutions and
providing misled feedback. The contrastive critic, however, utilizes reference solutions to
grasp key concepts and strategies, enabling accurate error identification and correction.

Current approaches to improving the critique abilities of LLMs rely on two sources of
supervision: human annotations (Saunders et al., 2022; McAleese et al., 2024) and stronger
LLMs that serve as human proxy (e.g., GPT-4 and o1-mini) (Lan et al., 2024; Zhang et al., 2024;
Zheng et al., 2024b; Yang et al., 2024)). While these methods have shown promise, they face
three fundamental limitations. First, the quality of generated critiques is inherently bounded
by the capabilities of the supervisors. Second, the dependence on human annotations or
API calls to stronger models introduces significant costs, limiting the scalability of these
approaches. Most critically, these approaches fail to address a fundamental question in
scalable oversight: how can we enhance the critique abilities of our most capable models
when stronger supervisors are no longer available?

In this work, we introduce SCRIT (Self-evolving CRITic), a framework that enables LLMs to
develop self-evolving critique abilities in domains with verifiable solutions. We focus on
mathematical and scientific reasoning as ideal testbeds for this approach. A key insight
is that problems in these domains typically have well-defined reference solutions and
corresponding final answers. These resources, leveraged only during the data synthesis phase,
guide the critique of a student’s solution and help verify the quality of the generated critique.

Our framework has two key steps to generate high-quality critique data for self-training.
• First, we develop a contrastive critique technique, where the model is provided with a

reference solution to analyze and critique a student’s solution. This step is grounded
in our first philosophy: by conditioning on a correct reference solution first, the LLM
develops a comprehensive understanding of the relevant concepts and problem-solving
strategies, allowing it to accurately identify and address errors in student solutions. Our
evidence shows that without this reference point, the model tends to exhibit “rubber-
stamping” behavior—uncritically approving incorrect solutions and offering misleading
feedback (see Figure 1 for examples).

• Next, the LLM is tasked with self-validating the generated critique to improve the data
quality. Specifically, the model checks whether the proposed corrections lead to valid

2

Published as a conference paper at COLM 2025

solutions. This step is based on our second philosophy: critiques that result in internally
consistent and correct correction are considered high-quality, which has also been widely
adopted by recent works (Zheng et al., 2024b; Yang et al., 2024; Tang et al., 2025).

These two steps together enable the generation of high-quality critique data without human
supervisions in writing good critiques for student solutions. Finally, we leverage the
generated data to enhance the model’s critique abilities through self-training. We clarify that
while our framework requires reference solutions as input, it does not depend on ground
truth critiques themselves, thus remaining within the scalable oversight paradigm.

We use Qwen2.5-72B-Instruct (Qwen-Team, 2024), a leading 70B model, to implement
SCRIT. Our goal is to test whether our framework can further improve its performance.
It is important to note that this is a non-trivial task, as Qwen2.5-72B-Instruct has already
undergone extensive pre-training and post-training. Experiments show that SCRIT enables
substantial improvements across different evaluation protocols as shown in Tables 1 and 2.
• On critic and correction tasks from (Tang et al., 2025), spanning 8 mathematical reasoning

datasets across 3 scenarios, SCRIT consistently enhances the base Qwen2.5-72B-Instruct
model: improving from 39.7% to 50.0% on deliberately incorrect solutions, from 57.7% to
62.1% on balanced solutions, and from 61.7% to 62.9% on the base model’s self-generated
solutions, representing a 10.0% relative gain in critique-correction accuracy on average.

• For error identification tasks on PRM800K (Lightman et al., 2023) and Process-
Bench (Zheng et al., 2024a), two benchmarks with human-labeled error steps, SCRIT
achieves consistent improvements across all datasets, raising the average F1 score from
37.8% to 45.0%, a 19.0% relative improvement.

In addition to these advancements, we provide a systematic analysis, which will be elabo-
rated on in the main text. Our framework and methodology are detailed in the subsequent
sections. Due to space constraints, the related work is discussed in Appendix A.

2 SCRIT: Self-Evolving Critic
2.1 Problem Formulation and Overview

Let P denote a set of problems from a structured domain (e.g., mathematics, science), where
each problem p ∈ P is paired with an answer ap. For each problem p, we collect a set of
solutions Sp = {s1, s2, ..., sn} from different models, where each solution si consists of:

• A sequence of reasoning steps ri = [r1
i , r2

i , ..., rki
i], where ki is the number of steps

• A final answer asi

A critique c is defined as a tuple c = (e, l, t), where:

• e = [e1, e2, ..., ek] is a sequence of step-wise critiques, where each ei corresponds to the
analysis of step ri

• l = (y, j) is the conclusion, where y ∈ {0, 1} indicates solution correctness and j ∈
{−1} ∪ N denotes the first error step (j = −1 means no error)

• t is the correction, consisting of a sequence of corrected steps and a final answer at

Our objective is to learn a critique function fθ : P × S → C that maps a problem p and a
solution s to an effective critique c, where θ denotes the parameter to learn.

To achieve this objective, we propose SCRIT (Self-evolving CRITic), a framework that
systematically leverages the shared mathematical understanding across different solutions
to enable truly self-evolving critique abilities. SCRIT operates through a complete self-
evolving cycle: it takes a problem and solutions as input, generates critiques through
analyzing reference solutions, validates their quality, and uses the validated critiques for
self-training. This forms a complete self-evolving cycle without any external supervision.

2.2 Solution Collection

Dataset The first step in our framework is to collect a diverse set of solutions. We build our
collection process on the NuminaMath dataset (LI et al., 2024), a large-scale mathematical
problem dataset covering various topics from elementary mathematics to competition-level

3

Published as a conference paper at COLM 2025

problems. To ensure data quality, we develop a robust pipeline to compute reliable ground
truth answers (detailed in Appendix B), resulting in 452K validated problem-answer pairs.

Solution Generation Models To enhance the diversity of generated data, we gather so-
lutions from seven models: deepseek-math-7b-rl (Shao et al., 2024), mathstral-7B-v0.1
(Mistral-AI, 2024a), Mistral-Large-Instruct-2411 (Mistral-AI, 2024b), DeepSeek-V2-Chat-
0628 (DeepSeek-AI, 2024), Qwen2.5-Math-7B-Instruct (Qwen-Team, 2024), Qwen2.5-Math-
1.5B-Instruct (Qwen-Team, 2024), and Qwen2-Math-1.5B-Instruct (Qwen-Team, 2024). It is
important to note that the outputs from these models serve as inputs for the critic model,
with no external supervision involved in the critic’s learning process.

Data Filtering For each problem p ∈ P , we classify its collected solutions into correct
solutions S+

p and incorrect solutions S−
p based on answer correctness. A crucial filtering

criterion in our framework is that each problem must have at least one correct solution and
one incorrect solution to enable later contrastive critic. Formally, we only retain problems
that satisfy: Pvalid = {p ∈ P||S+

p | > 0 ∧ |S−
p | > 0}.

2.3 Self-Critic Generation
A key challenge in enabling effective critique generation is to ensure the model can iden-
tify and correct errors in complex mathematical reasoning, particularly when the problem
difficulty approaches or exceeds the model’s current capabilities. Our preliminary experi-
ments reveal that the model often exhibits “rubber-stamping behavior” - blindly approving
incorrect steps without genuine understanding of the mathematical concepts involved, as
illustrated in Figures 1 and 5. This also aligns with findings in (Huang et al., 2023).

We initially explored two approaches from previous works: (1) Direct Critic (Zheng
et al., 2024a), where a language model directly critiques a solution; and (2) Bug-Injection
Critic (McAleese et al., 2024), a two-stage approach of first injecting errors into a correct
solution and then ask the LLM to critic and correct it. However, both approaches showed
limited effectiveness (detailed in Section 4.3).

To address these issues, we develop a new technique called Contrastive Critic. Our key
insight stems from a fundamental property of mathematical reasoning: while problems may
have multiple valid solutions, they share the same underlying mathematical concepts and key solving
strategies. By explicitly providing a correct reference solution during critique generation,
we enable the model to first understand these core mathematical concepts and solving
strategies, then leverage this understanding to perform step-by-step critique of the target
solution. This approach addresses the rubber-stamping issue by grounding the critique
process in concrete mathematical understanding derived from correct references.

For each valid problem, we generate critiques using two solution pairing approaches:
• Correct-Incorrect Pairs. For each incorrect solution, we randomly select a correct reference

solution and generate a critique by comparing the incorrect solution against the reference.
• Correct-Correct Pairs. For each correct solution, we randomly select a different correct

solution as reference and generate a critique comparing the two.
Both pairing strategies promote diversity in the generated critiques, which we empirically
validate for effectiveness in subsequent experiments. The self-critic function (prompt
template in Appendix C) decomposes critique generation into four sequential stages. Stage
1 (Reference Analysis): Generate a reference analysis that captures key mathematical
concepts, critical solution steps, and potential pitfalls. Stage 2 (Step-wise Critique): For
each step in the solution, generate a critique by verifying mathematical and logical validity
using the reference analysis, identifying error type and suggesting corrections if found, and
stopping analysis upon first error detection. Stage 3 (Conclusion): Generate a conclusion
indicating both solution correctness (binary) and the first error step (if any). Stage 4
(Correction): Generate a correction by following the original approach up to the error step
(if any), then completing with proper correction.

2.4 Self-Validation

With self-generated critique data, we apply post-validation techniques to further enhance
the quality of generated outputs. This process specifically filters out low-quality cases where

4

Published as a conference paper at COLM 2025

gs
m8k

or
ca

_m
ath math

sy
nt

he
tic

_m
ath

cn
_k

12

am
c_

aim
e

sy
nt

he
tic

_a
mc

oly
mpia

ds

ao
ps

_fo
ru

m

Problem Domains

0

50K

100K

150K

200K

250K

N
um

be
r

of
 S

ol
ut

io
ns

Distribution across Problem Domains

0.0

0.2

0.4

0.6

0.8

1.0
91.8%

77.6%

64.6%
60.1%

46.9%

30.9% 30.0%
27.1%

22.1%

1 2 3 4 5 6 7
Number of Unique Answers

0

20K

40K

60K

80K

100K

120K

140K

Distribution across Unique Answers

0.0

0.2

0.4

0.6

0.8

1.0
91.7%

67.3%

46.5%

31.3%

22.5%
17.4% 15.5%

de
ep

se
ek

-m
ath

-7b
-rl

math
str

al-
7B

-v0
.1

Qwen
2-M

ath
-1.

5B
-In

str
uc

t

Qwen
2.5

-M
ath

-1.
5B

-In
str

uc
t

Dee
pS

ee
k-V

2-C
ha

t-0
62

8

Qwen
2.5

-M
ath

-7B
-In

str
uc

t

Mist
ra

l-L
ar

ge
-In

str
uc

t-2
41

1

Solution Models

0

20K

40K

60K

80K

100K

Distribution across Solution Models

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
R

at
e

57.4%
55.0% 52.6% 50.4% 50.2% 49.4% 48.9%

Initial Problem-Solution Pairs Validated Problem-Solution-Critique Triplets Validation Rate

Figure 2: Data statistics before and after self-critic and self-validation filtering.

the model blindly approves all intermediate steps, only to suddenly reject the final answer
upon detecting a discrepancy (see Appendix E).

To address these challenges, we employ direct validation on the correction part of the
critique. Formally, we have that:

vθ(c) =
{

1 if gl
θ(p, t) = (1,−1)

0 otherwise

where t is the correction part of critique c, and gl
θ (prompt template in Appendix C) denotes

direct critic’s conclusion generation function that outputs a tuple (y, j) as defined in Section
2.1. Here gl

θ(p, t) = (1,−1) indicates that Direct Critic validates the correction t as a fully
correct solution with no errors (y = 1, j = −1). This validation mechanism ensures that only
critiques leading to verifiably correct solutions are used for self-training.

2.5 Self-Training
Let V denote the set of validated solution-critique pairs across all problems: V = {(p, s, c)|
p ∈ Pvalid, s ∈ Sp, vθ(c) = 1}. For each validated triplet (p, s, c), we construct a training
instance. The input to the model consists of the problem p and the student solution s.
The target for fine-tuning consists of the critique components (e, l, t) from c. Crucially, the
reference solution used during data generation is not provided as input during training.
This ensures the model learns a general critique ability independent of reference solutions at
inference time. We then fine-tune Qwen2.5-72B-Instruct to minimize the cross-entropy loss.

3 Experiments
3.1 Statistics of SCRIT
We present detailed statistics of data flow through each component of our framework.

Solution Collection We start with 452K problem-answer pairs from our own NuminaMath
dataset (see Appendix B). For solution generation, we employ 7 models of varying capa-
bilities as described in Section 2.2. Each model generates one solution per problem, with
solutions classified as correct or incorrect based on their final answers using Qwen2.5-72B-
Instruct (detailed in Appendix I). Then we apply two filtering criteria: (a) Each problem
must have at least one correct and one incorrect solution to enable contrastive learning; (b)
Solutions from each model are capped at 50K for both correct and incorrect categories. After
filtering, we obtain 665K problem-solution pairs, evenly split between good solutions (332K)
and bad solutions (332K).

Self-Critic & Self-Validation To analyze the self-critic and self-validation step, we track the
data flow from the initial 665K problem-solution pairs through these steps. Out of these
pairs, 342K (51.4%) successfully pass the self-critic and self-validation step, yielding high-
quality problem-solution-critique triplets. Detailed analysis in Figure 2 reveals systematic
patterns: validation rates decrease from elementary domains (GSM8K: 91.8%, ORCA Math:
77.6%) to competition-level problems (Olympiads: 27.1%), show strong negative correlation
with problem complexity (91.7% for single-answer problems to 15.5% for seven-answer
problems), while remaining relatively consistent across solution models (48.9% to 57.4%).

5

Published as a conference paper at COLM 2025

Table 1: Performance comparison on Critic and Correct protocol.

Model RealCritic Avg.

ARC-C College
Math GPQA GSM8K MATH Minerva

Math
MMLU
STEM

Olympiad
Bench

Critic on deliberately incorrect solutions
Qwen2.5-72B-Instruct 80.6 27.6 16.3 79.5 51.1 15.7 27.4 19.5 39.7
+ SCRIT 86.7 32.6 25.3 88.3 66.0 23.4 50.7 27.0 50.0
o1-mini 74.9 34.8 26.3 88.6 78.0 23.8 45.5 40.8 51.6

Critic on balanced solutions
Qwen2.5-72B-Instruct 85.2 50.9 31.1 88.3 72.0 47.1 42.1 44.6 57.7
+ SCRIT 90.1 50.5 29.5 94.1 75.7 45.6 64.7 46.4 62.1
o1-mini 83.7 52.7 45.3 93.0 85.8 49.8 57.9 57.3 65.7

Critic on Qwen2.5-72B-Instruct’s own solution
Qwen2.5-72B-Instruct 93.5 45.9 32.6 96.7 83.6 38.3 59.6 43.4 61.7
+ SCRIT 91.3 45.9 35.3 96.7 82.5 38.7 67.5 45.3 62.9
o1-mini 93.9 47.0 36.8 96.7 89.9 40.2 68.5 53.6 65.8

This suggests our self-validation process is more sensitive to problem difficulty than to the
source model. Analysis of error positions in critiqued solutions (see Figure 16) reveals that a
majority of errors occur in earlier steps, aligning well with human-labeled error distributions
in ProcessBench (Zheng et al., 2024a). This correlation suggests that our self-critic framework
captures human-like error identification patterns.

Self-Training We maintain a balanced 1:1 ratio between correct and incorrect solutions,
resulting in 170K training examples. These balanced training data are used to fine-tune
Qwen2.5-72B-Instruct following Section 2.5 (complete training details in Appendix J).

Table 2: Performance comparison on Critic and Correct with Error Identification protocol.

Model PRM800K ProcessBench Avg.
GSM8K MATH Olympiad Bench OmniMath

Qwen2.5-72B-Instruct 23.7 68.9 50.9 25.5 20.0 37.8
+ SCRIT 24.6 80.2 60.0 32.5 27.8 45.0
o1-mini 34.0 88.0 81.1 53.0 38.6 58.9

3.2 Evaluation

We present two complementary evaluation protocols to assess critique capabilities:

Critic and Correct The first protocol evaluates a model’s ability to critic and correct a given
solution, following the assumption (Zheng et al., 2024b) that effective critiques should
guide the correction of errors. We conduct experiments on RealCritic (Tang et al., 2025),
which spans benchmarks from two key domains: Mathematical Reasoning (GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), College Math (Tang et al., 2024), Minerva
Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024)) and Scientific Reasoning
(ARC-C (Clark et al., 2018), GPQA (Rein et al., 2023), MMLU-STEM (Hendrycks et al., 2020)).
Evaluation is conducted across 3 scenarios: critic on incorrect solutions, balanced solutions,
and the base model’s self-generated solutions (i.e., Qwen2.5-72B-Instruct’s own solutions).

Critic and Correct with Error Identification The second protocol requires models to provide
accurate correction and identify the first error step. We evaluate on PRM800K (Lightman
et al., 2023)1 and ProcessBench (Zheng et al., 2024a), which contain human-labeled error
steps from advanced models across GSM8K, MATH, OlympiadBench, and Omni-Math.
Following ProcessBench, we use the F1 score of accuracies on incorrect and correct samples
as our metric, with two adaptations to ensure critique effectiveness (See Appendix G).

Baselines Since our goal is to improve Qwen2.5-72B-Instruct’s critique ability through self-
evolution, we use the original Qwen2.5-72B-Instruct as our primary baseline. Additionally,
we compare against o1-mini (OpenAI, 2024), currently one of the most capable models in
terms of critique ability (Zheng et al., 2024a).

1https://github.com/openai/prm800k/blob/main/prm800k/data/phase2 test.jsonl

6

https://github.com/openai/prm800k/blob/main/prm800k/data/phase2_test.jsonl

Published as a conference paper at COLM 2025

0
10

K
20

K
40

K
80

K
17

0K

Number of Training Examples (log scale)

48

50

52

54

56

58

C
C

-A
cc

53.0%

56.8%
57.3% 57.5% 57.6%

58.3%

53.0%

55.1% 54.9% 54.9% 54.9%

53.0%

50.4%
50.1% 50.3%

49.0%

Data Size Scaling

Contrastive
Direct
Bug-Injection

1.5
B 7B 72

B

Model Size (log scale)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

C
C

-A
cc

41.7%

51.2%

58.3%

Model Size Scaling

1 2 3
Round

58.2

58.4

58.6

58.8

59.0

59.2

C
C

-A
cc

58.3%

58.9%

59.1%

Multi-round Iteration

0
10

K
20

K
40

K
80

K
17

0K

Number of Training Examples (log scale)

32

34

36

38

40

42

44

EI
-F

1 37.8%

40.2%

42.0%

43.6%
43.2%

45.1%

37.8% 38.1%

39.8%

38.4% 38.7%

37.8%

31.9%

35.9%

34.6%

36.2%

Contrastive
Direct
Bug-Injection

1.5
B 7B 72

B

Model Size (log scale)

10

15

20

25

30

35

40

45

50

EI
-F

1

12.5%

29.9%

45.1%

1 2 3
Round

45.0

45.5

46.0

46.5

47.0

47.5

48.0

EI
-F

1

45.1%

46.7%

47.5%

Figure 3: Scaling and multi-round performance analysis. Left panel: Data size scaling of
Contrastive Critic, Direct Critic, and Bug-Injection Critic. Middle panel: Model size scaling
from 1.5B to 72B parameters. Right panel: Multi-round self-evolving over 3 iterations.

3.3 Main Results

Critic and Correct Table 1 presents results across three increasingly challenging scenarios.
SCRIT substantially improves over the base Qwen2.5-72B-Instruct model on deliberately
incorrect solutions (50.0% vs 39.7%), maintains a 4.4% advantage on balanced solutions, and
even improves when critiquing the base model’s own solutions (62.9% vs 61.7%). These
results represent a 10.0% relative gain in critique-correction accuracy across all scenarios,
approaching the performance of o1-mini.

Critic and Correct with Error Identification As shown in Table 2, SCRIT shows strong
capabilities in error identification, achieving consistent improvements across all datasets in
both PRM800K and ProcessBench. The average F1 score improves from 37.8% to 45.0% (a
19.0% relative improvement), with strong gains on mathematical reasoning tasks (GSM8K:
+11.3%, MATH: +9.1%). While there remains a gap with o1-mini, SCRIT’s improvements are
notable given its self-evolving nature without reliance on external supervision.

4 Analysis

Throughout this section, we report two metrics: critique-correction accuracy (CC-Acc)
from the Critic and Correct protocol, which is averaged across three scenarios, and error
identification F1-score (EI-F1) from the Critic and Correct with Error Identification protocol.

4.1 Generalization to Scientific Reasoning

A key question is whether SCRIT’s self-evolving mechanism, primarily trained on mathe-
matical data, can generalize to other complex reasoning domains. Our evaluation already
includes scientific reasoning benchmarks (ARC-C, GPQA, MMLU-STEM), where Table 1
shows consistent improvements, confirming cross-domain generalization.

To further investigate this, we conducted an additional experiment where we trained a
separate SCRIT model exclusively on 10K critique examples synthesized from scientific rea-
soning problems (from AM-Thinking-v1 (Ji et al., 2025)). As shown in Table 3, SCRIT trained
on scientific data yields even stronger performance on scientific benchmarks (+10.6% on
balanced solutions) while remaining competitive on math tasks. This not only demonstrates
the framework’s effectiveness beyond mathematics but also highlights its ability to capture
and leverage domain-specific error patterns.

7

Published as a conference paper at COLM 2025

Table 3: Cross-domain generalization. SCRIT trained on domain-specific data shows strong
in-domain performance and effective cross-domain transfer. CC-Acc is reported on balanced
solutions.

Model CC-Acc (Balanced) Overall Avg
Math Reasoning Scientific Reasoning

Qwen2.5-72B-Instruct 60.2 52.8 57.7
+ SCRIT (Math Data) 64.5 61.4 62.1
+ SCRIT (Scientific Data) 61.8 67.4 63.9

4.2 Scaling Behavior of SCRIT
We investigate SCRIT’s performance scaling with training data and model size (see Figure 3).

Data Size Scaling For data scaling experiments, we train SCRIT with different amounts
of training examples, ranging from 10K to 170K. Both CC-Acc and EI-F1 show consistent
improvements with increased training data. The CC-Acc improves from 53.0% to 58.3%,
with the steepest gains in the early stage (0-20K examples) and continued but more gradual
improvements afterwards. Similarly, EI-F1 increases from 37.8% to 45.1%, demonstrating
that SCRIT can effectively leverage more training data to evolve its critique capabilities.

Model Size Scaling We evaluate SCRIT across three model sizes of Qwen2.5: 1.5B, 7B, and
72B. Both metrics show strong positive correlation with model scale. The CC-Acc increases
substantially from 41.7% (1.5B) to 51.2% (7B) and further to 58.3% (72B). The improvement
is more pronounced for EI-F1, where metric rises from 12.5% to 29.9% and then to 45.1%,
suggesting that larger models are particularly better at error identification.

To further verify that SCRIT is not only beneficial for large models, we applied the frame-
work to a mid-sized model, Qwen2.5-32B-Instruct. SCRIT improved its performance mean-
ingfully, with CC-Acc increasing from 53.9% to 56.5% and EI-F1 from 35.8% to 41.5%. This
shows that the self-evolving mechanism is robust and effective across different model scales.

4.3 Which Critic Mechanism is Most Effective?

To identify the most effective critic mechanism for our self-evolving framework, we conduct
strictly controlled experiments comparing three different critic approaches described in
Section 2.3 using identical sets of problems and solutions.

Our experiments in Figure 3 reveal several key findings. First, Contrastive Critic shows
strong performance from the early stages across both metrics: with just 10K training ex-
amples, it achieves 56.8% CC-Acc and 40.2% EI-F1, outperforming both Direct Critic and
Bug-Injection Critic. More importantly, as training data increases to 170K examples, Con-
trastive Critic continues to show positive scaling behavior, reaching 58.3% CC-Acc and
45.1% EI-F1. In contrast, Direct Critic quickly plateaus at around 55.1% CC-Acc and 38.7%
EI-F1, while Bug-Injection Critic exhibits performance degradation in CC-Acc (dropping to
49.0%) and unstable performance in EI-F1).

Through case studies (detailed in Appendices D and F), we identify the key mechanisms
behind these performance differences. Direct Critic often falls into superficial critiquing,
tending to blindly agree with solutions without deep understanding. Contrastive Critic
avoids this pitfall by first analyzing reference solutions, enabling the model to develop a
deeper understanding of the underlying mathematical concepts and solution strategies
before attempting critique. While Bug-Injection Critic has the theoretical advantage of
known error descriptions, our analysis reveals that model-injected bugs tend to be simplistic
and repetitive, predominantly focusing on basic arithmetic errors and variable confusions,
limiting its effectiveness in real-world scenarios where errors are more diverse and subtle.

4.4 Does Multi-round Iteration Foster Improvement?
A unique advantage of SCRIT is its ability to support multi-round self-evolution. After col-
lecting the initial solutions, we can iteratively apply the self-critic generation, self-validation,
and self-training steps to continuously improve the model’s critique abilities. Specifically,

8

Published as a conference paper at COLM 2025

Table 4: Controlled ablation studies on SCRIT. Each experiment varies only the target
component while keeping all other settings fixed at baseline: 10K training examples with
contrastive critic and self-validation, diverse domains, all solution models, and balanced
solution ratio. Red/green numbers indicate the relative performance decrease/increase.

Setting CC-Acc EI-F1

Baseline 56.8 40.2

Self-Validation
Without Self-Validation 56.0 (-0.8) 37.2 (-3.0)

Problem Domain
Limited to GSM8K + MATH 55.4 (-1.4) 38.8 (-1.4)

Problem Difficulty
More Unique Answers First 55.8 (-1.0) 38.1 (-2.1)
Less Unique Answers First 56.2 (-0.6) 42.3 (+2.1)

Single Solution Model
deepseek-math-7b-rl 56.5 (-0.3) 39.8 (-0.4)
mathstral-7B-v0.1 56.0 (-0.8) 39.2 (-1.0)
Mistral-Large-Instruct 56.3 (-0.5) 40.3 (+0.1)
DeepSeek-V2-Chat 56.3 (-0.5) 40.0 (-0.2)
Qwen2.5-Math-7B 56.2 (-0.6) 40.7 (+0.5)
Qwen2.5-Math-1.5B 56.2 (-0.6) 40.9 (+0.7)
Qwen2-Math-1.5B 55.9 (-0.9) 40.9 (+0.7)

Good:Bad Solution Ratio
0.75:0.25 55.1 (-1.7) 38.1 (-2.1)
0.25:0.75 56.6 (-0.2) 41.0 (+0.8)

we conduct experiments with three rounds of iterations. Starting with Qwen2.5-72B-Instruct
as the base model, we apply SCRIT to obtain an enhanced model with improved critique
capabilities. As shown in Figure 3, using this enhanced model as the new base for Round 2,
we observe further improvements in both metrics. Continuing with the Round 2 model for
the third iteration, we achieve additional gains.

The performance demonstrates consistent positive scaling across both metrics through
multiple rounds of iteration. This sustained improvement suggests that SCRIT can effec-
tively leverage its own enhanced critique capabilities to generate increasingly higher-quality
training data, enabling genuine self-evolution without external supervision.

4.5 How Important is Self-Validation?

To assess the necessity of self-validation in SCRIT, we conduct controlled experiments by
removing the self-validation component while keeping all other settings identical. The
results in Table 4 show clear performance degradation across both evaluation metrics: the
CC-Acc drops by 0.8%, and more significantly, the EI-F1 decreases by 3.0%. Case analysis
(see Appendix E) shows that the self-critic may still generate low-quality critiques, often
blindly approving all intermediate steps only to suddenly claim ”the final step is incorrect”
when encountering answer discrepancies. By incorporating self-validation, we are able to
further enhance the quality of data for self-training.

4.6 Does Problem Domain Diversity Matter?

To investigate the importance of problem domain diversity, we conduct controlled exper-
iments by restricting the training data to only GSM8K and MATH, while keeping other
settings unchanged. This represents a significant reduction in domain coverage compared
to our full setting which spans 9 sources ranging from elementary to competition-level
mathematics. The results in Table 4 show the value of domain diversity: when training with
limited domains, the CC-Acc drops by 1.4% and the EI-F1 decreases by 1.4%. It suggests
that exposure to diverse problem-solving patterns and error types is crucial for developing
robust critique abilities.

9

Published as a conference paper at COLM 2025

4.7 How Does Problem Difficulty Impact Performance?

To understand the impact of problem difficulty, we conduct experiments by selecting training
examples based on the number of unique answers generated across solution models - a proxy
for problem complexity. We study two settings: training with problems that have more
unique answers (indicating higher complexity) versus those with fewer unique answers
(indicating lower complexity). Interestingly, training with less complex problems leads to
better performance in EI-F1 in Table 4. This result suggests that SCRIT can generate more
effective critiques on simpler problems, possibly because the mathematical concepts and
solution strategies in these problems are more structured and well-defined, enabling the
model to develop more precise and reliable critique patterns.

This finding leaves space for future work: how to optimally select training examples
based on difficulty levels in a self-evolving framework. While our current approach uses all
available data, a more sophisticated curriculum that gradually increases problem complexity
might lead to more effective self-evolution.

4.8 Does the Choice of Solution Model Matter?

To study whether critiquing solutions from different models affects SCRIT’s performance,
we conduct controlled experiments by restricting the solutions being critiqued to those from
a single model while keeping other settings identical. Our results in Table 4 show that the
source model of solutions has limited impact on SCRIT’s final performance.

Since solution generation models only provide the solutions for constructing contrastive
critique pairs and do not directly participate in improving critique effectiveness, their
individual capabilities have less influence on the final performance. What matters more
is how to construct diverse and informative contrastive pairs that help the model learn
effective critique strategies, regardless of the solution models.

4.9 Optimal Ratio between Good and Bad Solutions?

Finally, we investigate the impact of good-to-bad solution ratio in the training data. As
shown in Table 4, training with a higher proportion of bad solutions (0.25:0.75) shows better
performance than using more good solutions (0.75:0.25). This suggests that exposure to more
bad solutions helps SCRIT develop stronger error identification capabilities, likely because
it provides more diverse examples of mathematical mistakes and their corresponding
corrections. More importantly, analyzing incorrect solutions forces the model to actively
engage in error detection and correction, rather than simply validating correct steps.

5 Conclusion
In this work, we present SCRIT, a self-evolving critique framework that enhances critique-
correction accuracy and error detection in domains with verifiable solutions. By leveraging
a contrastive-critic mechanism during data synthesis, SCRIT improves its capabilities with-
out external supervision. Our experiments, spanning both mathematical and scientific
reasoning, demonstrate that SCRIT scales with data and model size, shows strong cross-
domain generalization, and benefits from self-validation. Future work could consider using
SCRIT’s high-quality critiques to label reasoning steps and optimize student models via
reinforcement learning (e.g., (Saunders et al., 2022; McAleese et al., 2024)), or extending the
framework to other structured domains like coding and logic.

Acknowledgments

The work of Tian Ding is supported by Hetao Shenzhen-Hong Kong Science and Technology
Innovation Cooperation Zone Project (No.HZQSWS-KCCYB-2024016). The work of Ruoyu
Sun is supported by NSFC (No. 12326608); Hetao Shenzhen-Hong Kong Science and Tech-
nology Innovation Cooperation Zone Project (No.HZQSWS-KCCYB-2024016); University
Development Fund UDF01001491, the Chinese University of Hong Kong, Shenzhen; Guang-
dong Provincial Key Laboratory of Mathematical Foundations for Artificial Intelligence
(2023B1212010001). The work of Benyou Wang is supported by Shenzhen Doctoral Startup
Funding (RCBS20221008093330065), Tianyuan Fund for Mathematics of National Natural

10

Published as a conference paper at COLM 2025

Science Foundation of China (NSFC) (12326608), Shenzhen Science and Technology Program
(Shenzhen Key Laboratory Grant No. ZDSYS20230626091302006), and Shenzhen Stability
Science Program 2023, Shenzhen Key Lab of Multi-Modal Cognitive Computing.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model Card Claude 3.pdf.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner,
Kamilė Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress
on scalable oversight for large language models. arXiv preprint arXiv:2211.03540, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem
solving. arXiv preprint arXiv:2309.17452, 2023.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging bench-
mark for promoting agi with olympiad-level bilingual multimodal scientific problems.
arXiv preprint arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. arXiv preprint arXiv:2103.03874, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798, 2023.

Yunjie Ji, Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yiping Peng, Han Zhao,
and Xiangang Li. Am-thinking-v1: Advancing the frontier of reasoning at 32b scale, 2025.
URL https://arxiv.org/abs/2505.08311.

Tian Lan, Wenwei Zhang, Chengqi Lyu, Shuaibin Li, Chen Xu, Heyan Huang, Dahua Lin,
Xian-Ling Mao, and Kai Chen. Training language models to critique with multi-agent
feedback. arXiv preprint arXiv:2410.15287, 2024.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2505.08311

Published as a conference paper at COLM 2025

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al.
Solving quantitative reasoning problems with language models. Advances in Neural
Information Processing Systems, 35:3843–3857, 2022.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin
Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Nu-
minamath. [https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina dataset.pdf), 2024.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo.
Remax: A simple, effective, and efficient reinforcement learning method for aligning large
language models. In Forty-first International Conference on Machine Learning, 2024.

Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Zhi-Quan Luo, and Ruoyu Sun.
Preserving diversity in supervised fine-tuning of large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=NQEe7B7bSw.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv
preprint arXiv:2305.20050, 2023.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja
Trebacz, and Jan Leike. Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215,
2024.

Mistral-AI. Mathstral, July 2024a. URL https://mistral.ai/news/mathstral/.

Mistral-AI. Mistral-large-2407, July 2024b. URL https://mistral.ai/news/
mistral-large-2407/.

OpenAI. Learning to reason with LLMs. OpenAI Blog, Feb 2024. https://openai.com/
index/learning-to-reason-with-llms.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems 35, pp. 27730–27744, 2022.

Qwen-Team. Qwen2.5: A party of foundation models, September 2024. URL https:
//qwenlm.github.io/blog/qwen2.5/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang,
Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-
proof q&a benchmark. arXiv preprint arXiv:2311.12022, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward,
and Jan Leike. Self-critiquing models for assisting human evaluators. arXiv preprint
arXiv:2206.05802, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling
instruction tuning for mathematical reasoning. arXiv preprint arXiv:2403.02884, 2024.

Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding, Ruoyu Sun, Benyou Wang, Dayiheng
Liu, Fei Huang, Tianyu Liu, Bowen Yu, et al. Realcritic: Towards effectiveness-driven
evaluation of language model critiques. arXiv preprint arXiv:2501.14492, 2025.

12

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=NQEe7B7bSw
https://openreview.net/forum?id=NQEe7B7bSw
https://mistral.ai/news/mathstral/
https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-large-2407/
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Published as a conference paper at COLM 2025

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh
Hajishirzi. How far can camels go? exploring the state of instruction tuning on open
resources, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners.
arXiv preprint arXiv:2109.01652, 2021.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin Cui, and
Shuicheng Yan. Supercorrect: Supervising and correcting language models with error-
driven insights. arXiv preprint arXiv:2410.09008, 2024.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evalu-
ating the performance of large language models on gaokao benchmark. arXiv preprint
arXiv:2305.12474, 2023.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayi-
heng Liu, Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in
mathematical reasoning. arXiv preprint arXiv:2412.06559, 2024a.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji, Hongyu Lin, Yaojie Lu, Xianpei Han,
Debing Zhang, and Le Sun. Critic-cot: Boosting the reasoning abilities of large language
model via chain-of-thoughts critic. arXiv preprint arXiv:2408.16326, 2024b.

A Related Work

Scalable Oversight and Critic Models The challenge of providing effective feedback to
language models on tasks difficult for humans to evaluate has attracted significant research
attention. Early work by (Saunders et al., 2022) proposed fine-tuning LLMs to generate
natural language critiques, introducing key components including critique generation,
discrimination, and correction. Building on this direction, CriticGPT (McAleese et al., 2024)
applied similar principles to code review tasks, incorporating RLHF and specialized human
supervision through a “Tampering” step. These works established the importance of critique
ability in enabling scalable oversight of language models.

Sources of Critique Supervision Existing approaches to developing critique abilities primar-
ily rely on two types of supervision sources. The first category uses human supervision, as
demonstrated in (Saunders et al., 2022) through direct human annotation and in (McAleese
et al., 2024) through human-injected errors. The second category employs strong model
supervision, exemplified by MultiCritique (Lan et al., 2024), which utilizes feedback from
advanced models like GPT-4 to generate critiques for fine-tuning smaller models. Recent
work GenRM (Zhang et al., 2024) proposes Chain-of-Thought Verifiers that generate step-
wise critiques for mathematical reasoning, though still relying on human or stronger model
supervision. While these approaches have shown promise, they are fundamentally lim-
ited by either the capabilities of their supervisors or the substantial costs associated with
obtaining supervision.

Critic and Correct An important challenge in developing critique systems is how to evaluate
the quality of critiques themselves, as directly measuring critique effectiveness is often as
difficult as the original task. A key insight that has emerged in recent work is that truly
effective critiques should be able to guide the correction of errors and lead to correct answers.
This assumption provides a validation mechanism for critique quality and has been widely
adopted in the field. For instance, Critic-CoT (Zheng et al., 2024b) combines step-wise
critique generation with correction validation using GPT4-Turbo. Similarly, SuperCorrect
(Yang et al., 2024) collects critique and corrections from teacher models like o1-mini. These

13

Published as a conference paper at COLM 2025

works show the value of using correction as an objective mechanism to verify critique
quality, though they still rely on stronger models for supervision.

In contrast to existing approaches that rely on either human annotations or stronger models
for supervision, our work introduces SCRIT, a framework that enables self-evolution of
critique abilities. By analyzing correct reference solutions to understand key mathematical
concepts and strategies, then validating critiques through correction outcomes, our approach
creates a closed-loop learning system that can improve its critique capabilities without
external supervision.

B Computing Ground Truth Answers for NuminaMath

A large-scale dataset with reliable ground truth answers is fundamental to our work. We
choose NuminaMath (LI et al., 2024) for its diversity, difficulty distribution, and scale (860K
problems). However, as the correctness of solutions in the original dataset is not guaranteed,
we develop a robust pipeline to compute reliable ground truth answers.

B.1 Answer Generation and Validation Pipeline

We employ Qwen2.5-Math-72B-Instruct (Qwen-Team, 2024) under tool-integrated (Gou
et al., 2023) settings to generate solutions, as it demonstrates state-of-the-art performance
across multiple mathematical reasoning benchmarks. The solutions are then evaluated using
Qwen2.5-Math-RM-72B (Qwen-Team, 2024), a specialized reward model for mathematical
reasoning. We consider a solution correct if its reward score exceeds a predefined threshold,
and use its final answer as the ground truth.

B.2 Threshold Selection and Validation

To determine an appropriate reward threshold, we conduct extensive experiments:

• Benchmark Validation: We evaluate the threshold’s effectiveness across multiple
standard benchmarks including GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), GAOKAO2023-EN (Zhang et al., 2023), OlympiadBench (He et al.,
2024), and College Math (Tang et al., 2024). With a threshold of 1.0, we achieve
approximately 75% accuracy.

• Human Evaluation: We randomly sample 100 NuminaMath problems and conduct
human evaluation of the answers selected using our threshold. The results show
approximately 85% accuracy.

• Comparison with Alternative Methods: We explore majority voting among solu-
tions from NuminaMath, Qwen2.5-Math-72B-Instruct, and Deepseek-V2-Chat-0628.
However, this approach yields lower accuracy compared to our reward-based
selection method.

After applying our pipeline with the validated threshold, we obtain a filtered dataset of
452K problem-answer pairs, which serves as the foundation for our work.

C Prompting Templates for Direct Critic, Bug-Injection Critic and
Contrastive Critic

Here we present system prompts used for different critic mechanisms in Figure 4.

14

Published as a conference paper at COLM 2025

Figure 4: System prompts used for different critic mechanisms. Top Left: Direct Critic
directly analyzes solution correctness without any additional context. Bottom Left: Bug-
Injection Critic first injects bugs (Step 1) then direct critic on bug-injected solution (Step 2).
Right: Contrastive Critic first analyzes a reference solution to understand key mathematical
concepts before conducting step-wise critique.

D More Comparison between Direct Critic and Contrastive Critic

Error
Overlooked

Misled
Correction

Wrong
Conclusion

Key Concepts & Solving
Strategies Found

Error Located & Correct
Suggestion

Accurate Correction &
Answer

Figure 5: Comparison between Direct Critic and Contrastive Critic. Direct Critic shows blind
approval of the student solution, failing to identify any errors and providing misleading
approval. In contrast, Contrastive Critic first analyzes the reference solution to understand
key mathematical concepts, enabling it to precisely locate the error in the student solution.
By developing understanding of the underlying mathematical concepts, Contrastive Critic
successfully generate an effective critique that guides the correction process to reach the
correct final answer.

15

Published as a conference paper at COLM 2025

E Self-Validation Cases

We present two cases demonstrating the effectiveness of our Self-Validation mechanism in
filtering critiques based on Self-Critic’s correction in Figures 6 and 7.

First Error Step

Even with Contrastive Critic, it
fails to identify the first error

The ineffective critic finally
leads to a wrong and conflict
final answer

Self-Validation on the correction
part of Self-Critic output

successfully notices the wrong
and conflict part in correction,

and rejects the ineffective critic
for Self-Training.

Figure 6: Case1: Self-Validation rejects an ineffective critic: Despite having access to a
reference solution and using contrastive learning, the critic fails to identify Step 12 as the first
error in solving a trigonometric equation. The subsequent correction leads to a conflicting
final answer. The self-validation mechanism successfully detects this inconsistency and
rejects this ineffective critique from the training data.

First Error Step Self-Validation on the correction
part of Self-Critic output also

successfully accepts the
effective critic for Self-Training.

Self-Critic effectively identify
the first error

An effective critic successfully leads
to a correct final answer, showing

genuine understanding of reasoning
process

Figure 7: Case2: Self-Validation accepts an effective critic: An example of effective critique
that correctly identifies Step 3 as the error point where continuity requirements are mishan-
dled. The correction follows logical mathematical reasoning and arrives at the correct final
answer, which is then verified and accepted by the self-validation mechanism for training.

F Bug-Injection Case Study

Here we show examples of oversimplified bugs injected by Bug-Injection Critic. These
examples illustrate how Bug-Injection Critic tends to generate overly simplistic errors (e.g.,
misunderstanding basic math properties, variable confusion) rather than more sophisticated
mathematical reasoning errors that typically occur in complex problem-solving.

16

Published as a conference paper at COLM 2025

Simple Conceptual Bug

Figure 8: An example of oversimplified bugs injected by Bug-Injection Critic: A conceptual
bug involving basic misunderstanding of absolute value property.

Simple Variable
Confusion Bug

Figure 9: An example of oversimplified bugs injected by Bug-Injection Critic: A variable
confusion bug where the wrong price range is used.

G Adaptations to ProcessBench’s Evaluation Protocol

In evaluating models’ error identification capabilities, we make two adaptations to Pro-
cessBench’s original evaluation protocol. These modifications are designed to ensure that
models demonstrate genuine understanding of mathematical errors rather than superficial
critique.

G.1 Requiring Effective Correction

Our first adaptation stems from the core assumption behind critic and correct tasks: a truly
effective critique should not only identify errors but also guide their correction towards an
correct answer. Through extensive case studies, we found that models can sometimes cor-
rectly identify the error step (matching human annotations) without actually understanding
the mathematical mistake. As shown in Figures 10 to 12, these cases highlight that merely

17

Published as a conference paper at COLM 2025

matching human-labeled error steps is insufficient for ensuring genuine understanding of
mathematical errors.

 Correct Conceptual
Mapping Overlooked

Though Matching Labeled
Error Step

Ineffective Critique Leads to
Wrong Answer

Figure 10: Although the critic correctly identifies Step 2 as the error step (matching human
annotation), it fails to understand the underlying mathematical concept of graph theory,
leading to an incorrect correction of 22 handshakes instead of the true answer 12.

Ineffective Critic

Ineffective Critique Leads to
Wrong Answer

Conflicted with Critic above,
though Matching Labeled

Step

Figure 11: Despite matching the human-labeled error step (Step 4), the critic provides con-
flicting feedback and fails to recognize the fundamental issue in applying the Pythagorean
theorem with perpendicular medians, leading to an incorrect solution.

18

Published as a conference paper at COLM 2025

Error Located

The Error Step is Wrong, though
Matching Labeled Step

Ineffective Critique Leads to
Wrong Answer

Figure 12: The critic matches Step 3 as problematic but misunderstands the key issue in
finite geometric series calculation, resulting in an incorrect final value of 2047/2048.

Therefore, we augment ProcessBench’s protocol by requiring that models must not only
identify the correct error step but also provide correction that leads to a mathematically
valid solution. This stricter requirement helps ensure that models demonstrate genuine
understanding of the mathematical concepts and errors involved.

G.2 Allowing Step-Level Flexibility

Our second adaptation addresses an inherent ambiguity in error identification: in many
cases, mathematical errors can reasonably be attributed to multiple consecutive steps.
Through our analysis, we found numerous instances where the exact ”error step” is de-
batable, with both the preceding and following steps being valid points of identification.
As shown in Figures 13 to 15, these cases illustrate how mathematical errors often span
multiple steps, making strict step-level matching overly rigid for meaningful evaluation..

Error Partially Located

Accurate Correction &
Answer

One Step
Missed With

Labeled Error

Figure 13: In this cherry-and-cheese danishes problem, while the human annotator labels
Step 4 as the error, the true conceptual error begins in Step 5 where the student miscalculates
the solution. The model still achieves correct final answer despite identifying a different
step.

19

Published as a conference paper at COLM 2025

Error Correctly Located

Accurate Correction &
Answer

One Step
Missed With

Labeled Error

Figure 14: In this probability problem, while the annotator marks Step 2 as the error, the
fundamental misconception in Step 1 (overcounting combinations) directly leads to the final
incorrect probability.

Error Partially Located Due
to Poor Step Segmentation

Accurate Correction &
Answer

One Step
Missed With

Labeled Error

Figure 15: In this remainder calculation problem, the error could be attributed to either Step
3 (pattern identification) or Step 4 (pattern application), as they form a continuous chain of
incorrect reasoning.

To account for this ambiguity, we introduce a ±1 step tolerance in matching model predic-
tions with human annotations. This modification better reflects the reality of mathematical
error analysis while still maintaining rigor in evaluation.

These adaptations result in a more meaningful evaluation protocol that better captures
models’ true understanding of mathematical errors and their ability to guide effective
corrections.

20

Published as a conference paper at COLM 2025

1 3 5 7 9 11 13 15

Error Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

Distribution of Error Positions

orca_math
synthetic_amc
cn_k12
synthetic_math
olympiads
aops_forum
amc_aime
gsm8k
math

Figure 16: Distribution of first error positions identified by our self-critic across different
mathematical domains.

H Distribution of First Error Step identified by Self-Critic

I Classify Solutions into Correct and Incorrect

Again we use Qwen2.5-72B-Instruct itself to classify solutions into correct and incorrect
ones. We present the system prompt in the following Figure 17:

Figure 17: System Prompt to classify solutions into correct and incorrect ones.

J Self-Training Details

Here we present the detailed configuration for self-training of Qwen2.5-72B-Instruct. We
utilize open-instruct (Wang et al., 2023) for our continued supervised fine-tuning implemen-
tation. The training was conducted on 4 servers, each equipped with 8 NVIDIA A100 GPUs
(32 GPUs in total), with a total training time of several hours2.

The key hyper-parameters for training are as follows:

• Batch size: 256
2The exact training time may vary depending on the specific hardware configuration and system

load.

21

Published as a conference paper at COLM 2025

• Learning rate: 5e-6
• Number of training epochs: 1
• Warmup ratio: 0.03
• Model parallel size: 8
• Total GPUs: 32 (4 servers × 8 A100 GPUs)

For reproducibility, we use gradient checkpointing and mixed-precision training (FP16) to
optimize memory usage. The training was performed using DeepSpeed ZeRO-3 for efficient
distributed training.

22

	Introduction
	SCRIT: Self-Evolving Critic
	Problem Formulation and Overview
	Solution Collection
	Self-Critic Generation
	Self-Validation
	Self-Training

	Experiments
	Statistics of SCRIT
	Evaluation
	Main Results

	Analysis
	Generalization to Scientific Reasoning
	Scaling Behavior of SCRIT
	Which Critic Mechanism is Most Effective?
	Does Multi-round Iteration Foster Improvement?
	How Important is Self-Validation?
	Does Problem Domain Diversity Matter?
	How Does Problem Difficulty Impact Performance?
	Does the Choice of Solution Model Matter?
	Optimal Ratio between Good and Bad Solutions?

	Conclusion
	Related Work
	Computing Ground Truth Answers for NuminaMath
	Answer Generation and Validation Pipeline
	Threshold Selection and Validation

	Prompting Templates for Direct Critic, Bug-Injection Critic and Contrastive Critic
	More Comparison between Direct Critic and Contrastive Critic
	Self-Validation Cases
	Bug-Injection Case Study
	Adaptations to ProcessBench's Evaluation Protocol
	Requiring Effective Correction
	Allowing Step-Level Flexibility

	Distribution of First Error Step identified by Self-Critic
	Classify Solutions into Correct and Incorrect
	Self-Training Details

