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ABSTRACT

Reliable uncertainty calibration is crucial for the safe deployment of deep neu-
ral networks in high-stakes settings. While these networks are known to exhibit
systematic overconfidence, especially under distribution shifts, the calibration of
large-scale vision models, such as ConvNeXt, EVA, and BEiT, has remained un-
derexplored. We comprehensively examine their calibration behavior, uncovering
evidence that challenges well-established assumptions. We find that these models
are underconfident on in-distribution data, which results in increased calibration
error, yet exhibit improved calibration under distribution shifts. This phenomenon
is primarily driven by modern training techniques, including massive pretrain-
ing and sophisticated regularization and augmentation methods, rather than ar-
chitectural innovations alone. We also demonstrate that these large-scale models
are highly responsive to post-hoc calibration techniques in the in-distribution set-
ting, enabling practitioners to mitigate underconfidence bias effectively. However,
these methods become progressively less reliable under severe distribution shifts
and can occasionally produce counterproductive effects. Our findings highlight
the complex, non-monotonic effects of architectural and training innovations on
calibration, challenging established narratives of continuous improvement.

1 INTRODUCTION

Deep neural networks deployed in high-stakes applications require not only high predictive accu-
racy but also reliable uncertainty estimates. In safety-critical domains, such as medical diagnosis,
autonomous driving, and financial decision-making, the consequences of incorrect predictions ac-
companied by misleadingly high confidence scores can be severe. Model calibration — aligning
predicted confidence with empirical accuracy — provides a formal framework for assessing the relia-
bility of these uncertainty estimates (Guo et al.,2017)). In a well-calibrated model, predictions made
with 80% confidence should be correct approximately 80% of the time.

A fundamental challenge in model calibration is that deep neural networks are typically poorly
calibrated. In particular, they tend to exhibit systematic overconfidence, assigning probabilities to
predictions that exceed their actual accuracy (see, e.g., /Guo et al.| (2017); [Hendrycks et al.| (2021));
Lakshminarayanan et al.| (2017); Rahaman & Thiery| (2021); |(Cheng & Vasconcelos| (2024)); Wang
et al.| (2021))). This calibration error becomes even more pronounced when models encounter dis-
tribution shifts (see, e.g., (Ovadia et al.l [2019; Hendrycks & Dietterich, 2019)). To address the
challenge of miscalibration, post-hoc calibration methods (see, e.g.,|\Guo et al.| (2017); |Zhang et al.
(2020Db)); |Gupta et al.| (2021)); Tomani et al.|(2022))) are promising since they can be applied directly
to trained models and can therefore be used as a lightweight post-processing step to recalibrate
the model’s outputs. Additionally, Minderer et al.| (2021)) demonstrated that architectural innova-
tions available at the time (such as Vision Transformers) have inherently well-calibrated outputs
and improved robustness to distribution shifts, suggesting that miscalibration is more pronounced in
traditional models than in then-current state-of-the-art models.

Most recent advances in deep learning have catalyzed the emergence of models featuring large-
scale training regimes, characterized by massive-scale pre-training using novel training techniques
(e.g., masked image modeling (He et al., 2022} Bao et al.l [2021)) and sophisticated regularization
and augmentation techniques (e.g., CutMix (Yun et al.l |2019), MixUp (Zhang et al.| [2017), label
smoothing (Zhang et al.l [2020a; |[Lukasik et al., |2020), and RandAugment (Cubuk et al., [2020)).
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While models trained with these approaches — such as ConvNeXt, EVA, and BEiT — achieve state-
of-the-art accuracy and have led to a broad adoption by practitioners, the implications for model
calibration properties remain insufficiently explored. Specifically, it is unclear whether exposure
to diverse, web-scale training data improves calibration by providing broader coverage of the input
distribution, or if it introduces new calibration issues due to inherent dataset biases and complex
regularization schemes. Furthermore, despite significant advances in post-hoc calibration techniques
for traditional neural architectures, the efficacy of these techniques when applied to these large-scale
models has not been adequately investigated.

In this paper, we systematically benchmark the quality of predictive uncertainty of large-scale vision
models and make the following key contributions:

1. Through a systematic benchmark, we demonstrate that large-scale models (ConvNeXt,
EVA, and BEiT) exhibit significant in-distribution calibration errors, characterized by sys-
tematic underconfidence in predictive probabilities. This finding contrasts with the well-
documented overconfidence bias observed in traditional deep neural networks.

2. Our analysis reveals that this systematic underconfidence in large-scale models results from
the combination of pretraining on extensive datasets and advanced regularization strategies,
rather than architectural design choices.

3. We further show that large-scale models maintain calibration quality under both synthetic
and real-world distribution shifts. This finding contrasts with traditional neural architec-
tures, which exhibit a monotonic increase in calibration error as the magnitude of the dis-
tribution shift increases.

4. We demonstrate that post-hoc calibration methods can significantly improve the calibration
of large-scale models for in-distribution predictions. However, their benefits diminish under
distribution shift.

2 RELATED WORK

Empirical Studies of Model Calibration Over the past decade, research into neural network cal-
ibration has established a strong empirical foundation. The seminal work by |Guo et al.| (2017) first
documented that neural architectures used at the time, such as ResNets and DenseNets, typically
produce overconfident predictions. Several subsequent studies have corroborated this finding (Thu-
lasidasan et al., 2019; Hendrycks et al.| 2021} |Lakshminarayanan et al., 2017; Rahaman & Thiery,
2021).

Distribution shift conditions exacerbate these calibration issues: |(Ovadia et al.| (2019) demonstrated
through a comprehensive evaluation that “along with accuracy, the quality of uncertainty consis-
tently degrades with increasing dataset shift.” [Hendrycks & Dietterich| (2019) further validated
this phenomenon, whose ImageNet-C benchmark revealed a direct correlation between corruption
severity and increasing calibration error. Similarly, Recht et al.| (2019) demonstrated that temporal
distribution drift in ImageNet-V2 negatively impacts both predictive performance and calibration
metrics.

Recent architectural advancements have challenged these established patterns. |Minderer et al.
(2021)) documented improved calibration in Vision Transformers and MLP-Mixers compared to
previous generations of models. They noted that these models were “well calibrated compared
to past models and their performance is more robust to distribution shift.” They also emphasized
the importance of model architecture in determining calibration quality, suggesting that the most
recent architectural innovations may improve calibration quality inherently. |Tao et al.| (2024) further
substantiated this architectural dependency. Their large-scale calibration benchmark, which used
NAS-searched architectures, demonstrated a strong correlation between the design choices of neu-
ral networks and their calibration properties. However, their investigation was limited to models
with conventional training regimes and did not examine large-scale models pre-trained on massive
datasets.

Recent work has emphasized decomposing predictive uncertainty to understand miscalibration
sources beyond aggregate metrics. Perez-Lebel et al. [Perez-Lebel et al.| (2023) show that even
perfectly calibrated classifiers can exhibit grouping loss—samples with identical confidence but
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different true probabilities. This builds on proper scoring rule theory Murphy| (1973a); Brocker
(2009); [Kull & Flach| (2015), which decomposes predictive errors into calibration, refinement, and
irreducible components.

Post-hoc Calibration Techniques Post-hoc calibration methods represent a computationally ef-
ficient framework for enhancing the reliability of neural network confidence estimates without re-
quiring architectural modifications or extensive retraining procedures. These approaches operate
by learning mapping functions that transform a model’s raw outputs into recalibrated probability
distributions, thereby optimizing the correspondence between predictive confidence and empirical
accuracy. The re-calibration process typically leverages a held-out validation set to estimate the
parameters of these transformations while maintaining the model’s discriminative capabilities.

The literature has explored various approaches to post-hoc calibration, each of which is character-
ized by a distinct set of trade-offs between functional expressivity, parameter efficiency, and gener-
alization properties |Guo et al.| (2017); |[Zhang et al.| (2020b); \Gupta et al.| (2021); |Kull et al.[(2019).
While post-hoc calibration methods achieve strong performance on in-distribution data, their relia-
bility degrades substantially under distribution shift. Recent advances address this limitation through
density-aware approaches that ensure calibration not only globally but also within local regions of
the input space Xiong et al.| (2023)); Tomani et al.[(2023).

3 PROBLEM DEFINITION AND NOTATION

In this paper, we systematically benchmark the quality of predictive uncertainty of multi-class neural
network models across different architecture and training paradigms. A neural network parameter-
izes a prediction function f that maps input x € R” to a probability vector p € [0,1]¢ over C
classes. These predictions reside in the (C' — 1)-dimensional probability simplex: A = {p €

[0,1]¢ | ZCC:1 pe = 1}, where p.. denotes the c-th component of the probability vector p.
A model f is perfectly calibrated (Brocker, 2009)) if and only if:

Vpe A:P(y=c| f(z)=p) =Dpc- (1)

Throughout this paper, we focus on the weaker notion of top-label calibration (Guo et al. [2017),
requiring that predictions made with maximum confidence p* = max f(x) are correct with proba-
bility p*:

Vp* €[0,1] : P(y € argmax f(z)| max f(x) = p*) = p* . )

To quantify top-label calibration error, we compute the Expected Calibration Error (ECE), which
measures the expected discrepancy between the two sides of Eq. [2|and is defined as

Ellp® —P(y € arg max f(a)| max f(z) = p")[] - 3)

Due to the continuous-valued probability space, direct estimation of Eq. [3]is intractable. Therefore,
a binning approach is typically employed by partitioning the prediction space into m equally spaced
bins By, ..., By,. Given n i.i.d. samples (x;,y;);_, drawn from the joint distribution P(z, y), we
assign each ¢ € {1,...,n} to a bin B; based on max f(x;).

Then, we compute for each bin B, the mean top-level confidence conf(B;) =
18] 2oicp, Max f(x;) and the mean accuracy ace(B;) = 157 >, g, 1(arg max f(2;) = y;) and
finally compute the Expected Calibration Error according to '

| B
ECE = — B;) — conf (By)]|. 4
D nce () — cont (5) @
In addition to ECE, we quantify Brier score and the negative log likelihood as proper scoring rules,
capturing both model calibration and model sharpness Murphy|(1973b); Popordanoska et al.|(2024).
Formal definitions of these metrics are provided in the supplementary material.
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Figure 1: (a) Inverse relationship between ImageNet classification error and Expected Calibration
Error (ECE). Green markers represent large-scale models (from 2022), while red markers repre-
sent traditional models (until 2021). Error bars show 95% bootstrap confidence intervals (n=100).
Despite their superior classification performance, large-scale models consistently exhibit signifi-
cantly higher calibration errors. (b) Reliability diagrams showing the systematic underestimation
of predictive confidence in large-scale models (ConvNeXt, EVA, and BEiT), contrasting with the
overconfidence observed in traditional models (Swin Transformer, ViT, and ResNet).

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

Models Under Evaluation. Throughout the paper we consistently evaluate six neural networks. We
distinguish between traditional training paradigms (ResNet-50, ViT-B/16, Swin-S3-B) and contem-
porary large-scale training regimes characterized by massive pretraining combined with sophisti-
cated regularization and augmentation techniques (BEiT-B/16, EVA-S/14, ConvNeXt-B). Note that
this distinction is based on training methodology rather than model architecture or pretraining dataset
scale alone. To disentangle the effects of architecture from training methodology, we additionally
evaluate ViT and ResNet variants trained with large-scale techniques while maintaining traditional
architectures. Detailed model specifications are provided in Appendix [B]

Datasets. We evaluate accuracy and calibration error on the ImageNet-1k datasetDeng et al.| (2009)
and the following distributed-shifted benchmarks:

1. ImageNet-C (Hendrycks & Dietterich| (2019)), which augments the standard ImageNet-1k
dataset by introducing 19 distinct types of synthetic corruptions, each applied at 5 severity
levels.

2. ImageNet-V2 (Recht et al.|(2019)), comprising 10,000 temporally shifted real-word sam-
ples collected using the original ImageNet-1k sampling protocol.

3. ImageNet-A (Hendrycks et al.| (2021)), containing 7,500 natural adversarial examples
specifically selected for their ability to induce misclassification in standard ResNet-50 mod-
els.

To optimize post-hoc calibration methods, 10% of the ImageNet-1k validation set is randomly se-
lected for parameter tuning. All metrics are reported on the remaining 90% of the validation set
to ensure methodological consistency. For ImageNet-C, we ensure that the images used for tuning
the post-hoc calibration parameters are excluded from their corresponding corrupted versions, to
prevent data leakage.

Post-hoc Calibration Techniques. To systematically evaluate the effectiveness of post-hoc calibra-
tion techniques across various models, we evaluate for post-hoc calibration methods: Temperature
Scaling (TS), Ensemble Temperature Scaling (ETS), Isotonic Regression (IRM), and Spline Cali-
bration (SPL). Details are provided in Appendix [C}

Calibration Metrics. Throughout our analysis, we follow Minderer et al.| (2021) and estimate the
Expected Calibration Error (ECE) using 15 equal-mass bins as our primary calibration metric. To
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Figure 2: (a) ECE vs. classification error shows that the same ViT architecture trained with modern
training techniques (green markers) have higher calibration errors than the original ViT model (red
marker). Grey markers represent models from previous experiments that are included for compari-
son. (b) Reliability diagrams reveal systematic underconfidence across models pretrained on large
datasets (ViT-LAION and ViT-LAION-IN12k) or aggressive regularization and augmentation tech-
niques (ViT-AugReg and ResNet50-AugReg). (c) Box plot of calibration gap (difference between
mean predicted confidence and accuracy) across 1008 ViT models confirms that pretraining system-
atically shifts models toward underconfidence. (d) Calibration gap as a function of augmentation
magnitude demonstrates that increasing augmentation magnitude results in more underconfident
models.

provide a more comprehensive analysis, we present additional results in the supplementary material,
using different bin sizes and alternative metrics (e.g. Brier score and negative log-likelihood as
proper scoring rules).

4.2 LARGE-SCALE MODELS EXHIBIT SYSTEMATIC IN-DISTRIBUTION UNDERCONFIDENCE

First, we investigate the inherent in-distribution calibration properties of neural networks, before
applying any post-hoc calibration techniques. Unlike the findings of Minderer et al.| (2021}, who
reported concurrent improvements in accuracy and calibration for then-current models, our investi-
gation reveals a significant divergence in this relationship for contemporary large-scale models (Fig-
ure [Th). While recent model innovations have substantially improved classification performance,
they have also demonstrated an increasing calibration error, showing an emerging trade-off between
these performance aspects.

Closer examination of the reliability diagrams (Figure [Tb) reveals that the increased ECE of the
large-scale models is due to a systematic underconfidence in in-distribution predictions — a notable
departure from the widespread overconfidence documented in previous calibration literature.

Although this underconfidence increases the overall calibration error, it indicates a different calibra-
tion regime that could be advantageous for deployment in high-stakes domains.

4.3 EXPLORING FACTORS INFLUENCING CALIBRATION BEHAVIOR

While our previous experiments reveal systematic underconfidence in large-scale models, the under-
lying mechanisms driving these phenomena remain unclear. To gain insights into these mechanisms,
we conduct a controlled experiment that isolated the influence of training methodology from archi-
tectural design.

In this experiment, we utilize the same Vision Transformer architecture as in the previous exper-
iments, while systematically varying the training settings. Specifically, we first explore different
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pre-training pathways by pre-training the Vision Transformer on the large-scale LAION dataset
(Cherti et al., 2023). Then the model is further trained either by (1) direct fine-tuning on ImageNet-
1k (ViT-LAION) or (2) sequential fine-tuning on ImageNet-12k and then fine-tuned on ImageNet-1k
(ViT-LAION-IN12k). Second, we investigate the impact of aggressive augmentation and regulariza-
tion techniques for the ViT (ViT-AugReg) and the ResNet50 architecture (ResNet50-AugReg) while
maintaining the same dataset for training as the original models (Steiner et al., [2022).

As illustrated in Fig. Ph, both methodological variations substantially improve
the classification accuracy for the ViIT models while concurrently increasing ECE.
This accuracy-calibration trade-off is even
more pronounced for ResNet50-AugReg,
where modern training techniques boost ac-
curacy from 76.2% to 80.4% but cause ECE

I UNCAL [E3 TS [ ETS . RM [ SPL

0.08

to increase from 0.037 to 0.408, a tenfold
increase in miscalibration that exemplifies how 0.06
contemporary training practices can severely 0.04
compromise model calibration. The reliability
diagrams in Figure [2p reveal that these modern o0
0.00

training methods induce systematic underconfi- ConvNext EVA  BET  Swin VT  ResNet
dence in both architectures, transforming even Transformer

traditional models like ResNet50 from their

typical overconfident behavior to the undercon- Figure 3: Comparative evaluation of post-hoc cal-
fident regime characteristic of contemporary ibration methods shows that simple temperature
large-scale models. scaling (TS) is sufficient to align the calibration
performance of large-scale models with that of
traditional models.

ECE

R

To further strengthen our analysis on the causes
underlying the observed underconfidence, we
conducted a large-scale ablation study with 1,008 ViT models of different sizes as well as differ-
ent pretraining, regularization, augmentation and fine-tuning strategies. Detailed parameter config-
urations and the complete ablation design are provided in Appendix B. This ablation study further
supported our conclusions and revealed a consistent mechanism behind underconfidence: stronger
augmentations induce underconfidence (see Fig. 2d), and pretraining consistently amplifies this
effect across all ViT variants (see Fig. 2c).

Beyond the empirical results, Vicinal Risk Minimization (VRM) provides a theoretical framework
to explain the underconfidence caused by stronger augmentations and pretraining. VRM minimizes
the expected loss not only on the empirical samples 2 but also on a neighborhood v () induced by
data augmentation:

£VRM = E(m,y)NDEx/Nv(x)g(f(m/)v y) o)

Therefore, the model also assigns probability mass to neighborhoods around each training sample.
When augmentations become stronger or more diverse (e.g., RandAugment, Mixup), the vicinal
distribution becomes increasingly smoother and more dispersed, effectively enlarging the support
region around each labeled example. This has two key implications relevant to the observed under-
confidence: First, a wider vicinal distribution forces the classifier to assign similar probabilities to
a broader set of augmented variants, which encourages smoother logits. This naturally pushes pre-
dictions toward underconfidence rather than overconfidence. Intuitively, the model learns to hedge
its predictions across the enlarged neighborhood v(x), resulting in lower confidence values even
for correctly classified samples. Second, pretraining amplifies VRM’s smoothing effect. Pretrained
models already encode broader invariances and feature smoothness learned across large datasets.
When combined with strong augmentations during fine-tuning, the model effectively samples from
an even more dispersed vicinal distribution. This compounds the smoothing effect on logits, leading
to stronger underconfidence - exactly what we observe empirically in our ablation study. Models
pretrained on LAION-400M and subsequently fine-tuned with strong augmentation exhibit the most
pronounced underconfidence, consistent with this compounding effect.

This theoretical viewpoint helps explain the universal trends across all 1,008 ViT models we eval-
uated and supports the conclusion that underconfidence emerges primarily from properties of the
training strategy rather than from architectural biases. The systematic nature of our findings - span-
ning different model scales, augmentation strategies, and pretraining regimes - demonstrates that the
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Figure 4: (a) Classification error and Expected Calibration Error (ECE) on ImageNet-C for the un-
calibrated models. Severity O refers to the clean ImageNet test set. The calibration of large-scale
models is more robust to distribution shift than past models. (b) Classification error and ECE on
ImageNet-V2 and (c) on ImageNet-A, comparing large-scale models (green markers) with tradi-
tional models (red markers). For comparison, the performance of the same models on the clean
(in-distribution) ImageNet test set is shown by grey markers of the same type, allowing the distri-
bution shift effect to be visualised. Dotted lines connect each model’s in-distribution result with its
corresponding out-of-distribution result.

VRM perspective provides a unifying framework for understanding calibration behavior in modern
vision models.

4.4 POST-HOC CALIBRATION FOR IN-DISTRIBUTION PREDICTIONS

Next, we evaluate the effectiveness of post-hoc calibration techniques in addressing the in-
distribution miscalibration (Fig. [3).

Remarkably, the simple TS approach is sufficient to align the calibration performance of large-scale
models with that of traditional models. However, while ETS theoretically offers greater flexibility
by incorporating ensemble-based transformation, it provides no measurable benefits for large-scale
models compared to simple TS, despite its higher expressive power.

Among the evaluated methods, isotonic regression (IRM) and spline calibration (SPL) achieve the
best calibration quality, outperforming temperature-based approaches consistently across all archi-
tectures. This is likely due to their ability to learn a more flexible, nonlinear transformation of the
confidence scores.

4.5 CALIBRATION UNDER DISTRIBUTION SHIFT

Building on our observation that large-scale models exhibit systematic underconfidence on in-
distribution data, we now investigate how their calibration properties change when they are faced
with synthetic and real-world distribution shifts.

Synthetic Distribution Shifts We first analyze model calibration under controlled synthetic cor-
ruptions using ImageNet-C (Figure fa). While traditional models follow the well-documented pat-
tern of decreasing accuracy and increasing calibration error as corruption severity increases, large-
scale models exhibit a fundamentally different behavior. As the severity of corruption increases,
these models show the expected drop in classification accuracy and a decrease in ECE values.
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Figure 5: Reliability diagrams comparing predicted confidence with empirical accuracy for (a) arti-
ficial distribution shifts of ImageNet-C at severity levels 1 and 5, averaged across all 19 corruption
types, and (b) real-world distribution shift using ImageNet-V2. Reliability diagrams for intermedi-
ate severity levels and ImageNet-A are provided in the supplementary material.

This counterintuitive improvement in calibration metrics can be explained by examining the under-
lying dynamics of confidence. Previous studies have shown that distribution shifts typically lead
to an increase in model confidence compared to accuracy. For large-scale models that start with
underconfidence, this shift-induced increase in confidence acts as a corrective mechanism, bringing
predictions closer to actual accuracy levels.

The reliability diagrams in Figure[Sh confirm these patterns: traditional models transition to extreme
overconfidence, while large-scale models improve calibration while maintaining mild underconfi-
dence.

Real-World Distribution Shift To validate whether these findings generalize beyond synthetic
perturbations, we examine calibration behavior under real-world distribution shifts using ImageNet-
V2 and ImageNet-A (Figure[dp and k).

On ImageNet-V2, large-scale models demonstrate consistent improvements in calibration, with ECE
decreasing between 36% and 49%. In contrast, traditional models suffer from an increase in ECE
ranging from 40% to 140%, reflecting their strong overconfidence under distribution shift (Figure

Bb).

The severe distribution shift in ImageNet-A further amplifies these differences. While traditional
models experience substantial calibration degradation, large-scale models maintain relatively stable
calibration. Notably, ConvNeXt achieves a slight ECE improvement despite the highly challenging
nature of the shift.

4.6 PoOST-HOC CALIBRATION UNDER DISTRIBUTION SHIFT

Finally, we evaluate the performance of post-hoc calibration methods under varying levels of distri-
bution shift. As shown in Figure [6] temperature scaling consistently reduces the ECE for ViT and
ResNet50 compared to the uncalibrated baseline as expected. However, the recalibration behavior
for large-scale models is different, with its effectiveness dependent on the severity of the distribution
shift. While these methods can significantly improve calibration under in-distribution conditions and
mild corruptions (severity levels 1-2), their effectiveness decreases as the severity of the distribution
shift increases. We observe that the performance of post-hoc calibration methods can degrade under
severe distribution shifts to levels worse than those of uncalibrated models. However, overall the



Under review as a conference paper at ICLR 2026

Severities

0 1 " 2 = 3 = 4 = 5
015 ConvNeXt EVA BEIT Swin Transformer ViT ResNet

5 | ]

w g 010 " r
] L | |

oy 0.05 ] ] L] ) s "

2 u L] o g a¥ s®

= oo oou® Op omt®™ om 5]

02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
ImageNet-C Error ImageNet-C Error ImageNet-C Error ImageNet-C Error ImageNet-C Error ImageNet-C Error

Figure 6: Analysis of classification error and Expected Calibration Error (ECE) across five severity
levels of synthetic distribution shifts in ImageNet-C. While temperature scaling perform well under
in-distribution conditions, its effectiveness declines with increasing shift magnitude, becoming even
counterproductive. The gray markers represent uncalibrated results for comparison.

calibration error of large-scale models under distribution shift remains comparable or smaller than
the CE of traditional models.

One underlying cause of this phenomenon is that large-scale models are calibrated on underconfident
predictions from the in-distribution validation set, resulting in an increased global confidence. The
subsequent application of TS to partially overconfident out-of-distribution samples then further exac-
erbates this overconfidence. However, observed behaviour of re-calibrated large scale models under
distribution shift cannot be attributed solely to underconfidence. Our results reveal model-dependent
responses to post-hoc calibration that follow patterns more complex than simple underconfidence
correction would predict. EVA, for instance, exhibits distinct temperature scaling behavior at low
shift severities that cannot be explained solely by its underconfidence pattern, demonstrating that
post-hoc calibration effectiveness depends on model-specific confidence mechanisms beyond global
underconfidence.

These findings are consistently observed across additional calibration metrics (ETS, IR, and SPL)
as well as on real-world distribution shift datasets including ImageNet-V2 and ImageNet-A (see
Appendix).

5 LIMITATIONS AND TAKEAWAYS

While our analysis provides robust evidence of systematic underconfidence in large-scale models,
our focus in this paper is primarily on characterizing these phenomena rather than fully investigating
their underlying causes. Although we conducted experiments in Section [4.3] to begin exploring
these factors, these initial investigations could be extended in the future. Furthermore, our study
focuses on vision-only classification models. Extending this analysis to vision-language models
(e.g., LLaVA, Qwen-VL) represents an important direction for future work, though such models
require different evaluation protocols due to their generative nature.

Based on our findings, we offer the following key insights for researchers and practitioners:

* Underconfidence: Large-scale models exhibit systematic underconfidence, which pro-
vides a practical advantage in safety-critical applications, as conservative uncertainty es-
timates reduce the risk of errors arising from overconfidence.

* Distribution Shift Robustness: Large-scale models demonstrate robust calibration under
distribution shifts, ensuring that practitioners can deploy them in dynamic environments
where data distributions evolve over time.

* Limitations of Recalibration Techniques: Post-hoc calibration methods can lead to coun-
terproductive results for severe distribution shifts in large-scale models, so practitioners
should exercise caution when applying these techniques in dynamic environments.

* Determinants of Calibration Properties: Calibration properties are predominantly de-
termined by the specifics of the training procedures, rather than by architectural design
choices.

* Best Practices for Model Selection: Among the evaluated models, ConvNeXt shows the
most favorable trade-off between accuracy and calibration, providing comparatively reli-
able uncertainty estimates after recalibration, even under distribution shifts.
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APPENDIX

A  SUMMARY

To support and expand upon our core findings, we provide additional metrics, experimental results,
and technical details.

Section B provides comprehensive technical details of all models evaluated in this study, including
the six primary benchmark models and the 1,008 ViT models trained for our ablation study. This
section includes timm specifiers for reproducibility and model complexity metrics.

Section C describes the post-hoc calibration methods investigated in our study: Temperature Scaling
(TS), Ensemble Temperature Scaling (ETS), Accuracy-Preserving Isotonic Regression (IRM), and
Spline Calibration (SPL).

Section D introduces calibration metrics that complement the Expected Calibration Error (ECE)
used in the main paper. These include Maximum Calibration Error (MCE), Root Mean Square
Calibration Error (RMSCE), Root Brier Score (RBS), and Negative Log-Likelihood (NLL). These
metrics capture different aspects of calibration quality and help validate the robustness of our find-
ings.

Section E presents further in-distribution calibration results, demonstrating that the inverse rela-
tionship between classification and calibration errors holds across different ECE configurations, bin
resolutions, and alternative calibration metrics. This section also includes additional results for post-
hoc calibration techniques under distribution shift.

Section F presents reliability diagrams illustrating model calibration under varying degrees of dis-
tribution shift, including ImageNet-C at intermediate severity levels (2, 3, and 4), ImageNet-A, and
individual reliability diagrams for all 19 synthetic corruptions at severity levels 3 and 5.

Section G evaluates the effectiveness of post-hoc calibration methods under real-world distribu-
tion shifts using the ImageNet-V2 and ImageNet-A datasets, confirming the patterns observed on
ImageNet-C.

Section H provides a statement on LLM usage during manuscript preparation.

Sections I and J cover the availability of the code and the publicly available datasets that can be used
to reproduce the experimental results and provide opportunities for further research.
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B MODEL SPECIFICATIONS

This section provides technical details for all models evaluated in this study: our primary benchmark
models and the 1,008 ViT models trained for our ablation study.

B.1 BENCHMARK MODELS
Throughout the paper, we consistently analyze the following six models:

* ResNet-50 (He et al.| (2016)): A widely used baseline convolutional architecture, trained
on ImageNet- 1k.

* ViT-B/16 (Dosovitskiy et al| (2021)): A pure transformer architecture pretrained on
ImageNet-21k with supervised learning and fine-tuned on ImageNet-1k. Previous stud-
ies have demonstrated that this architecture has strong calibration properties.

¢ Swin-S3-B (Liu et al.|(2021)): A hierarchical transformer model with shifted window par-
titioning, trained on ImageNet- 1k.

* BEiT-B/16 (Bao et al.| (2021)): A transformer leveraging self-supervised masked image
modeling, pretrained on ImageNet-22k and fine-tuned on ImageNet-1k.

* EVA-S/14 (Fang et al. (2022)): A scaled transformer model pretrained on ImageNet-22k
with self-supervised masked image modeling and subsequently fine-tuned on ImageNet- 1k.

e ConvNeXt-B (Liu et al.| (2022)): A convolutional architecture that integrates transformer-
inspired design principles, pretrained on ImageNet-22k and fine-tuned on ImageNet-1k.

To investigate the factors contributing to underconfidence, we additionally evaluate several variants
of ViT and ResNet models that employ traditional architectures but are trained with contemporary
methodologies:

* ViT-B/16-LAION: A Vision Transformer pretrained on the LAION-2B dataset (2 bil-
lion image-text pairs) using contrastive learning objectives, subsequently fine-tuned on
ImageNet- 1k for classification (Cherti et al.| (2023))).

* ViT-B/16-LAION-IN12k: A Vision Transformer pretrained on LAION-2B through con-
trastive learning, followed by sequential fine-tuning first on ImageNet-12k and then on
ImageNet-1k (Cherti et al.[(2023))).

* ViT-B/16-AugReg: A Vision Transformer initially pretrained on ImageNet-21k, then fine-
tuned on ImageNet-1k using extensive data augmentation strategies and advanced regular-
ization techniques including Mixup, Cutmix, and dropout scheduling (Steiner et al.[(2022)).

* ResNet50-AugReg: The classical ResNet-50 architecture trained on ImageNet-1k, incor-
porating advanced regularization and augmentation techniques such as CutMix, MixUp,
Label Smoothing, and Random Erasing.

This section provides technical details about the neural network models used in our calibration study
(Table[T]and Table[2). All models can be accessed through the PyTorch Image Models (timm) library
(see Table [TI] and https://github.com/huggingface/pytorch-image-models),
with  corresponding checkpoints available on the Hugging Face model hub
(https://huggingface.co/). This allows for direct reproducibility of our results. In-
put preprocessing followed the standard procedures specified in each model’s documentation,
including normalization with ImageNet statistics and appropriate resizing. For additional technical
specifications beyond what is provided here, we refer to the model cards available on Hugging Face
under the corresponding model identifiers and the documentation of the timm library.

B.2 ABLATION STUDY MODELS

Our comprehensive ablation study comprises 1,008 independently trained Vision Transformer mod-
els based on the training protocol from [Steiner et al|(2022). We evaluate six architectural variants
(ViT-Ti/16, ViT-S/16, ViT-S/32, ViT-B/16, ViT-B/32, ViT-L/16) and systematically vary training
parameters to isolate factors influencing calibration behavior (Table 3)).
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Table 1: Timm specifiers of the models used in the study.

Model timm Specifier

ResNet-50 resnet50.tv_inlk

ViT-B/16 vit base patchl6.224.orig_in21k_ft_inlk
Swin-S3-B swin_s3._base 224.ms_inlk

BEiT-B/16 beit_base_patchl6.224.in22k_ft_in22k_inlk
EVA-S/14 eval02_small patchl4 336.mim in22k_ft_inlk
ConvNeXt-B convnext_base.fb_in22k_ft_inlk
ViT-LAION vit_base patchl6.clip-224.laion2b_ft_inlk
VIiT-LAION-IN12k vit base_patchl6 clip 224.laion2b_ft_inl2k_inlk
ViT-AugReg vit_base_patchl6_224.augreg2_in2lk_ft_inlk

Table 2: Complexities of the models used in the study.

Model Params (M) GMACs
ResNet-50 25.6 4.1
ViT-B/16 86.6 16.9
Swin-S3-B 71.1 13.7
BEiT-B/16 86.5 17.6
EVA-S/14 22.1 15.5
ConvNeXt-B 88.6 15.4
ViT-LAION 86.6 16.9
ViT-LAION-IN12k 86.6 16.9
ViT-AugReg 86.6 16.9

For data augmentation, we investigate seven configurations combining RandAugment and Mixup.
Each configuration is described by a triple (I, m, o), where [ specifies the number of Rand Augment
operations, m controls augmentation magnitude, and « is the Mixup interpolation parameter.
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Table 3: Search space of training parameters for the ablation study.

Hyperparameter Values

Pretraining {None, ImageNet-21k}
Weight decay {0.03,0.1}

Stochastic Depth & Dropout  {(0, 0), (0.1, 0.1)}
Learning Rate {0.01, 0.03}

Augmentation (see Table 7 configurations

Table 4: Augmentation configurations.

Setup I m «
none 0 O 0
lightO 2 0 0
lightl 2 10 0.2
medium0 2 15 0.2
mediuml 2 15 0.5
strong0 2 20 05
strong1 2 20 0.8

C PoOST-HOC CALIBRATION METHODS

We investigate the following commonly used post-hoc calibration techniques:

» Temperature Scaling (TS, Guo et al.| (2017)) recalibrates network outputs using a single
learned parameter that rescales the model’s pre-softmax logits.

* Ensemble Temperature Scaling (ETS, Zhang et al|(2020b))) extends TS by constructing
a weighted ensemble of temperature-scaled prediction, raw model outputs, and a uniform
distribution over all classes.

* Accuracy-Preserving Isotonic Regression (IRM, Zhang et al. (2020b)) learns a strictly
monotonic calibration function by pooling prediction-label pairs across all classes.

* Spline Calibration (SPL, |Gupta et al.| (2021)) learns continuous, piecewise polynomial
functions to recalibrate model outputs.
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D ADDITIONAL CALIBRATION METRICS AND THEIR DEFINITIONS

To validate the robustness of our findings presented in the main paper, we extend our analysis of
model calibration using different bin configurations and complementary calibration metrics. While
our primary investigation focused on Expected Calibration Error (ECE) with 15 bins, we demon-
strate here that our conclusions hold consistently across the following calibration metrics:

1. Maximum Calibration Error (MCE) quantifies the worst-case miscalibration scenario
by measuring the maximum discrepancy between confidence and accuracy across all bins:
MCE = max(acc(B;) — conf(B;)).
J

2. Root Mean Square Error (RMSCE) penalizes larger calibration errors more heavily than
ECE by using squared differences:

RMSCE = E @(acc(Bj) — conf(B;))2.
— n
J

3. Root Brier Score (RBS) measures the accuracy of probabilistic predictions:

n

1 C
. - L ay. 2
BS = - E ?zl(pz,c Yie)?,

i=1c

where p; . represents the predicted probability for class c of sample 4, and y; . is the corre-
sponding one-hot encoded ground truth label.

4. Negative Log-Likelihood (NLL) evaluates the quality of probabilistic predictions by mea-
suring the likelihood of the true lables under the model’s predicted distributions:

1 n
NLL = —= S log(pi ),
n; Og(p 7y1)

where p; ,, is the predicted probability for the true class y; of sample i.
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E FURTHER RESULTS ON IN-DISTRIBUTION CALIBRATION

E.1 RESULTS FOR IN-DISTRIBUTION CALIBRATION FOR DIFFERENT ECE
CONFIGURATIONS AND TYPES OF CALIBRATION ERROR
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Figure 7: Scatter plot illustrating the inverse relationship between ImageNet classification error and
calibration error. The results presented in the main part of the paper hold true for ECE across varying
number of bins (m=25 and m=50) and for different types of calibration error, such as Maximum
Calibration Error (MCE) and Root Mean Square Calibration Error (RMSCE).
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E.2 EFFECT OF BIN RESOLUTION ON RELIABILITY DIAGRAM
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Figure 8: Reliability diagrams calculated with different bin resolutions (25 and 50 bins). The di-
agrams demonstrate that the observed calibration patterns remain consistent across different bin
counts, supporting the robustness of our findings.
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E.3 RESULTS FOR POST-HOC CALIBRATION TECHNIQUES UNDER DISTRIBUTION SHIFT
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Figure 9: Additional results for the performance of ETS, IR and SPL under distribution shift.
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E.4 RESULTS FOR POST-HOC CALIBRATION TECHNIQUES FOR DIFFERENT CALIBRATION

METRICS
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Figure 10: Comparison of post-hoc calibration effectiveness across multiple evaluation metrics:
ECE with varying bin resolutions (25, and 50 bins), Root Brier Score (RBS), and Negative Log-
Likelihood (NLL).

21



Under review as a conference paper at ICLR 2026

F FURTHER RESULTS ON RELIABILITY DIAGRAMS UNDER DISTRIBUTION
SHIFT

To provide a comprehensive view of model calibration behavior under varying distribution shifts,
we additionally present the reliability diagrams for ImageNet-C at intermediate severity levels (2, 3,
and 4) and for ImageNet-A (Figure L)

These visualizations reveal the progressive changes in calibration behavior as distribution shift sever-
ity increases, demonstrating how large-scale models maintain their calibration advantage over tra-
ditional architectures. For traditional architectures (ResNet-50, ViT, and Swin), we observe a con-
sistent pattern of increasing overconfidence as severity levels progress from 2 to 4. In contrast,
foundation models (ConvNeXt, EVA, and BEiT) demonstrate remarkable robustness across these
intermediate severity levels. Their initial underconfidence on in-distribution data gradually dimin-
ishes as severity increases.

The reliability diagrams for ImageNet-A complement our analysis of ImageNet-V2 presented in the
main text and provide insights into calibration behavior under particularly challenging conditions.
On ImageNet-A, traditional architectures exhibit extreme overconfidence across all confidence bins,
with dramatic gaps between predicted probabilities and actual accuracy rates. Foundation mod-
els demonstrate significantly better calibrated predictions on ImageNet-A. In particular, ConvNeXt
maintains relatively well-calibrated predictions across most confidence bins. These reliability di-
agrams further substantiate our findings that foundation models fundamentally alter the traditional
calibration paradigm, maintaining better alignment between confidence and accuracy under chal-
lenging distribution shifts compared to traditional architectures.

Figures[12]and[I3]provide a detailed view of calibration behavior across all 19 individual corruption
types from ImageNet-C. Figure |12 presents reliability diagrams for each corruption type at severity
level 3, while Figure [I3|shows the corresponding diagrams at severity level 5.
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Figure 11: Reliability diagrams (m=15 bins) illustrating model calibration under (a) synthetic dis-
tribution shift induced by ImageNet-C corruptions at different severity levels (averaged over all
corruptions), and (b) real-world distribution shift as represented by ImageNet-A.

G EVALUATING POST-HOC CALIBRATION PERFORMANCE UNDER
REAL-WORLD DISTRIBUTION SHIFT

To validate our findings beyond synthetic corruptions, we extend our analysis to real-world distribu-
tion shifts using the ImageNet-V2 and ImageNet-A datasets (Figure[I4). These benchmarks provide
complementary perspectives on model robustness: ImageNet-V2 represents a moderate temporal
distribution shift, while ImageNet-A introduces severe natural adversarial examples.

The ConvNeXt model demonstrates strong recalibration performance on ImageNet-V2, with post-
hoc methods achieving significant ECE reductions. However, as the distribution shift becomes more
severe on ImageNet-A, this effectiveness diminishes substantially, with recalibration methods yield-
ing ECE values comparable to or exceeding those of the uncalibrated baseline. This pattern mirrors
our observations with synthetic corruptions, where recalibration performance degraded with increas-
ing severity.

EVA exhibits even more pronounced calibration challenges. Even under moderate shifts (ImageNet-
V2), post-hoc calibration methods not only fail to improve calibration but actively increase ECE
compared to the uncalibrated model. This aligns with trends observed under synthetic corruptions,
where EVA’s recalibration performance began deteriorating at lower severity levels than other foun-
dation models. On ImageNet-A, all methods produce substantially higher ECE values relative to the
uncalibrated models.

In contrast, traditional architectures demonstrate more consistent responses to calibration tech-
niques. ResNet-50 and ViT show calibration improvements across both benchmarks, though the
magnitude of improvement is notably higher on ImageNet-V2 than ImageNet-A. This reflects the
increasing challenge of calibration under severe distribution shifts. Nevertheless, the absolute ECE
values remain lower for foundation models compared to traditional architectures, even under se-
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Figure 12: Individual reliability diagrams for all 19 synthetic corruptions of ImageNet-C for severity

3.

vere shifts. Interestingly, the Swin Transformer also exhibits negligible responsiveness to post-hoc
calibration across real-world distribution shifts, reaffirming the pattern observed in in-distribution
scenarios. This consistent behavior suggests architectural characteristics that fundamentally limit
the effectiveness of post-hoc calibration techniques.
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Figure 13: Individual reliability diagrams for all 19 synthetic corruptions of ImageNet-C for severity
5.

H LLM USAGE STATEMENT

Large Language Models (LLMs) were used exclusively for linguistic refinement and proofreading
of this manuscript. Specifically, we employed LLMs to improve grammar, sentence structure, and
overall readability of the text. No LLMs were used for research design, hypothesis generation,
data analysis, interpretation of results, or the development of core ideas presented in this work. All
scientific contributions, experimental designs, theoretical insights, and conclusions are entirely the
product of the authors’ original research.
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Figure 14: Analysis of post-hoc calibration methods under real-world distribution shift.

I CODE AVAILABILITY

We implement and analyze the post-hoc calibration methods introduced in the previous section
within a newly developed Python package, called ModelTransformer. This package provides a
unified framework inspired by the design principles of scikit-learn. The package offers con-
sistent interfaces for fitting and transforming data, enabling parameter estimation on validation
datasets and subsequent application to test sets. The complete implementation is available at
https://github.com/XXX/XXX/\

All the code used to generate the analysis and figures in this paper is publicly available at https:
//github.com/XXX/XXX/. This repository contains the code that enables the complete repro-
duction of our experimental results and graphical representations.

J  DATA AVAILABILITY
The complete set of raw and recalibrated model outputs used in this paper is publicly available at
https://doil.org/XX.XXXX/zenodo . XXXXXXXXL.

This extensive collection of datasets enables the full reproduction of our calibration analysis, as well
as providing opportunities for researchers to conduct further investigations beyond the scope of this
work.
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