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Abstract

Joint modelling of mean-covariance structure is an important topic in clustered data
analysis. Existing methods, such as those based on modified Cholesky decomposition
(MCD), alternative Cholesky decomposition (ACD) and hyperspherical coordinates de-
composition (HPC), have two main restrictions. First, they often assume that responses
in the same cluster are naturally ordered, for example, by time in longitudinal studies.
Second, the existing methods model transformed parameters, for instance, the gener-
alized autoregressive parameters and innovation variances in MCD/ACD, and the hy-
perspherical coordinates in HPC, making the dependence of correlation coefficients or
variances on covariates hardly understandable. As an alternative, a data-driven method
that models directly the mean, variances and correlation coefficients for clustered data
is proposed. Comparing to the existing methods, the proposed approach not only has
no need of natural order in responses but also works on original correlation coefficients
and variances. The proposed models are flexible and interpretable, and the parameter
estimators in joint generalized estimating equations (GEE) are shown to be consistent
and asymptotically normally distributed. Consistent model selection criteria in spirit
of quasi-likelihood under independence model criterion (QIC) are considered. The use
of the proposed approach is demonstrated by intensive simulation studies and real data
analysis.
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1. Introduction

Clustered data arise frequently in many fields including public health, geographical
sciences, economics and biological sciences. A common type of clustered data is longitu-
dinal data, which consists of repeated measurements on individuals over time. A typical
and popular approach to model clustered data is generalized estimating equations (GEE)
proposed by Liang and Zeger (1986). GEE has an attractive advantage that the result-
ing mean parameter estimators are consistent even if the working correlation structure
is misspecified (Liang and Zeger, 1986). However, efficiency loss of the estimated mean
parameters may arise when variance is misspecified (Wang and Carey, 2003) or within-
cluster correlation structure is not correctly identified (Diggle et al., 2002). Furthermore,
missing values even make the mean parameter estimators biased when the working covari-
ance matrix structure is misspecified (Daniels and Zhao, 2003). Therefore, it is necessary
to have an accurate covariance estimator for reliable statistical inference.

In GEE, variance is assumed to be a known function of mean multiplied by an overdis-
persion parameter. The overdispersion and correlation are then estimated by residual
moments methods (Liang and Zeger, 1986). However, even in some simple cases of cor-
relation misspecification, the residual moments estimators may be not available (Crow-
der, 1995). Thus certain joint modelling approaches for mean and covariance for clus-
tered data were studied. For example, a modified Cholesky decomposition (MCD) based
method was developed to model the mean-covariance structure for longitudinal data,
see, e.g., Pourahmadi (1999); Pan and Mackenzie (2003); Ye and Pan (2006); Leng et al.
(2010). Beside MCD, hyperspherical coordinates decomposition (HPC) was proposed by
Zhang et al. (2015) with geometric intuition for longitudinal data. The aforementioned
approaches also provide good within-subject correlation interpretation in terms of time
series (Fan et al., 2007). In fact, MCD and HPC are very useful in joint modelling
of mean and covariance for longitudinal data. However, these approaches intrinsically
assume that responses in a cluster are naturally ordered, which may be violated in prac-
tice, for example, in spatial data analysis. In addition, in real data analysis statistical

meanings of the estimated parameters based on MCD and HPC are often not easily
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interpretable in terms of the original correlation coefficients and variances. Also, the an-
gle coordinates in HPC approach are very difficult to interpret to practitioners in many
scientific fields.

To overcome the drawbacks of MCD and HPC, we propose a joint mean-variance-
correlation (JMVC) model which does not use any matrix decomposition nor involve
transformation/reparameterization of variances and correlation coefficients. In fact, it
models the mean, variances and correlation coefficients directly. Thus meanings of the es-
timated parameters in JMVC are interpretable, and also the proposed approach does not
require responses within cluster to be ordered, implying that the proposed method is ap-
plicable to any correlated data as long as the mean, variances and correlation coefficients
are of concern. The resulting estimators of three sets of parameters are roots of three
estimating equations, of which the first one is exactly generalized estimating equation
for the mean parameters and the other two are conditional generalized estimating equa-
tions for the parameters in variances and correlation coefficients, where the conditional
generalized estimating equations mean that when estimating one set of parameters, the
other sets of parameters are fixed. The parameter estimators are shown to be consistent
and asymptotically normally distributed. Compared to the standard GEE approach, the
proposed method improves the estimation efficiency of the mean parameters because the
covariance structure is correctly modeled. In addition, a new model selection criterion
in spirit of quasi-likelihood under independence model criterion (QIC) is proposed and
its implementation with efficient computational strategy for selecting the best model is
considered. The consistency of the computational strategy is rigorously established and
can be regarded as a great improvement of the strategy in Zhang (2012), where they con-
sidered the selection consistency of a similar algorithm under normality assumption. In
contrast, our approach relaxes the normality assumption and only requires the existence
of the first four moments of responses.

This paper is organized as follows. In section 2, we focus on model, estimation pro-
cedure and computational algorithm. Theoretical properties of the proposed parameter
estimators are studied in section 3. Model selection strategy with an efficient search algo-
rithm is provided in section 4. Section 5 presents intensive numerical simulation studies,

which confirms the advantage of the proposed approach. Real data analysis is conducted
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in section 6. A concluding summary of main findings and future interests is presented in
section 7. Technical proofs of theoretical properties are provided in Appendix and the

supplementary materials.

2. Methodology

2.1. Notations

We first introduce some notations. Let y;; be the jth observation of m; measurements
on the ith of n clusters. Denote by y; = (Vi1, Yi2, .--¥im, )’ the m; x 1 vector of responses.
Suppose E(v;) = i = (@it s fhim; )" is m; x 1 vector of mean of y;. Denote by X; =
(Ti1, .o, Tim, )T the m; x p the design matrix with px 1 covariate z;;. By allowing m; to be
cluster specific, our approach is valid for unbalanced clustered data. Let ofj = var(yi;)
be the variance of y;; and p;;r = corr(yi;, yix) be the correlation between y;; and y;p.

Let var(y;) = ¥; be m; X m; covariance matrix of y;. It follows that ¥; = D,;R;D;,

2

where D; = diag{c, ...,

afmi} and R; = (pijk);%zl is the correlation matrix for y;. Let
€j = Yij — fij and 0y = €;5€5/0;0:k, it follows that E(efj) = ij and E(d;x) = pijk-
Let € = (62217...,612%)T, 8i = (0312, 04135 -+, Oitmy » 03235 -+, 0i2my 5 +ey Odmmy_ymy ) - Suppose
o} = E(€7) and p; = E(6;). For a n x n matrix A = (a;;)};_;, denote vech(A) by the
vector which vectorizes the lower triangular elements A through column by column but
does not include the main diagonal elements. It follows that p; = vech(R;). Let ||A| =
)\max(ATA)l/ 2 be matrix spectral norm, where . denotes the maximum eigenvalue.
Denote tr(A) by trace of A. For any vector a = (ay,...,a,)T, let ||a|| be Euclid norm.
Finally, denote O, (M) and o0,(M) by the quantities such that O,(M)/M is bounded in

probability and o,(M)/M — 0 in probability.

2.2. Brief review of generalized estimating equation

For clear exposition of our approach, the conventional GEE approach (Liang and
Zeger, 1986) is briefly reviewed first. The GEE approach assumes that marginal mean

1;; and associated covariates x;; are linked to each other through a link function g(-)

such that g(u;;) = mZ;B And the marginal variance 01-2]» is a function of mean u;;, that is,

afj = ¢;;v(pij), where ¢;; is a dispersion parameter and v(-) is a known function. Then



the root BG of the equation

n ) T
G(B) = Z (%’g) D;YPR1pY? (yz _ /u(Xzﬂ)) -0 (1)
=1

is the GEE estimator of parameter 3, where du;/98 is m; X p matrix with jth row
Opij /0B = xz-;-g_l(a:z; ) in which g=1(-) is the derivative of g=1(-). In (1), the dis-
persion parameter ¢;; and correlation matrix R; are estimated by residual moments
methods (Liang and Zeger, 1986). Note that for Gaussian data, the variance is exactly
the overdispersion parameter, that is, afj = 0jj.

In (1), the GEE estimator Bc is consistent even if the working correlation is misspec-
ified. Such a misspecification, however, may lead to efficiency loss (Wang and Carey,
2003; Diggle et al., 2002). Liang and Zeger (1986) proposed to use working correlation
matrix to avoid such misspecification. However, Crowder (1995) pointed that the residual
moments estimators may not exist even in some simple cases. For example, suppose the
true correlation structure is equicorrelated, (R;);r = p, and that the working correlation
structure is Order-1 Autoregressive, (R;);; = o=kl Crowder (1995) proved that in
such case the there may be no general asymptotic theory supporting the existence and

consistency of the residual moments estimator &.

2.8. Joint mean-variance-correlation model

Now we present our model. The mean, variance and correlation coefficient for clus-

tered data are jointly modeled by
9(pij) = a8 log(oy;) = 25N fpije) = hizy (2)

where the dimensions of associated covariates x;j,2;; and h;j, are p, ¢ and d, respec-
tively. A and v are parameters corresponding to aizj and p;jk, g(-) is a monotonic and
differentiable function linking p;; and z;8, and f(t) = log((1+1t)/(1 —1t)) is the Fisher-
transformation mapping p;;i from (—1,1) to (—oo,400), which ensures the estimated
Pijr are well defined.

The three equations in (2) are known as joint mean-variance-correlation (JMVC)
models. The idea of JMVC is to treat the variance and the correlation as equally impor-
tant as the mean when modelling clustered data. As mentioned in introduction, MCD,
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ACD and HPC often assume that responses in the same cluster are naturally ordered.
In addition, they model transformed parameters, making the dependence of correlation
coefficients or variances on covariates hardly understandable. In contrast to these ex-
isting methods, we directly model the variance and correlation so that the meaning of
the estimated parameters are interpretable and our model does not require natural order
in cluster while both MCD and HPC do. After fitting JMVC, the correct covariance
structure is identified and therefore we expect our model can improve the estimation

efficiency over the convention GEE, which is confirmed by our simulation studies.

2.4. Conditional estimating equations of JMVC model

In this section, we present three estimating equations to estimate 3, A,y in (2). Recall

that o? = (02, ...,02,,.)" and p; = vech(R;). We propose the following three estimating

equations:
- Opi g -1
i=1
- da? ’ —1/,2 2
52(A>\5:g=z E3) W, (& —07)=0 (3)
i=1
n ap T R
S5 yas =3 (M) Vil - ) =0
i=1

where B and \ are the solutions of the first and second equations in (3), respectively. In

addition,

)a "'75i1mi (g)?5i23(€)7 cey 5227”«7 (5)3 ) 5imi—1mz‘ (g))T

where f = (5T,)\T)T. Zz = (Zi17...72imi)T and IT[Z = (hilg, ~~~7hi1mia~~~ahimi,1mi)T are
the associated design matrices. Y;, W; and V; are the covariance matrices of y;, 612 and

8;, respectively. 907 /X is m; x d matrix with jth row o225, 86;/9y is mi(m; —1)/2 x d

matrix with (j — 1) * (2m; — §)/2 + k — jth row f=1(hE, y)hL

ik Note that the second

estimating equation involves B in 2 and the third estimating equation involves é in 4;.



Compared to (3), the generalized estimating equations below

- 801'2 g —1/.2 2
SZO\):Z I\ W, (& —0;)=0

Ss(v) = z": <%€;)TV¢_1(5¢ —pi) =0

i=1
are the standard GEEs. The second and third conditional estimating equations in (3)
are inspired by the consistency of the GEE estimator. Specifically, even though the
covariance Y; is misspecified, we can obtain consistent B Replacing 5 in S3(A) by this
consistent 3, we expect to obtain consistent estimator A. Also, by replacing (8,A) in
Ss(7y) by consistent (B, 5\), we expect to obtain consistent estimator 4. Therefore it is
reasonable to use the conditional estimating equations So(X) |I3:/3 and S3(7) ‘5:5 to obtain
estimators of A and . Note it is likely that E[S3(\) ’B:B] # 0 and E[S53(y) }gzé] # 0 so that
the conditional GEEs Sg(/\)|ﬁ:B =0 and S3(7)|B:,é = 0 are not exactly the generalized
estimating equations for A and . However, we show in supplementary material that as
n — oo, they are asymptotically the same as the generalized estimating equations.
Note that W, and V; should be specified. When y; follows multivariate normal
distribution N,,, (ui,%;), by some calculations presented in Appendix A we find that
(:ov(e?j7 e?k) = Qp%jkafja?k and cov(dijk, ditm) = PijiPikm + PijmpPiki, Which indicates that

var(e};) = 20}; and var(di1) = 1 + pi;;,. When the assumption that y; follows normal
distribution is violated, the expressions for elements of W; and V;, however, are ana-
lytically intractable. For such a reason, in spirit of the idea of Ye and Pan (2006), we

approximate W; and V; by using the following matrices
—~ 1 1 ~ 1 1
Wi = PiRi(u)Pi, Vi= PjRia(u2) P
where
— 4 4 g 2 2 2
Py = diag(203y,...,20,.), P2 = diag(14 pj1a, o, L4 Pitm,s o0 L+ Py —1m,)  (4)

Ri1(u1) and R;1(uq) are working correlation matrices, which often take the Compound
Symmetry (CS) structure or the Order-1 Autoregressive (AR(1)) structure for longitu-
dinal data. They are of course approximations to the true correlation matrices of €2 and

d;, respectively.



Algorithm 1: Conditional GEEs for clustered data

1: Input an initial 59, A(©) and (9 set k = 0.

2: Given B in particular given é?, choose A(*¥) as initial values, update A by
A — 2\(s)

55y e ()] 55 () e

1=1

B=BU) A=A()

until convergence. Denote the result by A(*+1),
3. Given %) and A*+D in particular given 51-, choose (%) as initial values, update ~

by

D) ()

() v (5] [ (5w )

until convergence and denote the result by ~*+1),

B=B0) A=A+ =y ()

4: Given A*t1 and ~*+1 in particular given X;, update 3 by

ﬂ(kﬂ) — 5(’@)+

S (%) s (2)] [ (%) 5w

5: Replace S, A®) and ) by g+1)  NE+1D) and v*+1)  regpectively. Repeat steps

B=L0) A=Ak+1) y=ry (h+1)

2-4 until a convergence criterion is met.




We define the JMVC estimators (BT, AT, 4T)T" as the roots of three estimating equa-
tions in (3). As mentioned in section 1, the advantage of GEE is the resulting estimators
are consistent even if the correlation matrix is misspecified. Thus we anticipate that
not only GEE estimator A, but also conditional GEE estimators A and 4 are consistent,
which is presented in Theorem 1 and confirmed by our simulation studies in later section.
Indeed, any change of nuisance parameters u; and uy or working correlation structures
of Ry; and Rs; has little effect on the estimators of A and ~.

We next provide iterative quasi-Fisher algorithm to solve the three estimating equa-
tions in (3), which is summarized in Algorithm 1.

Note that the initial values 30, A(®) and 4(°) should be given properly. It is natural
to use any /n-consistent estimate of 8 as initial value of 8. Thus the conventional
generalized estimating equation estimator 3¢ can be set as 8(9). To obtain A and ~(©),
one may first use Algorithm 1 to calculate reasonable values of A\ and v by setting the

initial values of A and « as the vectors of zeros, then take these two reasonable values as

A0 and ~(),

3. Asymptotic Property

In this section, we present the consistency and asymptotic normality of the JMVC

T

41T under certain regularity conditions presented in supplementary

estimators (37, A
materials. In addition, we also prove that for any subject ¢, the probability of the
estimated correlation matrix R; to be positive definite tends to 1 as n — oo, under the
condition that the true correlation matrix R; of y; is positive definite. The main results

are summarized as follows.

Theorem 1. Under regularity conditions C1-Cj presented in supplementary materi-
als, the JMVC estimators 0, = (BT, AT, 3T)T are \/n-consistent, that is, ||0,, — 6o =

Op(n=1/2)

Theorem 2. Under reqularity conditions C1-C7 presented in supplementary materials,

the IMVC estimators By, \n and An are asymptotically distributed with

V(B — Bo) =5 N0, v,
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conditional on Bn,
~ D _
V(e = Xo)lg_p, — N(én, v35),

and conditional on &, = (BT, \T)T

N D _
\/’E(’Y’n - 70)|£:€n — N(¢Za U331)a

where i .
. 1 <~ (O ,l(am)
= 1 _
- TL;mw_n;(aﬂ) S5
. (1 & 801-2 T 1 801,2
e [ ) e (5]
o[t & rap\T ,1(8,;1)'
=1 - v
vas nL“éo_n;(av) s EIIE
and
1 7902\ T do2 -t 1 s /002\ T Oe? .
o= lim [— ( > W.*l( ) — ( ) Wfl( ) n — =0,(1
On nimoo{n; B\ i oA 2=\ 9 i \gg ) Bn=P0) p(1),
1~ (0oN\T 1 (0p\] ' 1 & /0p\T ., (06 -
o= 1li = v Z — ) v L) (én — = 0p(1),
o nimw{n;(av) 1 (mﬂ [\/ﬁ;(av) (%) @ - ~oun

Theorem 3. Under reqularity conditions C1-C4 presented in supplementary materials,

if the true correlation matriz R; is positive definite, we have

Pr(nf Rin; > 0) — 1

(]
as n — oo, wheren; € R™,i=1,...,n.

The proofs of the above three theorems are provided in supplementary materials. In
the proof of Theorem 1, we show that each of two conditional estimating equations can
be divided into two terms, in which the first term is a generalized estimating equation
and the second term is negligible as long as n is sufficient large, indicating that each
of two conditional estimating equations is asymptotically equivalent to a generalized
estimating equation. Note that the first asymptotic distribution in Theorem 2 is marginal
distribution because the estimating equation for 3 is standard GEE. And Theorem 2
indicates that /n\, and y/n4, have asymptotic biases of scale O,(1). The reason is
that we use conditional generalized estimating equations. The biases of A, and An, 1.€.,
#)/\/n and ¢ /\/n, then converge to zero as n — oo. Theorem 3 is actually a direct
extension of Theorem 1. By consistency of estimator 4,,, the estimated correlation matrix

converges to the true correlation matrix, thus also is positive definite as n — co.
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The covariance of 3, can be estimated using sandwich formula.

cov(Bn) = (n0) ™ (ot (o) = [E (%) = @%)] 7

11
n

()

0=0
where v;,! is covariance of S1(8)/+/n. The covariance of An and An can be estimated in a
similar way. We discuss the explicit expressions in Appendix B. The simulation studies

show that the proposed sandwich formulas perform very well.

4. Model Selection

In this section, we present, the model selection method combining the quasi-likelihood
under the independence model criterion (QIC) (Pan, 2001) and Bayesian information
criterion (BIC) (Schwarz, 1978) within quasi-likelihood framework.

Pan (2001) proposed QIC as:

QIC(Bg;I) = % —2Q(Ba; I) + 2tr(4 V)

for the model selection of generalized estimating equation (1), where the identity covari-

ance matrix I indicates the quasi-likelihood

no m;

QBT =Y QB Yy, mij)

i=1 j=1
with
M yft
Q ﬁv 3 = dta
(859 2) / s

Q) = —82Q(Bg;1)/8ﬂBT and V, is an estimator of COU(Bg) and can be obtained by
sandwich covariance formula in Liang and Zeger (1986). Here tr(€2;V;.) plays the same
role as the degree of freedom of parameter. Pan (2001) pointed out that QIC is based on
Akaike information criterion (AIC) (Akaike, 1998), in particular, the quasi-likelihood in
QIC plays the same role as the log-likelihood in AIC. However, it is well known that AIC
has a tendency to select an overparameterized model. Another selection criterion, BIC,
penalizes free parameters more strongly and often selects a more parsimonious model.

Therefore a natural idea is to modify QIC based on BIC as

QICw(Bai 1) = |~ 2Q(a: ) + log(n)tr (@77
11



Inspired by this modification, we now propose new model selection criteria for JMVC.
Denote M = (Mg, My, M,) by an arbitrary candidate model where Mg = {j1, ..., jp+ }
includes {Xjj, , ...
is jth colum in X;; My = {ki,....kg=} and M., = {l4,...,l4-} are defined similarly.
Denote the true model by M° = ( 3 Sy M9). We define the family of overfitted
models as MT = (Mzg, M}, MY) and that of underfitted models as M~ = (M, M, M7).
Thus if for any Mg € M;, we then have M3 C My and if for any My € My, we
must have M% ¢ Mpg. Denote the saturated model by M?* = (M3, M3, M3), where
M ={1,...p}, M3 ={1,...,q} and M} = {1,...,d}. Denote Sr, = (le,‘.wﬂjp*)T
and similarly Ay, and yaq,. With these notations, the model selection criteria for JMVC

,Xijp*} as the relevant predictors in the model of the mean, where X;

are proposed as follows
QIC vy (M, M3, M3) = — [<2Q(Banss Anas s 1) + log(n)tr(Qa75)|
QICT\rvo (M, My, M) = *QQA(BM-;,S\MM’YM;;I) + log(n)tr(€1y A)} , (6)

QIC}MVC( %a ivM’Y) =

where the explicit expressions of (6) are provided in Appendix C.

Lo B e— R
o2
>

SIm3I~3Ir

The three criteria in (6) are collectively named QIC v ¢, so that model selection
for three parameters 3, A and 7 can then be conducted by minimizing those three cri-
teria with respect to Mg, My, and M., separately. It is worthwhile to point out that
the reason why saturated estimators B M5 A M, and ’AYM% are used is to avoid miss-
ing the important variables. In practice, however, if one has known the optimal model
My, for parameter 3, one may also use QIC"’]\MVC(M%MMMi) to obtain MS§ and
QIC}MVC(M%, M5, M,) to select M2. Thus the proposed criteria are flexible.

For computation, an efficient search strategy in spirit of Pan and Mackenzie (2003)

is proposed as follows
M = arg min{ QICary o (M, M5, M3}

M = arg Hﬂzi?{@[cﬁnfvc(M%a M, M3},

M = arg%}n{QIC}M\/C(M%a 3 My}

It is clear that the number of minimization of this strategy is 27 + 29 + 2¢ — 3, which

is computationally much less demanding than all subset selection number that is (22 —
12



1)(27—1)(2%—1). The selection consistency of above algorithm is established by following

theorem.

Theorem 4. Under regularity conditions C1-CJ presented in supplementary material,

as n — 0o, we have

Pr{  min  QICT,yo(Mg, M5, M) > QICT 1y o (MG M5, M)+ — 1,

M[feM;UME

Pr{  min QICE/]\MVC(MgvMAaM'Sy) > QICT v ol B M, M) b= 1,
/\/b\EMj\rLJMA

Pr{ mif N QIC}MVC( SB’ f\’Mv) > QIC}MVC( 3/3’ f\,Mz) b= 1
M, eMIuUM;

The proof of Theorem 4 is presented in the supplementary materials. Zhang (2012)
proposed a similar search strategy and proved the selection consistency. However, they
assumed that the responses y; must follow multivariate normal distribution, which is
often violated in practice. Here we only assume the existence of the first four moments
of y;. Therefore our result is an improvement over their result and can be applied to

broad range in practice.

5. Simulation Study

In this section, we present simulation results for JMVC estimators. The results
confirm that (i) The JMVC estimators and corresponding estimation efficiency of mean
parameter § are robust against misspecification of the working correlation structures.
(ii) The proposed algorithm and sandwich formulas perform very well. (iii) The JMVC
estimators of mean parameter [ possess higher estimation efficiency than conventional

GEE estimator. (iv) The model selection criterion QIC jarv ¢ performs well.

5.1. Simulation Setting

Without loss of generality, we focus on the case that afj and p;j, are actually not
constants. We study the performance of JMVC estimators under different working corre-
lation sturctures for Ry; and Ra; and the nuisance parameters u; and us. Denote CS(uy)
and AR(1)(uz) by the matrices with Compound Symmetric structure and Order-1 Au-
toregressive structure with nuisance parameter u; and us, respectively. We study four

cases shown in Table 1 with five sub-cases in each case. For example, Table 1 shows that
13



in the case I.(a) Ry; and Ry; are set as CS(0.3) and CS(0.3), respectively. We gener-
ate both normal data and normal-mixture data as two examples of continuous clustered

data.

Table 1: Cases in simulation studies
Case Rli Rgi Case Rli Rgi

L(a) CS(0.3) CS(0.3) IIL(a) CS(0.3) AR(0.3)
L(b) CS(0.5) CS(0.5) IL(b) CS(0.5) AR(0.5)
L(c) CS(0.7) C€S(0.7) IL(c) CS(0.7) AR(0.7)
L(d) CS(0.3) C€S(0.7) IIL(d) CS(0.3) AR(0.7)
L(e) CS(0.7) CS(0.3) IIL(e) CS(0.7) AR(0.3)
IL.(a) AR(0.3) AR(0.3) IV.(a) AR(0.3) (CS(0.3)
IL(b) AR(0.5) AR(0.5) IV.(b) AR(0.5) CS(0.5)
IL(c) AR(0.7) AR(0.7) IV.(c) AR(0.7) CS(0.7)
IL(d) AR(0.3) AR(0.7) IV.(d) AR(0.3) CS(0.7)
IL.e) AR(0.7) AR(0.3) IV..e) AR(0.7) CS(0.3)

5.2. Normal Data

For each case in Table 5.1, we generate 1000 replicates, in which each with n = 300
clusters and each cluster has m; observations with m; — 1~Binomial(10,0.7), resulting
in different numbers of measurements for clusters. The replicates are generated from the

model
Yij = Bo + Tij1f1 + xijefe +ey (i=1,..,n55=1,...,m;)
109(01'23') = Ao + zijiA1 + zijaAe and f(pijr) = Yo + hijraiv1 + hijr2y2
where (z;51,%;j2) are generated from N3 (0, CS(0.5)), (zij1,2ij2) = (Tij1,Tij2) and e;; ~
Ny (0,%:). For hyjr = (1, hijk1, hijr2)T, since the generated correlation R; should be

positive definite, we present a proposition which provides a two-step algorithm below to

generate such h;;;, in Appendix D.

Algorithm 2: Generating process of h;j
1: Generate (hjjk1, hijr2) from N2(0,CS(0.3)).
2: If |y ll2 < Ivllg  min{] f(—=220)], [£(225)[3, accept hyj) as covariate of pyjk. Otherwise

m;—1 m;—1

return to step 1.
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It is worthwhile to point out that we develop Algorithm 2 only for the purpose of
generating the positive definite correlation matrices. In real application, statistical re-
searchers often have information (e.g., from medical researchers) about covariates and
have no need to generate covariates. However, when statistical researchers choose covari-
ates based on such information, conditions presented in Algorithm 2 may not hold for
hijr and the estimated correlation matrices RZ may not be positive definite. In such a
situation, one could find a surrogate or calibration of R;. Specifically, one could find the
surrogate by simply replacing the non-positive eigenvalues of R; by its minimum positive
eigenvalue or use the calibration techniques proposed by Huang et al. (2017) to find the
positive definite calibration of R;.

From the generating process above, the generated data is unbalanced clustered data
and there is no cluster-in order, thus MCD and HPC approaches do not applied to our
simulation setting.

Due to space limit, only the simulation results for normal data of Case I and Case
IT are summarized in Table 2. The results of Case III and Case IV are presented in
the supplementary materials. To evaluate the performance of sandwich formula (5), we
also present the standard errors (in parentheses) and averaged standard deviations (in
brackets) over 1000 parameter estimates for each case, where the standard deviations are
estimated by the proposed sandwich formulas. In addition, we report estimation results
of the mean parameters estimated by GEE using independent (GEE. In), Compound
Symmetric (GEE. CS) and Order-1 Autoregressive (GEE. AR(1)) working correlation
structures as competing methods, respectively.

In our simulation design, the average of the generated p;;; over all observations
is 0.0494, such small correlation is generated by setting small norm of the correlation
parameter v = (v0,71,72)7, by which Algorithm 2 is easier to efficiently generate h;jy.
In Table 2, the small correlations lead to similar performance of GEE. In, GEE. CS and
GEE. AR(1) in terms of efficiency, although the performance of GEE. CS and GEE.
AR(1) is slightly superior than that of GEE. In.

It can be seen from Table 2 that both parameter estimates and their standard er-
rors for regression parameters $ are almost invariant against the working correlation

structures and nuisance parameters of R;;(u1) and Rip(uz). Although there are slight
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Table 2: Joint mean-variance-correlation estimation results of Case I and Case II (with sample standard errors in parentheses and sample estimated

standard deviation in brackets) for normal data

GEE JMVC

Parameter  True value In Cs AR(1) I.(a) I.(b) I.(c) I.(d) L(e) II.(a) IL.(b) IL.(c) I1.(d) IL.(e)

0.9969 0.9969 0.9969 0.9969 0.9969 0.9969 0.9969 0.9968 0.9969 0.9968

Bo 1 0-9950 09978 09950 (0.0700)  (0.0700)  (0.0700)  (0.0700)  (0.0700)  (0.0700)  (0.0700)  (0.0702)  (0.0700)  (0.0700)
(0.0834)  (0.0833)  (0.0834)

[0.0679]  [0.0679] [0.0678]  [0.0678]  [0.0679]  [0.0679]  [0.0679]  [0.0678]  [0.0678]  [0.0679]

-1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0006 -1.0005 -1.0006

B1 -1 10002 0002 10002 (0.0519)  (0.0519)  (0.0519)  (0.0519) (0.0519)  (0.0519) (0.0519) (0.0519) (0.0519)  (0.0519)
(0.1093)  (0.1093)  (0.1093)

[0.0491]  [0.0491]  [0.0491] [0.0491]  [0.0491]  [0.0491]  [0.0491]  [0.0491]  [0.0491]  [0.0491]

0.5007 0.5007 0.5007 0.5006 0.5007 0.5007 0.5008 0.5008 0.5007 0.5008

B2 0.5 04998 04999 04998 (0.0508)  (0.0508)  (0.0508)  (0.0508)  (0.0508)  (0.0508)  (0.0509) (0.0510)  (0.0508)  (0.0509)
(0.1124)  (0.1119)  (0.1123)

[0.0491)  [0.0491]  [0.0491]  [0.0491]  [0.0491]  [0.0491]  [0.0491]  [0.0490]  [0.0490]  [0.0491]

2.0082 2.0083 2.0083 2.0082 2.0083 2.0084 2.0085 2.0087 2.0084 2.0087

Ao 2 - - - (0.0310)  (0.0312) (0.0313) (0.0310) (0.0313) (0.0307) (0.0317) (0.0350) (0.0307)  (0.0350)

[0.0301]  [0.0302] [0.0302] [0.0301] [0.0302]  [0.0302]  [0.0314]  [0.0349]  [0.0302]  [0.0349]

1.0015 1.0015 1.0015 1.0015 1.0015 1.0012 1.0012 1.0012 1.0012 1.0012

M 1 - - - (0.0364)  (0.0370)  (0.0373)  (0.0364) (0.0373) (0.0367) (0.0392) (0.0415) (0.0367)  (0.0415)

[0.0337]  [0.0342] [0.0345] [0.0337]  [0.0345]  [0.0347]  [0.0373]  [0.0396]  [0.0347]  [0.0396]

-1.0013 -1.0012 -1.0012 -1.0013 -1.0012 -1.0015 -1.0015 -1.0014 -1.0015 -1.0014

Az -1 - - - (0.0358)  (0.0363) (0.0366) (0.0358) (0.0366) (0.0358)  (0.0383) (0.0406) (0.0358)  (0.0406)

[0.0337]  [0.0342]  [0.0344] [0.0337] [0.0344]  [0.0347]  [0.0373]  [0.0395]  [0.0347]  [0.0395]

0.1003 0.1001 0.0996 0.0996 0.1003 0.1001 0.1001 0.1000 0.1000 0.1001

Yo 0.1 - - - (0.0200)  (0.0296) (0.0323) (0.0323) (0.0290) (0.0279)  (0.0282)  (0.0296)  (0.0295)  (0.0280)

[0.0209]  [0.0324]  [0.0423] [0.0423]  [0.0209]  [0.0286]  [0.0289]  [0.0311]  [0.0311]  [0.0286]

-0.1964 -0.1964 -0.1964 -0.1964 -0.1964 -0.1966 -0.1967 -0.1968 -0.1968 -0.1966

7 0.2 - - - (0.0223)  (0.0223)  (0.0224)  (0.0224) (0.0223) (0.0233)  (0.0252) (0.0268) (0.0263)  (0.0238)

[0.0244]  [0.0244]  [0.0245]  [0.0245]  [0.0244]  [0.0255]  [0.0271]  [0.0284]  [0.0284]  [0.0255]

0.1479 0.1479 0.1479 0.1479 0.1479 0.1480 0.1480 0.1480 0.1480 0.1480

72 0.15 - - - (0.0226)  (0.0227)  (0.0227)  (0.0227)  (0.0226)  (0.0236) (0.0255) (0.0270) (0.0268)  (0.0238)

[0.0237]  [0.0238] [0.0238] [0.0238]  [0.0237]  [0.0249]  [0.0265]  [0.0278]  [0.0278]  [0.0249]
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perturbations in estimates of A and 4, they are consistent estimators. Besides, we can
see clear changes of standard errors of A and 4, for example, looking at the standard
errors of Ap, it is 0.0364 in case I.(a), but in case II.(b), it becomes 0.0392. This is not
unexpected since working correlations are used to approximate the true correlations and
thus lead to some information loss. In addition, all sample estimated standard deviations
match well with sample standard errors, indicating the sandwich formulas perform well.
Compared with GEE approaches, the sample standard errors of B are uniformly smaller
than those of GEE. In, GEE. CS and GEE. AR(1). This is reasonable since GEE. In,
GEE. CS and GEE. AR(1) do not identify the true covariance matrices, which are cor-
rectly identified by JMVC. Therefore, we conclude that that JMVC actually improves
the estimation efficacy for the mean parameters.

In this simulation, there is no non-positive definite estimated correlation matrix ap-
peared, which is because of the asymptotic consistency to the correlation matrix, see
Theorem 3. In practice, however, the true correlation matrix may be non-positive defi-
nite. For such a situation, one can use the calibration technique proposed by Huang et al.

(2017) to calibrate the estimated correlation matrix to ensure its the positive definiteness.

5.3. Normal-Mizture Data

In this simulation study we use the same setting as in section 5.2. We generate 1000

replicates from normal-mixture distributions
F; = 7T'Nmi (,ui + a;, Zl) + (1 — W)Nmi (/,Li, El) (’L =1,.., n)

where 7 = 0.5 is the mixing weight and a; = %ui is the mean-shift parameter. For
normal-mixture distribution Fj;, the true expectation and variance are ; = u; + ma; and
Y= +7(1—m)a;al, so that directly comparing the parameter estimators and the true
values of parameters is not appropriate. Similar to Ye and Pan (2006), we use relative

errors o
1% — S

i) = [l — | -
113

— err(3;) =
ird|

to measure the performance of our JMVC estimators, where [i; and 3, are the estimated

mean and covariance. The results are shown in Table 3.
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Table 3: Joint mean-variance-correlation estimation results for averaged relative errors of normal-mixture

data

Case
I.(a) I.(b) I.(c) 1.(d) I.(e) I1.(a) I1.(b) I1.(c) 11.(d) I1.(e)
err(ft)  0.0601  0.0601 0.0601 0.0601 0.0601 0.0601 0.0602 0.0602 0.0602 0.0601
err(X) 0.1176 0.1180 0.1188 0.1183 0.1181 0.1179 0.1206 0.1238 0.1193  0.1225

Case
IIL.(a) IIL(b) IIL(c) IIL(d) IIL(e) IV.(a) IV.(b) 1IV.(c) IV.(d) IV.(e)
err(ft)  0.0601  0.0602 0.0602 0.0602 0.0601 0.0601 0.0601 0.0601 0.0601 0.0601
err(i) 0.1179  0.1188 0.1198 0.1193 0.1184 0.1175 0.1199 0.1229 0.1182 0.1222

It can be seen that err(ji) is almost robust against the change of working correlation
structures and nuisance parameters of Ry;(u1) and Ra;(us), whereas there is clear per-
turbation in err(i). This phenomenon coincides with the feature of JMVC estimators
presented in Table 2 in the sense that the the parameter estimators and standard errors
of 8 are robust, while there are perturbations in estimators and standard errors of A and

4. Overall, err(f1) are negligible, whereas in some cases err(X) are relatively large but we

consider this as acceptable since ||X; — X;|| is for matrices with sizes m; x m;.

5.4. Model Selection

Recall that the proposed selection criteria QIC jarv e requires 2P + 29 4+ 2¢ — 3 times
of minimization. For simplicity, we adopt the similar settings in section 5.2 to assess
the performance of the proposed model selection criteria by setting 8 = (1,—1,0)7,
A=(2,1,0)T and A = (0.1,-0.2,0)T.

Table 4 shows that the empirical percentage of the models which are incorrectly
selected over 1000 replicates. Note that the performance of the correlation criteria
QICT, ;v is best over all cases. A possible reason is that the generated correlations
are small so that estimating the correlation parameters 7y is easier. In our experience,
the performance of the mean criteria QIC?MVC is similar to that of QIC7,,  in real
application.

Except Case II.(c), Case II.(e), Case IIL.(c) and Case IIl.(e), the mean criteria

QI C?MVC and the correlation criteria QIC7,,,,~ are superior than the variance cri-
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teria Q1 Cj‘ wve, and the reason is that the variance is more difficult to estimate (Tang,
2011; Zhang et al., 2015). Therefore, in practice, we suggest to select the optimal model
for mean and correlation first and then based on these two reasonable models to select
the optimal model for variance. Overall, the percentage of incorrect selections for all
three parameters is smaller than 0.165, which means a desired performance of our model

selection criterion is obtained.

Table 4: Percentage of incorrectly selected models for normal data

Case
Criterion I.(a) I.(b) I.(c) 1.(d) I.(e) II.(a) 11.(b) II.(c) 11.(d) I1.(e)
Q[C.[;]MVC 0.092 0.094 0.094 0.093 0.093 0.100 0.114 0.140 0.101 0.137
QIC ;v 0150 0155 0149 0165 0145 0.155 0120 0.098 0.149  0.100
QIC}JVIVC 0.034 0.025 0.018 0.018 0.034 0.020 0.010 0.010 0.010 0.020
Case
Criterion III.(a) IIL.(b) IIL.(c) IIL(d) IIL.(e) IV.(a) IV.(b) IV.(c) IV.(d) 1IV.(e)
QIC?MVC 0.093 0.094 0.096 0.094 0.094 0.098 0.112 0.135 0.098 0.137
QIC?A{VC 0.154 0.150 0.155 0.165 0.150 0.155 0.119 0.111 0.159 0.099
QIC}MVC 0.020 0.010 0.010 0.010 0.020 0.034 0.026 0.017 0.017 0.033

6. Analysis of COVID-19 data

Although the proposed approach focuses on cluster data with no need of cluster-
order, in this section we analysis a COVID-19 data set, which is a longitudinal data with
natural order in each cluster.

A global pandemic caused by Corona Virus Disease 2019 (COVID-19) leads to an
urgent demand to understand this virus. One of the vital issues in COVID-19 research is
to model the trajectory of the worldwide COVID-19 infection. A indicator that measures
the severity of infection is the number of positive cases for each country. Here we use
the data collected from website Our World Data (https://ourworldindata.org/) to
model the trajectory of this indicator. The data consists of the number of positive
cases of 95 countries in the world over a period from 21th September to 20th December.
On 21th September, the number of positive cases varies from 4077 to 6976244 among

these 95 countries. Daily counts of positive cases are recorded and are averaged every 7
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Table 5: Table 5. Model selection results for global covid19 data

p
2 3 4 5 6 7 8 9
QIC(/,;MVC(p, 13,4) 13.5985  13.4528  13.3563  13.5835  13.5799  13.5810  13.5961 13.7013

q
2 3 4 5 6 7 8 9
QIC) yve(4,q,4) 456833 45.6940  46.2958  45.3660  47.3111  48.2647  48.2593  48.8596
d
2 3 4 5 6 7 8 9

QICT,1vc(13,13,d) 1355530 1355493 135.5490 135.5492 135.5515 135.5521 135.5511 135.5521

days, leading to repeated measurements of 13 times. We treat the counts as continuous
responses and we use three polynomials in time or time lag as covariates. That is, the

covariates are of form

Tij = (1atij7ti2j7 ...,tfj_l)T
ZZ] = (1atij7ti2j7"'7tli]j_l)T (7)
hige = (1, [ti; — ik, [ti; — tir?s s [tig — ta]*™H)7T

where ¢;; is time at the jth measurements of the ith country.

(7) indicates that the model selection procedure reduces to select the best triple
among all possible triples (p,q,d). We first use QIC7,,y,(13,13,d) to select the ap-
propriate d, where QICT,,;v(p,q,d) is denoted by QIC}MVC(BMZ;XM&’}M% with
MY ={1,...,p}, M ={1,....q}, ./\/lﬁlY = {1,...,d}, respectively. The QIC’?MVC(p,q,d)
and QIC) v (p,q,d) are defined similarly. We find that the optimal d is met at
d = 4, and therefore we have information about optimal model for . After that,
QIC?MVC(p, 13,4) is used to select appropriate p, which is met at 4. Once having
the optimal p and d, QIC}\MVC(‘L’ q,4) is used to select optimal ¢, which is met at 5.
The selection results are shown in Table 5. From Table 5, the optimal triple for COVID-
19 data clearly is (4,5,4), indicating it suffices to model the mean by a three order
polynomial, model the variance by a five order polynomial and model the correlation by
a four order polynomial. We present our fitting results under optimal model in Figure 6.

Looking at Figure 6, three fitting curves are very close to the sample regressograms

in terms of not only values and but also trajectory, indicating that the JMVC approach
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Figure 1: Analysis of COVID-19 data using best triple (4,5,4): (a) shows mean versus time. (b) shows
the variance versus time. (c) shows the correlation versus time lag. The scatters correspond to sample

regressograms, the solid lines correspond to JMVC model fits.

produces a fairly satisfactory results. Note that there are clear patterns in the fitting
curves, that is, there is a considerable upward trend of the number of positive cases
across the world over this period. The rise of variance demonstrates the variability of
worldwide positive cases goes up over time lag.

In this analysis, polynomials in time or time lag are used as covariates. This is due
to the procedure that how one can apply selection criterion QIC ;v ¢ to real data can
be presented clearly under such form of covariates. In other real applications, one may
choose more general and iterpretable covarites to lend the advantage of JMVC model.
For example, the stringency index, a indicator that measures the severity of epidemic
prevention and control policy, may be a good choice as covariate for COVID-19 data.
After having the estimated coefficients of more iterpretable covariates, the fitted JMVC
model would have more a clear iterpration.

Another real data analysis of cattle data (Kenward and G., 1987) is presented in the
supplementary materials, where the performance of JMVC and HPC (Zhang et al., 2015)

is compared.
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7. Discussions

In this paper, we propose a joint modelling approach for continuously clustered data.
The mean, variance and correlation coefficients are modeled simultaneously. Rather than
using any matrix decomposition techniques like Pan and Mackenzie (2003) and Zhang
et al. (2015), the proposed approach directly models the original covariance matrix.
Hence our approach permits clear interpretation of parameters. In addition, our approach
does not require naturally ordered responses in each cluster, which is necessary in Pan and
Mackenzie (2003) and Zhang et al. (2015). Since the covariance is correctly modeled,
our approach improves estimation efficiency over the conventional GEE approach and
the proposed mean parameter estimators and corresponding standard errors are robust
against not only nuisance parameters but also structures of working correlation matrices.
In addition the proposed model selection approach based on QIC is very flexible since
the criteria in (6) can be used separately given information about optimal models.

As mentioned in section 3 and section 5.2, the estimated correlation matrix may be
not positive definite, and one may use the calibration technique proposed by Huang et al.
(2017) to ensure positive definiteness.

One future research interest is to extend the JMVC model to the context of semi-
parametrical and nonparametrical statistics. We conjecture this is attainable by using
the similar spline technique proposed in Leng et al. (2010). Another future interest is
the JMVC model in the high dimensional setting, which means the dimension of covari-
ate is allowed to diverge to infinity. Recently, Wang et al. (2012) proposed penalized
generalized estimating equation (PGEE) approach to model high-dimensional clustered
data, which is possible to incorporate into our approach. They used cross validation to
select tuning parameter in PGEE, while we conjecture QIC jy;v ¢ may be extended to
high-dimensional setting. Finally, our approach focuses on continuous data. thus it is
natural to investigate whether JMVC model may be extended to model discrete clustered

data.
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Appendix A. The calculation of cov(efj, efk) and cov(d;jk, diim) under normal

distribution

When y; follows normal distribution Ny, (1, %), €;5/04; follows normal distribution

N;(0,1). Therefore by Wick’s Theorem (Wick, 1950), we have

2 2
€ij Cik
E(eZe3,) = 07.04.E <J> ( )
k k
] )7 0_74] O_Zk

Thus cov(eij, €ir) = E(e};€5,) — B(€5;)E(eir)® = 23,0705 We also have

E ( €ij€ik€il€im ) - F ( €ij€ik > E ( €il€im >
0ij0ikTilOim 0ij0ik 0il0im
TR ( €i56€il ) E < €ik€im ) +E < €ij€im ) E < €ik€il >
05041 OikOim 0ij0im Oik0il

= PijkPilm t PijlPikm T PijmPikl

= E(G?j)E(ezzk)‘*‘Q[E(Gijeik)]Q = Uz‘ZjUz‘Qk+2P?iji2jUi2k

Therefore,

e
cov(0ijk, Oitm) = E(0ijk0im) — E(0ijk)E(ditm) = E (Wz”m) — PijkPilm

0ij0ik03i10im
= PijiPikm T PijmPikl
Appendix B. The sandwich formula for covariances of A and n

Similar to insight of Liang and Zeger (1986), the estimated covariance of JMVC

estimators A, and An is given by

=[5 () 0 (5] [ oo (5)

i=1

=[5 22) 7 ()] [ (32 e (32




Appendix C. The explicit expression of model selection criteria

We now provide explicit expression for corresponding selection criteria in (6).

o Bij ..
~ ~ . y t
Qﬂ(ﬂMg»AM;WM;ﬁI) = ZZQW Quj = / 112 dt
i=1 j=1 Yij Tij
N 5 ~ TAms
fuj = pij(xiPm,) o5 = €M
L. nol 52—t
QnBaes At Anes D) =S5 Quiy Qay = / u
i=1j=1 & (C.1)

~ ~ TA
& = (yij — g (xl;Bag))? 675 = Pt

X R n m; i Pijk §.., ¢
. ijk
Qy(Brs, Ams, Amy s 1) = § E E Q3ijk Q34 :/g 1J+ 2 dt

B = [yij — /”L(x;’z;‘BAME)][yik - %f(xz;ﬁ/w;)} bk = £ T A
Uij(Zg;)\M;)Uik(Zﬁ)\M;) Y K
(C.2)
QBVB is corresponding sandwich estimator under model M = (Mg, M5, M3), where
Qg = —an/aﬂMﬁaﬁﬂﬁ estimated at (BMﬁ,j\Mi,&Mgi). f/ﬁ = COV(BME) estimated at

(BMWS‘M?’&M%)’ O\ Vy and Qvf/v are similarly defined.

In (6), the normal distribution is used to approximate the distribution of y;. Under
normal distribution, var(e};) = 207}; = 2[E(€7;)]?, resulting in 2¢* in (C.1). And 1+ ¢ in

(C.2) can be explained in same way.

Appendix D. Proposition to generate positive definite R;

Proposition Appendix D.1. For any a < 1, under JMVC model, if |hiji|2 <
[yll5 t min{|f(—a/(m; —1))|,|f(a/(m; —1))|}, then the correlation matriz R; is positive
definite.

Proof: Since [[hill < Iy~  min | f(~a/(m; — D) [f(a/(m; — 1))[}, by Cauchy-
Schwarz inequality, we have

«

)

. o
W] < Whagellyl) < min1f(— )L £

%
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Therefore by monotony of f

(67

_ —1 T
lpijel = |f~ (hijpy)| < 1

indicating that
a
D Ipigel < (mi = l)— <a<l

ik i
which means for each row of correlation matrix R;, the sum of the absolute values of
all non-diagonal elements is less than the diagonal element 1, since R; is a symmetric
matrix, it must be positive definite.

It is worthwhile to point out that this proposition holds for every finite d.
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