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ABSTRACT

Tasks requiring deductive reasoning, especially those involving multiple steps, of-
ten demand adaptive strategies such as intermediate generation of rationales or
programs, as no single approach is universally optimal. While Language Mod-
els (LMs) can enhance their outputs through iterative self-refinement and strategy
adjustments, they frequently fail to apply the most effective strategy in their first
attempt. This inefficiency raises the question: Can LMs learn to select the optimal
strategy in the first attempt, without a need for refinement? To address this chal-
lenge, we introduce SMART (Self-learning Meta-strategy Agent for Reasoning
Tasks), a novel framework that enables LMs to autonomously learn and select the
most effective strategies for various reasoning tasks. We model the strategy selec-
tion process as a Markov Decision Process and leverage reinforcement learning-
driven continuous self-improvement to allow the model to find the suitable strat-
egy to solve a given task. Unlike traditional self-refinement methods that rely on
multiple inference passes or external feedback, SMART allows an LM to internal-
ize the outcomes of its own reasoning processes and adjust its strategy accordingly,
aiming for correct solutions on the first attempt. Our experiments across various
reasoning datasets and with different model architectures demonstrate that SMART
significantly enhances the ability of models to choose optimal strategies without
external guidance (+15 points on the GSM8K dataset). By achieving higher accu-
racy with a single inference pass, SMART not only improves performance but also
reduces computational costs for refinement-based strategies, paving the way for
more efficient and intelligent reasoning in LMs.

1 INTRODUCTION

When people first encounter complex reasoning tasks, such as solving mathematical problems, they
often make mistakes or approach them inefficiently (Brown et al., 2019). However, with experience,
humans tend to improve their performance by replacing ineffective or incorrect strategies with more
effective ones, using a mix of strategies tailored to the specific task (Adolph et al., 1998; Lemaire &
Callies, 2009; Torbeyns et al., 2009; Boncoddo et al., 2010, inter alia).

Language Models (LMs) similarly struggle with reasoning tasks, sometimes producing incoherent
results (Madaan et al., 2023; Shridhar et al., 2023; Huang et al., 2024). A common remedy is to
resample the output, a process known as refinement. This refinement may involve reusing the same
reasoning approach (Madaan et al., 2023) or adopting an entirely new one (Shridhar et al., 2023).
In addition, providing feedback on initial results has proven beneficial during resampling (Huang
et al., 2024; Welleck et al., 2022; Shinn et al., 2024; Kim et al., 2024, inter alia). This raises a
critical question: Can LMs be taught to optimize their choice of reasoning strategy for specific tasks
overtime on the first trial, much like humans do?

To address this question, we propose a novel framework called SMART (Self-learning Meta-strategy
Agent for Reasoning Tasks), which allows LMs to learn optimal strategy selection through a con-
tinuous self-learning approach. We model the task of identifying the optimal strategy as a Markov
Decision Process (MDP) (Sutton et al., 1999; Puterman, 2014), where the agent (LM) starts with
its pre-trained knowledge and iteratively improves its performance by learning from its own outputs
and strategy choices. By integrating the LM’s reasoning abilities with reinforcement learning-driven
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Iterative Refinement
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2

Figure 1: Our proposed methodology: In the first step (initial sampling), an agent (LM) chooses a
strategy and solves the given task with it. If it is correct, the process ends successfully. If an incorrect
strategy is chosen, the agent iteratively refines its strategy, taking previous strategies into account.
The process stops when a correct strategy is chosen to solve a task, or when a stopping criterion
such as the number of attempts is reached. All correct strategies are used to further refine the model,
and the process is repeated. During testing, we sample once from LMt without refinement.

self-improvement, the agent can simulate different reasoning strategies, evaluate their effectiveness
based on past outcomes, and adjust its strategy choice accordingly.

Our approach differs from traditional methods by focusing on iterative reward-based learning, which
encourages the agent to produce the correct inference on the first attempt without resampling. This
not only improves cost efficiency - only one sampling step is required during inference - but also
results in a more generalizable model capable of adapting its strategy selection based on the specific
task. We validate SMART on a variety of reasoning datasets and LM architectures and show that
our method significantly improves the ability of LMs to select optimal strategies on the first try,
outperforming baseline models that rely on traditional self-refinement techniques in both accuracy
and computational efficiency. On three mathematical datasets (GSM8K Cobbe et al. (2021), SVAMP
Patel et al. (2021b), ASDiv Miao et al. (2020)) over three LLM agents (Llama3 8B Dubey et al.
(2024), Gemma 7B Team et al. (2024), and Mistral 7B Jiang et al. (2023)), we demonstrate the
effectiveness of our approach. On iterative refinement with SMART, we achieve gains of up to +15
points (a relative gain of +35%) on the GSM8K dataset without the need for refinement. In addition,
we improve refinement accuracy by +16 points over baselines.

2 METHODOLOGY

Let q be a problem best solved with multi-step reasoning. An example is presented in the form
of a mathematical word problem in Figure 1. An agent or language model (LM) can approach it
using various strategies, such as solving it step by step (Chain of Thought, CoT Wei et al. (2022)),
decomposing it into subproblems, and solving each one (Least to Most, L2M Zhou et al. (2023)),
or writing a program to solve it programmatically (Program of Thought, PoT Chen et al. (2023)),
among others. A common method is to prompt the LM with a specific strategy for solving the
task. However, LMs are error-prone but can fix their answers when asked to do so, a process called
refinement. In the refinement process, LMs can either stick to the same strategy Madaan et al.
(2023) or switch to a more effective reasoning strategy Shridhar et al. (2023). Ideally, LMs could
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learn to choose the best strategy and reasoning path on the first try, minimizing the need for costly
refinement.

Our objective: The primary goal of our work is to enable language models (LMs) to autonomously
learn and select the most effective strategies for various reasoning tasks on their first attempt, thereby
improving both efficiency and accuracy. Unlike traditional self-refinement methods that require
multiple inference passes or external feedback, our approach aims to internalize the learning process
within the LM, allowing it to adjust its strategy selection based on past experience. This mirrors how
humans learn to choose optimal strategies through experience when faced with complex tasks.

2.1 SMART: SELF-LEARNING META-STRATEGY AGENT FOR REASONING TASKS

We model the strategy selection process as a Markov Decision Process (MDP), where the LM acts
as an agent that interacts with the environment (the reasoning tasks) by selecting strategies and
observing the outcomes. Using reinforcement learning techniques, the LM can learn a policy that
maximizes the expected reward, effectively learning to choose the optimal strategy for each task.
This framework allows the LM to simulate different reasoning strategies, evaluate their effectiveness
based on past outcomes, and adjust its strategy choice accordingly.

In the following sections, we formalize the problem formulation, define the agent’s policy, and
describe the learning objective. We then present our two-stage process with iterative refinement,
which allows the agent to learn from its own reasoning processes and improve its strategy choice
over time.

MDP Setup: We model the strategy selection framework as a Markov Decision Process (MDP)
given by the tuple ⟨S,A,P,R, µ⟩. Here, S represents the state space encapsulating all possible
states of the environment, where each state s ∈ S is the current problem statement or the subsequent
LM response to it. The initial state distribution is given by µ. The action space, A, is the set of all
strategies available to the agent, where each action at ∈ A corresponds to the choice of a particular
strategy at time t. The transition function P : S × A → S defines the probability of transitioning
to a new state st+1 after applying strategy at in state st. Particularly for our case, the transition
function is non-deterministic as the next state is sampled by the agent (see Algorithm 1 later). The
reward functionR : S ×A → R assigns a scalar reward based on the correctness of the result after
applying the chosen strategy.

We start with the initial sampling step, where the LM chooses a strategy to solve the given task. In
other words, given a problem statement s1 ∼ µ, the agent draws a strategy a1 to solve the problem
according to its policy (see below). Given the initial problem s1 and strategy a1, the environment
transitions to the next state s2 ∼ P(·|s1, a1) with transition probability P and receives a reward r1
indicating the correctness of the response. If a correct strategy is chosen and the LM solves the task
using that strategy, the process terminates. Otherwise, the agent chooses another strategy a2 to solve
the problem, and the process repeats until the problem is solved. A realization of this stochastic
process is a trajectory τ =

(
(st, at, rt)

T−1
t=1 , sT

)
up to a finite number of steps T . We denote a

partial trajectory (history up to time t) as τ1:t =
(
(st, at, rt)

t−1
t=1 , st

)
.

Agent’s policy: We start by defining a history ht := τ1:t that includes the past actions up to time
t− 1 and the observed states up to time t. Then, we model the agent using a non-Markovian stochas-
tic policy πθ(at|ht) parameterized by θ, which models the probability of choosing the action at
given the history ht:

πθ(at|ht) = Pr(at = a |ht; θ)

Objective function: We want to optimize the following objective:

θ⋆ = argmax
θ

J(πθ) = argmax
θ

Es1,a1∼µtest,πθ(a1|s1)[r1(s1, a1)] (1)

where, µtest represents the state distribution over the test data.
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TWO-STAGE PROCESS WITH REFINEMENT

STAGE 1 (INITIAL SAMPLING)

1. The process begins with a problem statement s1 ∼ µ where µ represents the initial state
distribution.

2. The agent samples an action a1 from the policy πθ(a1|h1), where h1 = s1 for the step 1.
3. The agent then generates an output based on strategy a1

4. The agent receives reward r1(h1, a1) based on it correctness as follows:

r1 =

{
1, if the output is correct
0, otherwise

5. Termination Check: If r1 = 1, the process terminates successfully.

STAGE 2 (ITERATIVE REFINEMENT, IF r1 = 0)

For each time step t = 2 to T :

1. The agent observes history ht.
2. Samples an action at ∼ πθ(at|ht).
3. Generates an output based on strategy at.
4. Receives reward rt(st, at) :

rt =

{
1, if the output is correct
0, otherwise

5. Termination Check: If rt = 1, terminate the process.
6. Otherwise, transition to the next state st+1, which includes the reasoning choice from all

the previous steps.

Trajectory and Reward Structure: The resulting trajectory τ with reward has the following struc-
ture:

τ = ((s1, a1, r1), (s2, a2, r2), . . . , (sT ′ , aT ′ , rT ′), sT ′+1)

where T ′ < T is the time step at which the process terminates (either by solving the problem or
by reaching the maximum steps). We keep the number of trajectories one less than the number of
strategies in our work, since each time the model samples with a different strategy than the one
present in its history. For simplicity, we omit rt = 0 rewards in the trajectory above.

The total reward for the trajectory is:

R(τ) =

T ′∑
t=1

rt

Given that rt = 0 for t < T ′ and rT ′ = 1, if successful, total reward would be R(τ) = 1. However,
in some cases, when a task is never solved, the total reward for that trajectory can be 0.

As typical in RL, the agent aims to learn a policy that maximizes the expected cumulative reward
(Sutton et al., 1999; Prajapat et al., 2024):

θ⋆ = argmax
θ

J(πθ) = argmax
θ

Eτ∼f(τ ;πθ)[R(τ)] (2)

POLICY GRADIENT UPDATE

The gradient of the expected reward with respect to the policy parameters θ is:

∇θJ(πθ) = Eτ

|τ |−1∑
t=1

∇θ log πθ(at|ht) · rt

 (3)
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The gradient is computed iteratively, and a step is only taken at time t only if all the previous attempts
were incorrect.

Implicit bias for Stage 1 to choose the right strategy in the first attempt: As described in equa-
tion 1, our goal is to maximize the reward received as early as possible. To implicitly bias the
model towards selecting the correct action in earlier steps, we adjust the dataset D by replacing the
sequences of unsuccessful actions with the final successful action taken at the initial state. Specif-
ically, for trajectories where the problem is solved at time T ′ (T ′ > 1), we replace the samples
(h1, a1, r1), . . . , (hT ′ , aT ′ , rT ′) with (h1, aT ′ , rT ′). This encourages the model to learn to take the
correct strategy aT ′ for the problem statement s1 in the first step.

Since we only update the model based on correct outputs, the policy update can be viewed as maxi-
mizing the likelihood of the correct actions given the history:

θ⋆ = argmax
θ

∑
(hi,ai)∈D

log πθ(ai|hi) (4)

See 1 for a complete algorithm that illustrates our methodology in detail.

ALGORITHM: SMART: SELF-LEARNING META-STRATEGY AGENT FOR
REASONING TASKS

Algorithm 1 Training Procedure for SMART
Require: Initialized policy parameters θ, learning rate α, dataset of problems D.

1: for each iteration e = 1, 2, . . . do ▷ For a fixed number of iterations or until convergence
2: De ← ∅ ▷ Initialize empty dataset
3: for each problem s1 ∈ D do
4: Stage 1: Initial Attempt
5: Observe initial state s1
6: Sample action a1 ∼ πθ(a | s1)
7: Generate output using strategy a1
8: Evaluate output to obtain reward r1
9: if r1 = 1 then ▷ Correct output

10: Collect sample (s1, a1, r1)
11: De ← De ∪ {(s1, a1)} ▷ Add sample to dataset
12: Continue to next problem
13: else
14: Stage 2: Iterative Refinement
15: for each refinement iteration t = 2 . . . T do
16: Observe state st and history ht

17: Sample action at ∼ πθ(a|ht).
18: Generate output using strategy at
19: Evaluate output to obtain reward rt
20: if rt = 1 then ▷ Correct output
21: Collect sample (s1, a1, . . . st, at, rt)
22: De ← De ∪ {(s1, a1, . . . st, at)} ▷ Add sample to dataset
23: Break loop and proceed to next problem
24: end if
25: end for
26: end if
27: end for
28: Policy Update
29: Update policy parameters θ using collected data:

θ ← θ + α ·
∑

(hi,ai)∈De

∇θ log πθ(ai|hi)

30: Implicit Biasing
31: De+1 ← De\{(s1, a1, . . . st, at)}

⋃
{(s1, at)} ▷ Update the dataset

32: end for

5
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3 EXPERIMENTAL DETAILS

SMART operates within a self-learn framework, where we prompt a pre-trained model with 8-shot
examples to collect the initial training data. Prompts used for various strategies are provided in
Subsection 8.1. The 8-shot pre-trained model also serves as a baseline comparison for our method.
We use the MetaMath dataset Yu et al. (2024), a variant of the GSM8K Cobbe et al. (2021) training
set, which contains 110K reasoning problems. We evaluate our methodology on the GSM8K test
set, which contains 1,319 samples. To show the generalization ability of our method, we also test on
two out-of-distribution datasets: the SVAMP dataset Patel et al. (2021a) with 1,000 samples where
the questions are made more challenging by altering them in a non-trivial way, and the ASDiv
dataset Miao et al. (2020) with 2,300 samples, which consists of diverse mathematical problems
from elementary to middle school.

We ran all our experiments on models with 7-8 billion parameters, specifically Gemma 7B Team
et al. (2024), Mistral 7B Jiang et al. (2023), Qwen2 7B Yang et al. (2024), and Llama3 8B Dubey
et al. (2024). This is important for our self-learn setup, as the model needs a basic understanding of
the task to begin the process. Smaller models often have difficulty starting the process, while very
large models are too expensive to iterate over multiple times.

We employed three reasoning strategies: Chain of Thought (CoT) (Wei et al., 2022), Least to Most
(L2M) (Zhou et al., 2023), and Program of Thought (PoT) (Chen et al., 2023) in our work due to
their effectiveness on the multi-step reasoning tasks. We take the best out of these strategies as
our baseline (underlined in Table 1). Since we used a different reasoning strategy during refinement
following Shridhar et al. (2023), the majority of our experiments are limited to two trajectories as the
third trajectory would make the remaining strategy the obvious choice. However, we also explore
our approach beyond 3 strategies later (in Section 5). We report the top-1 accuracy (maj@1) for all
experiments, as we want to test the accuracy of the output on the first try. We used a temperature of
0.7 to generate samples at each iteration. Since the models are already trained on the downstream
datasets during pre-training, we chose to train only part of the model and used LoRA (Hu et al.,
2021) with rank 16, alpha 32, and a starting learning rate of 2e-4 with decay. We used the Unsloth
library (Unslothai, 2023) for training and we did the inference using the VLLM library (Kwon et al.,
2023). Finally, we run SMART for multiple iterations until our accuracy gains no longer justify
the cost of training and sampling. In our experiments, 3 iterations worked well for most models,
although we trained Gemma 7B for 5 iterations before performance plateaued.

4 RESULTS

SMART significantly improves results on in-distribution dataset: We compared SMART with
baselines on the GSM8K dataset, which we also consider to be an in-distribution dataset since the
train and test sets have the same distribution. Table 1 shows that SMART outperformed the baseline
in its first iteration on the GSM8K dataset, achieving a gain of +6 points for both the Gemma 7B and
Mistral 7B models (40.4→ 46.5 and 56.9→ 63.8, respectively). Although Qwen2’s performance is
already very strong on the GSM8K dataset, we still observed a gain of +2.6 points (81.9→ 84.5) in
the first iteration. After a few more iterations, we saw a total gain of +15 points for Gemma 7B (40.4
→ 55.4), +11 points for Mistral 7B (56.9→ 67.9), and +4 points for Qwen2 7B (81.9→ 85.4).

SMART serves as a great refinement strategy: Since SMART involves iterative refinement to find
the optimal action given the trajectory, we also compare against two refinement baselines: refine-
ment with the same strategy (Madaan et al., 2023) and refinement with a strategy change (Shridhar
et al., 2023). We used the Oracle Verifier, which identifies incorrect samples and refines them either
with the same strategy or by choosing a different one. 1 Table 1 compares the refinement accuracy
with SMART and our proposed methodology shows significant improvements over the baselines.
Gemma 7B gains over +16 points (48.9→ 67.5) compared to the best refinement baseline, Mistral
7B gains +8 points (66.5→ 78.0), and Qwen2 7B gains +1.5 points (86.9→ 91.9).

SMART generalizes well to out-of-distribution dataset: We test our trained checkpoints using
our proposed approach SMART on two out-of-distribution datasets: ASDiv and SVAMP. These are

1Note that the Oracle Verifier is used to set the upper bound for all the methods compared and cannot be
used during inference. It is only to compare the capabilities of different approaches.
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Table 1: Test Accuracy (maj@1) comparison between different baselines using three strategies
CoT, L2M, PoT with our approach SMART on the GSM8K dataset. Baselines used 8-shot in-context
examples to generate the output. Additionally, we report refinement accuracy obtained through the
Oracle verifier for both the baselines and our approach. Refinements for the baselines can follow the
same strategy as in Madaan et al. (2023) and a different strategy than the initial one as in Shridhar
et al. (2023). Results are presented for three models: Gemma 7B, Mistral 7B, and Qwen2 7B. The
best results among the baseline are underlined while the best overall results are in bold.

Model Method Test Accuracy (%) Refinement
Strategy Accuracy (%)

Baseline (Using 8-shot examples)

Chain of Thought (CoT) 40.0 same 44.6
different 49.4

Least to Most (L2M) 34.9 same 43.4
different 48.7

Program of Thought (PoT) 40.4 same 46.1
different 51.3

Gemma 7B
SMART (Proposed Approach)

Iteration 1 46.5 SMART 64.6
Iteration 2 50.6 SMART 64.0
Final Iteration - Iteration 5 55.6 (↑ +15.2) SMART 67.5 (↑ +16.2)

Baseline (Using 8-shot examples)

Chain of Thought (CoT) 50.6 same 59.0
different 67.5

Least to Most (L2M) 52.4 same 56.6
different 67.2

Program of Thought (PoT) 56.9 same 61.3
different 70.1

Mistral 7B
SMART (Proposed Approach)

Iteration 1 63.8 SMART 74.1
Iteration 2 66.3 SMART 76.4
Final Iteration - Iteration 3 67.9 (↑ +11.0) SMART 78.0 (↑ +7.9)

Baseline (Using 8-shot examples)

Chain of Thought (CoT) 81.9 same 90.4
different 89.3

Least to Most (L2M) 80.0 same 84.9
different 88.7

Program of Thought (PoT) 76.9 same 86.0
different 88.6

Qwen2 7B
SMART (Proposed Approach)

Iteration 1 84.5 SMART 91.4
Iteration 2 85.4 (↑ +3.5) SMART 91.9 (↑ +1.5)

Final Iteration - Iteration 3 85.2 SMART 91.2

referred to as out-of-distribution because the model was not trained on these datasets but only eval-
uated on them. Table 2 compares the results of SMART with the baselines (created using 8-shot in
context examples) across the three reasoning strategies: CoT, L2M, and PoT. Among the three mod-
els, Gemma 7B showed the most improvement, with a gain of +2.6 points on the SVAMP dataset
(65.6→ 68.2) and +2.9 points on the ASDiv dataset (68.0→ 70.9). Mistral 7B, on the other hand,
gained +1 point on the ASDiv dataset (71.3→ 72.3) but performed worse on the SVAMP dataset.
We suspect that the test dataset for SVAMP is different from GSM8K, and since the model was not
optimized for SVAMP-style questions, this could explain the drop in performance. Finally, for the
Qwen2 7B model, we observed a modest gain of +1 point across both datasets (89.3 → 90.3 on
SVAMP and 89.5→ 90.5 on ASDiv).
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Table 2: Test accuracy (maj@1) comparison between different baselines using three strategies
CoT, L2M, PoT with our proposed approach SMART on the out-of-domain datasets of SVAMP and
ASDiv. Baselines used 8-shot in-context examples to generate the output. Results are presented for
three models: Gemma 7B, Mistral 7B, and Qwen2 7B. The best baseline results are underlined,
while the best overall results are in bold.

Model Method SVAMP Acc (in %) ASDiv Acc (in %)
Baseline (Using 8-shot examples)

Chain of Thought (CoT) 65.6 68.0
Least to Most (L2M) 63.4 62.7

Gemma 7B Program of Thought (PoT) 51.6 54.2

SMART (Proposed Approach)
Final Iteration 68.2 (↑ +2.6) 70.9 (↑ +2.9)

Baseline (Using 8-shot examples)
Chain of Thought (CoT) 65.8 71.3
Least to Most (L2M) 67.9 67.3

Mistral 7B Program of Thought (PoT) 71.7 70.1

SMART (Proposed Approach)
Final Iteration 70.9 (↓ -0.8) 72.3 (↑ +1.0)

Baseline (Using 8-shot examples)
Chain of Thought (CoT) 89.3 89.5
Least to Most (L2M) 87.5 84.2

Qwen2 7B Program of Thought (PoT) 82.8 80.8

SMART (Proposed Approach)
Final Iteration 90.3 (↑ +1.0) 90.5 (↑ +1.0)

5 DISCUSSION

How the strategy distribution changes over iterations: With SMART, the goal is to select the
desired strategy at the first attempt, i.e., over iterations the LM should learn to select the appropriate
strategy for a given task. Figure 2 shows the changes in strategy distribution over iterations for the
Gemma 7B model on the GSM8K dataset. As indicated by the baseline in Table 1, PoT emerges as
the best strategy for the Gemma 7B model, followed by CoT, with L2M being the least effective.
A similar pattern is observed in Figure 2, where the model increasingly favors PoT (indicated by
the upward trend in the red line) while decreasing its preference for the other two strategies. Cor-
respondingly, the accuracy for PoT improves the most, followed by CoT and L2M, demonstrating
that over iterations the model learns to select the optimal strategy for a given task. A qualitative
example where over iterations the model learned to choose the right strategy in its first attempt is
provided in Figure 4. Initially, the model chose the wrong strategy but was fixed during refinement,
and over iterations, the model picked the correct strategy in its initial sampling, without the need for
refinement.

Extending the strategies beyond three strategies in SMART: We want to test if it is possible to
go beyond the three strategies explored in this paper by extending our approach to other strategies.
Although we could not find a strategy with performance comparable to those explored in this paper,
we introduced a <Unsolvable> tag for questions that the model could not answer during either
sampling or refinement attempts and tried to use it as a fourth strategy. However, extending this strat-
egy did not yield promising results due to the limited number of samples in the <Unsolvable>
category, as the model was able to solve the task using one of the strategies during refinement. Sim-
ilarly, we experimented with a <Answer Only> strategy, where the model directly predicts the
answer to very simple questions without any intermediate reasoning. As with the <Unsolvable>
strategy, the skewed data distribution led to poorer performance.

Is the strategy selection effective?: We compare the strategy selection made by SMART during
inference with a fixed strategy (CoT) on the GSM8K dataset using the Gemma 7B model, as shown
in Table 3. Across all five iterations, the results highlight the importance of selecting the appropriate

8
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Figure 2: Strategy distribution change over iterations for Gemma 7B model on GSM8K dataset.

Table 3: Comparison of fixed strategy (CoT) vs SMART based strategy during inference for GSM8K
dataset using Gemma 7B model.

Strategy Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Fixed (CoT) 45.5 47.5 48.5 50.6 49.7
SMART 46.5 50.6 52.9 55.0 55.6

strategy, with the SMART approach outperforming the fixed strategy (CoT) by up to 6 points when
the optimal strategy is selected. While the fixed strategy shows improvements over iterations, illus-
trating the self-learning effect over multiple generations, our work demonstrates that performance
can be further improved by selecting the most appropriate strategy for each task.

SMART with better starting samples:

Model30
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80
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cu
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cy

 (%
)

40.4%

68.7% 69.1% 71.3% 71.8%

80.4%

Gemma 7B Pre-trained Baseline
Gemma 7B Fine-tuned on LLaMA Data
SMART Iteration 1
SMART Iteration 2
SMART Final Iteration
Llama3 8B (Upper Bound)

Figure 3: Figure showing a comparison of the effects of
different starting data points for the Gemma 7B model.
SMART is compared against two baselines: the pre-
trained Gemma 7B model and the fine-tuned Gemma
7B model on Llama3 8B data.

Since we start with the model-generated
samples, for a weaker model the starting
samples can be improved if those samples
come from the stronger model. We in-
vestigated whether the SMART based self-
learning approach could be extended to
a setup where the initial data points are
collected from a stronger model to initi-
ate training for a weaker model. This is
particularly beneficial for weaker models
that cannot independently initiate the self-
learning process using SMART due to their
limited capabilities on a given task. Ini-
tially, we collected data using 8-shot in-
context examples generated by the Llama3
8B model (Dubey et al., 2024). This
approach yielded an average accuracy of
about 80% across all three strategies, significantly higher than Gemma 7B’s initial accuracy of about
40%. Figure 3 illustrates the comparison between different iterations of SMART and the pre-trained
Gemma 7B baseline at 40.4%, as well as the fine-tuned Gemma 7B baseline at 68.7%. Using SMART
resulted in an additional improvement of +3.1 points (from 68.7%→ 71.8%).

6 RELATED WORK

Refinement in LLMs: Refinement refers to the process of improving the initial output of large lan-
guage models (LLMs) through iterative adjustments. This refinement can be achieved by following

9
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Question Brian’s friend Bobby has 5 fewer than 3 times as many video games as Brian does. If Brian has 20
video games but lost 5 right before the comparison was made, how many does Bobby have?
Iteration 1 Stage 1 (Sampling)
Program of Thought: brian games = 20
games lost = 5
bobby games = 3 * brian games - games lost - 5
answer = bobby games ✗

Iteration 1 Stage 2 (Refinement)
Chain of Thought: Brian has 20 video games and lost 5 games, so he has 20 - 5 = 15 games left.
Bobby has 5 fewer than 3 times as many video games as Brian does, so he has 3 * 15 - 5 = 40 video games.
Final Answer: 40 ✓

Iteration 5 Stage 1 (Sampling)
Chain of Thought: Brian has 20 - 5 = 15 video games.
Bobby has 5 fewer than 3 times as many video games as Brian does, so Bobby has 3 * 15 - 5 = 40 video games.
Final Answer: 40 ✓

Figure 4: Qualitative example demonstrating that Gemma 7B model learnt to refinement strategy in
its initial sampling stage, removing the need for refinement.

the same method used initially (Madaan et al., 2023), by incorporating feedback while using the
same approach (Welleck et al., 2022; Shinn et al., 2024; Kim et al., 2024; Huang et al., 2024), or by
using an alternative method (Shridhar et al., 2023; 2024). However, recent studies have shown that
naively applying self-correction can sometimes degrade performance (Huang et al., 2024; Qu et al.,
2024; Tyen et al., 2024), highlighting the need for more effective strategies. Supervised fine-tuning
with feedback from larger models (Ye et al., 2023; Qu et al., 2024), or using an ensemble of mod-
els Havrilla et al. (2024), has produced notable results. Nevertheless, relying on larger or multiple
models for feedback presents challenges. In contrast, our approach takes advantage of self-learning,
eliminating the need for external model feedback.

Self-Training in LLMs: Self-training is a semi-supervised learning method in which the model’s
own predictions are used as additional data to improve its performance (Scudder, 1965; Yarowsky,
1995). This technique has been applied to various NLP tasks, such as machine translation (He et al.,
2020; Sun et al., 2021; Gulcehre et al., 2023). In contrast, we use self-learning principles to generate
new data and continually update the policy in an on-policy fashion. This approach can be viewed as
an on-policy counterpart to Self Imitation Learning (Oh et al., 2018), where the policy learns from
prospective successful trajectories in its initial stages, rather than imitating past successful behavior.

7 CONCLUSION

We present SMART: Self-learning Meta-strategy Agent for Reasoning Tasks, a solution to the chal-
lenges LMs face in selecting strategies for complex reasoning tasks. By modeling the strategy
selection process as a Markov decision process and leveraging reinforcement learning, SMART en-
ables LMs to autonomously learn and apply the most effective reasoning strategies on the first trial,
thereby reducing the reliance on iterative self-refinement. Our proposed approach not only improves
the accuracy of LMs, as demonstrated by significant performance gains across multiple datasets but
also enhances computational efficiency by minimizing the need for multiple inference passes.

10
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8 APPENDIX

8.1 PROMPTS

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction: Solve the given math problem step by step. Put your final answer after ’Final answer:’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything.
How much did he pay in total?

Response: The shirts cost 3*$20=$<<3*20=60>>60 before tax The tax cost $60*.1=$<<60*.1=6 6
So in total they paid $60+$6=$<<60+6=66 66 Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a
month (30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 5: 8-shot Chain of Thought demonstration.

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction: Solve the given math problem by decomposing it into smaller, manageable sub-questions.
Put your final answer after ’Final answer: ’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything.
How much did he pay in total?

Response: Sub-question 1: How much did John spend on shirts?
Answer to Sub-question 1: 3*$20=$<<3*20=60>>60
Sub-question 2: How much did John spend on tax?
Answer to Sub-question 2: $60*.1=$¡¡60*.1=6¿¿6
Sub-question 3: How much did John spend in total?
Answer to Sub-question 3: $60+$6=$<<60+6=66>>66
Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a
month (30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 6: 8-shot Least to Most demonstration.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction: Solve the given math problem by writing a python program. Store your result as a variable
named ’answer’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything.
How much did he pay in total?

Response: total shirts = 3
cost of one shirt = 20
total cost shirts = total shirts * cost of one shirt
tax rate = 0.1
tax amount = tax rate * total cost shirts
total cost = total cost shirts + tax amount
answer = total cost <eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a
month (30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 7: 8-shot Program of Thought demonstration.
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