

STRUCTURAL SEMANTIC FEATURES FOR IMPROVED AI-GENERATED FAKE IMAGE DETECTION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The proliferation of AI-generated content (AIGC) has made the accurate detection
 012 of fake images a critical challenge. Existing state-of-the-art methods, such
 013 as PatchCraft and AIDE, primarily leverage local features like patch-wise fre-
 014 quency information or global semantic features derived from large-scale models
 015 like CLIP. While effective, these approaches often fail to incorporate the underly-
 016 ing structural semantics of an image, which are crucial for detecting the subtle in-
 017 consistencies and artifacts left by generative models. We propose a novel approach
 018 that augments existing AIGC detection frameworks by explicitly incorporating
 019 structural semantic information. Our method employs cuboidal partitioning, a hi-
 020 erarchical tool that recursively divides an image into meaningful sub-regions. At
 021 each division, we extract a measure of the statistical difference between the parent
 022 and child segments, which are then integrated with AIDE’s existing features. Ex-
 023 perimental results demonstrate our model’s superior performance. We establish a
 024 new state-of-the-art in mean accuracy on the GenImage benchmark, proving our
 025 effectiveness on modern diffusion models. Our method also shows strong general-
 026 ization by achieving second-best overall mean accuracy on the diverse AIGCDetect
 027 benchmark and a second-place finish on the challenging Chameleon dataset.
 028 These results highlight the significant value of structural semantics for building
 029 robust and generalizable AIGC detectors.

1 INTRODUCTION

030 The rapid advancement of generative models has ushered in a new era of digital media, where real-
 031 istic AI-generated content (AIGC) is becoming increasingly common. Modern generative models,
 032 including both Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Zhu et al., 2017;
 033 Brock et al., 2019) and Diffusion Models (DMs) (Ho et al., 2020; Rombach et al., 2022; Song et al.,
 034 2021), have demonstrated an unprecedented ability to synthesize high-quality images that are often
 035 indistinguishable from real-world photography. While these technologies offer immense creative
 036 potential, their easy accessibility also raises serious concerns for image forensics, the fight against
 037 misinformation, and copyright protection.

038 Early detection methods for AIGC often relied on general-purpose deep learning backbones like
 039 ResNet-50 (He et al., 2016) and Vision Transformers (Dosovitskiy et al., 2021), which treat the
 040 detection task as a binary classification problem. While effective, these models function as black
 041 boxes, learning to identify artifacts without explicit guidance. This has led to the development of
 042 detectors that focus on **explicit feature extraction**, leveraging our domain knowledge of how gen-
 043 erative models operate. Approaches like FreDect (Frank et al., 2020) and PatchCraft (Zhong et al.,
 044 2024) identify subtle, localized artifacts in the frequency domain or through inter-pixel correlations.
 045 Another powerful paradigm, such as the one used in the AIDE model (Yan et al., 2025), lever-
 046 ages a hybrid approach that combines low-level pixel statistics with high-level semantic cues from
 047 pre-trained vision models. While highly effective, these state-of-the-art detectors often overlook a
 048 crucial and complementary source of information: the **structural semantics** of an image.

049 Recent work by Kamali et al. (2024) provides a comprehensive taxonomy of inconsistencies in AI-
 050 generated images, categorizing them into five types, from anatomical implausibilities to violations
 051 of physics. While many existing detectors are designed to capture statistical or textural artifacts,
 052 they are less equipped to deal with these higher-level, structural inconsistencies. We argue that the

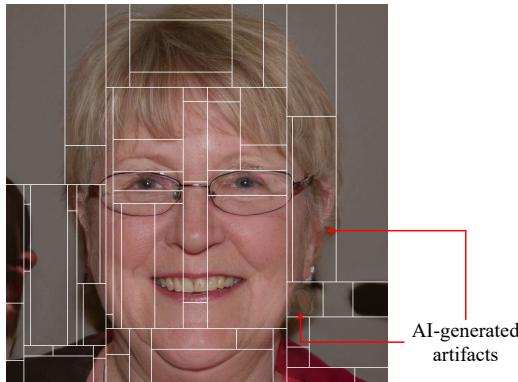


Figure 1: An example of fake image detection using the proposed structural feature-based technique, which successfully isolated AI-generated artifacts missed by the existing AIDE method.

way an image’s content is organized in the scene, a fundamental principle in human vision, is often imperfectly replicated by generative models, leaving a detectable trace. This makes our method uniquely suited to address inconsistencies related to anatomical and functional implausibilities as well as violations of physics.

To illustrate the limitations of existing detectors and motivate our approach, we present a qualitative example from the challenging WFIR (West & Bergstrom, 2019) facial dataset. As shown in Fig 1, the base AIDE model, which relies on a combination of frequency and domain features, incorrectly classifies a generated face as real. In contrast, our enhanced model, incorporating our new structural features, correctly identifies the image as fake. A closer look at our method’s output reveals the mechanism behind this success. The hierarchical partitioning process successfully isolated two distinct segments: one around the person’s left ear and another around a hair-like structure below it. This demonstrates that our structural features can detect nuanced, localized irregularities that are often missed by human eyes and other state-of-the-art models, proving to be a critical and complementary capability for robust AI-generated content detection.

In this work, we introduce a novel approach that augments existing detection frameworks by explicitly incorporating these structural semantics. Our proposed method leverages a proven cuboidal partitioning algorithm (Ahmmmed et al., 2022), previously used for building image similarity metrics (Haque et al., 2025), to recursively divide an image into statistically meaningful sub-regions. By quantifying the statistical difference at each level of this hierarchy, we generate a rich, structural feature vector that serves as a powerful new fingerprint. We integrate these features into the AIDE model, demonstrating that they are highly complementary to its existing hybrid feature set.

Our contributions are summarized as follows:

- **We present the first application of a hierarchical structural analysis method for the purpose of AIGC detection**, introducing a novel and complementary feature type to the field.
- **We establish a new state-of-the-art on the GenImage benchmark**, demonstrating that our approach is particularly effective at detecting artifacts from modern diffusion models.
- **We provide a comprehensive evaluation of our model, demonstrating its robust cross-generator and out-of-distribution generalization capabilities**. We show competitive performance on the AIGCDetect benchmark and, more importantly, prove our model’s strength on the challenging, human-deceptive images of the Chameleon dataset.

2 RELATED WORKS

This section reviews the key literature on AI-generated image detection and structural image analysis that informs our approach.

108
109

2.1 AI-GENERATED IMAGE DETECTION

110
111
112
113
114
115
116

The demand for effective AI-generated image detectors has grown exponentially. Early research focused on forensic cues tied to specific generative models. For instance, FreDect (Frank et al., 2020) observed artifacts in the frequency domain of GAN-generated images, attributed to the up-sampling operation. CNNSpot (Wang et al., 2020) demonstrated that a classifier trained on a single GAN could generalize to others, with careful preprocessing. Other foundational approaches, such as Spec (Zhang et al., 2019) and F3Net (Qian et al., 2020), also focused on frequency and feature-level inconsistencies.

117
118
119
120
121
122
123
124
125
126
127
128

More recent approaches have explored novel perspectives to achieve superior generalization. Uni-vFD (Ojha et al., 2023) proposes a universal linear classifier trained on features from a pre-trained CLIP-ViT model. DIRE (Wang et al., 2023) computes a *DIRE feature* by measuring the difference between an image and its reconstruction from a pre-trained diffusion model. PatchCraft (Zhong et al., 2024) identifies a universal fingerprint across various generative models by comparing rich-texture and poor-texture patches, relying on the discrepancy of inter-pixel correlations. Other notable methods include GenDet (Zhu et al., 2023a), LGrad (Tan et al., 2023), and LNP (Liu et al., 2022), which leverage various gradients, noise patterns, and neural texture cues. Approaches like Fusing (Ju et al., 2022), GramNet (Liu et al., 2020), and NPR (Tan et al., 2024) have also demonstrated strong performance by focusing on specific signal processing or neural network-based artifacts. Furthermore, general-purpose vision backbones, such as ResNet-50 (He et al., 2016), DeiT-S (Touvron et al., 2021), and Swin-T (Liu et al., 2021), have been adapted for this task, providing a baseline for feature representation quality.

129
130
131
132
133
134
135
136

The AIDE model (Yan et al., 2025), which serves as the foundation for our work, proposes a powerful hybrid approach. It combines low-level pixel statistics, derived from DCT-based (Ahmed et al., 1974) patches and Spatial Rich Model (SRM) (Fridrich & Kodovsky, 2012) filters, with high-level global semantics captured by a pre-trained CLIP (Radford et al., 2021) encoder. This mixture-of-experts approach demonstrated strong performance across multiple benchmarks. While these methods have achieved remarkable success, they tend to view images as either a collection of local patches or a global semantic unit, often missing the hierarchical structure.

137

2.2 STRUCTURAL AND HIERARCHICAL IMAGE ANALYSIS

138
139
140
141
142
143
144
145
146
147
148
149
150
151

The analysis of an image’s underlying structure and composition has a long history in computer vision. Classic methods like quad-trees and hierarchical k-means (Larose & Larose, 2014) were used to create multi-resolution representations for tasks like image retrieval and segmentation. Our work is built upon the cuboidal partitioning algorithm (Ahmmmed et al., 2022), an established technique that has been used for image analysis over the years. Recently, a structural image similarity metric based on scene composition structure (Haque et al., 2025) was developed using this algorithm. The metric demonstrated that recursively partitioning an image based on statistical differences could effectively capture its intrinsic organization. In this paper, we apply this established structural analysis technique to the new domain of AIGC detection. To the best of our knowledge, we are the first to demonstrate that features derived from such a hierarchical, structural analysis can serve as a powerful fingerprint for identifying AI-generated images, particularly from modern diffusion-based models. This bridges the fields of structural image analysis and image forensics, offering a fresh perspective on a pressing problem.

152
153

3 METHODOLOGY

154
155
156
157

In this section, we detail our approach for enhancing AI-generated image detection by incorporating novel structural features. The proposed hybrid network architecture is depicted in Fig. 2, and its components and data flow are described in the following subsections.

158
159

3.1 AIDE BASELINE ARCHITECTURE

160
161

Our work is built upon the AIDE model, a robust hybrid detector that combines features from both low-level pixel statistics and high-level image semantics. As shown on the left of Fig. 2, the original AIDE architecture consists of two primary feature extraction modules:

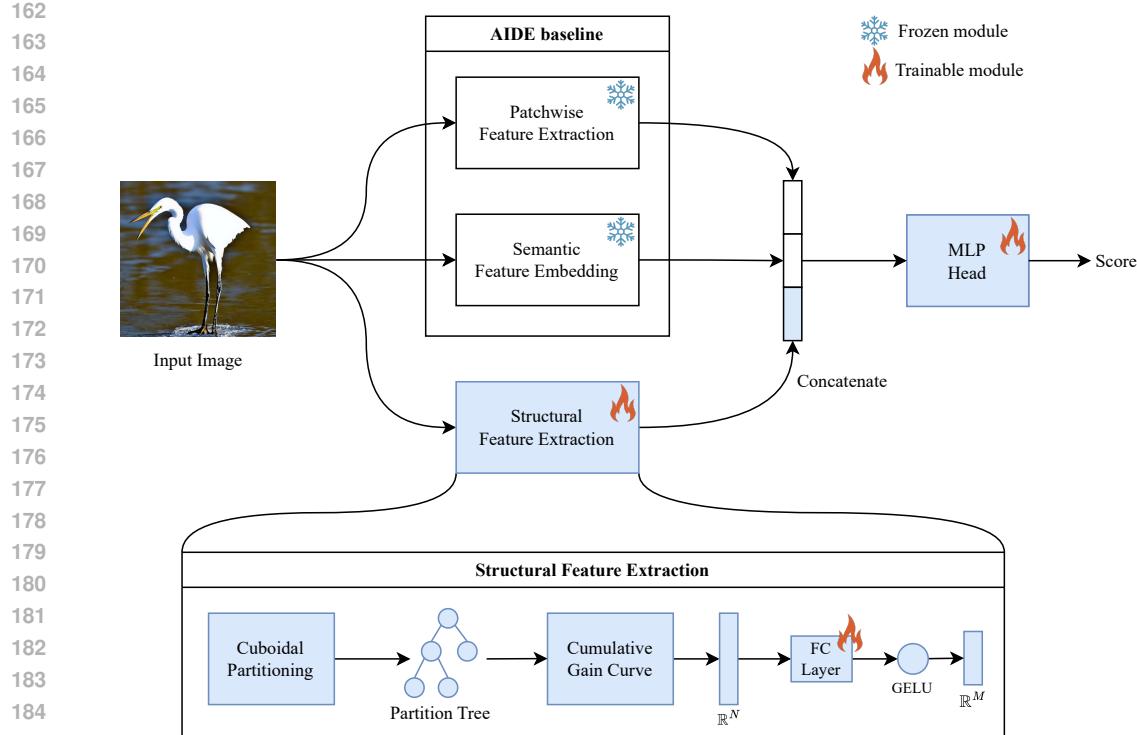


Figure 2: The proposed hybrid network architecture, which integrates a new, trainable structural feature extractor (highlighted in blue) with a pre-trained AIDE backbone.

- **Patchwise Feature Extraction:** This module captures localized statistical artifacts. It first selects the most information-rich patches from the input image using a Discrete Cosine Transform (DCT) scoring mechanism. These patches are then fed through an encoder, which includes Spatial Rich Model (SRM) (Fridrich & Kodovsky, 2012) filters, to extract a feature vector representative of low-level noise patterns and local textures.
- **Semantic Feature Embedding:** To capture high-level semantic inconsistencies, this module utilizes a pre-trained vision-language model, specifically CLIP (Radford et al., 2021). The entire image is encoded by CLIP’s vision transformer, yielding a global feature vector that represents the image’s overall content and context.

These two feature sets are then concatenated and passed to a final MLP head, referred to as the *Discriminator*, which is responsible for the final binary classification of the image as either real or fake.

3.2 STRUCTURAL FEATURE EXTRACTION VIA CUBOIDAL PARTITIONING

To create a robust detector, we propose a novel set of features that encode an image’s underlying hierarchical structure. Our method leverages a recursive partitioning technique that identifies and quantifies the most prominent structural boundaries within an image.

The process begins by treating the entire image, denoted by I , as the initial segment. We quantify the **structural homogeneity** of this segment using the sum of squared errors (SSE) of its pixel-level features. For a given segment S , its SSE is defined as:

$$e_S = \sum_{p_i \in S} \|p_i - \mu_S\|^2, \quad (1)$$

where p_i is the feature vector (e.g., RGB values) of the i -th pixel, and μ_S is the mean feature vector of the segment S .

216 The image is iteratively partitioned by finding the optimal axis-parallel cut, either horizontal or
 217 vertical, that maximally reduces the total SSE. This reduction, which we term the **gain** (g), serves
 218 as a metric for the statistical significance of a structural boundary. For a segment S split into two
 219 sub-segments S_1 and S_2 , the gain is calculated as:

$$221 \quad g = e_S - (e_{S_1} + e_{S_2}). \quad (2)$$

223 By a greedy approach, the cut that yields the highest gain, $\hat{g} = \max_{\text{cuts}} g$, is selected. This process
 224 is repeated hierarchically, always selecting the sub-segment that offers the greatest potential gain for
 225 the next split. This results in a sequence of N gain values, each corresponding to a progressively
 226 finer structural division of the image.

227 The cumulative sum of these ordered gain values forms our unique structural feature vector. This
 228 vector, with its N data points, effectively encodes the image’s organizational hierarchy from its
 229 coarsest to its finest details. To ensure these features are comparable across different images with
 230 varying overall structural complexity, we normalize the cumulative gain values. The i -th element of
 231 our feature vector, \tilde{g}_i , is given by:

$$233 \quad \tilde{g}_i = \frac{1}{e_I} \sum_{j=1}^i \hat{g}_j, \quad 1 \leq i \leq N, \quad (3)$$

236 where e_I is the initial SSE of the full image. In our experiments, we use $N = 1024$ to capture the
 237 1024 most significant structural boundaries.

238 To effectively integrate this new structural feature set with the baseline AIDE model, the resulting
 239 1024-dimensional feature vector (Fig. 2) is first passed through a fully connected layer, followed
 240 by a GELU activation function (Hendrycks & Gimpel, 2023). This process acts as a non-linear en-
 241 encoder, compressing and transforming the hierarchical features into a compact $M = 256$ dimensional
 242 representation. The GELU activation is chosen for its smooth, non-monotonic properties, which are
 243 beneficial for stable learning. This compression step ensures our features are integrated efficiently,
 244 without disproportionately increasing the model’s complexity.

246 3.3 FEATURE INTEGRATION AND TRAINING

248 As depicted in Fig. 2, our proposed features are designed to be easily integrated into the AIDE
 249 architecture in a modular fashion. The structural feature vector is simply concatenated with the
 250 existing two feature sets from the Patchwise and Semantic modules. The final, combined feature
 251 vector is then fed into the AIDE model’s original Discriminator MLP head.

252 To ensure that the model learns to properly weigh and integrate this new information, we freeze the
 253 pre-trained weights of the Patchwise and Semantic encoders and retrain only the final Discriminator
 254 MLP from scratch alongside the structural feature extraction module. This approach allows the
 255 model to learn the optimal way to combine our novel structural features with the existing low-level
 256 and high-level features, without the need for expensive end-to-end retraining.

258 4 EXPERIMENTS

260 In this section, we present a comprehensive evaluation of our proposed method. We demonstrate
 261 the effectiveness of our model on several widely used public benchmarks for AI-generated image
 262 detection. Our results are compared against a range of state-of-the-art baselines to highlight the
 263 significant performance gains introduced by our structural features.

265 4.1 DETECTORS FOR COMPARISON

267 To provide a comprehensive evaluation, we compare our method against a wide range of state-of-
 268 the-art and foundational detectors from the existing literature. The specific baselines used vary by
 269 benchmark, as we rely on the comparison results published in the original papers. Below is a list of
 the key methods included in our comparison tables.

- **General Vision Backbones:** ResNet-50 (He et al., 2016), DeiT-S (Touvron et al., 2021), and Swin-T (Liu et al., 2021). These models serve as a strong baseline, demonstrating the efficacy of general image classification architectures for this specific task.
- **Forensic-based Detectors:** FreDect (Frank et al., 2020) and Spec (Zhang et al., 2019) rely on frequency domain analysis. CNNSpot (Wang et al., 2020) and F3Net (Qian et al., 2020) focus on neural artifacts and up-sampling traces.
- **Universal Detectors:** UnivFD (Ojha et al., 2023) and GenDet (Zhu et al., 2023a) are designed for broad generalization across various generative models.
- **Artifact-based Detectors:** DIRE (Wang et al., 2023) and LGrad (Tan et al., 2023) focus on reconstruction errors and gradient analysis. LNP (Liu et al., 2022) and Fusing (Ju et al., 2022) leverage noise patterns and multi-scale feature fusion.
- **Modern Approaches:** PatchCraft (Zhong et al., 2024) and NPR (Tan et al., 2024) represent recent advances, using universal artifacts and neural representations to improve detection.
- **Neural Texture-based Detectors:** GramNet (Liu et al., 2020) analyzes style-based texture features for forgery detection.

4.2 DATASETS AND BENCHMARKS

To thoroughly evaluate the effectiveness and generalizability of our proposed method, we conduct extensive experiments on three prominent benchmarks: GenImage (Zhu et al., 2023b), AIGCDetect (Zhong et al., 2024), and Chameleon (Yan et al., 2025). Each dataset serves a distinct purpose in assessing the capabilities of AI-generated image detectors, from measuring performance on the latest generative models to evaluating generalization on challenging, human-deceptive imagery.

GenImage Benchmark: GenImage is a large-scale, million-image benchmark designed to evaluate detectors on a wide range of modern, high-quality generative models. It is particularly well-suited for measuring a model’s performance on the latest diffusion-based architectures. The benchmark includes images generated by eight state-of-the-art models, encompassing both established GANs and cutting-edge diffusion models. These generators are: Midjourney (Midjourney, Inc., 2022), Stable Diffusion (v1.4, v1.5) (Rombach et al., 2022), ADM (Dhariwal & Nichol, 2021), GLIDE (Nichol et al., 2022), Wukong (Gu et al., 2022a), VQDM (Gu et al., 2022b), and BigGAN (Brock et al., 2019). The inclusion of this diverse set of generators allows for a comprehensive assessment of our model’s ability to identify the subtle, model-specific artifacts left by each one.

AIGCDetect Benchmark: AIGCDetect serves as a comprehensive benchmark for evaluating generalization across a broad spectrum of AI-generated images. Its test set features a diverse collection of images from 16 different generators, including popular GANs like ProGAN (Karras et al., 2018), StarGAN (Choi et al., 2018), StyleGAN (Karras et al., 2019), and CycleGAN (Zhu et al., 2017), as well as diffusion models. We use this benchmark to test the robustness of our model against a wide variety of artifacts and to demonstrate its ability to maintain high performance across unseen or less common generative methods. While GenImage focuses on recent models, AIGCDetect provides a valuable test of a detector’s universal applicability.

Chameleon Dataset: The Chameleon dataset, originally introduced in the AIDE paper, represents a unique and particularly challenging benchmark for out-of-distribution generalization. Unlike other datasets where images are often generated with simple prompts and may contain obvious artifacts, the images in Chameleon are designed to be *deceptively real*. According to the dataset’s creators, the AI-generated images have passed a human perception *Turing Test*, meaning human annotators frequently misclassify them as real. This makes Chameleon an ideal benchmark for evaluating a detector’s ability to identify subtle forgery traces that would be missed by human inspection. Our evaluation on this benchmark provides a realistic measure of how well our model performs in scenarios where detectors are most needed.

4.3 TRAINING AND EVALUATION

For the evaluation of our model, we follow the established methodologies for each benchmark dataset to ensure a fair and direct comparison with state-of-the-art methods. The training and evaluation procedures for each dataset are detailed below.

324
 325 Table 1: Performance comparison of the proposed method against some existing methods on the
 326 GenImage (Zhu et al., 2023b) benchmark datasets, where the best and second-best results in each
 327 column are marked in **bold** and underline, respectively.

Method	Midjourney	SD v1.4	SD v1.5	ADM	GLIDE	Wukong	VQDM	BigGAN	Mean
ResNet-50	54.90	99.90	99.70	53.50	61.90	98.20	56.60	52.00	72.09
DeiT-S	55.60	99.90	<u>99.80</u>	49.80	58.10	98.90	56.90	53.50	71.56
Swin-T	62.10	99.90	<u>99.80</u>	49.80	67.60	99.10	62.30	57.60	74.78
CNNSpot	52.80	96.30	95.90	50.10	39.80	78.60	53.40	46.80	64.21
Spec	52.00	99.40	99.20	49.70	49.80	94.80	55.60	49.80	68.79
F3Net	50.10	99.90	99.90	49.90	50.00	99.90	49.90	49.90	68.69
GramNet	54.20	99.20	99.10	50.30	54.60	98.90	50.80	51.70	69.85
DIRE	60.20	99.90	<u>99.80</u>	50.90	55.00	99.20	50.10	50.20	70.66
UnivFD	73.20	84.20	84.00	55.20	76.90	75.60	56.90	80.30	73.29
GenDet	89.60	96.10	96.10	58.00	78.40	92.80	66.50	<u>75.00</u>	81.56
PatchCraft	79.00	89.50	89.30	77.30	78.40	89.30	<u>83.70</u>	72.40	82.36
AIDE	79.38	99.74	99.76	78.54	<u>91.82</u>	98.65	80.26	66.89	86.88
Ours	<u>82.04</u>	<u>99.83</u>	99.75	81.53	95.18	<u>99.40</u>	85.09	73.64	89.56

341
 342 **GenImage Benchmark:** To evaluate performance on GenImage, our model was trained on the
 343 Stable Diffusion v1.4 training dataset. This approach aligns with the standard procedure outlined in
 344 the original GenImage paper and is a common practice in subsequent works. Training was performed
 345 using a learning rate of 1e-5 and a batch size of 32 over 5 epochs on a single A100 GPU, which
 346 took around 15 hours to complete. The trained model was then evaluated on the test sets from all
 347 generators included in the GenImage benchmark.

348 **AIGCDetect Benchmark:** Our evaluation on AIGCDetect follows a similar standard methodology.
 349 The model was trained on the ProGAN training dataset. For this benchmark, training was conducted
 350 with a learning rate of 1e-5 and a batch size of 32 for a single epoch on a single A100 GPU, which
 351 took around 3 hours to complete. The final evaluation was performed across all generators within
 352 the AIGCDetect benchmark to provide a comprehensive assessment of the model’s capabilities.

353 **Chameleon Dataset:** For the Chameleon dataset, we utilized the two pre-trained models from the
 354 previous evaluations. The first model was trained on the Stable Diffusion v1.4 dataset (as used for
 355 GenImage), and the second model was trained on the ProGAN dataset (as used for AIGCDetect).
 356 These two models were used to perform the evaluation on the Chameleon dataset, allowing us to
 357 assess their performance on this unique benchmark without additional training.

358 4.4 MAIN RESULTS ON THE GENIMAGE BENCHMARK

360 Our primary results on the GenImage benchmark are summarized in Table 1. This benchmark is
 361 particularly valuable for evaluating performance on modern, high-quality diffusion-based models,
 362 and it is here that our model demonstrates its most significant strength. As shown in the table, our
 363 method achieves a new state-of-the-art (SOTA) mean accuracy of **89.56%**, surpassing the previous
 364 AIDE baseline by a substantial margin of 2.68%. A closer look at the per-generator performance
 365 reveals that our approach is consistently superior with a maximum improvement of 6.75% on the
 366 BigGAN dataset, where AIDE is very weak. Our model achieves the highest accuracy on four dis-
 367 tinct generators: ADM, GLIDE, VQDM, and Wukong. This is particularly noteworthy as these are
 368 among the most recent and powerful diffusion models, which the artifacts in our structural features
 369 are highly adept at identifying. Furthermore, our model secures the second-best performance on
 370 a number of other critical sub-benchmarks, including Midjourney and SD v1.4. This consistent
 371 performance across a diverse range of generators, where our model is either the best or the second-
 372 best in most categories, underscores the robustness and generalizability of our proposed structural
 373 features.

374 4.5 MAIN RESULTS ON THE AIGCDTECT BENCHMARK

375 While the AIGCDetect benchmark includes a broader range of older GAN-based models, our
 376 method remains highly competitive, as detailed in Table 2. Our model achieves a mean accuracy
 377 of 91.85%, which is the second-best overall and only slightly behind the AIDE baseline, reinforc-

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 ing the effectiveness of our features in a broader context. A more granular analysis of the results confirms that our structural features are a crucial and complementary addition. Our model achieves state-of-the-art performance on several key subsets, including StarGAN, StyleGAN, and WFIR. This is particularly significant as our SOTA result on WFIR, a dataset composed of human faces, reinforces our finding from Fig. 1, that our structural features are highly effective at detecting subtle AI-generated artifacts in human faces. This also suggests that our features are especially effective at detecting the structural discrepancies in high-quality architectures like StyleGAN and its variants. Additionally, we are the second-best performer on VQDM, Wukong, and DALLE2, reinforcing the fact that our model’s performance on a wide range of generators is not a mere coincidence.

Table 2: Performance comparison of the proposed method against some existing methods on the AIGCDetect benchmark (Zhong et al., 2024) datasets, where the best and second-best results in each column are marked in **bold** and underline, respectively.

Method	ProGAN	StyleGAN	BigGAN	CycleGAN	StarGAN	StyleGAN	WFIR	ADM	Glide	Midjourney	SD v1.4	SD v1.5	VQDM	Wukong	DALLE2	SDXL	Mean	
CNNSpot	100.00	90.17	71.17	87.62	94.60	81.42	86.91	91.65	60.39	58.07	51.39	50.57	50.53	56.46	51.03	50.45	53.03	69.73
FrDeCT	99.36	78.02	81.97	78.77	94.62	80.57	66.19	50.75	63.42	54.13	45.87	38.79	39.21	77.80	40.30	34.70	51.23	63.28
Fusing	100.00	85.20	77.40	87.00	97.00	77.00	83.30	66.80	49.00	57.20	52.20	51.00	51.40	55.10	51.70	52.80	55.60	67.63
LNP	99.67	91.75	77.75	84.10	99.92	75.39	94.64	70.85	84.73	80.52	65.55	85.55	85.67	74.46	82.06	88.75	87.75	84.07
LGrad	99.83	91.08	85.62	86.94	99.27	78.46	85.32	55.70	67.15	66.11	65.35	63.02	63.67	72.99	59.55	65.45	71.30	75.11
UnivFD	99.81	84.93	<u>95.08</u>	<u>98.33</u>	95.75	99.47	74.96	86.90	66.87	62.46	56.13	63.66	63.49	85.31	70.93	50.75	50.73	76.80
DIRE-G	95.19	83.03	70.12	74.19	95.47	67.79	75.31	58.05	75.78	71.75	58.01	49.74	49.83	53.68	54.46	66.48	55.35	67.90
DIRE-D	52.75	51.31	49.70	49.58	46.72	51.23	51.72	53.30	<u>98.25</u>	92.42	<u>89.45</u>	91.24	91.63	91.90	90.90	92.45	91.28	72.70
PatchCraft	100.00	92.77	95.80	70.17	<u>99.97</u>	71.58	89.55	85.80	82.17	83.79	90.12	95.38	95.30	88.91	91.07	96.60	98.43	89.85
NPR	99.79	97.70	84.35	96.10	99.35	<u>82.50</u>	98.38	65.80	69.69	78.36	77.85	78.63	78.89	78.13	76.11	64.90	94.10	83.57
AIDE	99.99	99.64	83.95	98.48	99.91	73.25	98.00	94.20	93.43	95.09	77.20	93.00	92.85	95.16	93.55	96.60	97.05	93.02
Ours	99.99	99.74	79.98	96.75	100.00	69.81	98.53	96.80	92.99	93.03	75.92	90.83	90.63	<u>94.03</u>	<u>91.77</u>	<u>95.00</u>	95.58	<u>91.85</u>

4.6 GENERALIZATION ON THE CHAMELEON BENCHMARK

The Chameleon benchmark is designed to test a detector’s ability to generalize to out-of-distribution, human-deceptive images. As shown in Table 3, while our model is not the outright best performer, it consistently achieves the second-best results in both the ProGAN (58.91%) and SD v1.4 (61.39%) training scenarios. This is a crucial validation of our approach, as it demonstrates that the structural features learned by our model are not overfitting to the training distribution. Instead, they provide robust, generalizable cues that enable our detector to maintain competitive performance on a particularly challenging evaluation set, a key requirement for real-world applications.

Table 3: Performance comparison of the proposed method against some existing methods on the Chameleon (Yan et al., 2025) dataset, where the best and second-best results in each column are marked in **bold** and underline, respectively.

Method	Training Dataset	
	ProGAN	SD v1.4
CNNSpot	56.94	60.11
FrDeCT	55.62	56.86
Fusing	56.98	57.07
GramNet	58.94	60.95
LNP	57.11	55.63
UnivFD	57.22	55.62
DIRE	58.19	59.71
PatchCraft	53.76	56.32
NPR	57.29	58.13
AIDE	58.37	62.60
Ours	58.91	61.39

4.7 QUALITATIVE RESULTS

To complement our quantitative findings, we provide a qualitative analysis of our model’s performance in Fig. 3, showcasing its ability to correctly classify images that the AIDE baseline misiden-

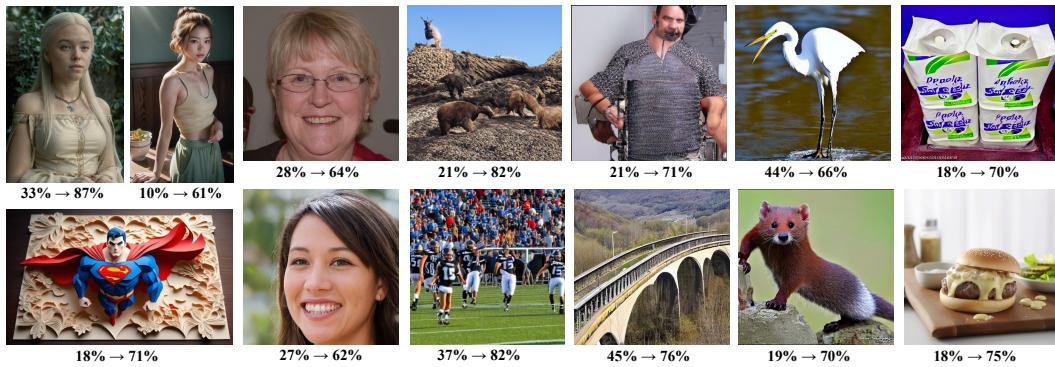


Figure 3: A comparison of model predictions on fake images where the AIDE baseline failed; scores below each image show the shift from AIDE’s low confidence ($<50\%$) to our model’s high confidence ($>50\%$).

tifies. The figure presents 13 examples of AI-generated images from the GenImage, AIGCDetect, and Chameleon datasets, where AIDE’s confidence score was below 50% (indicating a *real* classification), while our model achieved a confidence of over 50% (correctly identifying the image as *fake*). The scores below each image visually demonstrate this critical shift in prediction confidence.

These examples represent the challenging cases and *blind spots* of the AIDE baseline. While the images are of high quality, they contain subtle inconsistencies that are not easily detected by features based on simple frequency artifacts or global semantics. Our model’s consistent success in these cases provides compelling evidence that the proposed structural features are sensitive to these nuances, capturing flaws in composition, object integrity, or visual plausibility that a flat-feature approach overlooks. The figure thus serves as a powerful visual argument for the value of our structural approach as a crucial and complementary addition to existing detection frameworks.

4.8 SUMMARY OF EXPERIMENTAL FINDINGS

The experimental results on all three benchmarks consistently demonstrate the value of our proposed structural features. Our method sets a new SOTA on the GenImage benchmark, proving its superiority on modern diffusion models. On the broader AIGCDetect benchmark, our model is highly competitive overall and achieves SOTA results on critical subsets. Our strong second-best performance on the challenging Chameleon benchmark further validates the generalizability of our approach. These results collectively show that by extending the AIDE baseline with our hierarchical structural features, we have created a more powerful and robust detector.

However, a more nuanced analysis reveals that augmenting a powerful hybrid model does not guarantee universal improvement. Consistent with established findings on complex ensemble models (mixture-of-experts), which show that adding a new expert can sometimes lead to performance degradation if its contribution is not sufficiently valuable (Hansen & Salamon, 1990), we observed that our model’s performance slightly decreased on certain subsets. We hypothesize that these datasets contain fewer of the structural inconsistencies or artifacts that our expert is designed to detect. In such cases, the output of our structural extractor may act as noise to the final classifier, reducing the overall accuracy. This suggests that the value of our structural features is highly context-dependent, providing significant gains in scenarios where other features fail to capture key anomalies.

5 CONCLUSION

This work provides strong evidence that hierarchical structural analysis offers a powerful new perspective on AI-generated content detection. By successfully augmenting an existing hybrid framework, we have shown that such structural features are highly complementary to existing approaches. A key direction for future work is to develop more adaptive feature ensemble techniques that can dynamically weigh the contribution of each expert.

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our work, our code and model weights will be made publicly avail-
489 able upon acceptance. All experimental details, including hyperparameters and training time, are
490 provided in Section 4.2 and 4.3.
491492 REFERENCES
493494 Nasir Ahmed, T. Natarajan, and Kamisetty R. Rao. Discrete Cosine Transform. *IEEE Transactions*
495 *on Computers*, C-23(1):90–93, January 1974. ISSN 1557-9956. doi: 10.1109/T-C.1974.223784.496 Ashek Ahmed, Manzur Murshed, Manoranjan Paul, and David Taubman. A Commonality Mod-
497 eling Framework for Enhanced Video Coding Leveraging on the Cuboidal Partitioning Based
498 Representation of Frames. *IEEE Transactions on Multimedia*, 24:4446–4457, 2022. ISSN 1941-
499 0077. doi: 10.1109/TMM.2021.3117397.500 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for High Fi-
501 delity Natural Image Synthesis. In *International Conference on Learning Representations (ICLR)*,
502 September 2019.
503504 Yunje Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
505 gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
506 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8789–8797,
507 2018.508 Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In *Ad-
509 vances in Neural Information Processing Systems*, volume 34, pp. 8780–8794. Curran Associates,
510 Inc., 2021.511 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
512 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
513 reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
514 Scale. In *International Conference on Learning Representations (ICLR)*, October 2021.515 Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten
516 Holz. Leveraging Frequency Analysis for Deep Fake Image Recognition. In *Proceedings of the*
517 *37th International Conference on Machine Learning*, pp. 3247–3258. PMLR, November 2020.519 Jessica Fridrich and Jan Kodovsky. Rich models for steganalysis of digital images. *IEEE Trans-
520 actions on Information Forensics and Security*, 7(3):868–882, 2012. doi: 10.1109/TIFS.2012.
521 2190402.522 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
523 Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In *Advances in Neural Infor-
524 mation Processing Systems*, volume 27. Curran Associates, Inc., 2014.526 Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Niu Minzhe, Xiaodan Liang, Lewei Yao, Runhui
527 Huang, Wei Zhang, Xin Jiang, Chunjing Xu, and Hang Xu. Wukong: A 100 Million Large-
528 scale Chinese Cross-modal Pre-training Benchmark. *Advances in Neural Information Processing*
529 *Systems*, 35:26418–26431, December 2022a.530 Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
531 Baining Guo. Vector Quantized Diffusion Model for Text-to-Image Synthesis. In *2022 IEEE/CVF*
532 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10686–10696, June 2022b.
533 doi: 10.1109/CVPR52688.2022.01043.534 Lars Kai Hansen and Peter Salamon. Neural network ensembles. *IEEE Transactions on Pattern
535 Analysis and Machine Intelligence*, 12(10):993–1001, 1990.537 Md Redwanul Haque, Manzur Murshed, Manoranjan Paul, and Tsz-Kwan Lee. A Novel Image
538 Similarity Metric for Scene Composition Structure. In *2025 IEEE International Conference on*
539 *Image Processing Workshops (ICIPW)*, Anchorage, Alaska, USA, September 2025. IEEE. doi:
10.48550/arXiv.2508.05037.

- 540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 541 Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
 542 pp. 770–778, June 2016. doi: 10.1109/CVPR.2016.90.
- 543 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL <https://arxiv.org/abs/1606.08415>.
- 544 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Advances*
 545 in *Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 546 2020.
- 547 Yan Ju, Shan Jia, Lipeng Ke, Hongfei Xue, Koki Nagano, and Siwei Lyu. Fusing Global and
 548 Local Features for Generalized AI-Synthesized Image Detection. In *2022 IEEE International*
 549 *Conference on Image Processing (ICIP)*, pp. 3465–3469, October 2022. doi: 10.1109/ICIP46576.
 550 2022.9897820.
- 551 Negar Kamali, Karyn Nakamura, Angelos Chatzimparmpas, Jessica Hullman, and Matthew Groh.
 552 How to Distinguish AI-Generated Images from Authentic Photographs. *arXiv*, June 2024. doi:
 553 10.48550/arXiv.2406.08651.
- 554 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of GANs for Im-
 555 proved Quality, Stability, and Variation. In *International Conference on Learning Representations*
 556 (*ICLR*), February 2018.
- 557 Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative
 558 Adversarial Networks. In *2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
 559 nition (CVPR)*, pp. 4396–4405, June 2019. doi: 10.1109/CVPR.2019.00453.
- 560 Daniel T. Larose and Chantal D. Larose. *Hierarchical and k-Means Clustering*, pp. 209–227.
 561 Discovering Knowledge in Data: An Introduction to Data Mining, 2014. doi: 10.1002/
 562 9781118874059.ch10.
- 563 Bo Liu, Fan Yang, Xiuli Bi, Bin Xiao, Weisheng Li, and Xinbo Gao. Detecting Generated Images
 564 by Real Images. In *Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel,
 565 October 23–27, 2022, Proceedings, Part XIV*, pp. 95–110, Berlin, Heidelberg, October 2022.
 566 Springer-Verlag. ISBN 978-3-031-19780-2. doi: 10.1007/978-3-031-19781-9_6.
- 567 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 568 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In *2021 IEEE/CVF*
 569 *International Conference on Computer Vision (ICCV)*, pp. 9992–10002, Montreal, QC, Canada,
 570 October 2021. IEEE. ISBN 978-1-6654-2812-5. doi: 10.1109/ICCV48922.2021.00986.
- 571 Zhenghe Liu, Xiaojuan Qi, and Philip H.S. Torr. Global Texture Enhancement for Fake Face De-
 572 tection in the Wild. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 573 (*CVPR*), pp. 8057–8066, Seattle, WA, USA, June 2020. IEEE. ISBN 978-1-7281-7168-5. doi:
 574 10.1109/CVPR42600.2020.00808.
- 575 Midjourney, Inc. Midjourney. Online, 2022. URL <https://www.midjourney.com>.
- 576 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 577 McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and
 578 Editing with Text-Guided Diffusion Models. In *Proceedings of the 39th International Conference*
 579 *on Machine Learning*, pp. 16784–16804. PMLR, June 2022.
- 580 Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards Universal Fake Image Detectors that Gen-
 581 eralize Across Generative Models. In *2023 IEEE/CVF Conference on Computer Vision and Pattern*
 582 *Recognition (CVPR)*, pp. 24480–24489, Vancouver, BC, Canada, June 2023. IEEE. ISBN 979-8-
 583 3503-0129-8. doi: 10.1109/CVPR52729.2023.02345.
- 584 Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. Thinking in Frequency: Face
 585 Forgery Detection by Mining Frequency-Aware Clues. In Andrea Vedaldi, Horst Bischof, Thomas
 586 Brox, and Jan-Michael Frahm (eds.), *Computer Vision – ECCV 2020*, volume 12357, pp. 86–103.
 587 Springer International Publishing, Cham, 2020. ISBN 978-3-030-58609-6 978-3-030-58610-2.
 588 doi: 10.1007/978-3-030-58610-2_6.

- 594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 595 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 596 Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In *Pro-
 597 ceedings of the 38th International Conference on Machine Learning*, pp. 8748–8763. PMLR, July
 598 2021.
- 599 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 600 Resolution Image Synthesis with Latent Diffusion Models. In *2022 IEEE/CVF Conference on
 601 Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, June 2022. doi: 10.1109/
 602 CVPR52688.2022.01042.
- 603 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
 604 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 605 *International Conference on Learning Representations (ICLR)*, October 2021.
- 606 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, and Yunchao Wei. Learning on Gra-
 607 dients: Generalized Artifacts Representation for GAN-Generated Images Detection. In *2023
 608 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12105–12114,
 609 Vancouver, BC, Canada, June 2023. IEEE. ISBN 979-8-3503-0129-8. doi: 10.1109/CVPR52729.
 610 2023.01165.
- 611 Chuangchuang Tan, Huan Liu, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei.
 612 Rethinking the Up-Sampling Operations in CNN-Based Generative Network for Generalizable
 613 Deepfake Detection. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 614 (CVPR)*, pp. 28130–28139, Seattle, WA, USA, June 2024. IEEE. ISBN 979-8-3503-5300-6. doi:
 615 10.1109/CVPR52733.2024.02657.
- 616 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 617 Hervé Jegou. Training data-efficient image transformers & distillation through attention. In *Pro-
 618 ceedings of the 38th International Conference on Machine Learning*, pp. 10347–10357. PMLR,
 619 July 2021.
- 620 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. CNN-
 621 Generated Images Are Surprisingly Easy to Spot... for Now. In *2020 IEEE/CVF Conference
 622 on Computer Vision and Pattern Recognition (CVPR)*, pp. 8692–8701, Seattle, WA, USA, June
 623 2020. IEEE. ISBN 978-1-7281-7168-5. doi: 10.1109/CVPR42600.2020.00872.
- 624 Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and
 625 Houqiang Li. DIRE for Diffusion-Generated Image Detection. In *2023 IEEE/CVF International
 626 Conference on Computer Vision (ICCV)*, pp. 22388–22398, Paris, France, October 2023. IEEE.
 627 ISBN 979-8-3503-0718-4. doi: 10.1109/ICCV51070.2023.02051.
- 628 Jevin West and Carl Bergstrom. Which Face Is Real?, 2019. URL [https://www.
 629 whichfaceisreal.com/](https://www.whichfaceisreal.com/).
- 630 Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A Sanity
 631 Check for AI-generated Image Detection. *International Conference on Learning Representations
 632 (ICLR)*, 2025:70702–70720, May 2025.
- 633 Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and simulating artifacts in gan fake
 634 images. *2019 IEEE International Workshop on Information Forensics and Security (WIFS)*, pp.
 635 1–6, 2019.
- 636 Nan Zhong, Yiran Xu, Sheng Li, Zhenxing Qian, and Xinpeng Zhang. PatchCraft: Explor-
 637 ing Texture Patch for Efficient AI-generated Image Detection. *arXiv*, March 2024. doi:
 638 10.48550/arXiv.2311.12397.
- 639 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image Transla-
 640 tion Using Cycle-Consistent Adversarial Networks. In *2017 IEEE International Conference on
 641 Computer Vision (ICCV)*, pp. 2242–2251, Venice, October 2017. IEEE. ISBN 978-1-5386-1032-
 642 9. doi: 10.1109/ICCV.2017.244.

- 648 Mingjian Zhu, Hanting Chen, Mouxiao Huang, Wei Li, Hailin Hu, Jie Hu, and Yunhe Wang. Gen-
649 Det: Towards Good Generalizations for AI-Generated Image Detection. *arXiv*, December 2023a.
650 doi: 10.48550/arXiv.2312.08880.
- 651 Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu,
652 Hailin Hu, Jie Hu, and Yunhe Wang. GenImage: A Million-Scale Benchmark for Detecting
653 AI-Generated Image. *Advances in Neural Information Processing Systems*, 36:77771–77782,
654 December 2023b.
- 655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701