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Abstract

We propose the Composite Robust Markov Decision Process (CompRMDP), a simple
framework that unifies a wide range of decision-making problems, including the robust
MDP, convex MDP, multi-discount constrained MDP (MD-CMDP), and their combi-
nations. While the CompRMDP objective is non-convex, we prove that, under a mild
coverage assumption, such as a full support in the initial distribution, a simple subgra-
dient descent method finds its e-optimal policy in O(¢~*) updates. Furthermore, we
introduce a simple technique for ensuring the coverage assumption by perturbing the
initial state distribution, while preserving the near-optimality of the resulting policy.
This single algorithm solves all the captured settings, including MD-CMDP, which is a
long-standing open problem since Feinberg (2000).

1 Introduction

For decades, a vast body of research has studied the Markov Decision Process (MDP) framework
(Puterman, 1994), which models a sequential decision-making environment. The typical goal is to
find the decision-making policy 7r that minimizes the expected total cost:

(MDP)  min J, ¢ p(m) =E[c(s0,a0) + ve(s1,a1) +72e(s2,a2) + -+ | Pw] . (1)

where c is the cost function, v € [0, 1) the discount factor, P the state transition kernel. Detailed
notations are provided in Section 2. An MDP can be represented by the parameters of (v, ¢, P).

The vanilla MDP in (1), however, is often too simplistic to model real-world problems. To address
this limitation, numerous MDP extensions have been developed. Robust MDPs (RMDPs) optimize
for the worst-case environmental model within an uncertainty set (Wiesemann et al., 2013), which
is crucial when system parameters are not precisely known (Taguchi et al., 1986). Constrained
MDPs (CMDPs) introduce additional total cost constraints (Altman, 1999), which is essential for
safety-critical tasks such as autonomous driving (Gu et al., 2023) and industrial control (Zhan et al.,
2022). ConVex MDPs (CV-MDPs) have emerged to model non-linear objective functions over
occupancy measures | (Zhang et al., 2020), enabling the formulation of important decision-making
problems such as imitation learning (Ho & Ermon, 2016) and pure exploration (Hazan et al., 2019).

IThe occupancy measure of a policy is its state-action visitation frequencies in the environment. See Section 2.
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While each extension admits efficient algorithms, several important MDP classes remain unresolved.
As a concrete example, consider the following composite optimization problem.

Example 1 (Composite MDP problem). Suppose you are designing a controller for a daily house-
keeping robot. The controller must balance two objectives: quickly completing tasks like dishwash-
ing (7 < 1and ¢ < 0)?, and continuously patrolling the house to detect abnormalities throughout the
day (v =~ 1). At the same time, you want its controller to remain close to a baseline implementation
while achieving meaningful improvements, a common objective in practice (Rajeswaran et al.,
2018). Moreover, the controller must be robust to user variability. These requirements give rise to
the following combination of robust, imitation, and Multi-Discount (MD-)CMDP problem:

min max.J. 7r) suchthat max J w) <0 Vnef{l,...,N
® Pep WO,CO,PO( ) PP ’ancnypn( ) = { ’ ) }
long-term patrol (yo ~ 1) short-term house chores (v, < 1)
base
and max KL(dZ 5||d7 » ) < threshold,
PeP

imitating baseline implementation

where KL(-||-) denotes Kullback-Leibler (KL) divergence, 7> is the baseline policy, d7 p is the
occupancy measure in (7, P), P is the uncertainty set of transition kernels, ¢,, and -, are the cost
function and discount factor of the n-th constraint, respectively.

Example 1 illustrates a highly non-trivial MDP problem that remains unsolved in the existing
literature. In particular, the MDP-CMDP problem, i.e., CMDP with multiple discount factors,
is known to be NP-hard in general (Feinberg, 2000), and even the condition under which they
become tractable remains unknown. Similarly, the integration of convex, robust, and constrained
MDPs, remains an open challenge. While Kitamura et al. (2025) study robust and constrained
MDPs, they do not address CV-MDPs. Conversely, Chen et al. (2025) propose an algorithm for
robust and convex MDPs but fail to address CMDPs.? This motivates the key question of our work:
When and how can we solve composite MDP problems like Example 1?

1.1 Contributions

We show that most MDP problems can be represented by the following simple extension of the
RMDP, which we call the Composite Robust MDP (CompRMDP) problem:

(CompRMDP) min F(w) where F(m) := max Iu(m) — (M) . (2)

™ S
Here, M is an MDP, M is a general uncertainty set of MDPs, and ¢ : M — R is a bounded policy-
independent function. Our main contributions are twofold: (i) Section 3 presents a simple algorithm
to find a near-optimal policy for CompRMDP, and (ii) Section 4 shows that CompRMDP can
represent many key MDP classes, including RMDP, CV-MDP, MD-CMDP, and their combinations.

Tractability of CompRMDP (Section 3). While F'(7r) is neither convex nor concave (Agarwal
et al., 2021), we prove that an e-optimal policy can still be found using subgradient descent, thanks
to the subgradient dominance property. This property guarantees that any first-order stationary point
is globally optimal, thereby making CompRMDP tractable via the subgradient descent method.

The MDP objective J, ¢, p is known to enjoy the aforementioned dominant property Agarwal et al.
(2021), and the result has been extended to RMDPs with varying ¢ and P (Wang et al., 2023;
Kitamura et al., 2025). We further generalize these results by proving a fundamental theorem: the
dominance property is preserved under pointwise maximization (Theorem 1). Combining this
with the first-order convergence analysis (Davis & Drusvyatskiy, 2019), we show that under a mild

2If v = 1 or ¢ > 0 is used for dishwashing, the robot may indefinitely postpone completing the task.
3Chen et al. (2025) assume that the objective of a CV-MDP is differentiable with a bounded gradient (see their Assumption
2), which excludes CMDPs where the objective value becomes infinite when taking an infeasible policy.
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Table 1: Key instances represented by CompRMDP. Their combinations are also captured by Com-
pRMDP. See Section 4.3. Notably, this is the first result that generalizes and solves MD-CMDP .

Objective function Uncertainty set M Function ¢ : M — R
P I () {M} P(M) =0
(WicsclrEMrBEul., 2013) maxe, pecxP I p () CxP W(M) =0
(thuyg_i\t/lz\lp,l;()zﬂ)) Fey (d7) C = conv{0F.,} Y(Me) = Ff,(c)
MD-CMDP 3 Thizg.co () {(co —31,7%),- .-, (en,7N)} P(M) =0
(Feinberg, 2000) st. I, o, () <0Vn

! C and P denote the sets of cost functions and transition kernels, respectively.
2 F. is a convex function over occupancy measures F, is its conjugate.

3 Technically, the feasibility problem of MD-CMDP is represented by CompRMDP. MD-CMDP can be solved by invoking the feasibility
checking for a logarithmic number of times (see Section 4.2).

coverage assumption, such as full support in the initial distribution, subgradient descent identifies
an e-optimal policy after O(¢~*) updates (Theorem 2).

Moreover, we introduce a simple technique for ensuring the coverage assumption by perturbing the
initial state distribution, while preserving the near-optimality of the resulting policy (Section 3.2).
This result does not contradict the NP-hardness of MD-CMDP, as the hardness arises when seeking
an exactly optimal policy, whereas our algorithm achieves an e-optimal policy.

Generality of CompRMDP (Section 4). In addition to the standard MDP and RMDP, Com-
pRMDP generalizes several important MDP classes. First, CompRMDP subsumes CV-MDP via the
biconjugate representation. Essentially, the CV-MDP problem is formulated as min, ch(d;‘: P
where F, is a convex function over occupancy measures. CompRMDP recovers this formulation
by setting 1 to be the convex conjugate of F, and defining M as the convex hull of the subdif-
ferentials OF¢, (Proposition 1). This allows CompRMDP to capture a broad range of non-linear
objectives over occupancy measures, including imitation learning and pure exploration.

Moreover, CompRMDP can represent MD-CMDP through the equivalent epigraph form of
constrained problems (Boyd & Vandenberghe, 2004). This reformulation reduces MD-CMDP to
a simple line search problem with CompRMDP as a subroutine (Proposition 2). Thus, by applying
bisection search to the line search part, MD-CMDP can be solved by invoking CompRMDP a
logarithmic number of times. Consequently, an e-optimal policy of MD-CMDP can be identified
by O(e~*) computations of subgradients (Corollary 2). Notably, this is the first result solving
MD-CMDP, which has been remained unresolved since Feinberg (2000).

Finally, Section 4.3 shows that CompRMDP can also capture the composition of robust, convex, and
MD-CMDPs. Using the concrete example of Example 1, we illustrate how CompRMDP encom-
passes these problems. Table 1 summarizes the range of MDP classes represented by CompRMDP.

2 Preliminaries

Mathematical notations. The probability simplex over a finite set S is denoted by Z(S). For
integers a < b, let [a,b] == {a,...,b}, and [a,b] == 0 if a > b. For x € RY, its n-th element
is ¢(n). For x € RMY we denote x(m,n) as its (m — 1)N + n-th element for m € [1, M]
and n € [1, N]. We define 0 := (0,...,0)" and 1 := (1,...,1)T. For z,y € RY, we denote
(x,y) = >, x(t)y(i). For ¥ C R™, conv X denotes the convex hull of X. For a function
f:R™ = R,dom f :={z € R™| f(x) < co}. 1[P] denotes the indicator function of a predicate
P, which takes the value of 1 if P is true and O otherwise. For a proper function f : R™ — R,
Of (x) denotes the Fréchet subdifferential of f at « (see Rockafellar & Wets, 2009, Definition 8.3).
If Of () is a singleton, its element is denoted as V f () and called the gradient of f at x.
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Markov Decision Process. An infinite-horizon fabular MDP is defined by a tuple M =
(S, A, ,7v, ¢, P), where S and A are finite state and action spaces, u € Z(S) is the initial distri-
bution, and € [0, 1) is the discount factor. ¢ € RISl denotes the cost function and ¢(s, a) is the
cost of an action @ at a state s. P(- | s,a) € £(S) is the transition kernel given (s, a).

A (Markovian stationary) policy 7 is a probability kernel such that (- | s) € Z?(.A) denotes
the action distribution at state s € S. We often treat a policy as a vector, w € RIS/l The set
of all the policies is denoted as IT  RISIAI which corresponds to the direct parameterization
policy class (Agarwal et al., 2021). Given an MDP M with (P, u, ), the occupancy measure
dy € P(S x A) represents the expected v-discounted number of visits to state-action (s, a)
under 7, P, and p: dy;(s,a) = (1 —v)E[> ;2,7 "1{sn = s,an = a} | so ~ p,m, P], where
the expectation is over trajectories with ap ~ (- | sp) and sp41 ~ P(- | sp,ar). We define
Dy = {d}; € RISIMI| 7t € I} as the set of all the occupancy measures under M.

Ja(7) denotes the total cost function expected of 7 under the initial distribution g, defined as:
Ju s € e E[Y gy e(sn, an) | so ~ p, 7, P| = ﬁ (d7, ). The goal of an MDP is to
identify an optimal policy 7w* minimizing the expected total cost:

(MDP) =* € arg Hl'llin Ja () . 3)
S

Robust Markov Decision Process. Let M be a finite or infinite compact set of MDPs, sharing a
common S and A but may differ in other MDP components, i.e., (7, i, ¢, P). M can be seen as
the uncertainty set of the environmental model, for example, fluctuations in component parameters
when modeling a real-world dynamical system. To ensure performance for any MDP M € M, the
RMDP problem seeks to minimize the total cost in the worst-case MDP in M:

(RMDP) min I{ng}\(xt Ju(m) . ()

In this paper, we let C, P, I" denote the sets of cost functions, transition kernels, and discount factors,
respectively. When M varies only in a subset of MDP components, we represent M using the cor-
responding sets. For example, if only the cost and transition vary with fixed -y, we write M = C x P.

3 Unifying Framework: Composite Robust Markov Decision Process

Beyond the standard MDP (3), many MDP classes have emerged to model various decision-making
problems, such as RMDP, CV-MDP, and CMDP. This section introduces a simple yet expressive
extension of RMDPs which unifies many of these important classes under a single framework.

Specifically, we propose the following Composite Robust MDP (CompRMDP) problem, where
the worst-case objective is composed of two parts: the expected total cost Jys, and a penalty
Sfunction 1 : M — R that modulates the influence of each MDP in M:

(CompRMDP) F* := 7rrnellrjl F(m) where F(m):= ax Iy () — (M), 5)

where F'* denotes the optimal value. We assume ¢ is bounded, which is crucial for the tractability of
CompRMDP. As we will see in Section 3.1, this boundedness enables a simple subgradient descent
method to find a near-optimal policy of (5), provided that we can evaluate the subgradient of F'.

Note that without any assumptions about the MDP set M, evaluating the inner maximization
(maxpre pmq Jar (7)) becomes NP-hard due to the hardness result of RMDPs (Wiesemann et al.,
2013), making CompRMDP intractable too. A common tractability condition is (s, a)-rectangularity
of the uncertainty set P (Iyengar, 2005; Nilim & El Ghaoui, 2005), defined as P = X q Ps,q, Where
Pso € Z(S) and X , denotes a Cartesian product over S x .A. However, enforcing such structure
can limit generality of CompRMDP; for instance, rectangularity excludes finite MDP sets like
M ={M,..., M}, which are important for CompRMDP to encompass CMDP (see Section 4.2).

Therefore, we study the general setup where we can evaluate the subgradient of the objective F":
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Assumption 1. We have an algorithm that computes a subgradient g € dF () for any = € II.

The following Assumption 2 and Lemma 1 ensure that the subgradient is well-defined:
Assumption 2. M is compact, and the total cost J.(+) is jointly continuous on M x II.

Lemma 1. Under Assumption 2, the subdifferential of F' at € Il is given by

OF (m) = conV{VﬂJM/(ﬂ') M' € argmax Jy(m) — 1ZJ(M)} . (6)
MeM

The proof is deferred to Lemma 4 in Appendix B. Canonical examples of Assumption 2 include
a discrete set M = {My, ..., M,,} or a closed and bounded subset of R?. When 7 is a constant,
Kumar et al. (2022; 2024); Wang & Zou (2022) have developed efficient subgradient evaluation al-
gorithms under some structural assumptions on M. The penalty function 1 becomes non-constant,
for example, in the CV-MDP setting (see, Section 4.1). In such convex cases, ¥ is typically defined
only on the cost function, which should allow us for efficient subgradient computation (Zahavy et al.,
2021). We leave the general subgradient evaluation method for non-constant 1) to future work.

3.1 First-Order Algorithm for CompRMDP

When the subgradient is available, the projected subgradient method is a generic algorithm for
solving min, F'(7). With a learning rate > 0, it updates policies as follows:

i1 = Projp(me — nVJu, (7)) where M, € alj"\% HEX Iy () — (M) . (7
€

By using the standard subgradient method analysis under mild regularity conditions (e.g., Theorem
3.1 of Davis & Drusvyatskiy, 2019), we can show that (7) converges to a stationary point such that
0 € OF (). Due to the space limitation, we defer the detailed convergence analysis to Appendix B

However, while it converges, due to the non-convexity of Jys(-) in @ (Agarwal et al., 2021,
Lemma 3.1), it does not directly indicate convergence to an optimal policy. For the MDP setting
(3), Agarwal et al. (2021) addresses this challenge by showing that Jy,(-) satisfies the gradient
dominance property, which guarantees that any stationary point is indeed optimal of (3).

Definition 1 (Gradient dominance). A function f : X — R is said to be gradient dominant
with a constant D if there exists D > 0 such that for all z € X, f(z) — mingcx f(2') <
Dmaxgecx (Vf(x),x—a').

We extend their result with the following key theorem: applying a pointwise maximum preserves
the dominance property.

Definition 2 (Subgradient domination). A function F' : X — R is said to be subgradient dominant
with a constant D if there exists D > 0 such that, for any x € X, F(x) — mingecx F(z') <
Dmaxgecx (g, ¢ — ') Vg€ 0F(x).

Theorem 1 (Pointwise maximum preserves dominance). Let X C R be a compact convex set and
Y C R"™ be a compact set. Let f : X x Y — R be a fuunction differentiable in x and f(-,y) is
gradient dominant with a constant D > 0 for eachy € Y. Then, F' : € € X — maxycy f(x,y) is
subgradient dominant with D.

Since Jys(+) is gradient dominant for each M € M, F(-) inherits the dominance property:

Corollary 1 (Dominance of CompRMDP). Define Dy = maxyjea maxqen|d?; /dF, [l oo
Under Assumption 2, for any w € II, F(7) — F* < Dyymaxqren (g, w — w') Vg € OF ().

Using Corollary 1 with the subgradient convergence result (Davis & Drusvyatskiy, 2019), we show
that the best-iteration of (7) converges to an optimal policy in the rate of O(T‘l/ 4) as follows.
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Theorem 2 (Policy subgradient convergence). Let Yiax and cmax be the maximum discount factor
and absolute value of the cost function in M. Let Fy,.x ‘= maxqcr |F(7)|. Suppose cmax and D pq
are bounded. Whenn =1/ VT, the update by (7) satisfies

min_F(mw,) — F* < CAT— Y4
te1,T]

. . 2YmaxCmax|A . Cmax
where C = (QDM |S]+ %) 4Fax + 213, L = W, and (= (7\/22-

1—Ymax)

3.2 p-Perturbation Trick

Note that Theorem 2 requires that D, is finite, which may not hold in general. This section
introduces a simple trick to ensure finite D ¢ by slightly perturbing the initial state distributions in
M. We call this the p-perturbation trick.

Lete,, € (0,1) be a small positive value. For each M € M, we perturb its initial distribution g by
the following linear mixture with the uniform distribution 1/|S]:

1
o= (1_5u)ﬂ+5uﬁ . (®)

Let M be the MDP with the perturbed initial state distribution gz and the other components the same
as M. Let M be the set of perturbed MDPs for all M € M. We then replace the original objective
function F' of the CompRMDP (5) with the following perturbed objective:

(Perturbed CompRMDP)  F(7) := max Jo(m) — (M) , )
MeM

Note that ming g(s) > ‘ES—‘“ for any M € M. Therefore, the value of D 1 becomes finite as follows:

D < ISI(1 — Yoma) "Lt

Finally, we show that a near-optimal policy for the perturbed objective is also near-optimal for the
original CompRMDP problem (5) if v satisfies a mild Lipschitz continuity condition:

Assumption 3 (v is continuous in p). For an MDP M € M, let M,, be the MDP with the initial
state distribution g and the other components the same as M. We assume that 1) is continuous in
such that, for any p, oy € F(S), there exists a constant £,, > 0 such that

W(Mu ) —w(M,Q)I < €¢||N1 - N2||1 VM e M.

Theorem 3 (p-perturbation trick). Let 7 be an c-optimal policy for the perturbed CompRMDP
problem such that: F(70) —mingen F(7) < e. If Assumption 3 holds and we set €, sufficiently small

=i
such that €, < i (JM + Ew) , then Tt is 2e-optimal for the original problem (5) such that:

—Ymax

7T) — mi < .
F(m) min F(mw) <2

We defer the proof to Appendix C.

4 Relation to Existing MDP Problems

This section presents problem examples that can be formulated as CompRMDP.
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4.1 ConVex MDP (CV-MDP)

CV-MDP is a general framework that allows for non-linear objective functions over occupancy
measures. Specifically, for an MDP M, CV-MDP considers the following optimization:

(CV-MDP)  min Fi () - (10)

Here, F., : Dj; — R is a bounded* continuous and convex function. To show that CompRMDP
(5) generalizes CV-MDP, we use the biconjugate of F.:

Definition 3 (Rockafellar & Wets, 2009, Chapter 11). For f : R™ — R, its conjugate f* is defined
as f*(Y) = suPgedom 1 (¥, ) — f(x). We call f** the biconjugate of f.

Let G :={g|g € OFs(d), d € Dy} be the set of F.,’s subgradients. Using the properties of the
conjugate function (Fact 1 in Appendix A), we have

i ch ) = i chd: i ,d — F g i J — Fr s
min Foo(diy) = min Foo(d) = min = max (g,d) — F&,(g) = minmax.Ju, (7) - Fe,(9)
where (a) follows from the one-to-one mapping between dj; and 7 (Puterman, 1994) and (b) uses
definition of the convex conjugate. In (c), Mg denotes an MDP with the cost ¢ = g. Since Fe(g)
is a bounded and continuous, £, is also bounded and continuous in G. The equation above shows
that CV-MDP is generalized by CompRMDP, and thus can be solved by the subgradient method (7).

Proposition 1 (CV-MDP C CompRMDP). Let C = G be the cost set. Define M = C and
Y Mg € M — F}.(g). Then, by Theorem 2 with these M and 1, applying the update (7) for
O(e7%) iterations yields an -optimal policy . satisfying Fey(d7;) < mingen Fey(d];) + €.

4.2 Multi-Discount Constrained MDP (MD-CMDP) and Feasibility Problem

MD-CMDP is a setting which seeks to minimize the total cost while satisfying N constraints, with
each constraint associated with a different cost function and discount factor. Define cost functions
C ={c¢p...cn} and discount factors I' := {7g,...,vn}. Without loss of generality, we assume
that ¢,, € [0, 1]/l for all n. An MD-CMDP considers the following problem:

(MD-CMDP) j* = 71{161% Inme, o, () suchthat Jy,  (7) <0 Vne[l,N]. (11)
where M, ., denotes an MDP parameterized by a cost function ¢ and a discount factor . We
assume that (11) is feasible and we denote j* as the optimal objective value.

Since Equation (11) is a constrained optimization problem, it can be rewritten as the equivalent
epigraph form (e.g., Stein, 2025):

(MD-CMDP-Epigraph) j* = min j such that min Fj(7) <0 (12)
J€E[0,(1—v)~1] well
h F; = J —7lin=20].
where  Fjj(m) e Meyy i () = j1[n = 0]

For convenience, we call the subproblem min,er F;(7) inside (12) the feasibility problem. It
is easy to see that a policy 7* is optimal in (11) if and only if #* € argmin, . F}«(7), and
minger Fj(7) is a monotonically decreasing in j. Consequently, a simple bisection search on
[0, (1 — «)~!] with feasibility subroutine will converge to j* and an optimal policy 7*:

(Bisection Search) Increase j if miﬁ Fj(m) >0 and decrease j otherwise. (13)
S
The subproblem min,cr Fj(7) is clearly a CompRMDP instance. In other words, MD-CMDP

can be solved by iteratively solving CompRMDP problems. We remark that this is the first result
solving MD-CMDP, which has remained unresolved since Feinberg (2000).

4Due to the boundedness of Fe,,, CMDP is excluded from CV-MDP. We deal with CMDP in Section 4.2.
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Proposition 2 (Feasibility problem C CompRMDP). Define 1(-) = 0 and an MDP set as M =
{(eco —j1,7%),(€c1,71)s.--,(en,YN)}. Then, by Theorem 2 with these M and 1, applying the
update (7) for O(e~*) iterations yields a policy . satisfying F;(mw.) < mingen F;(m) + &.

Corollary 2 (Tractability of MD-CMDP). Suppose D, is bounded. After O (e=%) total policy
updates by (7), the bisection search (13) converges to an e-optimal policy . for MD-CMDP, such that

Iy g (T) S 5"+, JIu.,., (me)<e, VYne[l,N]. (14)

4.3 Composition of Robust, Convex, and Multi-Discount CMDPs

CompRMDP can represent the composition of all the MDP classes described above. We demonstrate
this with a concrete example, Example 1 from Section 1, which is a composition of MD-CMDP,
RMDP, and CV-MDP. Let P be a set of transition kernels, C = {¢p,¢1,...,cn} be N 4+ 1 cost
functions, and I" = {v0,71,...,7n,7} be N + 2 discount factors. Let v € II be a base policy to
imitate. Define M, . p as an MDP parameterized by (v, ¢, P), and M., p as the corresponding MDP
without a cost function. Then, Example 1 considers the following constrained optimization problem:

) <0 VYne{l,... N}
@

min maxJys

T PyeP Ynsen,Pn (

~0,¢0,Po (77) such that IIDI:%);D Jur

©)

where p > 0 is a threshold for the imitation. Each component (D, @), and (3) can be instantiated as
a CompRMDP with the following MDP sets and penalty functions:

O Mo = {(70,¢c0, Po) | Py € P} and ¢o(M) =0
@ My, = {(Yn.€n, Py) | Py € P} and ¢, (M) = 0 for all n € [1, NJ.
® Define fp : d € Dy, ,, KL(d||d§/[%P). Let Cp := conv{V fp(d) | d € Dy, ,. } be the cost

set under P. According to Section 4.1, @ can be represented as a CompRMDP with Mxp, =
{(v,e,P)|c€Cp,P € P} and i1, (My,cp) = fp(c) — pforall M, . p € Mxr..

Define F,(7) = maxprem, Ju(mw) — (M) be the corresponding CompRMDP objective
function for each M,, and v,,. We denote the one for 3) as Fy,1. Using the same epigraph
technique as in Section 4.2, we can solve the composite problem by the following bisection search:

and max KL(dy, |y, ) —p <0

Increase j if min  max F,(mw) — jl[n =0] > 0 and decrease j otherwise .
wellne0,N+1]
Clearly, the subproblem mingen max,cjo,n+1] Fn(m) — jl[n = 0] is a CompRMDP instance,
which can be solved by the subgradient method (7). Beyond this example, a more general and
formal algorithm for composite problems is provided in Appendix D.

Notably, this is the first work to solve the combination of convex, robust, and (MD-)CMDPs.
Chen et al. (2025) attempted to address this combination from the CV-MDP perspective but could
not fully resolve it. Their analysis assumes that the CV-MDP objective is differentiable with a
bounded gradient (see their Assumption 2), which excludes CMDPs where the objective value
becomes infinite when taking an infeasible policy. We resolve the boundedness challenge by using
the epigraph form of (MD-)CMDP.

5 Conclusion

We proposed CompRMDP, a unifying framework that captures many important MDP problems
through a simple extension of RMDP. We show that the subgradient descent method converges to
an e-optimal policy under the coverage condition, which can be satisfied our perturbation technique
(Section 3.2). CompRMDP generalizes RMDPs, CV-MDPs, MD-CMDPs, and their combinations.
This is the first result that solves MD-CMDP, which has been unresolved since Feinberg (2000).
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Supplementary Materials

The following content was not necessarily subject to peer review.

A Useful Facts and Lemmas

Fact 1. Suppose that f : R™ — R is a proper convex function. Then,

* (Rockafellar & Wets, 2009, Theorem 11.1) f** = f,
* (Rockafellar & Wets, 2009, Proposition 11.3) 0f (x) = argmax,cqom - 1(Y, ) — f*(y) }.
Fact 2 (Policy gradient theorem; Xiao, 2022, Appendix A.1). For a fixed MDP M, for any w € 11,
1
(VI (m)(s,a) = — ,ydy\rJ(s)Q;\T/[(Sa a) V(s,a)eSxA. (15)
where QT : S x A — R denotes the action-value function, which represents the expected total cost
of T starting from state s and taking action a:

Q7 (s,a) = c(s,a) + Z P(s'| s,a) Z w(a' |s)QT(s',a) V(s,a) eSxA.
s'eS a’'€A

Fact 3 (MDP continuity; Wang et al., 2023, Lemma 3.1). Consider an MDP M where the absolute
value of the cost function is bounded by cp,ax. For any w, 7' €11,

Cmax VA
(L=m)%"
Fact 4 (MDP smoothness; Agarwal et al., 2021, Lemma 54). Consider an MDP M where the
absolute value of the cost function is bounded by cpay. For any 7,7’ € 11,

Q’YCmax|A‘
(I—9)3 ~
Fact 5 (Gradient dominance; Agarwal et al., 2021, Lemma 4). For a fixed MDP M, for any 7 € 1I,

|Jai () — Ty (w')| < 4|l — 7’|, where €= (16)

IVIr () = VI (n)|ly, < L|lw — 7’|, where L := (17)

o
Ju (1) — Ty () < Dy max (Vi (w), © — ) where Dy = max || —2 (18)
well well || dy,
B Proof of Theorem 2
We prove Theorem 2 by considering the following general optimization problem:
(CompMax) min F(x) where F:x € X — max f(z,y) . (19)
reX yey

For convenience, we call this problem Composite optimization with Maximum (CompMax). Here,
X CR™ Y CR" and f: X x Y — R satisfy the following properties:

Assumption 4. f is bounded and jointly continuous on X x ), where X’ is a compact convex set
and ) is a compact set. There exists B > 0 such that || — 2’|, < B for any x, 2’ € X'. Moreover,
forany y € ), f(-,y) is L-smooth and ¢-continuous on X.

Assumption 5 (Pointwise gradient dominance). f satisfies the following pointwise gradient
dominance property: For any y € ), there exists a constant D > 0 such that

f(@,y) - min, &' y) < D max (Ve f(z,y), z —z) Vo € X . (20)

The following lemma formally shows that CompRMDP is subsumed by CompMax:

Lemma 2 (CompRMDP C CompMax). When X = II, Y = M satisfying Assumption 2, and
flmw, M) = Jy(w) + (M), CompMax (19) with Assumptions 4 and 5 encompasses CompRMDP
(5) with Assumption 2.
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Proof. The claim holds by showing that Jj,(-) satisfies the requirements of Assumptions 4 and 5.

It is easy to verify that |7 — 7’|, < 24/|S| for any 7,7’ € II. Additionally, due to Fact 3 and 4,
Ja(+) is L-smooth and ¢-continuous, where L and £ are defined in Fact 3 and 4. Thus, f in the setting
of Lemma 2 satisfies Assumption 4. Assumption 5 is clearly satisfied by Fact 5. The convexity and
compactness of X is trivial since II is a probability simplex. This concludes the proof. O

Consequently, Theorem 2 can be proven by analyzing the following general subgradient method for
CompMax (19). At iteration k£ € N, the method updates x; to a new point x;; as follows:

@y41 = Projy(z: —ng,) where g, € OF () . 2D

Here, n > 0 is the step size. To facilitate the subsequent analysis, we first introduce the properties
on F and f in (19).

B.1 Properties of the composite problem

While we do not require convexity on f in (19), it satisfies the following weak convexity:

Definition 4 (Weak convexity; Atenas et al., 2023, Definition 2.1). f : R™ — R is w-weakly
convex if there exists w > 0 such that f(-) + & ||H§ is a convex function.

Lemma 3 (f(-,y) and F' are weakly convex). Under Assumption 4, f(-,y) is L-weakly convex for
anyy € Y, and F is L-weakly convex.

Proof. For an ¢-continuous convex function g and an L-smooth function f, the composition g(f(-))
is known to be L-weakly convex (Atenas et al., 2023, Proposition 2.4). O

Using Lemma 3, the subdifferential of F' is given as follows:

Lemma 4. Under Assumption 4, the subdifferential of F' at x € X is given by

OF (z) = conv{me(ac,y) ‘ y € argmax f(x, y’)} . (22)
y'ey

Proof. Due to Lemma 3, f(-,y) = f(,y) + & H||§ is convex. Let F(x) = maxycy f(z,y).
Since f(-,y) is convex, the Danskin’s theorem (Bertsekas, 2009, Proposition A.3.2) implies

OF (x) = COHV{me(iL', y) + lx

(RS argmaxf(w,y')} .
y'ey

Since OF(z) = OF(x) + Lz holds (e.g., Rockafellar & Wets, 2009, Exercise 8.8), the claim

immediately follows from the above equation. O

The following Theorem 4 is the key to establish the tractability of CompRMDP, which shows that
the dominance property is preserved under pointwise maximization:

Definition 5 (Subgradient domination). Consider a proper, weakly convex function F' : R™ — R
and a compact set X C R™. F'is said to be subgradient dominant for & if there exists a constant
D > 0 such that, for any « € X,

. / /
F(z) - min F(z) < Dmax (g, @ — @) Vg€ IF(x). (23)

Theorem 4 (Restatement of Theorem 1). Let X C R™ be a compact convex and ) C R"™ be a
compact set. Consider a function f : X x Y — R differentiable in x that satisfies Assumption 5.
Then, F : x € X — maxycy f(x,y) is subgradient dominant for X.
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Proof. Consider a & € X. Since f(-,y) is gradient dominant, for any § € arg max,cy f(Z,y), we
have

F(z) - miy F(2') < f(2,y) — min f(2',9) < D max (Vaf(2,9), 2 -2') ,

Thus, by letting Gz = { V. f(Z,y)

Y € argmax,cy f(Z,y) } we have

F(Z) — min F(z') < D —a'y = DD. 24
(&) - min F(=') < D min max (g, & — ') = DD (24)

Due to Lemma 4, we have 0F (&) = conv Gz. Therefore,

= — > - — )
O=pppoyle 2-) > mh, mayle 2-)= mn, meyle o-o) =@

Define two vectors g* and «* such that

g* € argmin max (g,Z — ') and x* € argmax min (g, —x') .
g€Econv Gg T'EX r'ex geEconv Gz

The claim holds by showing that there exists g* such that g* € Gz, which ensures () = Q) in the
above inequality. For the term (2), we have

- N @, s = o ® . - © - *
@ ey @ i - 25
@=max(¢", 2 -2) = (¢, @-2") = min_ (g, &—2") = min (g, &-a"), (25

where (a) and (b) use the Sion’s minimax theorem (Sion, 1958, Theorem 3.4), and (c) holds because
linear minimization on a convex hull has its minimum at the extreme points (Kitamura et al., 2025,
Lemma 15). Since there exists a g* € Gz by (25), the claim holds. O

B.2 Convergence to Stationary Points of Moreau Envelope

By leveraging the weak-convexity of ' by Lemma 3, we show that the subgradient method (7)
converges to a stationary point of F'.

Since F' in (19) is non-smooth, we establish this property through the Moreau envelope, which
offers a smooth approximation of a non-smooth function. For X C R™, a proper function
F: X — R, and v > 0, the Moreau envelope is defined by F;, : R™ — R such that

. 1 2
Fo(@) = mind P + 5 lle I}

While F' is non-smooth, the Moreau envelope with small v is smooth and differentiable:

Fact 6 (Drusvyatskiy & Paquette, 2019, Lemma 4.3). Let F : R™ — R be a proper w-weakly
convex function. For any 0 < v < 1/w, the gradient of the Moreau envelope F,, is

1 1
VFE,(x) = > <a: — argeril(in(F(y) + 2 [l — y||§>) Ve e R™. (26)
Yy

Moreover, the stationary points of F,, are the same as those of F.

This smoothness of the Moreau envelope leads to the following descent property:
Lemma 5 (Descent property of Moreau envelope). Under Assumption 4, for any constant o > L
and for any k > 0, it holds that
2-72
nw n°wlL
F1/w($t)—F1/@($t+1) > (7HVF1/UJ (x4 H2 9

Therefore, when i = 2L,

Frjop(xe) — Frjop(®es1) > o HVF1/2L Ty H2 Ly (27)
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Proof. As F' is L-weakly convex (Lemma 3), the claim directly follows from the standard
subgradient method analysis (Theorem 3.1 of Davis & Drusvyatskiy (2019)). O

By taking the telescoping sum of (27) over t € [1, 7], the sequence {x;} satisfies that

nT 3,2
F - F > m VF -TL
v2n(®1) = Fijop (i) > 5 te[[ll%“]] |V Fy o (2 ||2 n

dmaxgex [
:>\/ max, ;:;| ()] 4oLy > emm IV Fyjar (@), 29

where the second line uses F,(x) < F(x) for any p > 0 (Rockafellar & Wets, 2009, Theorem
1.25). Intuitively, the norm HVF1 /2 L(:c)H2 measures how close x is to a stationary point of F'.
Indeed, for sufficiently small v, the stationary points of F}, coincide with those of F' (Drusvyatskiy
& Paquette, 2019, Lemma 4.3). Thus, (28) implies that whenn = 1/ VT, the projected subgradient
method (21) convergences to a stationary point at the rate of O(Tﬁl/ 4.

B.3 Putting Everything Together

We finish the proof of Theorem 2 by combining the subgradient domination (23) to the stationary
point convergence (28). To this end, we utilize the following fact:

Fact 7 (Kitamura et al., 2025, Lemma 14). Consider an w-weakly convex function F' : X — R and
ax € X. For0 < v < 1/w, define

1
z, €argminF (z') + — ||z — 33/”; .
oex 2v

Then, there exists a subgradient g € OF (&, ) such that, forany y € X,
(9.2, —y) < (VE,(x),Z, —y) .

Let Z; € argming ¢y F (') + L ||z — sc’||§ Combining Fact 7 and (23), we have

F(z) — F* < Dgnengn Imax (g, & — ') < Dmax <VF1/2L(:Et) Ty — T > < DB HVFUQL Ty H2 ,
(29

where the last inequality uses the Cauchy-Schwarz inequality with the assumption || — z'||, < B.
On the other hand, Due to the /-continuity of F’ (Assumption 4),

F(x,) = F(&) <2 — 34|, = HVFW z)]], . (30)

where the last equality uses the gradient of Moreau envelope (Fact 6).

Finally, by combining (29), (30), and Theorem 4, we have

: ¢ —1/4
Jin Flag) - F* < (DB + QL) in {[VFyr ()], < €T, 31

where we defined C := (DB + 57 ) /4 maxgex [F(z)] + 2L3.
Consequently, Theorem 2 holds by inserting D = D, from Corollary 1, B = 2,/|S|, £ and L
from Fact 3 and 4, into the definition of C'.

C Proof of Theorem 3

For an MDP M = (P, ¢,~, p), it is well-known that the total cost Jps(7r) can be represented as
(Puterman, 1994)

Ju(w)=p' (I —yP™)" '™,
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Algorithm 1: Bisection Search for CompRCMDP

Input: Iteration length K, search space bounds (£, uo), MDP set { M, },,c[o,n]. and penalty
function {9, : M — R},.c[0,n]

For j € R, let Fj() := max,¢[o,N] MaXpr, eM,, I, () — Yn(M) — j1[n = 0]

fork=0,..., K —1do

Compute a policy 7, such that (see Proposition 3)

Fj, (k) < min Fj, () + e where ji, = (C + ux)/2

Shrink the search space by

. if F >0 if Fj >0
by = 0% 0 (ﬂ-k) and wjg =400 (ﬂ-k)
{;,  otherwise jr  otherwise

return 7w € arg min,. . Fj ()

where I is the identity matrix, P™ € RISI*IS| and ¢™ € RIS! are the probability matrix and vector
such that P™(s" | s) = > . m(a|s)P(s' | s,a) and ¢ (s) = > ., 7(a|s)c(s,a). Note that
Ja,, () is continuous in g since for any p, py € F(S),

| Tn,., () = Ty, ()| = | (e T(I—yP™) ™| < ” ”OC||H1 Kol -

Combined with Assumption 3, for any p,, y € Z(S),

el
1-

|(Jag,., () = 0(My,)) = (Jag,,, (%) = (M,))| < ( > Mw)llul pol, - (32)

Since ||ptps — Bearll; < 2€p. it holds that for any 7 € II,

‘F(r) - ﬁ(n)] < 2(10““‘ + ew)e“ ,

— Ymax
where we used (32) with | max; z; — max; y;| < max; |x; — y;| for real numbers {x;} and {y;}.
The claim holds by the following inequality:

F(#) — min F(m) = F(7) + (F(%) - f(%)) - ;neig(ﬁ(ﬂ') + (F(ﬂ-) - ﬁ(w)))

mwell — Ymax

< F(#) — min F(r) +4<1Cmax +€¢>e# .

D General Optimization Form for Composite Problems

Beyond the composite problem example discussed in Section 4.3, this section presents the more
general form of the CompRMDP framework that encompasses all composite problems expressible
within it. Let N be the number of constraints. Define N + 1 general MDP sets { Mo, ..., My}
and N + 1 penalty functions {ty,...,%¥n}. Then, we define the following Composite Robust
Constrained MDP (CompRCMDP) problem:

(CompRCMDP) j* = 713161% Mmax I, (70) — o (M)

<
such that glg{(/ln I, (1) — (M) <0 Vne[1,N].

We assume that (33) is feasible and we denote j* as the optimal objective value. It is easy to see
that (33) generalizes all the CompRMDP instances in Section 4 and their combinations.



Published as a workshop paper at Finding the Frame — RLC 2025

By reformulating (33) into an epigraph form and building on the discussion in Section 4.2, it is easy
to see that the following bisection search will find a near-optimal policy for the CompRCMDP:

Increase j if mig Fj(m) >0 and decrease j otherwise,
S

34

where F; () = ngﬁ&}f\/]} g I, (70) — (M) — j1[n=10] . 34)
We summarize the bisection search algorithm in Algorithm 1. For convenience, we call the
subproblem minyeyy Fj(7) during the search (34) the CompRCMDP-feasibility problem. This
subproblem can be represented as a CompRMDP instance.

Proposition 3 (CompRCMDP-feasibility C CompRMDP). Let M, be an MDP set that adds j1
to all the cost functions in My. Define M = MyUMjU---UMpyandyp : M € M —
ZnE[[O,N]] Vo (M)1[M € M.,]. Then, by Theorem 2 with these M and 1), applying the update (7)
for O(e=*) iterations yields a policy . satisfying

Fj(m.) < 7rrnel%FJ(ﬂ) +e.

The following theorem guarantees that by running the CompRMDP algorithm logarithmic number
of times, we can find a near-optimal policy for the CompRCMDP.

Theorem 5. Set £y and ug such that o < Jp () — (M) < ug forall M € M,,, n € [0, N| and
7 € IL. Then, Algorithm [ returns a policy T satisfying
— o(Mp) < j* — fy)2~ K
e Jn, (x) — o(Mo) < j* + &+ (uo — 4o)

and ks In, (i) — on(My) < e+ (up — £0)27% Vne[1,N].



