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Abstract

Joint modelling of mean-covariance structure is an important topic in clustered data

analysis. Existing methods, such as those based on modified Cholesky decomposition

(MCD), alternative Cholesky decomposition (ACD) and hyperspherical coordinates de-

composition (HPC), have two main restrictions. First, they often assume that responses

in the same cluster are naturally ordered, for example, by time in longitudinal studies.

Second, the existing methods model transformed parameters, for instance, the gener-

alized autoregressive parameters and innovation variances in MCD/ACD, and the hy-

perspherical coordinates in HPC, making the dependence of correlation coefficients or

variances on covariates hardly understandable. As an alternative, a data-driven method

that models directly the mean, variances and correlation coefficients for clustered data

is proposed. Comparing to the existing methods, the proposed approach not only has

no need of natural order in responses but also works on original correlation coefficients

and variances. The proposed models are flexible and interpretable, and the parameter

estimators in joint generalized estimating equations (GEE) are shown to be consistent

and asymptotically normally distributed. Consistent model selection criteria in spirit

of quasi-likelihood under independence model criterion (QIC) are considered. The use

of the proposed approach is demonstrated by intensive simulation studies and real data

analysis.

Keywords: Clustered data, Estimator Efficiency, Generalised estimating equation,

Mean-variance-correlation models
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1. Introduction

Clustered data arise frequently in many fields including public health, geographical

sciences, economics and biological sciences. A common type of clustered data is longitu-

dinal data, which consists of repeated measurements on individuals over time. A typical

and popular approach to model clustered data is generalized estimating equations (GEE)

proposed by Liang and Zeger (1986). GEE has an attractive advantage that the result-

ing mean parameter estimators are consistent even if the working correlation structure

is misspecified (Liang and Zeger, 1986). However, efficiency loss of the estimated mean

parameters may arise when variance is misspecified (Wang and Carey, 2003) or within-

cluster correlation structure is not correctly identified (Diggle et al., 2002). Furthermore,

missing values even make the mean parameter estimators biased when the working covari-

ance matrix structure is misspecified (Daniels and Zhao, 2003). Therefore, it is necessary

to have an accurate covariance estimator for reliable statistical inference.

In GEE, variance is assumed to be a known function of mean multiplied by an overdis-

persion parameter. The overdispersion and correlation are then estimated by residual

moments methods (Liang and Zeger, 1986). However, even in some simple cases of cor-

relation misspecification, the residual moments estimators may be not available (Crow-

der, 1995). Thus certain joint modelling approaches for mean and covariance for clus-

tered data were studied. For example, a modified Cholesky decomposition (MCD) based

method was developed to model the mean-covariance structure for longitudinal data,

see, e.g., Pourahmadi (1999); Pan and Mackenzie (2003); Ye and Pan (2006); Leng et al.

(2010). Beside MCD, hyperspherical coordinates decomposition (HPC) was proposed by

Zhang et al. (2015) with geometric intuition for longitudinal data. The aforementioned

approaches also provide good within-subject correlation interpretation in terms of time

series (Fan et al., 2007). In fact, MCD and HPC are very useful in joint modelling

of mean and covariance for longitudinal data. However, these approaches intrinsically

assume that responses in a cluster are naturally ordered, which may be violated in prac-

tice, for example, in spatial data analysis. In addition, in real data analysis statistical

meanings of the estimated parameters based on MCD and HPC are often not easily

∗Corresponding author
Email address: jianxin.pan@manchester.ac.uk (Jianxin Pan)

2



interpretable in terms of the original correlation coefficients and variances. Also, the an-

gle coordinates in HPC approach are very difficult to interpret to practitioners in many

scientific fields.

To overcome the drawbacks of MCD and HPC, we propose a joint mean-variance-

correlation (JMVC) model which does not use any matrix decomposition nor involve

transformation/reparameterization of variances and correlation coefficients. In fact, it

models the mean, variances and correlation coefficients directly. Thus meanings of the es-

timated parameters in JMVC are interpretable, and also the proposed approach does not

require responses within cluster to be ordered, implying that the proposed method is ap-

plicable to any correlated data as long as the mean, variances and correlation coefficients

are of concern. The resulting estimators of three sets of parameters are roots of three

estimating equations, of which the first one is exactly generalized estimating equation

for the mean parameters and the other two are conditional generalized estimating equa-

tions for the parameters in variances and correlation coefficients, where the conditional

generalized estimating equations mean that when estimating one set of parameters, the

other sets of parameters are fixed. The parameter estimators are shown to be consistent

and asymptotically normally distributed. Compared to the standard GEE approach, the

proposed method improves the estimation efficiency of the mean parameters because the

covariance structure is correctly modeled. In addition, a new model selection criterion

in spirit of quasi-likelihood under independence model criterion (QIC) is proposed and

its implementation with efficient computational strategy for selecting the best model is

considered. The consistency of the computational strategy is rigorously established and

can be regarded as a great improvement of the strategy in Zhang (2012), where they con-

sidered the selection consistency of a similar algorithm under normality assumption. In

contrast, our approach relaxes the normality assumption and only requires the existence

of the first four moments of responses.

This paper is organized as follows. In section 2, we focus on model, estimation pro-

cedure and computational algorithm. Theoretical properties of the proposed parameter

estimators are studied in section 3. Model selection strategy with an efficient search algo-

rithm is provided in section 4. Section 5 presents intensive numerical simulation studies,

which confirms the advantage of the proposed approach. Real data analysis is conducted

3



in section 6. A concluding summary of main findings and future interests is presented in

section 7. Technical proofs of theoretical properties are provided in Appendix and the

supplementary materials.

2. Methodology

2.1. Notations

We first introduce some notations. Let yij be the jth observation of mi measurements

on the ith of n clusters. Denote by yi = (yi1, yi2, ...yimi)
T the mi×1 vector of responses.

Suppose E(yi) = µi = (µi1, ..., µimi)
T is mi × 1 vector of mean of yi. Denote by Xi =

(xi1, ..., ximi)
T the mi×p the design matrix with p×1 covariate xij . By allowing mi to be

cluster specific, our approach is valid for unbalanced clustered data. Let σ2
ij = var(yij)

be the variance of yij and ρijk = corr(yij , yik) be the correlation between yij and yik.

Let var(yi) = Σi be mi × mi covariance matrix of yi. It follows that Σi = DiRiDi,

where Di = diag{σ2
ij , ..., σ

2
imi
} and Ri = (ρijk)mij,k=1 is the correlation matrix for yi. Let

εij = yij − µij and δijk = εijεik/σijσik, it follows that E(ε2ij) = σ2
ij and E(δijk) = ρijk.

Let ε2i = (ε2i1, ..., ε
2
imi

)T , δi = (δi12, δi13, ..., δi1mi , δi23, ..., δi2mi , ..., δimi−1mi)
T . Suppose

σ2
i = E(ε2i ) and ρi = E(δi). For a n × n matrix A = (aij)

n
i,j=1, denote vech(A) by the

vector which vectorizes the lower triangular elements A through column by column but

does not include the main diagonal elements. It follows that ρi = vech(Ri). Let ‖A‖ =

λmax(ATA)1/2 be matrix spectral norm, where λmax denotes the maximum eigenvalue.

Denote tr(A) by trace of A. For any vector a = (a1, ..., an)T , let ‖a‖ be Euclid norm.

Finally, denote Op(M) and op(M) by the quantities such that Op(M)/M is bounded in

probability and op(M)/M → 0 in probability.

2.2. Brief review of generalized estimating equation

For clear exposition of our approach, the conventional GEE approach (Liang and

Zeger, 1986) is briefly reviewed first. The GEE approach assumes that marginal mean

µij and associated covariates xij are linked to each other through a link function g(·)

such that g(µij) = xTijβ. And the marginal variance σ2
ij is a function of mean µij , that is,

σ2
ij = φijv(µij), where φij is a dispersion parameter and v(·) is a known function. Then
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the root β̂G of the equation

G(β) =

n∑
i=1

(
∂µi
∂β

)T
D
−1/2
i R−1i D

−1/2
i

(
yi − µi(Xiβ)

)
= 0 (1)

is the GEE estimator of parameter β, where ∂µi/∂β is mi × p matrix with jth row

∂µij/∂β = xTij ġ
−1(xTijβ) in which ġ−1(·) is the derivative of g−1(·). In (1), the dis-

persion parameter φij and correlation matrix Ri are estimated by residual moments

methods (Liang and Zeger, 1986). Note that for Gaussian data, the variance is exactly

the overdispersion parameter, that is, σ2
ij = φij .

In (1), the GEE estimator β̂G is consistent even if the working correlation is misspec-

ified. Such a misspecification, however, may lead to efficiency loss (Wang and Carey,

2003; Diggle et al., 2002). Liang and Zeger (1986) proposed to use working correlation

matrix to avoid such misspecification. However, Crowder (1995) pointed that the residual

moments estimators may not exist even in some simple cases. For example, suppose the

true correlation structure is equicorrelated, (Ri)jk = ρ, and that the working correlation

structure is Order-1 Autoregressive, (Ri)jk = α|j−k|. Crowder (1995) proved that in

such case the there may be no general asymptotic theory supporting the existence and

consistency of the residual moments estimator α̂.

2.3. Joint mean-variance-correlation model

Now we present our model. The mean, variance and correlation coefficient for clus-

tered data are jointly modeled by

g(µij) = xTijβ log(σ2
ij) = zTijλ f(ρijk) = hTijkγ (2)

where the dimensions of associated covariates xij , zij and hijk are p, q and d, respec-

tively. λ and γ are parameters corresponding to σ2
ij and ρijk, g(·) is a monotonic and

differentiable function linking µij and xTijβ, and f(t) = log((1 + t)/(1− t)) is the Fisher-

transformation mapping ρijk from (−1, 1) to (−∞,+∞), which ensures the estimated

ρ̂ijk are well defined.

The three equations in (2) are known as joint mean-variance-correlation (JMVC)

models. The idea of JMVC is to treat the variance and the correlation as equally impor-

tant as the mean when modelling clustered data. As mentioned in introduction, MCD,
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ACD and HPC often assume that responses in the same cluster are naturally ordered.

In addition, they model transformed parameters, making the dependence of correlation

coefficients or variances on covariates hardly understandable. In contrast to these ex-

isting methods, we directly model the variance and correlation so that the meaning of

the estimated parameters are interpretable and our model does not require natural order

in cluster while both MCD and HPC do. After fitting JMVC, the correct covariance

structure is identified and therefore we expect our model can improve the estimation

efficiency over the convention GEE, which is confirmed by our simulation studies.

2.4. Conditional estimating equations of JMVC model

In this section, we present three estimating equations to estimate β, λ, γ in (2). Recall

that σ2
i = (σ2

i1, ..., σ
2
imi

)T and ρi = vech(Ri). We propose the following three estimating

equations:

S1(β) =

n∑
i=1

(
∂µi
∂β

)T
Σ−1i (yi − µi) = 0

S2(λ)
∣∣
β=β̂

=

n∑
i=1

(
∂σ2

i

∂λ

)T
W−1i (ε̂2i − σ2

i ) = 0

S3(γ)
∣∣
β=β̂,λ=λ̂

=

n∑
i=1

(
∂ρi
∂γ

)T
V −1i (δ̂i − ρi) = 0

(3)

where β̂ and λ̂ are the solutions of the first and second equations in (3), respectively. In

addition,

ε̂2i = (ε2i1(β̂), ..., ε2imi(β̂))T

δ̂i = (δi12(ξ̂), ..., δi1mi(ξ̂), δi23(ξ̂), ..., δi2mi(ξ̂), ..., δimi−1mi(ξ̂))
T

where ξ̂ = (β̂T , λ̂T )T . Zi = (zi1, ..., zimi)
T and Hi = (hi12, ..., hi1mi , ..., himi−1mi)

T are

the associated design matrices. Σi, Wi and Vi are the covariance matrices of yi, ε
2
i and

δi, respectively. ∂σ2
i /∂λ is mi×d matrix with jth row σ2

ijz
T
ij , ∂δi/∂γ is mi(mi−1)/2×d

matrix with (j − 1) ∗ (2mi − j)/2 + k − jth row ḟ−1(hTijkγ)hTijk. Note that the second

estimating equation involves β̂ in ε̂2i and the third estimating equation involves ξ̂ in δ̂i.
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Compared to (3), the generalized estimating equations below

S2(λ) =

n∑
i=1

(
∂σ2

i

∂λ

)T
W−1i (ε2i − σ2

i ) = 0

S3(γ) =

n∑
i=1

(
∂ρi
∂γ

)T
V −1i (δi − ρi) = 0

are the standard GEEs. The second and third conditional estimating equations in (3)

are inspired by the consistency of the GEE estimator. Specifically, even though the

covariance Σi is misspecified, we can obtain consistent β̂. Replacing β in S2(λ) by this

consistent β̂, we expect to obtain consistent estimator λ̂. Also, by replacing (β, λ) in

S3(γ) by consistent (β̂, λ̂), we expect to obtain consistent estimator γ̂. Therefore it is

reasonable to use the conditional estimating equations S2(λ)
∣∣
β=β̂

and S3(γ)
∣∣
ξ=ξ̂

to obtain

estimators of λ and γ. Note it is likely that E[S2(λ)
∣∣
β=β̂

] 6= 0 and E[S3(γ)
∣∣
ξ=ξ̂

] 6= 0 so that

the conditional GEEs S2(λ)
∣∣
β=β̂

= 0 and S3(γ)
∣∣
β=β̂

= 0 are not exactly the generalized

estimating equations for λ and γ. However, we show in supplementary material that as

n→∞, they are asymptotically the same as the generalized estimating equations.

Note that Wi and Vi should be specified. When yi follows multivariate normal

distribution Nmi(µi,Σi), by some calculations presented in Appendix A we find that

cov(ε2ij , ε
2
ik) = 2ρ2ijkσ

2
ijσ

2
ik and cov(δijk, δilm) = ρijlρikm + ρijmρikl, which indicates that

var(ε2ij) = 2σ4
ij and var(δijk) = 1 + ρ2ijk. When the assumption that yi follows normal

distribution is violated, the expressions for elements of Wi and Vi, however, are ana-

lytically intractable. For such a reason, in spirit of the idea of Ye and Pan (2006), we

approximate Wi and Vi by using the following matrices

W̃i = P
1
2
i1Ri1(u1)P

1
2
i1 , Ṽi = P

1
2
i2Ri2(u2)P

1
2
i2

where

Pi1 = diag(2σ4
i1, ..., 2σ

4
imi), Pi2 = diag(1 + ρ2i12, ..., 1 + ρ2i1mi , ..., 1 + ρ2mi−1mi) (4)

Ri1(u1) and Ri1(u1) are working correlation matrices, which often take the Compound

Symmetry (CS) structure or the Order-1 Autoregressive (AR(1)) structure for longitu-

dinal data. They are of course approximations to the true correlation matrices of ε2i and

δi, respectively.
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Algorithm 1: Conditional GEEs for clustered data

1: Input an initial β(0), λ(0) and γ(0), set k = 0.

2: Given β(k), in particular given ε̂2i , choose λ(k) as initial values, update λ by

λ(s+1) = λ(s)+
[

n∑
i=1

(
∂σ2

i

∂λ

)T
W̃−1i

(
∂σ2

i

∂λ

)]−1 [ n∑
i=1

(
∂σ2

i

∂λ

)
W̃−1i (ε̂2i − σ2

i )

]
∣∣∣∣∣
β=β(k),λ=λ(s)

until convergence. Denote the result by λ(k+1).

3: Given β(k) and λ(k+1), in particular given δ̂i, choose γ(k) as initial values, update γ

by

γ(s+1) = γ(s)+
[

n∑
i=1

(
∂δi
∂γ

)T
Ṽ −1i

(
∂δi
∂γ

)]−1 [ n∑
i=1

(
∂δi
∂γ

)
Ṽ −1i (δ̂i − ρi)

]
∣∣∣∣∣
β=β(k),λ=λ(k+1),γ=γ(s)

until convergence and denote the result by γ(k+1).

4: Given λ(k+1) and γ(k+1), in particular given Σi, update β by

β(k+1) = β(k)+
[

n∑
i=1

(
∂µi
∂β

)T
Σ−1i

(
∂µi
∂β

)]−1 [ n∑
i=1

(
∂µi
∂β

)
Σ−1i (yi − µi)

]
∣∣∣∣∣
β=β(k),λ=λ(k+1),γ=γ(k+1)

5: Replace β(k), λ(k) and γ(k) by β(k+1), λ(k+1) and γ(k+1), respectively. Repeat steps

2-4 until a convergence criterion is met.
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We define the JMVC estimators (β̂T , λ̂T , γ̂T )T as the roots of three estimating equa-

tions in (3). As mentioned in section 1, the advantage of GEE is the resulting estimators

are consistent even if the correlation matrix is misspecified. Thus we anticipate that

not only GEE estimator β̂, but also conditional GEE estimators λ̂ and γ̂ are consistent,

which is presented in Theorem 1 and confirmed by our simulation studies in later section.

Indeed, any change of nuisance parameters u1 and u2 or working correlation structures

of R1i and R2i has little effect on the estimators of λ and γ.

We next provide iterative quasi-Fisher algorithm to solve the three estimating equa-

tions in (3), which is summarized in Algorithm 1.

Note that the initial values β(0), λ(0) and γ(0) should be given properly. It is natural

to use any
√
n-consistent estimate of β as initial value of β. Thus the conventional

generalized estimating equation estimator β̂G can be set as β(0). To obtain λ(0) and γ(0),

one may first use Algorithm 1 to calculate reasonable values of λ and γ by setting the

initial values of λ and γ as the vectors of zeros, then take these two reasonable values as

λ(0) and γ(0).

3. Asymptotic Property

In this section, we present the consistency and asymptotic normality of the JMVC

estimators (β̂Tn , λ̂
T
n , γ̂

T
n )T under certain regularity conditions presented in supplementary

materials. In addition, we also prove that for any subject i, the probability of the

estimated correlation matrix R̂i to be positive definite tends to 1 as n → ∞, under the

condition that the true correlation matrix Ri of yi is positive definite. The main results

are summarized as follows.

Theorem 1. Under regularity conditions C1-C4 presented in supplementary materi-

als, the JMVC estimators θ̂n = (β̂Tn , λ̂
T
n , γ̂

T
n )T are

√
n-consistent, that is, ‖θ̂n − θ0‖ =

Op(n
−1/2)

Theorem 2. Under regularity conditions C1-C7 presented in supplementary materials,

the JMVC estimators β̂n, λ̂n and γ̂n are asymptotically distributed with

√
n(β̂n − β0)

D−→ N(0, v−111 ),
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conditional on β̂n,
√
n(λ̂n − λ0)|β=β̂n

D−→ N(φλn, v
−1
22 ),

and conditional on ξ̂n = (β̂Tn , λ̂
T
n )T

√
n(γ̂n − γ0)|ξ=ξ̂n

D−→ N(φγn, v
−1
33 ),

where

v11 = lim
n→∞

[
1

n

n∑
i=1

(
∂µi

∂β

)T
Σ−1
i

(
∂µi

∂β

)]
,

v22 = lim
n→∞

[
1

n

n∑
i=1

(
∂σ2
i

∂λ

)T
W−1
i

(
∂σ2
i

∂λ

)]
,

v33 = lim
n→∞

[
1

n

n∑
i=1

(
∂ρi

∂γ

)T
V −1
i

(
∂ρi

∂λ

)]
,

and

φλn = lim
n→∞

[
1

n

n∑
i=1

(
∂σ2
i

∂λ

)T
W−1
i

(
∂σ2
i

∂λ

)]−1 [
1
√
n

n∑
i=1

(
∂σ2
i

∂λ

)T
W−1
i

(
∂ε2i
∂β

)
(β̂n − β0)

]
= Op(1),

φγn = lim
n→∞

[
1

n

n∑
i=1

(
∂ρi

∂γ

)T
V −1
i

(
∂ρi

∂γ

)]−1 [
1
√
n

n∑
i=1

(
∂ρi

∂γ

)T
V −1
i

(
∂δi

∂ξ

)
(ξ̂n − ξ0)

]
= Op(1),

Theorem 3. Under regularity conditions C1-C4 presented in supplementary materials,

if the true correlation matrix Ri is positive definite, we have

Pr(ηTi R̂iηi > 0) −→ 1

as n→∞, where ηi ∈ Rmi , i = 1, ..., n.

The proofs of the above three theorems are provided in supplementary materials. In

the proof of Theorem 1, we show that each of two conditional estimating equations can

be divided into two terms, in which the first term is a generalized estimating equation

and the second term is negligible as long as n is sufficient large, indicating that each

of two conditional estimating equations is asymptotically equivalent to a generalized

estimating equation. Note that the first asymptotic distribution in Theorem 2 is marginal

distribution because the estimating equation for β is standard GEE. And Theorem 2

indicates that
√
nλ̂n and

√
nγ̂n have asymptotic biases of scale Op(1). The reason is

that we use conditional generalized estimating equations. The biases of λ̂n and γ̂n, i.e.,

φλn/
√
n and φγn/

√
n, then converge to zero as n → ∞. Theorem 3 is actually a direct

extension of Theorem 1. By consistency of estimator γ̂n, the estimated correlation matrix

converges to the true correlation matrix, thus also is positive definite as n→∞.
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The covariance of β̂n can be estimated using sandwich formula.

cov(β̂n) = (nv11n )−1(nv11n )(nv11n )−1|θ=θ̂ =

[
n∑
i=1

(
∂µi
∂β

)T
Σ−1i

(
∂µi
∂β

)]−1 ∣∣∣∣∣
θ=θ̂

(5)

where v11n is covariance of S1(β)/
√
n. The covariance of λ̂n and γ̂n can be estimated in a

similar way. We discuss the explicit expressions in Appendix B. The simulation studies

show that the proposed sandwich formulas perform very well.

4. Model Selection

In this section, we present, the model selection method combining the quasi-likelihood

under the independence model criterion (QIC) (Pan, 2001) and Bayesian information

criterion (BIC) (Schwarz, 1978) within quasi-likelihood framework.

Pan (2001) proposed QIC as:

QIC(β̂G; I) =
1

n

[
− 2Q(β̂G; I) + 2tr(Ω̂I V̂r)

]
for the model selection of generalized estimating equation (1), where the identity covari-

ance matrix I indicates the quasi-likelihood

Q(β; I) =

n∑
i=1

mi∑
j=1

Q(β;Yij , xij)

with

Q(β; y, x) =

∫ µ

y

y − t
φV (t)

dt,

Ω̂I = −∂2Q(β̂G; I)/∂ββT and V̂r is an estimator of cov(β̂G) and can be obtained by

sandwich covariance formula in Liang and Zeger (1986). Here tr(Ω̂I V̂r) plays the same

role as the degree of freedom of parameter. Pan (2001) pointed out that QIC is based on

Akaike information criterion (AIC) (Akaike, 1998), in particular, the quasi-likelihood in

QIC plays the same role as the log-likelihood in AIC. However, it is well known that AIC

has a tendency to select an overparameterized model. Another selection criterion, BIC,

penalizes free parameters more strongly and often selects a more parsimonious model.

Therefore a natural idea is to modify QIC based on BIC as

QICm(β̂G; I) =
1

n

[
− 2Q(β̂G; I) + log(n)tr(Ω̂I V̂r)

]
.
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Inspired by this modification, we now propose new model selection criteria for JMVC.

DenoteM = (Mβ ,Mλ,Mγ) by an arbitrary candidate model whereMβ = {j1, ..., jp∗}

includes {Xij1 , ..., Xijp∗ } as the relevant predictors in the model of the mean, where Xij

is jth colum in Xi; Mλ = {k1, ..., kq∗} and Mγ = {l1, ..., ld∗} are defined similarly.

Denote the true model by Mo = (Mo
β ,Mo

λ,Mo
γ). We define the family of overfitted

models as M+ = (M+
β ,M

+
λ ,M

+
γ ) and that of underfitted models as M− = (M−β ,M

−
λ ,M

−
γ ).

Thus if for any Mβ ∈ M+
β , we then have Mo

β ⊂ Mβ and if for any Mβ ∈ M−β , we

must have Mo
β 6⊂ Mβ . Denote the saturated model by Ms = (Ms

β ,Ms
λ,Ms

γ), where

Ms
β = {1, ..., p}, Ms

λ = {1, ..., q} and Ms
γ = {1, ..., d}. Denote βMβ

= (βj1 , ..., βjp∗ )T

and similarly λMλ
and γMγ

. With these notations, the model selection criteria for JMVC

are proposed as follows

QICβJMV C(Mβ ,Ms
λ,Ms

γ) =
1

n

[
−2Qβ(β̂Mβ

, λ̂Ms
λ
, γ̂Ms

γ
; I) + log(n)tr(Ω̂βV̂β)

]
,

QICλJMV C(Ms
β ,Mλ,Ms

γ) =
1

n

[
−2Qλ(β̂Ms

β
, λ̂Mλ

, γ̂Ms
γ
; I) + log(n)tr(Ω̂λV̂λ)

]
,

QICγJMV C(Ms
β ,Ms

λ,Mγ) =
1

n

[
−2Qγ(β̂Ms

β
, λ̂Ms

λ
, γ̂Mγ

; I) + log(n)tr(Ω̂γ V̂γ)
]
.

(6)

where the explicit expressions of (6) are provided in Appendix C.

The three criteria in (6) are collectively named QICJMV C , so that model selection

for three parameters β, λ and γ can then be conducted by minimizing those three cri-

teria with respect to Mβ , Mλ, and Mγ , separately. It is worthwhile to point out that

the reason why saturated estimators β̂Ms
β
, λ̂Ms

λ
and γ̂Ms

γ
are used is to avoid miss-

ing the important variables. In practice, however, if one has known the optimal model

Mo
β for parameter β, one may also use QICλJMV C(Mo

β ,Mλ,Ms
γ) to obtain Mo

λ and

QICγJMV C(Mo
β ,Ms

λ,Mγ) to select Mo
γ . Thus the proposed criteria are flexible.

For computation, an efficient search strategy in spirit of Pan and Mackenzie (2003)

is proposed as follows

Mo
β = arg min

Mβ

{QICβJMV C(Mβ ,Ms
λ,Ms

γ)},

Mo
λ = arg min

Mλ

{QICλJMV C(Ms
β ,Mλ,Ms

γ)},

Mo
γ = arg min

Mγ

{QICγJMV C(Ms
β ,Ms

λ,Mγ)}.

It is clear that the number of minimization of this strategy is 2p + 2q + 2d − 3, which

is computationally much less demanding than all subset selection number that is (2p −
12



1)(2q−1)(2d−1). The selection consistency of above algorithm is established by following

theorem.

Theorem 4. Under regularity conditions C1-C4 presented in supplementary material,

as n→∞, we have

Pr{ min
Mβ∈M+

β ∪M
−
β

QICβJMV C(Mβ ,Ms
λ,Ms

γ) > QICβJMV C(Mo
β ,Ms

λ,Ms
γ) } → 1,

Pr{ min
Mλ∈M+

λ∪M
−
λ

QICλJMV C(Ms
β ,Mλ,Ms

γ) > QICλJMV C(Ms
β ,Mo

λ,Ms
γ) } → 1,

Pr{ min
Mγ∈M+

γ ∪M−γ
QICγJMV C(Ms

β ,Ms
λ,Mγ) > QICγJMV C(Ms

β ,Ms
λ,Mo

γ) } → 1.

The proof of Theorem 4 is presented in the supplementary materials. Zhang (2012)

proposed a similar search strategy and proved the selection consistency. However, they

assumed that the responses yi must follow multivariate normal distribution, which is

often violated in practice. Here we only assume the existence of the first four moments

of yi. Therefore our result is an improvement over their result and can be applied to

broad range in practice.

5. Simulation Study

In this section, we present simulation results for JMVC estimators. The results

confirm that (i) The JMVC estimators and corresponding estimation efficiency of mean

parameter β are robust against misspecification of the working correlation structures.

(ii) The proposed algorithm and sandwich formulas perform very well. (iii) The JMVC

estimators of mean parameter β possess higher estimation efficiency than conventional

GEE estimator. (iv) The model selection criterion QICJMV C performs well.

5.1. Simulation Setting

Without loss of generality, we focus on the case that σ2
ij and ρijk are actually not

constants. We study the performance of JMVC estimators under different working corre-

lation sturctures for R1i and R2i and the nuisance parameters u1 and u2. Denote CS(u1)

and AR(1)(u2) by the matrices with Compound Symmetric structure and Order-1 Au-

toregressive structure with nuisance parameter u1 and u2, respectively. We study four

cases shown in Table 1 with five sub-cases in each case. For example, Table 1 shows that
13



in the case I.(a) R1i and R2i are set as CS(0.3) and CS(0.3), respectively. We gener-

ate both normal data and normal-mixture data as two examples of continuous clustered

data.

Table 1: Cases in simulation studies

Case R1i R2i Case R1i R2i

I.(a) CS(0.3) CS(0.3) III.(a) CS(0.3) AR(0.3)

I.(b) CS(0.5) CS(0.5) III.(b) CS(0.5) AR(0.5)

I.(c) CS(0.7) CS(0.7) III.(c) CS(0.7) AR(0.7)

I.(d) CS(0.3) CS(0.7) III.(d) CS(0.3) AR(0.7)

I.(e) CS(0.7) CS(0.3) III.(e) CS(0.7) AR(0.3)

II.(a) AR(0.3) AR(0.3) IV.(a) AR(0.3) CS(0.3)

II.(b) AR(0.5) AR(0.5) IV.(b) AR(0.5) CS(0.5)

II.(c) AR(0.7) AR(0.7) IV.(c) AR(0.7) CS(0.7)

II.(d) AR(0.3) AR(0.7) IV.(d) AR(0.3) CS(0.7)

II.(e) AR(0.7) AR(0.3) IV.(e) AR(0.7) CS(0.3)

5.2. Normal Data

For each case in Table 5.1, we generate 1000 replicates, in which each with n = 300

clusters and each cluster has mi observations with mi − 1∼Binomial(10, 0.7), resulting

in different numbers of measurements for clusters. The replicates are generated from the

model

yij = β0 + xij1β1 + xij2β2 + eij (i = 1, ..., n; j = 1, ...,mi)

log(σ2
ij) = λ0 + zij1λ1 + zij2λ2 and f(ρijk) = γ0 + hijk1γ1 + hijk2γ2

where (xij1, xij2) are generated from N2(0,CS(0.5)), (zij1, zij2) = (xij1, xij2) and eij ∼

Nmi(0,Σi). For hijk = (1, hijk1, hijk2)T , since the generated correlation Ri should be

positive definite, we present a proposition which provides a two-step algorithm below to

generate such hijk in Appendix D.

Algorithm 2: Generating process of hijk
1: Generate (hijk1, hijk2) from N2(0,CS(0.3)).

2: If ‖hijk‖2 ≤ ‖γ‖−1
2 min{|f(− 0.9

mi−1
)|, |f( 0.9

mi−1
)|}, accept hijk as covariate of ρijk. Otherwise

return to step 1.

14



It is worthwhile to point out that we develop Algorithm 2 only for the purpose of

generating the positive definite correlation matrices. In real application, statistical re-

searchers often have information (e.g., from medical researchers) about covariates and

have no need to generate covariates. However, when statistical researchers choose covari-

ates based on such information, conditions presented in Algorithm 2 may not hold for

hijk and the estimated correlation matrices R̂i may not be positive definite. In such a

situation, one could find a surrogate or calibration of R̂i. Specifically, one could find the

surrogate by simply replacing the non-positive eigenvalues of R̂i by its minimum positive

eigenvalue or use the calibration techniques proposed by Huang et al. (2017) to find the

positive definite calibration of R̂i.

From the generating process above, the generated data is unbalanced clustered data

and there is no cluster-in order, thus MCD and HPC approaches do not applied to our

simulation setting.

Due to space limit, only the simulation results for normal data of Case I and Case

II are summarized in Table 2. The results of Case III and Case IV are presented in

the supplementary materials. To evaluate the performance of sandwich formula (5), we

also present the standard errors (in parentheses) and averaged standard deviations (in

brackets) over 1000 parameter estimates for each case, where the standard deviations are

estimated by the proposed sandwich formulas. In addition, we report estimation results

of the mean parameters estimated by GEE using independent (GEE. In), Compound

Symmetric (GEE. CS ) and Order-1 Autoregressive (GEE. AR(1)) working correlation

structures as competing methods, respectively.

In our simulation design, the average of the generated ρijk over all observations

is 0.0494, such small correlation is generated by setting small norm of the correlation

parameter γ = (γ0, γ1, γ2)T , by which Algorithm 2 is easier to efficiently generate hijk.

In Table 2, the small correlations lead to similar performance of GEE. In, GEE. CS and

GEE. AR(1) in terms of efficiency, although the performance of GEE. CS and GEE.

AR(1) is slightly superior than that of GEE. In.

It can be seen from Table 2 that both parameter estimates and their standard er-

rors for regression parameters β are almost invariant against the working correlation

structures and nuisance parameters of Ri1(u1) and Ri2(u2). Although there are slight
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perturbations in estimates of λ̂ and γ̂, they are consistent estimators. Besides, we can

see clear changes of standard errors of λ̂ and γ̂, for example, looking at the standard

errors of λ1, it is 0.0364 in case I.(a), but in case II.(b), it becomes 0.0392. This is not

unexpected since working correlations are used to approximate the true correlations and

thus lead to some information loss. In addition, all sample estimated standard deviations

match well with sample standard errors, indicating the sandwich formulas perform well.

Compared with GEE approaches, the sample standard errors of β̂ are uniformly smaller

than those of GEE. In, GEE. CS and GEE. AR(1). This is reasonable since GEE. In,

GEE. CS and GEE. AR(1) do not identify the true covariance matrices, which are cor-

rectly identified by JMVC. Therefore, we conclude that that JMVC actually improves

the estimation efficacy for the mean parameters.

In this simulation, there is no non-positive definite estimated correlation matrix ap-

peared, which is because of the asymptotic consistency to the correlation matrix, see

Theorem 3. In practice, however, the true correlation matrix may be non-positive defi-

nite. For such a situation, one can use the calibration technique proposed by Huang et al.

(2017) to calibrate the estimated correlation matrix to ensure its the positive definiteness.

5.3. Normal-Mixture Data

In this simulation study we use the same setting as in section 5.2. We generate 1000

replicates from normal-mixture distributions

Fi = πNmi(µi + ai,Σi) + (1− π)Nmi(µi,Σi) (i = 1, ..., n)

where π = 0.5 is the mixing weight and ai = 1
2µi is the mean-shift parameter. For

normal-mixture distribution Fi, the true expectation and variance are µ̃i = µi +πai and

Σ̃i = Σi+π(1−π)aia
′
i, so that directly comparing the parameter estimators and the true

values of parameters is not appropriate. Similar to Ye and Pan (2006), we use relative

errors

err(µ̂i) =
‖µ̂i − µ̃i‖
‖µ̃i‖

err(Σ̂i) =
‖Σ̂i − Σ̃i‖
‖Σ̃i‖

to measure the performance of our JMVC estimators, where µ̂i and Σ̂i are the estimated

mean and covariance. The results are shown in Table 3.
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Table 3: Joint mean-variance-correlation estimation results for averaged relative errors of normal-mixture

data

Case

I.(a) I.(b) I.(c) I.(d) I.(e) II.(a) II.(b) II.(c) II.(d) II.(e)

err(µ̂) 0.0601 0.0601 0.0601 0.0601 0.0601 0.0601 0.0602 0.0602 0.0602 0.0601

err(Σ̂) 0.1176 0.1180 0.1188 0.1183 0.1181 0.1179 0.1206 0.1238 0.1193 0.1225

Case

III.(a) III.(b) III.(c) III.(d) III.(e) IV.(a) IV.(b) IV.(c) IV.(d) IV.(e)

err(µ̂) 0.0601 0.0602 0.0602 0.0602 0.0601 0.0601 0.0601 0.0601 0.0601 0.0601

err(Σ̂) 0.1179 0.1188 0.1198 0.1193 0.1184 0.1175 0.1199 0.1229 0.1182 0.1222

It can be seen that err(µ̂) is almost robust against the change of working correlation

structures and nuisance parameters of R1i(u1) and R2i(u2), whereas there is clear per-

turbation in err(Σ̂). This phenomenon coincides with the feature of JMVC estimators

presented in Table 2 in the sense that the the parameter estimators and standard errors

of β are robust, while there are perturbations in estimators and standard errors of λ̂ and

γ̂. Overall, err(µ̂) are negligible, whereas in some cases err(Σ̂) are relatively large but we

consider this as acceptable since ‖Σ̂i − Σ̃i‖ is for matrices with sizes mi ×mi.

5.4. Model Selection

Recall that the proposed selection criteria QICJMV C requires 2p + 2q + 2d − 3 times

of minimization. For simplicity, we adopt the similar settings in section 5.2 to assess

the performance of the proposed model selection criteria by setting β = (1,−1, 0)T ,

λ = (2, 1, 0)T and λ = (0.1,−0.2, 0)T .

Table 4 shows that the empirical percentage of the models which are incorrectly

selected over 1000 replicates. Note that the performance of the correlation criteria

QICγJMV C is best over all cases. A possible reason is that the generated correlations

are small so that estimating the correlation parameters γ is easier. In our experience,

the performance of the mean criteria QICβJMV C is similar to that of QICγJMV C in real

application.

Except Case II.(c), Case II.(e), Case III.(c) and Case III.(e), the mean criteria

QICβJMV C and the correlation criteria QICγJMV C are superior than the variance cri-
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teria QICλJMV C , and the reason is that the variance is more difficult to estimate (Tang,

2011; Zhang et al., 2015). Therefore, in practice, we suggest to select the optimal model

for mean and correlation first and then based on these two reasonable models to select

the optimal model for variance. Overall, the percentage of incorrect selections for all

three parameters is smaller than 0.165, which means a desired performance of our model

selection criterion is obtained.

Table 4: Percentage of incorrectly selected models for normal data

Case

Criterion I.(a) I.(b) I.(c) I.(d) I.(e) II.(a) II.(b) II.(c) II.(d) II.(e)

QICβJMV C 0.092 0.094 0.094 0.093 0.093 0.100 0.114 0.140 0.101 0.137

QICλJMV C 0.150 0.155 0.149 0.165 0.145 0.155 0.120 0.098 0.149 0.100

QICγJMV C 0.034 0.025 0.018 0.018 0.034 0.020 0.010 0.010 0.010 0.020

Case

Criterion III.(a) III.(b) III.(c) III.(d) III.(e) IV.(a) IV.(b) IV.(c) IV.(d) IV.(e)

QICβJMV C 0.093 0.094 0.096 0.094 0.094 0.098 0.112 0.135 0.098 0.137

QICλJMV C 0.154 0.150 0.155 0.165 0.150 0.155 0.119 0.111 0.159 0.099

QICγJMV C 0.020 0.010 0.010 0.010 0.020 0.034 0.026 0.017 0.017 0.033

6. Analysis of COVID-19 data

Although the proposed approach focuses on cluster data with no need of cluster-

order, in this section we analysis a COVID-19 data set, which is a longitudinal data with

natural order in each cluster.

A global pandemic caused by Corona Virus Disease 2019 (COVID-19) leads to an

urgent demand to understand this virus. One of the vital issues in COVID-19 research is

to model the trajectory of the worldwide COVID-19 infection. A indicator that measures

the severity of infection is the number of positive cases for each country. Here we use

the data collected from website Our World Data (https://ourworldindata.org/) to

model the trajectory of this indicator. The data consists of the number of positive

cases of 95 countries in the world over a period from 21th September to 20th December.

On 21th September, the number of positive cases varies from 4077 to 6976244 among

these 95 countries. Daily counts of positive cases are recorded and are averaged every 7
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Table 5: Table 5. Model selection results for global covid19 data

p

2 3 4 5 6 7 8 9

QICβJMV C(p, 13, 4) 13.5985 13.4528 13.3563 13.5835 13.5799 13.5810 13.5961 13.7013

q

2 3 4 5 6 7 8 9

QICλJMV C(4, q, 4) 45.6833 45.6940 46.2958 45.3660 47.3111 48.2647 48.2593 48.8596

d

2 3 4 5 6 7 8 9

QICγJMV C(13, 13, d) 135.5530 135.5493 135.5490 135.5492 135.5515 135.5521 135.5511 135.5521

days, leading to repeated measurements of 13 times. We treat the counts as continuous

responses and we use three polynomials in time or time lag as covariates. That is, the

covariates are of form

xij = (1, tij , t
2
ij , ..., t

p−1
ij )T

zij = (1, tij , t
2
ij , ..., t

q−1
ij )T

hijk = (1, |tij − tik|, |tij − tik|2, ..., |tij − tik|d−1)T

(7)

where tij is time at the jth measurements of the ith country.

(7) indicates that the model selection procedure reduces to select the best triple

among all possible triples (p, q, d). We first use QICγJMV C(13, 13, d) to select the ap-

propriate d, where QICγJMV C(p, q, d) is denoted by QICγJMV C(β̂M
p
β ; λ̂M

q
λ , γ̂M

d
γ ) with

Mp
β = {1, ..., p}, Mq

λ = {1, ..., q}, Md
γ = {1, ..., d}, respectively. The QICβJMV C(p, q, d)

and QICλJMV C(p, q, d) are defined similarly. We find that the optimal d is met at

d = 4, and therefore we have information about optimal model for γ. After that,

QICβJMV C(p, 13, 4) is used to select appropriate p, which is met at 4. Once having

the optimal p and d, QICλJMV C(4, q, 4) is used to select optimal q, which is met at 5.

The selection results are shown in Table 5. From Table 5, the optimal triple for COVID-

19 data clearly is (4, 5, 4), indicating it suffices to model the mean by a three order

polynomial, model the variance by a five order polynomial and model the correlation by

a four order polynomial. We present our fitting results under optimal model in Figure 6.

Looking at Figure 6, three fitting curves are very close to the sample regressograms

in terms of not only values and but also trajectory, indicating that the JMVC approach
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Figure 1: Analysis of COVID-19 data using best triple (4, 5, 4): (a) shows mean versus time. (b) shows

the variance versus time. (c) shows the correlation versus time lag. The scatters correspond to sample

regressograms, the solid lines correspond to JMVC model fits.

produces a fairly satisfactory results. Note that there are clear patterns in the fitting

curves, that is, there is a considerable upward trend of the number of positive cases

across the world over this period. The rise of variance demonstrates the variability of

worldwide positive cases goes up over time lag.

In this analysis, polynomials in time or time lag are used as covariates. This is due

to the procedure that how one can apply selection criterion QICJMV C to real data can

be presented clearly under such form of covariates. In other real applications, one may

choose more general and iterpretable covarites to lend the advantage of JMVC model.

For example, the stringency index, a indicator that measures the severity of epidemic

prevention and control policy, may be a good choice as covariate for COVID-19 data.

After having the estimated coefficients of more iterpretable covariates, the fitted JMVC

model would have more a clear iterpration.

Another real data analysis of cattle data (Kenward and G., 1987) is presented in the

supplementary materials, where the performance of JMVC and HPC (Zhang et al., 2015)

is compared.
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7. Discussions

In this paper, we propose a joint modelling approach for continuously clustered data.

The mean, variance and correlation coefficients are modeled simultaneously. Rather than

using any matrix decomposition techniques like Pan and Mackenzie (2003) and Zhang

et al. (2015), the proposed approach directly models the original covariance matrix.

Hence our approach permits clear interpretation of parameters. In addition, our approach

does not require naturally ordered responses in each cluster, which is necessary in Pan and

Mackenzie (2003) and Zhang et al. (2015). Since the covariance is correctly modeled,

our approach improves estimation efficiency over the conventional GEE approach and

the proposed mean parameter estimators and corresponding standard errors are robust

against not only nuisance parameters but also structures of working correlation matrices.

In addition the proposed model selection approach based on QIC is very flexible since

the criteria in (6) can be used separately given information about optimal models.

As mentioned in section 3 and section 5.2, the estimated correlation matrix may be

not positive definite, and one may use the calibration technique proposed by Huang et al.

(2017) to ensure positive definiteness.

One future research interest is to extend the JMVC model to the context of semi-

parametrical and nonparametrical statistics. We conjecture this is attainable by using

the similar spline technique proposed in Leng et al. (2010). Another future interest is

the JMVC model in the high dimensional setting, which means the dimension of covari-

ate is allowed to diverge to infinity. Recently, Wang et al. (2012) proposed penalized

generalized estimating equation (PGEE) approach to model high-dimensional clustered

data, which is possible to incorporate into our approach. They used cross validation to

select tuning parameter in PGEE, while we conjecture QICJMV C may be extended to

high-dimensional setting. Finally, our approach focuses on continuous data. thus it is

natural to investigate whether JMVC model may be extended to model discrete clustered

data.
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Appendix A. The calculation of cov(ε2ij, ε
2
ik) and cov(δijk, δilm) under normal

distribution

When yi follows normal distribution Nmi(µi,Σi), εij/σij follows normal distribution

N1(0, 1). Therefore by Wick’s Theorem (Wick, 1950), we have

E(ε2ijε
2
ik) = σ2

ijσ
2
ikE

[(
εij
σij

)2(
εik
σik

)2
]

= E(ε2ij)E(ε2ik)+2[E(εijεik)]2 = σ2
ijσ

2
ik+2ρ2ijkσ

2
ijσ

2
ik

Thus cov(εij , εik) = E(ε2ijε
2
ik)− E(ε2ij)E(εik)2 = 2ρ2ijkσ

2
ijσ

2
ik. We also have

E

(
εijεikεilεim
σijσikσilσim

)
= E

(
εijεik
σijσik

)
E

(
εilεim
σilσim

)
+ E

(
εijεil
σijσil

)
E

(
εikεim
σikσim

)
+ E

(
εijεim
σijσim

)
E

(
εikεil
σikσil

)
= ρijkρilm + ρijlρikm + ρijmρikl

Therefore,

cov(δijk, δilm) = E(δijkδilm)− E(δijk)E(δilm) = E

(
εijεikεilεim
σijσikσilσim

)
− ρijkρilm

= ρijlρikm + ρijmρikl

Appendix B. The sandwich formula for covariances of λ̂n and γ̂n

Similar to insight of Liang and Zeger (1986), the estimated covariance of JMVC

estimators λ̂n and γ̂n is given by

cov(λ̂n) =

[
n∑
i=1

(
∂σ2

i

∂λ

)T
W̃−1
i

(
∂σ2

i

∂λ

)]−1 [ n∑
i=1

(
∂σ2

i

∂λ

)T
W̃−1
i (ε2i − σ2

i )(ε
2
i − σ2

i )
T W̃−1

i

(
∂σ2

i

∂λ

)]

×

[
n∑
i=1

(
∂σ2

i

∂λ

)T
W̃−1
i

(
∂σ2

i

∂λ

)]−1 ∣∣∣∣∣
θ=θ̂

and

cov(γ̂n) =

[
n∑
i=1

(
∂ρi
∂γ

)T
Ṽ −1
i

(
∂ρi
∂γ

)]−1 [ n∑
i=1

(
∂ρi
∂γ

)T
Ṽ −1
i (δi − ρi)(δi − ρi)

T Ṽ −1
i

(
∂ρi
∂γ

)]

×

[
n∑
i=1

(
∂ρi
∂γ

)T
Ṽ −1
i

(
∂ρi
∂γ

)]−1 ∣∣∣∣∣
θ=θ̂
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Appendix C. The explicit expression of model selection criteria

We now provide explicit expression for corresponding selection criteria in (6).

Qβ(β̂Mβ
, λ̂Ms

λ
, γ̂Ms

γ
; I) =

n∑
i=1

mi∑
j=1

Q1ij Q1ij =

∫ µ̂ij

yij

yij − t
σ̃2
ij

dt

µ̂ij = µij(x
T
ij β̂Mβ

) σ̃2
ij = e

zTij λ̂Ms
λ

Qλ(β̂Ms
β
, λ̂Mλ

, γ̂Ms
γ
; I) =

n∑
i=1

mi∑
j=1

Q2ij Q2ij =

∫ σ̂2
ij

ε̃2ij

ε̃2ij − t
2t2

dt

ε̃2ij = (yij − µij(xTij β̂Ms
β
))2 σ̂2

ij = ez
T
ij λ̂Mλ

(C.1)

Qγ(β̂Ms
β
, λ̂Ms

λ
, γ̂Mγ

; I) =
n∑
i=1

mi−1∑
j=1

mi∑
k=j+1

Q3ijk Q3ij =

∫ ρ̂ijk

δ̃ijk

δ̃ijk − t
1 + t2

dt

δ̃ijk =
[yij − µ(xTij β̂Ms

β
)][yik − µ(xTikβ̂Ms

β
)]

σij(zTij λ̂Ms
λ
)σik(zTikλ̂Ms

λ
)

ρ̂ijk = f−1(hTijkγ̂Mγ
)

(C.2)

Ω̂βV̂β is corresponding sandwich estimator under model M = (Mβ ,Ms
λ,Ms

γ), where

Ω̂β = −∂Qβ/∂βMβ
∂βTMβ

estimated at (β̂Mβ
, λ̂Ms

λ
, γ̂Ms

γ
). V̂β = cov(β̂Mβ

) estimated at

(β̂Mβ
, λ̂Ms

λ
, γ̂Ms

γ
), Ω̂λV̂λ and Ω̂γ V̂γ are similarly defined.

In (6), the normal distribution is used to approximate the distribution of yi. Under

normal distribution, var(ε2ij) = 2σ4
ij = 2[E(ε2ij)]

2, resulting in 2t2 in (C.1). And 1 + t2 in

(C.2) can be explained in same way.

Appendix D. Proposition to generate positive definite Ri

Proposition Appendix D.1. For any α < 1, under JMVC model, if ‖hijk‖2 ≤

‖γ‖−12 min{|f(−α/(mi− 1))|, |f(α/(mi− 1))|}, then the correlation matrix Ri is positive

definite.

Proof : Since ‖hijk‖ ≤ ‖γ‖−1 min{|f(−α/(mi − 1))|, |f(α/(mi − 1))|}, by Cauchy-

Schwarz inequality, we have

|hTijkγ| ≤ ‖hijk‖‖γ‖ ≤ min{|f(− α

mi − 1
)|, |f(

α

mi − 1
)|}
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Therefore by monotony of f

|ρijk| = |f−1(hTijkγ)| ≤ α

mi − 1

indicating that ∑
j 6=k

|ρijk| ≤ (mi − 1)
α

mi − 1
≤ α < 1

which means for each row of correlation matrix Ri, the sum of the absolute values of

all non-diagonal elements is less than the diagonal element 1, since Ri is a symmetric

matrix, it must be positive definite.

It is worthwhile to point out that this proposition holds for every finite d.
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