Under review as a conference paper at ICLR 2025

NEAT: NONLINEAR PARAMETER-EFFICIENT ADAPTA-
TION OF PRE-TRAINED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning pre-trained models is crucial for adapting large models to down-
stream tasks, often delivering state-of-the-art performance. However, fine-tuning
all model parameters is resource-intensive and laborious, leading to the emergence
of parameter-efficient fine-tuning (PEFT) methods. One widely adopted PEFT
technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights
and introduces two low-rank matrices whose ranks are significantly smaller than
the dimensions of the original weight matrices. This enables efficient fine-tuning
by adjusting only a small number of parameters. Despite its efficiency, LoRA ap-
proximates weight updates using low-rank decomposition, which struggles to cap-
ture complex, non-linear components and efficient optimization trajectories. As
a result, LoRA-based methods often exhibit a significant performance gap com-
pared to full fine-tuning. Closing this gap requires higher ranks, which increases
the number of parameters. To address these limitations, we propose a nonlinear
parameter-efficient adaptation method (NEAT). NEAT introduces a lightweight
neural network that takes pre-trained weights as input and learns a nonlinear
transformation to approximate cumulative weight updates. These updates can be
interpreted as functions of the corresponding pre-trained weights. The nonlin-
ear approximation directly models the cumulative updates, effectively capturing
complex and non-linear structures in the weight updates. Our theoretical analy-
sis demonstrates that NEAT can be more efficient than LoRA while having equal
or greater expressivity. Extensive evaluations across four benchmarks and over
twenty datasets demonstrate that NEAT significantly outperforms baselines in both
vision and text tasks.

1 INTRODUCTION

Pre-trained models, trained on extensive and diverse general-domain corpora, demonstrate excep-
tional generalization capabilities, benefiting a range of fundamental tasks, such as natural lan-
guage understanding (Devlinl 2018} [Liul |2019)), natural language generation (Touvron et al.,|2023aj
Al@Meta, [2024), and image classification (Dosovitskiy et al.,|2020a). In order to adapt pre-trained
models to specific downstream tasks, fine-tuning is typically employed. However, due to the large
number of parameters in pre-trained models, full fine-tuning requires significant computational re-
sources and incurs substantial memory overhead (Qin et al., |2024)).

To address this challenge, various parameter-efficient fine-tuning (PEFT) techniques (Ding et al.,
2023 |Han et al) 2024) have been developed, enabling pre-trained models to be fine-tuned in
resource-constrained environments (Lin et al., 2024). PEFT methods reduce the memory overhead
of fine-tuning by introducing a small set of learnable parameters, updating only these lightweight
components. These approaches allow pre-trained models to effectively adapt to new tasks while
minimizing resource consumption. Among PEFT techniques, the Low-Rank Adaptation (LoRA)
family (Hu et al.,|2021b} Liu et al.|[2024; Song et al.| | 2024; Biiytikakytizl [2024; |Zhao et al.|[2024) is
widely regarded as one of the most effective and popular approaches due to its minimal architectural
modifications, high efficiency, and strong performance. The core concept of LoRA is to introduce
low-rank matrices for each pre-trained model weight and approximate weight updates through their
product. Since these low-rank matrices are much smaller than the original pre-trained weights, they
significantly reduce the memory overhead during fine-tuning.

Under review as a conference paper at ICLR 2025

Despite its widespread success, LoRA has limitations, particularly in capturing complex relation-
ships in weight updates. By decomposing weight updates into low-rank matrices, LoRA effectively
reduces the fine-tuning parameter space, but this comes at the cost of failing to capture the non-linear
interactions that are critical for many downstream tasks (Pan et al.,|2024)). This approximation often
struggles to model the intricate optimization trajectories required for high performance, especially
when the rank of the low-rank matrices is small. Consequently, LoRA-based methods often require
higher ranks to close the gap between their performance and that of full fine-tuning, which increases
the number of parameters and undermines the efficiency gains they were designed to achieve.

To overcome these limitations, we propose a novel nonlinear parameter-efficient adaptation method,
NEAT, which incorporates a lightweight neural network into the adaptation process. Unlike LoRA,
which approximates weight updates linearly through low-rank decomposition, NEAT models cumu-
lative weight updates as functions of the pre-trained model’s original weights. This enables NEAT to
capture complex, non-linear patterns in the weight space, improving adaptation performance with-
out increasing the number of parameters. The key innovation in NEAT lies in introducing a neural
network that transforms the pre-trained weights, approximating the updates with minimal additional
computation. This nonlinear transformation enhances the expressiveness of the parameter updates
while maintaining the efficiency. Importantly, this architecture facilitates a more efficient explo-
ration of the optimization landscape, leading to better task adaptation, particularly in cases where
linear methods like LoRA would require much larger ranks to achieve competitive results. We theo-
retically demonstrate that NEAT can achieve the same or greater expressivity than LoRA with fewer
parameters.

The contributions are summarized as follows:

* We propose NEAT, a novel parameter-efficient fine-tuning method that leverages nonlinear trans-
formations, effectively capturing more complex weight updates. To the best of our knowledge,
this is the first work to introduce nonlinear adaptation for LoRA-based PEFT methods.

* The proposed NEAT enhances model performance while maintaining the efficiency. We theo-
retically show that NEAT can achieve the same or greater expressivity compared to LoRA with
fewer parameters.

* We conduct extensive experiments on four benchmarks covering over twenty datasets. The ex-
periments show that the proposed NEAT can outperform baselines on both vision and text tasks.

2 RELATED WORKS

In this section, we provide a concise overview of related work on Parameter-Efficient Fine-Tuning
(PEFT) methods. PEFT methods aim to reduce the memory overhead of fine-tuning pre-trained
models, enabling fine-tuning in resource-constrained environments. According toHan et al.[(2024),
PEFT methods can be categorized into: 1) Additive PEFT methods (Chronopoulou et al., 2023
Edalati et al.l 2022} [Lester et al., 2021} (Wang et al, 2024c} |[Liu et al., 2022)), 2) Selective PEFT
methods (Guo et al.| [2020; |Das et al.l 2023; Sung et al.| 2021} |Ansell et al., [2021} |Zaken et al.,
20215 [Vucetic et al., 2022), 3) Reparameterized PEFT methods (Hu et al., |2021a; |Valipour et al.}
2022} [Zhang et al., 2023; Karimi Mahabadi et al.l 2021} |Liu et al., |2024; |Kopiczko et al., [2023)),
and 4) Hybrid PEFT methods (Mao et al., 2021} |Chen et al., [2023; He et al. [2021; Zhang et al.,
2022; Zhou et al., 2024). Among these, Low-Rank Adaptation (LoRA)-based methods, which are
representative of reparameterized PEFT approaches, have gained significant attention due to their
minimal architectural changes, no additional inference costs, and high efficiency. LoRA (Hu et al.,
2021a)) introduces two trainable low-rank matrices for each pre-trained model weight to approximate
the desired updates of the original model. Extensions of LoRA include DyLoRA (Valipour et al.,
2022), which dynamically adjusts the rank of the low-rank matrices during training to optimize
for specific tasks; AdaLoRA (Zhang et al.| [2023), which adaptively allocates the parameter bud-
get among weight matrices based on their importance scores; and DoRA (Liu et al., [2024)), which
decomposes the pre-trained weight into magnitude and direction, applying LoRA only for direc-
tion updates. Other variants include VeRA (Kopiczko et al.,|2023), which introduces shared frozen
random matrices across layers to improve efficiency further, and RoseLoRA (Wang et al., [2024b),
which employs a row- and column-wise sparse low-rank adaptation mechanism to selectively up-
date the most significant parameters. FourierFT (Gao et al.) replaces the matrix multiplication in
LoRA with a Fourier transform, while PiSSA (Meng et al.,2024)) and MiLoRA (Wang et al., [2024al)

Under review as a conference paper at ICLR 2025

+ . wo —+ AW
B ¥

WO A 0 s

: Parameters are frozen (~
“ . Parameters are trainable LoRA S —l NEAT
W?: pre-trained model weight 0
B, A: Introduced low-rank matrices f(w=;6)

Figure 1: Framework of proposed NEAT.

update the principal and minor singular components of the weight matrix, respectively. However,
existing PEFT methods rely on linear transformations to approximate pre-trained weight updates,
which struggle to capture the complex relationships inherent in weight updates, leading to a signifi-
cant performance gap compared to full fine-tuning. Meanwhile, existing research like (Teney et al.
2024) also demonstrates that nonlinear activation is an integral part of the neural network driving its
success.

3 PRELIMINARY

In this section, we briefly introduce the preliminary of LoORA. LoRA assumes that the modifications
to model weight matrices during fine-tuning exhibit low-rank properties. For a pre-trained weight
matrix W € R% %92 10RA models the efficient incremental update of pre-trained language mod-
els via the product of two learnable low-rank matrices

W=W°+ AW =W" + AB, (1)

where A € R1*" and B € R™*% with r < min(dy, ds).

During fine-tuning, only introduced two low-rank matrices A and B will be updated and the pre-
trained weight W0 is frozen, which can be represented as

Hllél E(Dtrain; we + AB)7 (2)

s

where Dy, is the training set used for fine-tuning and L is the loss function. Because A and B are
two low-rank matrices and much more lightweight than W9, the LoRA costs much less memory
space compared to the fully fine-tuning.

4 METHODOLOGY

4.1 FRAMEWORK OVERVIEW

As shown in Fig. [T} the proposed NEAT extends the incremental update mechanism of LoRA by
introducing a non-linear weight adaptation approach for more expressive model updates. In LoRA,
weight updates are achieved by decomposing adjustments into low-rank matrices B and A, which
are integrated into the pre-trained model weights W°. In contrast, NEAT enhances this by replacing
the static low-rank updates with a dynamic method. Specifically, NEAT utilizes a neural network
F(W?Y;) that takes the pre-trained weights W as input and generates a non-linear update AW
This design allows NEAT to capture more complex interactions and adapt more flexibly to a variety
of tasks while maintaining parameter efficiency.

Under review as a conference paper at ICLR 2025

4.2 MOTIVATION

In fully fine-tuning of pre-trained models, the weight update process is typically performed through
iterative gradient descent:

WP =W —nVyo L 3)

where W = WP, 1 is the learning rate, and W represents the weights after ¢ iterations. The
cumulative change in the weights over time is represented as:

AW =W - Wy, 4)

This weight change AW can be interpreted as a function of the original pre-trained weights W©,
capturing the model’s adaptation to the specific task during fine-tuning. Motivated by this obser-
vation, we propose to approximate AW using a lightweight neural network that takes pre-trained
model weight W0 as input and outputs the weight update directly. This approach leverages a non-
linear network to model the weight updating directly, which can capture more complex and richer
transformation of the weights efficiently.

4.3 NONLINEAR PARAMETER-EFFICIENT ADAPTATION

Similar to LoRA (Hu et al., 2021b)), the proposed NEAT also provides incremental update of pre-
trained language models. However, NEAT modifies the forward pass of the model by introducing a
dynamic nonlinear weight transformation. Specifically, the model’s forward propagation is formu-
lated as:

y=W"+f(W?0))a, (5)
where @ and y are the input and output with respect to the current layer respectively and f(;0) :
R4 *d2 _y R4 %42 j5 3 nonlinear neural network parameterized by 8. The neural network f(W?0; 8)
generates the weight update as a function of W0, In this formulation, the neural network f(W?°; 9)
allows for dynamic, non-linear weight updates that can capture more complex interactions than
the static low-rank approximation used in standard LoRA. To ensure the efficiency of the pro-
posed NEAT, the neural network f(W?;) should be lightweight, i.e., the number of parameters
of f(W?9) is much smaller than that of original pre-trained weight W, Therefore, we de-
sign the f(W?;8) as a neural network with bottleneck layers. For example, a simple case is
fW9%6) = c(W'0,)0@,, where = (©1,0,) € R¥“*" x R"™¥% with r < min(dy,dy),
and o(-) is the activation function like ReLU (Glorot et al.,[2011). We can also increase the layers
or add activation function for the output of f(W"; 0) to enhance the model expressiveness.

During fine-tuning, the optimization objective is to minimize the task-specific loss function, which
can be represented as

mein‘C(DtrainQ WO+ f(WO; 9)), ©)

where the original pre-trained weight W is frozen, and only the parameters 6 of the neural network
f(W?Y;) are updated.

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the parameter efficiency of NEAT under ReLU
activation. We show that NEAT can achieve a similar expressivity than LoRA with fewer parameters
under certain conditions. Consider a design of shallow neural network f(W?;0) = o(W°0;)0,
as in Section

Proposition 5.1. Let o be a ReLU activation function. Let U? € R% xrank(W?) peo the left singular
vectors of WP, Suppose that the loss function for fine-tuning is invariant under the the projection of
the weight matrix to the left singular space of W, i.e., L(Dyin; W) = L(Dyyain; UUTW) for
any W € R %d2 Thep, foranyr > 1,

min _ L(Dyain; W' + f(W°;(01,02))) < min L(Dyuin; W’ + AB)

@1€Rd2><2r, AERdl ><T‘
92€R27‘><d2 BER"X do
. 0 0
S min £(Dtrain; w + f(W 5 (617 @2)))
@ er2xT,
©y€R" X492

Under review as a conference paper at ICLR 2025

Proposition [5.1] demonstrates the (approximate) equivalence of LoRA and NEAT in terms of their
performance; the minimum attainable loss using rank-r LoRA can also be achieved by NEAT with 2r
hidden units, provided the invariance assumption holds. This implies a possible parameter efficiency
achieved by NEAT. Namely, NEAT with O(rd3) parameters maintains or surpasses the expressivity
of LoRA with r(d; + dg) parameters. Since dy can be much smaller than dy, this demonstrates a
possibly significant improvement in parameter efficiency. The added expressivity can also improve
sample efficiency by allowing the model to learn more detailed representations with the same or
fewer data points.

The invariance assumption in Proposition [5.1] asserts that the model’s performance depends solely
on the projection of the weight matrix onto the left singular space of W°. Given that we fine-tune
a pre-trained model, the later layers are expected to capture the task-relevant feature space, which is
described by the left singular space of WV, Since the later layers primarily rely on this pre-trained
feature space, the assumption is reasonable in practice. The principal directions of the pre-trained
weight matrix, represented by its singular vectors, encode most of the useful features for downstream
tasks, making the loss largely invariant to changes outside this subspace. The proof is available in

Section[A]]

If we consider a sinusoid activation function op,(z) = sin(27x), we can show a stronger result
without the invariance assumption that NEAT has expressivity (almost) greater than or equal to a
LoRA with more parameters. We defer the result to the Appendix

6 EXPERIMENT

In the experiments, we evaluate the proposed NEAT and answer the following questions:

RQ1 How does NEAT compare to state-of-the-art PEFT methods on NLP tasks?
RQ2 How does NEAT compare to state-of-the-art PEFT methods on vision tasks?

RQ3 How does the performance of NEAT vary with different fine-tuned modules, depths of the
lightweight neural network, or non-linear activation functions?

6.1 DATASETS AND EXPERIMENT SETTINGS
6.1.1 DATASETS
We conduct experiments on four different benchmarks:

* Commonsense Reasoning, including BoolQ (Clark et al., [2019), PIQA (Bisk et al.,[2020), So-
ciallQA (Sap et al., 2019), HellaSwag (Zellers et al.l [2019), WinoGrande (Sakaguchi et al.
2019), ARC-e, ARC-c (Clark et al.|[2018) and OpenBookQA (Mihaylov et al., 2018)) datasets, is
formulated as multiple-choice problems. Following |Wang et al.| (2024a), we finetune LLaMA2-
7B (Touvron et al., 2023a) and LLaMA3-8B (Al@Meta, 2024) on Commonsensel70K (Hu
et al.} [2023) dataset which is a combined training dataset of these tasks, and evaluate the Accu-
racy on each test set.

* Arithmetic Understanding consists of two math reasoning datasets: GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). We finetune LLaMA2-7B (Touvron et al., 2023a)
on MetaMath (Yu et al., [2023)) dataset following Wang et al.[|(2024a). Models need to generate
correct answers, and accuracy is used as the evaluation metric.

» Natural Language Understanding consists of eight datasets from the GLUE benchmark (Wang
et al.l 2018)). We follow the evaluation metrics and setups from |Gao et al.| (2024); [Wu et al.
(2024b).

* Image Classification consists of eight datasets: OxfordPets (Parkhi et all [2012), CI-
FAR10 (Krizhevskyl 2009), DTD (Cimpoi et al., [2014), EuroSAT (Helber et al.l 2019), RE-
SISC45 (Cheng et al.,[2017), StanfordCars (Krause et al., [2013), FGVC (Maji et al.,|2013) and
CIFAR100 (Krizhevskyl 2009) following (Gao et al.[| (2024). The first five datasets have small
label spaces, while the last three have large label spaces.

Further details on the datasets and hyper-parameters are provided in Appendix [Dand Appendix [C]
respectively.

Under review as a conference paper at ICLR 2025

6.1.2 BASELINES

Our baselines are constructed on a task basis. Specifically, for each task, the proposed NEAT is
compared with representative baselines from the corresponding domain, as listed below.

* For both Commonsense Reasoning and Arithmetic Understanding, following [Wang et al.
(2024a), LoRA (Hu et al.| 2021b), PiSSA (Meng et al., 2024)) and MiLoRA (Wang et al., 2024a)
are employed as baselines. NEAT is applied to query, key, value, MLP up and MLP down layers.

* For Natural Language Understanding, we follow the setup from prior works (Gao et al., [2024;
Wu et al.|[2024b) that evaluate various representative PEFT methods, including LoRA (Hu et al.,
2021b), Adapter [Houlsby et al| (2019), BitFit (Zaken et al.l 2021), RED (Wu et al., [2024a)),
DoRA (Liu et al., 2024), ReFT Wu et al. (2024b)), and FourierFT (Gao et al., [2024).

 For Image Classification, we follow the setting of |Gao et al.|(2024) and take linear probing (LP),
LoRA (Hu et al.| [2021b)) and FourierFT (Gao et al.| 2024) as baselines. NEAT is applied to the
query and value layers.

6.2 PERFORMANCE COMPARISON
6.2.1 COMMONSENSE REASONING

In this section, we present experiments on eight commonsense reasoning datasets to address RQI,
shown in Table[T} We compare the performance of three state-of-the-art baselines with the proposed
NEAT across eight different datasets. NEAT consistently outperforms all baselines, achieving the
highest accuracy on all tasks. Specifically, NEAT surpasses LoRA, PiSSA, and MiLoRA in terms
of average accuracy by 4.6%, 10%, and 2.5%, respectively, using LLaMA2-7B as the backbone.
Furthermore, when using LLaMA3-8B as the backbone, NEAT demonstrates average improvements
of 4.9%, 11.8%, and 2.9% over LoRA, PiSSA, and MiLLoRA, respectively. These results highlight
the effectiveness and superiority of NEAT as a PEFT method.

6.2.2 ARITHMETIC REASONING

In this section, we present experiments on two arithmetic reasoning tasks, as shown in Table |2} to
address RQ1. According to the table, full fine-tuning (FFT) achieves highest accuracy across the
two datasets. However, the performance gap between the proposed NEAT and FFT is quite small,
despite NEAT using significantly fewer trainable parameters. Moreover, compared to state-of-the-art
PEFT baselines, the proposed NEAT achieves substantial performance improvements. In terms of
average accuracy, NEAT demonstrates improvements of 7.5%, 12.4%, and 2.4% over LoRA, PiSSA,
and MiLoRA, respectively. These results on arithmetic reasoning tasks suggest that NEAT is a highly
effective and efficient fine-tuning method for complex reasoning tasks.

Table 1: Accuracy comparison of LLaMA 2-7B (Touvron et al., 2023b) and LLaMA 3-8B (Dubey
et al.,[2024) against PEFT baselines on eight commonsense reasoning datasets. Results marked with
“t are taken from (Liu et al.,[2024). Results marked with <> are taken from (Wang et al., [2024a).
The highest accuracy of methods per category are in bold. “AVG” means the average accuracy of
all datasets.

Model PEFT Accuracy (1)
BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG
LoRAf 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LLaMA2-7B P}SSA . 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8
MiLoRA 67.6 83.8 80.1 88.2 82.0 82.8 68.8 80.6 79.2
NEAT 71.7 83.9 80.2 88.9 84.3 86.3 714 83.0 81.2
LoRA* 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
LLaMA3-8B RlSSA X 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4
MiLoRA 68.8 86.7 77.2 929 85.6 86.8 75.5 81.8 81.9
NEAT 71.9 86.7 80.9 94.1 86.7 90.9 78.7 84.4 84.3

Under review as a conference paper at ICLR 2025

Table 2: Accuracy comparison of LLaMA 2-7B against PEFT baselines on two arithmetic reasoning
datasets. Results marked with “*” are taken from (Yu et al.,2023). Results marked with “*” are taken
from (Wang et al.,[2024a). The highest accuracy of methods per category are in bold. “AVG” means
the average accuracy of all datasets.

Method | GSMSK MATH AVG
FFT * \ 66.50 19.80 43.20
LoRA" 60.58 16.88 38.73
PiSSA" 58.23 15.84 37.04
MiLoRA" 63.53 17.76 40.65
NEAT \ 65.05 18.22 41.64

6.2.3 NATURAL LANGUAGE UNDERSTANDING

We conduct experiments on the GLUE to answer RQ1. The model performance is shown in Table[3]
According to Table[3] the proposed NEAT significantly outperforms state-of-the-art PEFT methods.
Specifically, NEAT-S, which uses a similar number of trainable parameters as FourierFT (Gao et al.,
2024), DiReFT (Wu et al.,|2024b)), and LoReFT (Wu et al.,[2024b)), surpasses all PEFT baselines and
experiences only a small performance drop (0.2%) compared to FFT. Additionally, NEAT-L exceeds
the performance of all baselines, including FFT, with the same number of trainable parameters as
LoRA. These results demonstrate that the proposed NEAT exhibits excellent generalization ability
while maintaining high efficiency.

Table 3: Accuracy comparison of RoBERTa-base against PEFT baselines on the GLUE benchmark.
Baseline results with “*” are taken from Wu et al.| (2024a)). The highest accuracy of methods per
category are in bold. “AVG” means the average accuracy of all datasets. NEAT-S refers to applying
NEAT only to the layers starting from the 4th layer, with the hidden layer dimension of the neural
network set to 1. This configuration matches the parameter count of FourierFT. In contrast, NEAT-L
applies NEAT to all layers, with the hidden layer dimension set to 8, aligning the parameter budget
with LoRA.

PEFT Params (%) Accuracy (1)

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B AVG
FFT 100% 873 944 879 624 925 917 783 906 856
Adapter* 0318% 870 933 884 609 925 905 765 905 850
LoRA* 0239% 866 939 87 597 926 904 753 903 847
Adapter™N* 0239% 871 930 888 585 920 902 777 904 847
BitFit* 0.080% 847 940 880 540 910 873 698 895 823
RED* 0016% 839 939 892 610 907 872 780 904 843
FourierFT 0019% 847 942 900 638 922 830 791 908 853
DiReFT* 0015% 825 926 883 586 913 864 764 893 832
LoReFT* 0015% 831 934 892 604 912 874 790 900 842
NEAT-S 0019% 849 943 902 646 920 883 783 905 854
NEAT-L 0239% 866 946 900 644 927 897 787 909 86.0

6.2.4 IMAGE CLASSIFICATION

In this section, we present the experiments on image classification datasets to address RQ2, shown
in Table 4] From the table, NEAT significantly outperforms LoRA and FourierFT using the same
number of trainable parameters. Specifically, NEAT achieves performance improvements of 11.05%,
7.30%, and 26.02% compared to LoRA, FourierFT, and LP, respectively. Furthermore, compared to
FFT (86.49%), the proposed NEAT (86.15%) shows almost no performance drop while using only
0.3% of the trainable parameters required by FFT. This demonstrates that NEAT exhibits exceptional
adaptation capability not only on NLP tasks but also on vision tasks. Additionally, it verifies the
effectiveness of the nonlinear adaptation used in NEAT.

Under review as a conference paper at ICLR 2025

Table 4: Accuracy comparison of ViT-base (Dosovitskiy et al., |2020b) against PEFT baselines on
the image classification benchmark. The reported accuracy (%) is obtained after 10 epochs. The
highest accuracy of methods per category are in bold. “AVG” means the average accuracy of all
datasets. Results marked with “*” are taken from|Gao et al.| (2024).

Method ‘Params (M)‘OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

FFT* ‘ 85.8M ‘ 93.14 79.78 98.92 77.68 99.05 54.84 96.13 92.38 86.49
LP* - 90.28 25.76 96.41 69.77 8872 17.44 7422 84.28 68.36
LoRA™ 581K 93.19 45.38 98.78 7495 9844 2516 9270 92.02 77.58
FourierFT* 239K 93.05 56.36 98.69 77.30 98.78 3244 9426 9145 80.29
NEAT 258K 93.77 80.03 98.70 77.57 98.79 53.60 94.27 9247 86.15
FGVC Oxford-Pets StanfordCars
0.5500 0.940 0.807
0.5475 0.806
0.938
0.5450 0.805
%o 5425 0.936 0804
@ 0.5400
2 0.5375 0934 o0
05350 0.802
0.932
0.5325 0.801
05300 2 4 6 8 10 0930 2 4 6 8 10 0800 2 4 6 8 10
Depth Depth Depth

Figure 2: Accuracy on the StanfordCars, FGVC and Oxford-Pets dataset with varying depths of the
neural network used in NEAT. The depth here represents the total number of layers in the neural
network. We choose depth equals to 2, 4, 6, 8, and 10 layers in the figure.

6.3 SENSITIVITY W.R.T. FINE-TUNED MODULE

In this section, we present the results of applying NEAT to various modules of ViT for image clas-
sification, addressing RQ3. The experimental results are shown in Fig. [3] We adjust the hidden
layer dimension r to maintain the same number of trainable parameters, ensuring a fair comparison.
According to the figure, applying NEAT to the QV layers yields results similar to applying NEAT to
both the QV and MLP layers. This indicates that NEAT is robust across different fine-tuning module
selections, potentially reducing the need for extensive hyper-parameter tuning when applying NEAT
to specific tasks.

6.4 SENSITIVITY W.R.T. DEPTH

As the depth of a neural network increases, the model gains more nonlinearity, potentially making
NEAT more effective at capturing complex, non-linear patterns for weight updates. In this section,
we present experiments with varying neural network depths in NEAT on the StanfordCars dataset to
address RQ3, as shown in Fig. [2] The architecture of the stacked layers used in NEAT is shown in
Fig.[5] with a detailed description provided in Appendix [E] To ensure a fair comparison, we maintain
consistent hyper-parameters across all configurations.

According to Fig. 2] increasing the network depth leads to better performance. Specifically, at a
depth of 6 layers, the classification accuracy reaches 81.04%, marking a 1.7% improvement com-
pared to using only 2 layers. When the depth is increased to 8 and 10 layers, the accuracy slightly
decreases compared to the 6-layer model but remains higher than that of the 2-layer configuration.
A possible explanation is that as depth increases—particularly at 10 layers—the training process
becomes more challenging, possibly requiring more careful hyper-parameter tuning. It is also worth
noting that, since the intermediate layers have much smaller dimensions (R"*" where r is the hidden
layer dimension) compared to the pre-trained model’s weight dimensions, the additional parameter

Under review as a conference paper at ICLR 2025

98.82 98.62 98.98 98.70
100 QV-MLP
94.03 93.87 94.06 94.43 92.09 91.93 Qv
86.05 85.90

80 79.53 79.67 78.99 7722

60
51.88 52.81

Accuracy (%)

20

Pets Cars Cifarl0 Dtd Eurosat Fgvc Resisc45 Cifar100 Average

Figure 3: Accuracy of NEAT with different targeted fine-tuning modules, including just QV layers
and a combination of QV and MLP layers, on image classification datasets.

Table 5: Accuracy of NEAT with different nonlinear activation functions, i.e. ReLU and sinusoid
functions, on image classification datasets. The highest accuracy of methods per category are in
bold. “AVG” means the average accuracy of all datasets.

Method ‘OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG

ReLU 93.87 79.67 98.62 77.22 98.70 52.81 94.43 91.93 85.90
Sinusoid 93.51 79.95 98.88 79.08 98.74 53.47 93.62 92.25 86.19

overhead of stacking more hidden layers is negligible and does not affect the parameter efficiency
of NEAT. These results further demonstrate the effectiveness of introducing non-linear adaptation.

6.5 SENSITIVITY W.R.T. DIFFERENT NON-LINEAR ACTIVATIONS

A key innovation of NEAT compared to LoRA and other PEFT methods, which rely solely on linear
transformations for modeling weight updates, is the introduction of non-linear activations within the
adaptation neural network. Since the choice of non-linear activations directly influences the learning
process and the dynamics of weight updates, we investigate the impact of different non-linear acti-
vations on overall adaptation performance to address RQ3. Specifically, we compare NEAT using
op(x) = sin(2mx) as the non-linear activation function with NEAT using ReLU, op(2) = max(0, z).
The results are presented in Table[5] To ensure a fair comparison, the number of trainable parame-
ters remains the same, and hyperparameters such as learning rate are optimized to maximize perfor-
mance. The specific hyper-parameters for the sinusoidal non-linear activation setting are provided

in Appendix |[C1]

According to the table, using a sinusoidal non-linear activation provides slightly better vision adap-
tation compared to ReLU. However, the performance gap is minimal, indicating that the choice of
activation function does not significantly affect adaptation outcomes.

To further validate this observation and conduct a more detailed analysis of the influence of non-
linear activations on hyperparameter tuning, we performed experiments on the StanfordCars dataset
using various non-linear activation functions, including ReLLU, Leaky ReLU, GELU, Tanh, and
sinusoidal activation. These experiments involved varying learning rates for the adapters to analyze
patterns in hyperparameter tuning across different activations. The results are illustrated in Fig. {]

The findings reveal that, in general, the choice of activation functions does not necessitate specific
hyperparameter tuning (e.g., learning rate). For instance, performance consistently improves with
increasing learning rates, and the results for different activations remain comparable. This reinforces
the conclusion that the choice of non-linear activations has a limited impact on overall adaptation
performance. Consequently, ReLLU can be a practical choice for achieving good adaptation results,
particularly given its simplicity bias in neural networks, as highlighted in (Teney et al., [2024])

Under review as a conference paper at ICLR 2025

GELU Tanh Leaky ReLU RelLU

Accuracy
o o o o o
S S 2 208
3 3 & 3 8

°
S
bl

o
3
3

1 3 5 8 10 1 3 5 8 10 1 3 5 8 10 1 3 5 8 10
Learning Rate (x1073) Learning Rate (x1073) Learning Rate (x1073) Learning Rate (x1073)

Figure 4: The performance of different nonlinear activations used in NEAT on the hyperparameter
tuning. It can be observed that the pattern is mostly the same among all the nonlinear activations.

Table 6: Ablation results after running image classification datasets. The parameters count is the
same and “AVG” means the average accuracy of all datasets.

Method ‘ OxfordPets StanfordCars CIFAR10 DTD EuroSAT FGVC RESISC45 CIFAR100 AVG
Nonlinear LoORA 94.11 72.84 98.68 79.16 98.61 39.33 93.79 92.38 83.31
Multiplicative LoORA 93.57 77.32 98.68 71.57 98.81 46.79 94.34 91.86 84.81
NEAT 93.77 80.03 98.70 71.57 98.79 53.60 94.27 92.47 86.15

6.6 ABLATION STUDY

In this section, we present an ablation study with two variants of LoRA to demonstrate the effective-
ness of our proposed framework: 1) nonlinear LoORA y = (Wy + o (A) B)x, and 2) multiplicative
LoRA y = (W, + Wy AB)x. The experiments were conducted on image classification datasets,
and the results are provided in Table @ From the results, we observe that both nonlinear LoRA and
multiplicative LoRA perform worse than NEAT. This highlights the effectiveness of incorporating
nonlinear approximations and explicitly using model weights as input to the nonlinear function in
our framework.

7 CONCLUSION

In this work, we propose NEAT, a novel parameter-efficient fine-tuning (PEFT) method that intro-
duces nonlinear transformations to enhance model adaptation while maintaining efficiency. By in-
corporating a lightweight neural network that models cumulative weight updates as functions of the
pre-trained weights, NEAT effectively captures complex, nonlinear structures in the weight space,
allowing for more expressive and accurate adaptation to downstream tasks. Our theoretical analysis
supports the efficacy of NEAT, demonstrating that it can achieve greater or equivalent expressive-
ness compared to existing LoRA, a popular and state-of-the-art PEFT method, with fewer num-
ber of parameters. Through extensive experiments on four benchmarks encompassing over twenty
datasets with various pre-trained backbones, NEAT demonstrated superior performance on both NLP
and vision tasks compared to existing state-of-the-art methods. NEAT thus stands out as an effec-
tive solution for fine-tuning pre-trained models more adaptively and efficiently, which is crucial for
resource-constrained environments.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD .md.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vuli¢. Composable sparse fine-tuning
for cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021.

Tom M Apostol. Modular functions and dirichlet series in number theory. 1990.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning about
physical commonsense in natural language. arXiv preprint arXiv:1911.11641, 2020.

Kerim Biiyiikakyiiz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient
fine-tuning design spaces. arXiv preprint arXiv:2301.01821, 2023.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865-1883, 2017.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. arXiv preprint
arXiv:2302.07027, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606-3613, 2014.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. Uni-
fied low-resource sequence labeling by sample-aware dynamic sparse finetuning. arXiv preprint
arXiv:2311.03748, 2023.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220-235, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020b.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. In Forty-first International Con-
ference on Machine Learning.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

Michael S Gashler and Stephen C Ashmore. Training deep fourier neural networks to fit time-series
data. In Intelligent Computing in Bioinformatics: 10th International Conference, ICIC 2014,
Taiyuan, China, August 3-6, 2014. Proceedings 10, pp. 48-55. Springer, 2014.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315-323. IMLR Workshop and Conference Proceedings, 2011.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217-2226, 2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021a.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021b.

Zhiqgiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. arXiv preprint arXiv:2304.01933,2023.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022—
1035, 2021.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

12

Under review as a conference paper at ICLR 2025

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554-561, 2013.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950-1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation.
arXiv:2402.09353,2024. URL https://arxiv.org/abs/2402.09353.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layer-
wise importance sampling for memory-efficient large language model fine-tuning. arXiv preprint
arXiv:2403.17919, 2024.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498-3505. IEEE, 2012.

Ruiyang Qin, Dancheng Liu, Zheyu Yan, Zhaoxuan Tan, Zixuan Pan, Zhenge Jia, Meng Jiang,
Ahmed Abbasi, Jinjun Xiong, and Yiyu Shi. Empirical guidelines for deploying llms onto
resource-constrained edge devices. arXiv preprint arXiv:2406.03777, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqga: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Lin Song, Yukang Chen, Shuai Yang, Xiaohan Ding, Yixiao Ge, Ying-Cong Chen, and Ying
Shan. Low-rank approximation for sparse attention in multi-modal llms. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13763-13773, 2024.

13

https://arxiv.org/abs/2402.09353

Under review as a conference paper at ICLR 2025

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193-24205, 2021.

Damien Teney, Armand Mihai Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural red-
shift: Random networks are not random functions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4786-4796, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, and et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H Meyer, and
Warren J Gross. Efficient fine-tuning of bert models on the edge. In 2022 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1838-1842, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024a.

Haoyu Wang, Tianci Liu, Tuo Zhao, and Jing Gao. Roselora: Row and column-wise sparse low-rank
adaptation of pre-trained language model for knowledge editing and fine-tuning. arXiv preprint
arXiv:2406.10777, 2024b.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36, 2024c.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu,
Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Advancing parameter efficiency in fine-
tuning via representation editing. arXiv:2402.15179, 2024a. URL https://arxiv.org/
abs/2402.151709.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Man-
ning, and Christopher Potts. ReFT: Representation finetuning for language models. 2024b. URL
arxiv.orqg/abs/2404.03592.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

14

https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
arxiv.org/abs/2404.03592

Under review as a conference paper at ICLR 2025

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint
arXiv:2206.04673, 2022.

Hongyu Zhao, Hao Tan, and Hongyuan Mei. Tiny-attention adapter: Contexts are more important
than the number of parameters. arXiv preprint arXiv:2211.01979, 2022.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Han Zhou, Xingchen Wan, Ivan Vuli¢, and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. Transactions of the Association for Computational
Linguistics, 12:525-542, 2024.

15

Under review as a conference paper at ICLR 2025

APPENDIX

A DETAILS OF THEORETICAL RESULTS

In this section, we provide the proof of Proposition [5.1] and introduce additional theoretical results
when we assume sinusoid activation.

A.l1 PROOF OF PROPOSITION[3.]]

The intuition behind the proof is that we can always restore an identity function using two ReLU
activation functions, i.e., z = o(x) — o(—x) forany x € R

Proof of Proposition We first show that

i L(Digain; WO + f(W?;(01,0,))) < i L(Dyain; W° + AB).
@1ERtizxg'l,l(£)12€R2'r'><d2 (train + f(;(©1, 2))>_A6Rd1><IP,IBE]R"'Xd2 (train +)
Let (A*7B*) = argminAeRd1XT7BeRrxd2 /:,('D[rain;WO + AB) Take @# =
[(WOTA* —(WO)TA*] e R%*¥ and ©F = [B*T;—B*"]T e R¥*d, where

(WO € R%=* s the Moore-Penrose inverse of W, Then, since o is a ReLU activation
function,

fWO;(e7,e7)) = s(w'ei)e]
=o(WOW"TA*)B* — o(—-W(W")TA*)B*
_ WO(WO)TA*B*.

where the last equality follows since x is in the column space of W, Note that WO(W?)T =
U°U"T is the projection to the left singular space of W°. Hence

E(Dtrain; WO + f(WO; (@#a 9:2#))) = ‘C(Dlrain; UOUOTWO + UOUOTA*B*)
= ‘C(Dtrain; wo 4+ A*B*)’
where the last equality follows from the invariance assumption. This gives

o oD oy £Puini WO f(W5 (1, ©2)) < L(Dans W + F(W': (67, ©F)))

= E(Dtraim WO + A*B*)>

We next show the second inequality:

min L(Dygain; WY + AB) < min L(Digain; WY + f(WY; (01, 0,))).
AeRdlxr’BeRrde @16Rd2xr,@2€RTXdQ
Take A* = o(WO%) € RU“*" and B¥ = @O € R"™¥% where (0,05 =

arg Ming, cgas xr @, crrxd £(Duwain; WO + f(W?; (01, @3))). The conclusion follows from

min L(Diain; W° + AB) < L(Dyain; W° + A% B¥)
AERdl XT,BERTX(Q
= E(Dtrain; WO + G(WOQT)G;)

= min L(Dygain; WY + f(WY; (01, 0,))).
@1€R42XT,@2€RTXCLI

O
A.2 THEORETICAL ANALYSIS OF NEAT UNDER SINUSOID ACTIVATION FUNCTION
Here we consider a sinusoid activation function oy (z) = sin(27z) (Gashler & Ashmorel 2014) and
design f(W?;0) = 0,(W"0;)O; with 8 = (01, ©;). With this periodic activation function, we

can show a stronger result that NEAT has expressivity (almost) greater than or equal to a LoRA with
more parameters when dy > ds.

16

Under review as a conference paper at ICLR 2025

Proposition A.1 (Expressivity of NEAT with Sine Activation). Suppose that there exists a row of
WO, whose entries are linearly independent over the rationals. Then, for any r > 0, A € R4 %"
and B € R"™*%_ and € > 0, there exists some OF € R%eX" gnd O c R™%92 gych that

|AB — 0,(W°0;)®3 s < c.

Proposition shows that the class of updates AW = o,(W°©;)©, by NEAT with 2rd, param-
eters is dense in the class of updates AW = AB by LoRA with r(d; + d3) parameters. When
de < dj, this shows better parameter efficiency of NEAT.

Examining the proof of Proposition [A.T] it is straightforward to show that the result holds for any
continuous and periodic activation function whose range contains an open interval centered at 0.

Proof. This proof relies on Kronecker’s theorem (Theorem 7.9 in |Apostol (1990)) from number
theory, which shows that for all j € R, the fractional parts of (ctq, cta, ..., ct,) " is dense in [0, 1]
overc € R, aslong as t1,...,1, are linearly independent over the rationals.

Let w;~ be the 5*-th column of WY whose entries are linearly independent over the rationals. Since
A B has a scale ambiguity, we can assume that A is a matrix whose entries are bounded by 1 without
loss of generality. Write A = (a1, as,...,a,).

Take ¢ > 0 whose value will be determined later. From Kronecker’s theorem, for each a; there
exists some c; € R such that

arcsin(a;) o
———H I <e

{cjw;} — o <€,

where {b} is a vector whose entries are the fractional part of the corresponding entry of b, and arcsin
is applied elementwisely.

Let ©F = (c1ej+,C2€j+,...,cr€;+), where e« is the j*-th standard basis vector in R%2. Using the
fact that 2 {c;w;- } = 2mc;w;» mod 2w, we have

* 2 2
HUP(WO@1) - AHF = llop((crwj=, cowje, crw;-)) — Allg 0
< Z [sin(2mcjw;-) — a;||* < 4n2re?, ®)
J

where the last inequality follows from equation (8| and the fact that sin(z) is Lipschitz continuous
with Lipschitz constant 1. Hence by choosing ®3 < B, we have

|AB — 0,(W°07)©; |2 < || B|*||op(W°O}) — Al|% < 4n%|| B|*re”>.

Choose € = ¢/(2m/r|| B]|), then the proof is complete. O

B ADDITIONAL RELATED WORK

B.1 ADDITIVE PEFT METHODS

Additive PEFT methods (Chronopoulou et al., 2023} |[Edalati et al.l [2022; [Lester et al.| 2021}
Wang et al.| 2024c; Liu et all 2022) introduces a small set of additional trainable parameters
strategically placed within the model. One of the most prominent additive PEFT approaches is
Adapter (Chronopoulou et al., [2023; [Edalati et al.l [2022; Zhao et al., [2022), which involves insert-
ing small adapter layers between pre-trained weight blocks. Prompt Tuning (Wang et al., [2024c]
Lester et al., 2021; Vu et al.l 2021} |L1 & Liang, 2021) is another technique, where learnable vec-
tors, or ”soft prompts,” are prepended to the input sequence without modifying the model’s weights.
This method is particularly effective for large-scale models and has inspired variants such as Prefix
Tuning (Li & Liang, [2021]).

17

Under review as a conference paper at ICLR 2025

B.2 SELECTIVE PEFT METHODS

Selective PEFT focuses on optimizing the fine-tuning process by selectively adjusting a subset of the
model’s parameters rather than introducing additional ones. For instance, Diff Pruning (Guo et al.,
2020) uses a learnable binary mask to select parameters for fine-tuning. Similarly, FishMask (Sung
et al., 2021) and Fish-Dip (Das et al., 2023) leverage Fisher information to determine parameter
importance and identify the most crucial ones for updates. Additionally, BitFit (Zaken et al., [2021)
fine-tunes only the bias terms in the model, significantly reducing the number of trainable parame-
ters.

B.3 HYBRID PEFT METHOD

Hybrid PEFT methods aim to combine the strengths of various existing PEFT techniques to enhance
model performance across diverse tasks. UniPELT (Mao et al., 2021)) integrates LoRA, prefix-
tuning, and adapters within each Transformer block, employing a gating mechanism to determine
which module should be active during fine-tuning. S4 (Chen et al.l [2023) further explores the de-
sign space by partitioning layers into groups and assigning different PEFT methods to each group.
Additionally, NOAH (Zhang et al.||2022) and AUTOPEFT (Zhou et al.| 2024) leverage neural archi-
tecture search (NAS) to automatically discover optimal combinations of PEFT techniques tailored
to specific tasks.

C HYPERPARAMETERS

We provide the specific hyperparameters used in our experiments to ensure reproducibility. For most
of our experiments, we use the standard implementation of NEAT, which we refer to as vanilla NEAT.
The neural network architecture in vanilla NEAT consists of only two layers: an input layer and an
output layer. We selecte this approach because vanilla NEAT offers the benefits of simplicity in
implementation, a low parameter count, and sufficient adaptation power. Nonetheless, we dedicate
Section and Appendix [E] to exploring more complex adaptation networks and their effect on
performance.

C.1 IMAGE CLASSIFICATION

Hyperparameters for NEAT in image classification are provided in Table[7] We tune the classification
head and the backbone separately and provide detailed settings for each dataset. All weight decay
values are not tuned and follow the settings from (Gao et al.[| (2024). The scaling factor s is set
to 1.0. The hidden layer dimension r for MHSA is set to 7 in the QV-setting, while both hidden
layer dimensions for MHSA and MLP are set to 2 in the QV-MLP-setting described in Section [6.3]
Additionally, specific hyper-parameters for the sinusoidal non-linear activation analysis are provided
in Table

Table 7: Hyperparameter of image classification for NEAT.

Hyperparameter ‘ OxfordPets ~ StanfordCars CIFARI0 DTD EuroSAT FGVC RESISC45 CIFAR100
Epochs 10

Optimizer AdamW

LR Schedule Linear

Weight Decay 8E-4 4E-5 9E-5 7E-5 3E-4 7E-5 3E-4 1E-4
Qv |

Learning Rate (NEAT) SE-3 1E-2 SE-3 1E-2 SE-3 1E-2 SE-3 SE-3
Learning Rate (Head) SE-3 1E-2 SE-3 1E-2 SE-3 1E-2 1E-2 SE-3
QV-MLP \

Learning Rate (NEAT) SE-3 SE-3 SE-3 1E-2 SE-3 SE-3 1E-2 SE-3
Learning Rate (Head) SE-3 1E-2 SE-3 1E-2 SE-3 1E-2 1E-2 SE-3

18

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters for image classification with NEAT using sinusoidal non-linear activation.
The targeted modules are the same as the QV-setting (i.e., only adapting the query and value layers
with a hidden layer dimension of 7).

Hyperparameter ‘ OxfordPets ~ StanfordCars CIFARI0 DTD EuroSAT FGVC RESISC45 CIFAR100
Epochs 10

Optimizer AdamW

LR Schedule Linear

Weight Decay 8E-4 4E-5 9E-5 7E-5 3E-4 7E-5 3E-4 1E-4
Learning Rate (NEAT) 5E-3 5E-3 1E-3 5E-3 1E-3 5E-3 5E-3 1E-3
Learning Rate (Head) 5E-3 1E-2 5E-3 1E-2 5E-3 1E-2 1E-2 5E-3

Table 9: Hyperparameter of GLUE benchmark for NEAT-L.

Hyperparameter ‘STS—B RTE MRPC CoLA SST-2 QNLI MNLI QQP
Optimizer AdamW
LR Schedule Linear

Learning Rate (NEAT) | SE-3 5E-3 5E-3 1E-3 S5E-3 1E3 S5E-3 SE3
Learning Rate (Head) SE-3 5E-3 5E-3 1E-3 5E-3 IE-3 5E-3 5E-3

Scaling 0.1 0.01 0.01 0.1 0.01 0.01 0.01 0.01
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

C.2 NATURAL LANGUAGE UNDERSTANDING

We provide used hyper-parameters for NEAT in natural language understanding on the GLUE bench-
mark in Table[9]and Table[I0} The learning rates for the head and the backbone are tuned separately.
The scaling factor s is searched in {0.01, 0.1, 1.0}. For reproducibility, we fix the seed as 0. The hid-
den layer dimension 7 is set to 8 in NEAT-L and 1 in NEAT-S. More specifically, we apply NEAT to

all layers in ROBERTa-base for NEAT-L, while only applying NEAT to layers {4,5,6,7,8,9,10, 11}
for NEAT-S to reduce the number of trainable parameters. The seed is fixed for reproducibility.

C.3 COMMONSENSE REASONING
We provide hyperparameters settings of NEAT for commonsense reasoning task in Table We

follow the hyperparameters settings in MiLoRA (Wang et al.| 2024a). We limit all samples to a
maximum of 256 tokens. For evaluation, we set a maximum token number of 32.

C.4 ARITHMETIC REASONING

We provide hyperparameters settings of NEAT for arithmetic reasoning task in Table We follow
the hyper-parameters settings in MiLoRA (Wang et al., 2024a)). We limit all samples to a maximum
of 2048 tokens. For evaluation, we set a maximum token number of 256 on GSM8K (Cobbe et al.,
2021) dataset. On MATH (Hendrycks et al.,|2021), we set the maximum new token to 512.

D DATASETS
In this section, we provide a detailed description of the datasets used in our experiments.

D.1 IMAGE CLASSIFICATION

For image classification, we provide detailed information about the used datasets in Table

19

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameter of GLUE benchmark for NEAT-S.

Hyperparameter ‘STS—B RTE MRPC CoLA SST-2 QNLI MNLI QQP
Optimizer AdamW
LR Schedule Linear

Learning Rate (NEAT) | 5E-3 1E-3 5E-3 S5E-3 5E-3 1E-3 5E-3 1E-3
Learning Rate (Head) 1E-3 1E-3 5E-3 1E-3 5E-3 1E-3 5E-3 1E-3

Scaling 0.1 1.0 0.01 0.1 0.01 0.1 0.01 1.0
Max Seq. Len 512 512 512 512 512 512 512 512
Batch Size 64 32 64 64 32 32 32 64

Table 11: Hyperparameter of commonsense reasoning for NEAT.

Hyperparameter Commonsense Reasoning

Hidden Layer Dimension 32
« 32

Dropout 0.05

Optimizer Adam W

Learning Rate 3e-4
Batch Size 16

Warmup Steps 100
Epochs 1

D.2 NATURAL LANGUAGE UNDERSTANDING

The GLUE benchmark comprises 8 NLP datasets: MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE,
and STS-B, covering tasks such as inference, sentiment analysis, paraphrase detection, linguistic
acceptability, question-answering, and textual similarity. We provide detailed information about
them in Table T4

\‘
1
NEAT Output Layer '
(g ke——| aw ||
Intermediate n it
B 5,
Intermediate n-1 n ‘%b
+ i %
: eos W= WO AW w o %,
H H %
' Intermediate 2 |
i Intermediate 1 1‘
oW A :
;’ Input Layer ‘;
4 i
Adaptation Process Target Modules

Figure 5: Implementation of introducing more depths to NEATt. We insert multiple intermediate
layers into the layers from vanilla NEAT, with non-linear activation in between. The depth is de-
scribed as the number of layers in NEAT, with vanilla NEAT having a depth of 2 (i.e. the input and
output layers).

20

Under review as a conference paper at ICLR 2025

Table 12: Hyperparameter of arithmetic reasoning for NEAT.

Hyperparameter Arithmetic Reasoning

Hidden Layer Dimension 64
«@ 64

Dropout 0.05

Optimizer Adam W

Learning Rate 3e-4
Batch Size 16

Warmup Steps 100
Epochs 3

Table 13: Detailed information of image classification tasks.

Dataset #Class #Train #Val #Test Rescaled resolution
OxfordPets 37 3,312 368 3,669

StandfordCars | 196 7,329 815 8,041

CIFARI10 10 45,000 5,000 10,000

DTD 47 4,060 452 1,128 994 % 994
EuroSAT 10 16,200 5,400 5,400

FGVC 100 3,000 334 3,333

RESISC45 45 18,900 6,300 6,300

CIFAR100 100 45,000 5,000 10,000

Table 14: Detailed information of the GLUE benchmark. STS-B is a regression task, while all other
tasks are either single-sentence or sentence-pair classification tasks.

Corpus ‘ Task Metrics #Train #Val #Test #Labels

Single-Sentence Tasks

CoLA Acceptability Matthews Corr. 8.55k 1.04k 1.06k 2
SST-2 Sentiment Accuracy 67.3k 872 1.82k 2
Similarity and Paraphrase Tasks
MRPC Paraphrase Accuracy/F1 3.67k 408 1.73k 2
STS-B | Sentence similarity —Pearson/Spearman Corr. 5.75k 1.5k 1.38k 1
QQP Paraphrase Accuracy/F1 364k 40.4k 391k 2
Inference Tasks
MNLI NLI Accuracy 393k 19.65k 19.65k 3
QNLI QA/NLI Accuracy 105k 5.46k 5.46k 2
RTE NLI Accuracy 2.49k 277 3k 2

D.3 COMMONSENSE REASONING

For commonsense reasoning task, we use 8 datasets, including BoolQ, PIQA, SIQA, HellaSwag,
WinoGrande, ARC-e, ARC-c and OBQA. The detailed information is provided in Table

D.4 ARITHMETIC REASONING

Detailed information for arithmetic reasoning task is provided in Table [T6] GSMB8K consists of
high quality grade school math problems, typically free-form answers. MATH includes classifi-

21

Under review as a conference paper at ICLR 2025

Table 15: Detailed information of commonsense reasoning task.

Dataset #Class #Train #Dev #Test
BoolQ Binary classification 9,427 3,270 3,245
PIQA Binary classification 16,113 1,838 3,000
SIQA Ternary classification 33,410 1,954 2,224
HellaSwag Quaternary classification 39,905 10,042 10,003
WinoGrande | Binary classification 40,398 1,267 1,767
ARC-e Quaternary classification 2,251 570 2,376
ARC-c Quaternary classification 1,119 229 1,172
OBQA Quaternary classification 4,957 500 500

1 class neat_depth_four(nn.Module) :

) wnw

3 Example of 4-layer implementation for Neat with residual.
4 Using RelLU as the default non-linear activation function.
5 args:

6 dim: hidden dimension (a.k.a. rank)

7 out_dim: output dimension

3 Wi

9 def __init__(self, dim=32, out_dim=768):

10 super () .__init__()

1 self.non_linear = nn.ReLU()

12 self.A = nn.Linear(out_dim, dim, bias=False)
13 self.il = nn.Linear(dim, dim, bias=False)

14 self.i2 = nn.Linear(dim, dim, bias=False)

15 self.B = nn.Linear(dim, out_dim, bias=False)
16 nn.init.zeros_(self.B.weight)

17

18 def forward(self, x, weight):

19 delta_w = self.non_linear(weight @ self.A.weight.t())
20 residual = delta_w.clone()

21 delta_w = self.non_linear(self.il_(delta_w))
2 delta_w = self.non_linear(self.i2_(delta_w))
23 delta_w = delta_w + residual

24 delta_w = self.B(delta_w)

25 return x @ delta_w

Figure 6: An example of the actual implementation applying 4 layers in NEAT (depth = 4) with
Pytorch.

Table 16: Detailed information of arithmetic reasoning task.

Dataset ‘#Train #Dev #Test

GSMSK | 7473 1319 1,319
MATH 12,500 500 5,000

cations from multiple mathematical domains, such as algebra, counting_and_probability, geometry,
intermediate_algebra, number_theory, prealgebra and precalculus.

E IMPLEMENTATION OF INTRODUCING DEPTHS TO NEAT

We provide a comprehensive explanation of our approach to increasing the depth of the adaptation
neural network in NEAT. As depicted in Fig. [3} we introduce multiple deeply stacked intermedi-
ate layers between the layers of the vanilla NEAT. These intermediate layers are essentially small
adapters with a minimal parameter count (R"*", where r is the hidden layer dimension), and we
retain non-linear activations between them, as proposed by NEAT. The adaptation process begins by
feeding the weight matrix W °—the initialized value of the adaptation target W —into NEAT’s input
layer. After undergoing multiple non-linear transformations through the intermediate layers, the fi-

22

Under review as a conference paper at ICLR 2025

nal layer projects W back to its original shape, producing the adaptation result AW . Throughout
this process, the adaptation target remains fixed, while all the intermediate layers, as well as the
input and output layers in NEAT, are trainable parameters.

Furthermore, an implementation example of NEAT with four layers using the PyTorch library is il-
lustrated in Fig. [f] As previously mentioned, we apply non-linear activations (ReLU in this case) to
model more complex transformations. The intermediate layers have the same shape, R"*", which
adds minimal overhead compared to A € R%*" and B € R"*?—the input and output layers, re-
spectively, which are also present in the vanilla NEAT. Since d5 is typically in the range of hundreds
to thousands, while 7 is commonly set to 8, 16, or 32, the parameter efficiency of NEAT with deeper
layers remains comparable to that of vanilla NEAT without the intermediate layers. As shown, we
first transform W into the desired adaptation result AW and subsequently use AW to perform
the actual computation on the input data. The use of residuals is based on empirical observations,
as incorporating residual connections in the adaptation process results in faster convergence, more
stable loss curves, and significantly improved overall performance.

23

	Introduction
	Related Works
	Preliminary
	Methodology
	Framework Overview
	Motivation
	NONLINEAR PARAMETER-EFFICIENT ADAPTATION

	Theoretical Analysis
	Experiment
	Datasets and Experiment Settings
	Datasets
	Baselines

	Performance Comparison
	Commonsense Reasoning
	Arithmetic Reasoning
	Natural Language Understanding
	Image Classification

	Sensitivity w.r.t. Fine-tuned Module
	Sensitivity w.r.t. Depth
	Sensitivity w.r.t. Different non-linear activations
	Ablation Study

	Conclusion
	Details of Theoretical Results
	Proof of Proposition 5.1
	Theoretical Analysis of Neat under sinusoid activation function

	Additional Related Work
	Additive PEFT Methods
	Selective PEFT Methods
	Hybrid PEFT method

	Hyperparameters
	Image Classification
	Natural Language Understanding
	Commonsense Reasoning
	Arithmetic Reasoning

	Datasets
	Image Classification
	Natural Language Understanding
	Commonsense Reasoning
	Arithmetic Reasoning

	Implementation of Introducing Depths to Neat

