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ABSTRACT

Identifying latent variables and their induced causal structure is fundamental in
various scientific fields. Existing approaches often rely on restrictive structural
assumptions (e.g., purity) and may become invalid when these assumptions are
violated. We introduce Conditional Independent Component Analysis (CICA), a
new tool that extracts components that are conditionally independent given latent
variables. Under mild conditions, CICA can be optimized using a tractable proxy
such as rank-deficiency constraints. Building on CICA, we establish an identifia-
bility theory for linear non-Gaussian acyclic models with latent variables: solving
CICA and then applying an appropriate row permutation to the sparsest CICA
solution enables recovery of the causal structure. Accordingly, we propose an es-
timation method based on the identifiability theory and substantiate the algorithm
with experiments on both synthetic and real-world datasets.

1 INTRODUCTION

Understanding causal structures is essential in numerous scientific domains, such as biology (Wood-
ward, 2010), psychology (Eronen, 2020), and economics (Hicks et al., 1980). To uncover the under-
lying causal structures in a data-driven manner, various methods have been proposed (Peters et al.,
2017). Most traditional causal discovery methods rely on the causal sufficiency assumption (Spirtes
et al., 2000), i.e., no latent confounders exist between any pair of observed variables. However, in
many real-world applications, it is often infeasible to measure all the underlying causal variables.
For example, in psychology, researchers investigate the impact of social behavior on mental health,
while intelligence or personality may often act as latent confounders. It is difficult to precisely
measure these variables, yet ignoring such latent confounders can lead to misleading conclusions.
Generally, identifying the presence of latent variables and recovering the causal structure involving
both observed and latent variables remains a significant challenge.

Some approaches attempt to address the challenge by exploiting conditional independence con-
straints, such as the FCI algorithm (Spirtes et al., 1995) and its variants (Colombo et al., 2012).
However, their results capture only the causal relationships among observed variables. To further
discover causal relationships between latent variables, additional parametric assumptions are typi-
cally required. For linear Gaussian causal models, several methods leverage rank-deficiency con-
straints to recover the underlying structure, including latent variables, up to the Markov equivalence
class (Silva et al., 2006; Kummerfeld & Ramsey, 2016; Huang et al., 2022; Dong et al., 2023). To
take into account higher-order statistics, (Xie et al., 2020) develops a generalized independent noise
(GIN) condition and establishes its corresponding estimation algorithm for linear non-Gaussian data.
TIN (Dai et al., 2022) defines the independent linear transformation subspace and its dimension can
be used to further improve the identifiability of causal discovery with measurement error.

Although these methods have achieved some progress, they typically involve certain structural as-
sumptions to simplify the problem. In particular, the purity assumption (Cai et al., 2019; Xie et al.,
2020) rules out edges between observed variables. Violating these assumptions can lead to failures
in determining the true causal graph. For example, in Fig. 1, the two graphs cannot be distinguished
by most existing methods. Only a few methods can theoretically distinguish these two graphs, pri-
marily overcomplete ICA (OICA) (Eriksson & Koivunen, 2004)-based methods and higher-order
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(b)

Figure 1: An example of a non-identifiability issue of most existing methods.

cumulant-based methods (Schkoda et al., 2024; Chen et al., 2024). However, OICA typically relies
on the expectation maximization (EM) procedure along with approximate inference, which is com-
putationally prohibitive and prone to local optima (Cai et al., 2023). On the other hand, higher-order
statistics can be very sensitive to outliers in the data (Hyvärinen & Oja, 2000), reliably estimating
higher-order cumulants requires massive samples (Nikias & Mendel, 1993). This raises an impor-
tant question: can we strike a better balance between identifiability and practical feasibility? Our
findings indicate that this could be possible.

Concretely, by analyzing why GIN and TIN conditions fail to distinguish Fig. (1a) and (1b), we
argue that relying solely on a one-sided projection ω⊤Y⊥⊥Z (Y,Z are two subsets of observed
variables) could be restricted. Instead, two-sided projections ω⊤

1 Y⊥⊥ω⊤
2 Z may leave additional

identifiable traces. Accordingly, we seek a unified procedure that estimates latent causal structure
by searching for non-zero ω1, ω2 with ω⊤

1 Y⊥⊥ω⊤
2 Z. Motivated by this, we introduce a new tool

named conditional independent component analysis (CICA), which extracts components that are
conditionally independent given latent variables. Under mild conditions, CICA can be optimized
using a tractable proxy such as rank-deficiency constraints, which avoid involving the estimation of
high-order cumulants like OICA or cumulant-based methods. Building on CICA, we establish an
identifiability theory and estimation algorithm for linear non-Gaussian acyclic models with latent
variables: by first solving CICA and then applying an appropriate row permutation to the sparsest
CICA solution, we recover the underlying causal structure, achieving a more general identifiability
result with a tolerable computational burden.

Contributions: (1) We introduce a novel principle, conditional independent component analysis
(CICA), that extracts components that are conditionally independent given latent variables. (2) We
establish an identification theory and an estimation algorithm that performs CICA and then selects
row permutations of the sparsest CICA solutions to recover the underlying causal structure. (3) We
conduct synthetic and real-world experiments to validate its identifiability guarantees.

2 BACKGROUND

2.1 PROBLEM SETUP

We consider a linear latent variable causal model with DAG G, in which the observed variables
X = {Xi}mi=1 and latent variables L = {Li}di=1 follow the data generating process:

L = BL,LL+EL, X = BX,LL+BX,XX+EX.

V = AE, with A := (I−B)−1.
(1)

where EX = {EXi
}mi=1 and EL = {ELi

}di=1 are mutually independent non-Gaussian exogenous
noises. We use Vi ∈ V to denote a generic variable. B denotes the adjacency matrix, with the entry
Bj,i representing the direct causal effect of Vi on Vj . Bj,i ̸= 0 if and only if Vi is a direct parent of
Vj in G. Here, V can also be expressed directly as a linear combination of independent exogenous
noises E, through the mixing matrix A.

Notations. For a matrix M , we denote by MS,: the rows in M indexed by set S, and similarly by
M:,S the columns. In addition, let GL(m) be the invertible matrix W ∈ Rm×m. Further, we use
Pa(Vi),Ch(Vi),Anc(Vi),De(Vi) as parents, children, ancestors and descendants of Vi, respectively.
We use LPa(S) for a subset S ⊆ V to denote the set that contains all the common latent parents
of any two nodes in S, excluding the variables in S. By default, Y and Z denote two subsets of
observed random variables.
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2.2 PRELIMINARIES

Definition 1 (GIN condition (Xie et al., 2020)). Let Y and Z be two observed random vectors.
Suppose that the variables follow a linear, non-Gaussian acyclic model (LiNGAM). We say (Z,Y)
satisfies the GIN condition, if and only if the following two conditions are satisfied: 1) ∃ non-zero
ω ∈ R|Y| that solves the equation cov(Z,Y)ω = 0, and 2) Any such solution ω makes the linear
transformation ω⊤Y⊥⊥Z.

GIN condition needs to be equipped with enough pure children, which is defined as follows:

Definition 2 (Purity (Xie et al., 2024)). Let L̃ be a set of latent variables, and S be a subset of
descendant nodes of L̃, i.e., S ⊆ De(L̃). We say S is a pure set relative to L̃ iff i) Va⊥⊥Vb|L̃ for any
Va, Vb ∈ S, and ii) S⊥⊥{V \ De(L̃)}|L̃. In addition, we say that a variable Vc ∈ S relative to L̃ is
a pure variable if S is a pure set relative to L̃. Specifically, if S ⊆ Ch(L̃), we say that each variable
Vc ∈ S is a pure child relative to L̃.
Definition 3 (TIN condition (Dai et al., 2022)). Let Z and Y be two subsets of random variables.
Denote the independent linear transformation subspace ΩZ;Y :=

{
ω ∈ R|Y| | ω⊤Y⊥⊥Z

}
. The TIN

condition of Z and Y is defined as: TIN(Z,Y) := |Y| − dim(ΩZ;Y), where dim(ΩZ;Y) denotes
the dimension of the subspace ΩZ;Y, i.e., the degree of freedom of ω.

3 METHOD

In this section, we develop a principled framework for causal discovery in the presence of latent con-
founders. We first describe our motivation by analyzing why existing tools that rely on constructing
independence fail (§3.1). We then formalize our proposed tool, conditional independent component
analysis (CICA), and discuss its indeterminacy (§3.2), optimization criterion (§3.3). Next, we pro-
vide a comprehensive introduction to the identifiability guarantee of latent causal structure based on
CICA (§3.4). Finally, we discuss the connection between CICA and independent subspace analysis
(ISA) and why ISA is not informative in our settings (§3.5).

3.1 MOTIVATION: BEYOND ONE-SIDED PROJECTIONS

Existing criteria such as GIN and TIN conditions are built on one-sided projections of the form
ω⊤Y⊥⊥Z. To ensure identifiability, these methods require that latent variables L have enough pure
children (Xie et al., 2024). The rationale is that pure children are mutually conditionally indepen-
dent given L. With sufficient pure children, one can construct a linear combination of Y to remove
the dependence entirely attributable to the common ancestors L and thus induce independence.

In contrast, in Fig. 1a and 1b, every pair of observed variables share not only L but also E1. In this
case, no one-sided projection of the form ω⊤Y⊥⊥Z with non-zero ω can eliminate both sources of
dependence simultaneously. As a result, the GIN and TIN conditions fail to distinguish between the
two graphs since both exhibit no non-degenerate independence pattern under one-sided projections.

This limitation highlights the insufficiency of these tools based on one-sided projections when re-
covering the latent causal structure in the presence of multiple latent influences. In fact, not all
constructive independence patterns can be expressed as ω⊤Y⊥⊥Z. A natural step forward is to con-
sider two-sided projections of the form ω⊤

1 Y⊥⊥ω⊤
2 Z, to remove the dependence from both sides.

The following lemma shows that the independence patterns in the form of ω⊤Y⊥⊥Z are a subset of
those of ω⊤

1 Y⊥⊥ω⊤
2 Z.

Lemma 1. Let Z and Y be two subsets of random variables. If ω⊤
1 Y⊥⊥Z has a non-zero solution

ω1, then there must exist a non-zero vector ω2 makes ω⊤
1 Y⊥⊥ω⊤

2 Z.

Essentially, the richer the independence structure that a principle exploits, the stronger its identifica-
tion power. As shown next, Fig. 1a and Fig. 1b fall into different equivalent classes when using the
information contained in ω⊤

1 Y⊥⊥ω⊤
2 Z.

Remark 1. In Fig. 1a, there always exist two non-zero vectors ω1, ω2 ∈ R2 such that ω1,1X2 +
ω1,2X3⊥⊥ω2,1X1+ω2,2X2. In contrast, in Fig. 1b, no non-zero solution satisfies this independence
constraint. Besides, in Fig. 1b, there always exist two non-zero vectors ω1, ω2 ∈ R2 such that
ω1,1X2 + ω1,2X3⊥⊥ω2,1X1 + ω2,2X3, whereas no non-zero solution exists in Fig. 1a.
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Motivated by these asymmetries, when two causal graphs cannot be distinguished using only a
one-sided projection ω⊤Y⊥⊥Z, two-sided projections ω⊤

1 Y⊥⊥ω⊤
2 Z can leave additional identifiable

traces for the causal direction. This prompts a natural question: Can we develop a unified procedure
that searches for non-zero ω1, ω2 with ω⊤

1 Y⊥⊥ω⊤
2 Z to enhance identifiability?

3.2 CONDITIONAL INDEPENDENT COMPONENT ANALYSIS

A direct route to construct ω⊤
1 Y⊥⊥ω⊤

2 Z is to use overcomplete ICA (OICA), which separates more
mutually independent sources from fewer observed signals. However, OICA is known to be com-
putationally and statistically ineffective (Ding et al., 2019). An alternative solution is to brute-force
searching for each “two-sided projection” (ω1, ω2). However, it is difficult to guarantee that all
feasible (ω1, ω2) have been found.

Instead of fully separating all latent sources as in OICA, we propose to factor out the shared influ-
ences explicitly and only require independence conditional on a latent vector. Concretely, we seek
an invertible transform W such that Z = WX has mutually independent coordinates given some
latent L ∈ Rp. This approach is powerful for two reasons: 1. As we will show in Section 3.3, when
p is known, this principle allows for more tractable optimization proxies, avoiding the statistical and
computational burdens of OICA. 2. As we will prove in Lemma 3, any solution that satisfies this
generative principle (Zi⊥⊥Zj |L) provably induces the two-sided projections ω⊤

1 Y⊥⊥ω⊤
2 Z required

for identifiability. We formalize this core generative principle as follows:

Assumption 1 (Linear mixing with conditionally independent sources). Let X be an observed vari-
able set with |X| = m. There exist an invertible matrix A ∈ Rm×m, p latent variables L with
ΣL ≻ 0, a matrix M ∈ Rm×p, and noise variables E = (E1, . . . , Em)⊤ such that

X = AS, S = ML+E, E ⊥⊥L. (2)

{Ei} are mutually independent with finite, non-zero variances, and at most one Ei is Gaussian. ΣE

is not a scalar multiple of the identity matrix I ∈ Rm×m. Besides, A does not depend on L.

Definition 4 (p-order Conditional Independent Component Analysis (CICA)). Let X be an observed
variable set with |X| = m. An invertible matrix W ∈ Rm×m is called a p-order CICA solution for
X if there exists p latent variables L (with p ≥ 0) such that:

(i) (Conditional independence) Writing Z := WX = (Z1, . . . , Zm)⊤, the components are
mutually conditionally independent given L.

(ii) (Minimality in p) There exist no latent variables L̃ with 0 ≤ |L̃| < p for which the condi-
tional independence in (1) holds.

When p = 0, condition (i) reduces to mutual independence of Z, and CICA coincides with ICA. In
addition, we introduce pmin(X) := min{k : k ∈ N, k-order CICA solution of X exists} to measure
the size of the minimal latent conditional set of X.

Lemma 2 (Indeterminacy of CICA). Given Assump. 1, let X be m observed variables, W1,W2 ∈
Rm×m be two p-order CICA solutions for X. The following two statements are equivalent:

(i) There exists p latent variables L such that, writing Z(k) := WkX, the components of Z(k)

are mutually conditionally independent given L for k ∈ {1, 2}.

(ii) There exist a permutation matrix Pπ (for some permutation π of [m]) and a non-singular
diagonal matrix D such that W2 = PπDW1.

In particular, when p = 0 (the ICA case), (i) is understood with L degenerate, and the conclusion
reduces to the classical permutation and scaling indeterminacy of ICA. Therefore, Lemma 2 tells us
that CICA introduces an additional indeterminacy about the conditional set L compared to ICA. In
addition, based on the CICA solution, one can naturally induce two-sided projections ω⊤

1 Y⊥⊥ω⊤
2 Z.

Lemma 3. Let X be m observed variables, and W be a p-order CICA solution of X. Let
X′ = WX,Y and Z are two subsets of X′, then if max{|Y|, |Z|} > p, ω⊤

1 Y
′⊥⊥ω⊤

2 Z
′ has a non-

zero solution (ω1, ω2) for (Y′,Z′), where Y′ = {Xi|
∑

Xk∈Y Wk,i ̸= 0}, Z′ are defined similarly.
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Example 1. The following structural causal model serves as an instantiation of Fig. 1a, where
L,E1, E2, E3 are independent non-Gaussian variables, a, b, c, u, v are non-zero coefficients. The
identity matrix I ∈ GL(3) is a 3-order CICA solution of X (the conditional set can be {L,E1, E2}).
The right-hand side below shows an example of a 1-order CICA solution of X (the conditional set
is {L}). The existence of L leads to the absence of a 0-order CICA (i.e., ICA) solution of X.

{
X1 = aL+ E1,
X2 = bL+ uX1 + E2,
X3 = cL+ vX2 + E3.

W︷ ︸︸ ︷[
1 0 0
−u 1 0
0 −v 1

][
X1

X2

X3

]
=

[
a
b
c

]
L+

[
E1

E2

E3

]
Besides, we can construct two-sided projections ω⊤

1 Y⊥⊥ω⊤
2 Z with non-zero ω1, ω2, based on the

CICA solution of X. Taking Y = {X ′
1, X

′
2}, Z = {X ′

3} as an example, denoting X′ = WX,
then we have aX ′

2 − bX ′
1⊥⊥X ′

3. i.e., −(au + b)X1 + bX2⊥⊥X3 − vX2. A non-zero solution
ω1 = [−(au+ b), b]⊤, ω2 = [−v, 1]⊤ exists for (Y′ = {X1, X2},Z′ = {X2, X3}).

3.3 OPTIMIZATION CRITERION FOR CICA

Since the conditional set is latent, the definition of CICA does not specify a testable optimization ob-
jective. A practical question arises: which optimization criterion should we use for CICA? Inspired
by (Huang et al., 2022; Dong et al., 2023), we characterize conditional independence by introducing
the following rank-deficiency constraint.

Lemma 4. For an observed variable set X with |X| = m, denote p = pmin(X). Suppose m ≥
2p + 2, and set X′ := WX, then W is a p-order CICA solution of X if and only if for every pair
of disjoint coordinate subsets X1,X2 of X′ with |X1| = |X2| = p + 1, det(ΣX1,X2) = 0, where
Σ := Cov(X′) denotes the covariance matrix on X′ and ΣX1,X2 is the (p+1)× (p+1) sub-matrix
of Σ with rows indexed by X1 and columns by X2.

In fact, here m ≥ 2p + 2 is not a strict restriction; we can relax it by replacing the covariance
matrix with a higher-order cumulant tensor. More details are included in Appendix B.3. When
pmin(X) = 1, we can use another proxy objective of CICA, equipped with a weaker condition.

Definition 5 (Triad constraint (Cai et al., 2019)). Define the pseudo-residual of {Xi, Xj} relative
to Xk as E(i,j|k) := Cov(Xj , Xk) · Xi − Cov(Xi, Xk) · Xj . We say that the pair of variables
{Xi, Xj} and Xk satisfy the Triad constraint if E(i,j|k)⊥⊥Xk.

Lemma 5. For an observed variable set X with |X| = m, suppose that pmin(X) = 1 and m ≥ 3

hold, set X′ ≜WX, then the invertible matrix W is a 1-order CICA solution of X if and only if for
every ordered triple (X ′

i, X
′
j , X

′
k) of X′, {X ′

i, X
′
j} and X ′

k satisfies the Triad constraint.

In both Lemma 4 and 5, we assume pmin(X) is known, then characterize pmin(X)-order CICA
using the zero-determinant and independence constraint, respectively. In our estimation algo-
rithm, we can determine the value of pmin(X) in principle, without requiring prior knowledge (see
Lemma 11). Since both the determinant and dependence measures (e.g., HSIC (Gretton et al., 2005))
used in Def. 5 are differentiable, these lemmas actually provide an optimization criterion for CICA.

3.4 IDENTIFIABILITY OF LATENT CAUSAL STRUCTURE BASED ON CICA

In this section, we establish an identifiability theory for causal structure in the linear non-Gaussian
acyclic models with latent variables. Once CICA is solved, when and how can the causal structure
be recovered from the CICA solutions W? First, we have the following basic assumptions.

Assumption 2 (Rank Faithfulness Assumption (Spirtes, 2013)). Let a distribution P be (linearly)
rank-faithful to a DAG G if every rank constraint on a sub-covariance matrix that holds in P is
entailed by every free-parameter linear structural model with a path diagram equal to G.

Assumption 2 holds generically, since the set of values of the free parameters of the SCM for which
the rank is not faithful is of Lebesgue measure 0 (Spirtes, 2013).

Condition 1. Each latent variable in G has at least three neighbors and two children (which can
be latent or observed).

5
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L

X ′
1 X ′

2 X ′
3

L

X1 X2 X3

E1

X ′
1 X ′

2 X ′
3

W1 W2

Figure 2: An example of different 1-order CICA solutions for X. W1 is a 1-order CICA solution
that renders X′ conditionally independent given L, while W2 renders X′ conditionally independent
given E1, the exogenous noise of X1. The gray/white rectangle denotes non-zero/zero entries.

In this section, for the sake of brevity, we will primarily discuss the results under the one-factor
scenario. Most results can be extended into the multi-factor scenario directly. We provide more
discussion on the multi-factor scenario in Appendix B.4.

To identify the causal structure based on CICA, we must resolve all inherent indeterminacies.
(Shimizu et al., 2006) demonstrates that the permutation and scaling indeterminacy in ICA can be
fixed by acyclicity. As stated in Lemma 2, CICA introduces an additional indeterminacy: the choice
of the latent conditional set. If W is a CICA solution of observed variables X, the conditional set
does not need to coincide with the latent confounders. Instead, it may correspond to the exogenous
noise of the observed variables. Therefore, to solve the indeterminacy of the latent conditional set,
we must further identify the CICA solution that aligns with the ground-truth causal structure.
Lemma 6. I−BX,X is a pmin(X)-order CICA solution of X with latent conditional set LPa(X).
Lemma 7. Suppose W is a pmin(X)-order CICA solution of X whose latent conditional set is
LPa(X), there exists a unique row permutation matrix P that makes PW whose diagonal elements
have non-zero values, simultaneously.

As shown in Fig. 2, for X = {X1, X2, X3}, W1 is a 1-order CICA solution of X given L, thus
W1 ∼ I−BX,X according to Lemma 2. In contrast, the ambiguity of the latent conditional set
allows alternative solutions, such as W2, to also qualify as feasible CICA solutions of X, although
without a direct correspondence to BX,X. Essentially, W2X can be interpreted as swapping the
roles of L and E1 on W1X. Although conditional independence is preserved after swapping the
latent variables, the sparsity of the solution matrix changes. Specifically, it becomes denser. This
observation highlights that sparsity can serve as an additional discriminative signal: the sparsest
CICA solution better aligns with the underlying causal structure.
Lemma 8. I−BX,X ∈ argmin{∥W∥0 : W is a pmin(X)-order CICA solution of X}.

Lemma 8 shows that I − BX,X is a pmin(X)-order CICA solution of X with the minimum num-
ber of non-zero entries. Notably, we do not assume that real-world causal structure is maximally
sparse. On the contrary, it can be arbitrarily dense. The minimal sparsity principle is not a prior
assumption/convenient choice we impose on the causal structure. Instead, it is a provable theoretical
property that emerges from the CICA framework itself, which we then exploit for identifiability.
To ensure identifiability, we seek conditions under which I−BX,X is the unique sparsest pmin(X)-
order CICA solution of X, up to some permutation and scale indeterminacies.
Condition 2. For any Xi ∈ X, ∃Xj ∈ X \ {Xi} with LPa({Xi, Xj}) ̸= ∅, Xi ̸→ Xj .
Example 2. In the figure on the left below, since X1 is not the parent of X3, X2 and X3 are not the
parents of X1, then Condition 2 holds. In contrast, in the figure on the right below, X1 is both the
parent of X2 and X3, thus Condition 2 does not hold.

L

X1 X2 X3

L

X1 X2 X3

Lemma 9. If Condition 2 holds, W ∈ argmin{∥W̃∥0 : W̃ is a pmin(X)-order CICA solution of
X} if and only if we can find a permutation matrix P and non-singular diagonal matrix D that
makes W = PD(I−BX,X).
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Under Condition 2, Lemma 9 establishes that the sparsest pmin(X)-order CICA solution recovers
I−BX,X up to permutation and scale indeterminacies. By Lemma 7, the remaining gap can be
eliminated by row permutation. Consequently, BX,X is uniquely identified, including both the
causal graph among the observed variables and its edge coefficients.

Conversely, when Condition 2 does not hold, I − BX,X is non-identifiable: there exists a distinct
pmin(X)-order CICA solution W′ with an equal number of non-zero entries. Surprisingly, although
W′ has different parameters from I−BX,X, their support matrix remains the same. Therefore, the
causal structure among observed variables is identifiable, which we summarized as follows.
Theorem 1. All latent variables in LPa(X) can be identified. Besides, the causal edges of LPa(X)
to X and the causal edges between the observed variables are also identifiable.

When the variables form a hierarchical structure and some latent variables may have no observed
children, due to the linearity assumption and the transitivity of linear causal relations, we can use
a certain observed descendant of the latent variables to implement CICA and apply Theorem 1
recursively. The question is, which one is suitable to serve as a surrogate for the latent variable?
Lemma 10. Let L be a latent variable discovered in the current iteration. Denote S = Ch(L). Let
Sk have the highest causal order in S whose index in S is k, and W be the sparsest pmin(S)-order
CICA solution of S. P is the permutation matrix that makes PW have non-zero diagonal elements,
simultaneously. Denote Z = PWS, then the value of Zk can be a suitable surrogate for L.
Example 3. Taking Fig. 1a as an example, denote W as the sparsest 1-order CICA solution of
X = {X1, X2, X3}, P is the permutation matrix that makes PW whose diagonal elements have
non-zero values, simultaneously. Let Z = PWX. As X1 is the variable that has the highest causal
order in Ch(L), then we can take the value of Z1 as the surrogate of L.
Theorem 2. Suppose Condition 1 holds, then the underlying causal graph G is fully identifiable,
including both latent variables and their causal relationships.

Based on the identifiability guarantee, we develop an estimation algorithm named CICA-LiNGAM
to recover the latent causal structure from the CICA solution. Suppose that some observed variables
S form a causal cluster, we can determine the value of pmin(S) using the GIN condition. Here we
say that an observed variable set S is a causal cluster if the variables in S partially share the same
latent parents that satisfy S = Ch(LPa(S)), or LPa(S) d-separates S and Ch(LPa(S)) \ S. The
causal cluster serves as a basic unit that helps us quickly locate the latent variables. The following
lemma states a basic criterion for identifying causal clusters from active variables A (active variables
contain some variables that may form causal clusters in the bottom-up recursive procedure).
Lemma 11 (Identifying Causal Clusters (Xie et al., 2022)). Let A be the active variable set and
S ⊂ A. Then S is a causal cluster with |LPa(S) = pmin(S) = 1 if: 1) for any subset S̃ of Y with
|S̃| = 2, (A \ S, S̃) follows the GIN condition, and 2) no proper subset of S satisfies 1).

Algorithm 1 CICA-LiNGAM

Require: Observed variables X.
Ensure: Fully identified causal structure G on X and discovered latent variables.

1: Initialize active variable set A = X and G = ∅.
2: while A ̸= ∅ do
3: Identify causal clusters in the current active variable set A (Lemma 11).
4: Obtain the sparsest CICA solution W of each cluster (Lemma 4 or 5).
5: Find a permutation matrix P to make the diagonal elements of PW non-zero (Lemma 7).
6: Obtain causal structure within a causal cluster (Theorem 1).
7: Merge clusters share the common latent parent (Proposition 1 in Appendix B).
8: Determine whether new latent variables should be introduced (Corollary 2 in Appendix B).
9: Update the active variable set A according to Lemma 10.

10: end while
11: Return G.

The algorithm adopts a recursive procedure. In each iteration, it performs four steps: i) identify
causal clusters (line 3); ii) infer the causal structure within each cluster based on the sparsest CICA
solution (lines 4∼6); iii) merge the clusters share the common latent parent and determine how

7
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many new latent variables are required for these clusters in the current iteration (lines 7∼8, details
see Appendix B); and iv) update the active variable set accordingly (line 9).

3.5 CONNECTION WITH ISA

Local ISA-LiNG (Dai et al., 2024) leverages independent subspace analysis (ISA) instead of OICA
for local causal discovery. Inspired by this, we then ask whether ISA remains a suitable surrogate
of OICA in the presence of latent confounders and what the relationship is between CICA and ISA.
To answer these questions, we first review the basic terminology of ISA.

Definition 6 (Irreducible). An m-dim random vector Z is irreducible if it contains no lower-dim
independent components. In other words, no invertible matrix W ∈ GL(m) can decompose WZ =
(Z′

1,Z
′
2)

⊤ into Z′
1⊥⊥Z′

2.

Definition 7 (ISA solution (Theis, 2006)). For an m-dim random vector X, an invertible matrix W
is called an independent subspace analysis (ISA) solution of Y if WX = (Z⊤

1 , . . . ,Z
⊤
k )

⊤ consists
of mutually independent, irreducible random vectors Zi. The corresponding partition ΓW of the
indices [m] is called the ISA partition associated with W.

Although ISA seeks separation “as independent as possible”, the following theorem shows that ISA
is actually not informative enough in the presence of latent confounders.

Theorem 3 (Interpretations of ISA in LiNGAM model). Let the graph obtained after removing all
the outgoing edges of X in G be named by G′, which form several connected components of observed
variables X′

C1
,X′

C2
, · · · ,X′

Ck
, where k be the number of connected components in G′. For an ISA

solution W, let WX = (Z⊤
1 , . . . ,Z

⊤
k )

⊤. Then there is a permutation π of [k] s.t. for any i ∈ [k],
∃Wi ∈ GL(|Ci|) makes Zπ(i) = WiX

′
Ci

.

Example 4. Here we present a concrete example to aid in understanding Theorem 3. After re-
moving all outgoing edges of X in G (the graph in Fig. 4a), G′ (the graph in Fig. 4b) form three
connected components of observed variables, {X ′

1}, {X ′
2, X

′
4} and {X ′

3, X
′
5}. Then WX =

(Z⊤
1 ,Z

⊤
2 ,Z

⊤
3 )

⊤,∃π,W1,W2,W3, s.t. Zπ(1) = W1X
′
1,Zπ(2) = W2X

′
[2,4],Zπ(3) = W3X

′
[3,5].

L1 X2

X4

L2X1 X3

X5

(a)

L1 X ′
2

X ′
4

L2X ′
1 X ′

3

X ′
5

(b)

Figure 4: An example to understand the procedure of ISA in the LiNGAM model.

According to Lemma 3, any matrix W ∈ GL(3) is an ISA solution of Fig. 1a and 1b. Therefore,
they are “ISA equivalent”, which we summarize in the following remark.

Remark 2. The two causal graphs in Fig. 1a and Fig. 1b cannot be identified by ISA.

The fundamental reason why ISA fails to be informative in the presence of latent confounders is that,
although it seeks components that are “as independent as possible”, ISA does not impose constraints
within each irreducible subspace. Consequently, regardless of how variables are connected within a
subspace, the corresponding graphs belong to the same equivalence class under ISA. In contrast, the
absence of constraints within each subspace can be addressed by CICA. For example, the sparsest
1-order CICA solution on {X2, X4} makes the edge X2 → X4 identifiable. In summary, solving
CICA on each subspace can be a good complement to ISA.

4 EXPERIMENTS

In this section, we present simulation studies on synthetic data to demonstrate that our algorithm
effectively identifies latent variables and latent causal structure. Due to space limitations, real-world
experiments on personality psychology data are presented in Appendix C.

We generate data from some typical graph structures that satisfy Condition 1 (see Fig. 5). We con-
sider different sample sizes N = 5k, 10k, 20k. The causal strengths Bi,j are generated uniformly

8
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Case 1

X1 X2 X3

Case 2

X1 X2 X3

Case 3

X1 X2
X3 X4

Case 4

X1 X2 X3

X4 X5 X6

Figure 5: Causal structures used in synthetic experiments.

Table 1: Comparison on synthetic data. ↑ means higher is better while ↓ means lower is better.

Graph Method Error in Latent Variables ↓ Correct-Ordering Rate ↑ F1-Score ↑
5k 10k 20k 5k 10k 20k 5k 10k 20k

Case 1

CDHS 0.30±0.46 0.20±0.40 0.40±0.49 0.65±0.45 0.80±0.40 0.60±0.49 0.67±0.45 0.80±0.40 0.60±0.49
LaHME 0.00±0.00 0.10±0.30 0.00±0.00 0.50±0.00 0.45±0.15 0.50±0.00 0.67±0.00 0.60±0.20 0.67±0.00

PO-LiNGAM 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.66±0.03 0.67±0.00 0.67±0.00
RLCD 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Ours 0.00±0.00 0.00±0.00 0.00±0.00 0.65±0.25 0.60±0.35 0.75±0.25 0.75±0.25 0.67±0.38 0.77±0.46

Case 2

CDHS 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
LaHME 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

PO-LiNGAM 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
RLCD 1.00±0.00 1.00±0.00 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Ours 0.00±0.00 0.00±0.00 0.00±0.00 0.60±0.25 0.60±0.25 0.66±0.27 0.67±0.44 0.67±0.44 0.72±0.48

Case 3

CDHS 2.00±0.00 1.90±0.30 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
LaHME 0.00±0.00 0.20±0.60 0.10±0.30 0.44±0.00 0.40±0.13 0.40±0.13 0.73±0.00 0.65±0.22 0.65±0.22

PO-LiNGAM 0.00±0.00 0.00±0.00 0.20±0.60 0.44±0.00 0.44±0.00 0.40±0.13 0.73±0.00 0.73±0.00 0.65±0.22
RLCD 0.10±0.30 0.10±0.30 0.00±0.00 0.60±0.25 0.60±0.25 0.58±0.16 0.70±0.24 0.70±0.24 0.73±0.08
Ours 0.00±0.00 0.20±0.60 0.10±0.00 0.66±0.18 0.61±0.31 0.61±0.31 0.78±0.31 0.72±0.35 0.78±0.31

Case 4

CDHS 2.00±0.00 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
LaHME 0.25±0.54 0.20±0.40 0.10±0.44 0.30±0.15 0.30±0.15 0.36±0.08 0.56±0.28 0.56±0.28 0.67±0.15

PO-LiNGAM 2.00±0.00 2.00±0.00 2.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
RLCD 0.50±0.81 1.10±0.83 0.70±0.90 0.28±0.19 0.11±0.17 0.20±0.17 0.30±0.22 0.13±0.20 0.23±0.20
Ours 0.25±0.54 0.20±0.40 0.10±0.44 0.52±0.27 0.52±0.27 0.68±0.39 0.68±0.43 0.68±0.43 0.74±0.40

from [−2,−0.5] ∪ [0.5, 2], and the non-Gaussian noise terms are generated from the square of ex-
ponential distributions. In each setting, the results are obtained after averaging the values in the
10 tests. We report both the average results and standard errors. We consider the following four
methods as baselines for comparing: RLCD (Dong et al., 2023), PO-LiNGAM (Jin et al., 2023),
LaHME (Xie et al., 2024), CDHS (Li et al., 2025). To evaluate the precision of the estimated graph,
we used the following three metrics as (Li & Liu, 2025). 1) Error in Latent Variables: the absolute
difference between the estimated number of latent variables and the ground-truth one; 2) Correct
Ordering Rate: the number of correctly estimated causal orderings divided by that of ground-truth
causal orderings; 3) F1 score of causal edges.

The experimental results are summarized in Table 1. For CDHS, the algorithm fails in the fully
impure setting as its “Homologous Surrogates” condition (Li et al., 2025) is violated, preventing
any valid output. While LaHME and PO-LiNGAM are relatively stable on key evaluation metrics,
they are unable to produce correct results in fully impure scenarios (e.g., cases 2 and 4) because
their clustering step fails. RLCD is inapplicable to cases 1 and 2, as its underlying rank test requires
at least four observed variables; it also struggled to resolve the causal structure in the remaining
scenarios. In contrast, our proposed algorithm demonstrated optimal performance across all cases.
It consistently identified and characterized the impure connections among the observed variables,
showcasing its advantages in handling impure structures.

5 CONCLUSION

In this paper, we introduce a new tool, Conditional Independent Component Analysis (CICA), which
aims to identify components that are mutually independent given a certain number of latent variables.
CICA naturally induces two-sided projections ω⊤

1 Y⊥⊥ω⊤
2 Z, which carry a richer identification sig-

nal than one-sided projections ω⊤Y⊥⊥Z used in GIN/TIN, thus improving the identifiability in
latent causal structure learning. Although CICA involves additional indeterminacy on the latent
conditional set, we show that sparsity resolves this ambiguity and yields full identification of the
latent variables and causal relationships. Building on our theoretical results, we derive an estima-
tion algorithm for latent causal structure recovery. Synthetic and real-world experiments show the
superiority of our methods in dealing with impure structures.
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E The Use of Large Language Models (LLMs) 34

A DEFINITIONS, EXAMPLES, AND PROOFS

A.1 DEFINITIONS

Definition 8 (Treks (Sullivant et al., 2010)). In G, a trek from X to Y is an ordered pair of directed
paths (P1, P2) where P1 has a sink X, P2 has a sink Y, and both P1 and P2 have the same source Z.

Definition 9 (T-separation (Sullivant et al., 2010)). Let A,B,CA, and CB be four subsets of VG in
graph G (not necessarilly disjoint). (CA,CB) t-separates A from B if for every trek (P1, P2) from
a vertex in A to a vertex in B, either P1 contains a vertex in CA or P2 contains a vertex in CB.

Lemma 12 (Rank and T-separation (Sullivant et al., 2010)). Given two sets of variables A and
B from a linear model with graph G, we have rank (ΣA,B) = min {|CA|+ |CB| : (CA,CB) t-
separates A from B in G}, where ΣA,B is the cross-covariance over A and B.

A.2 EXAMPLES

L

X ′
1 X ′

2 X ′
3

a b c

L

X1 X2 X3

a b c

u v

E1

X ′
1 X ′

2 X ′
3

1
−b
a

−c
a

[
1 0 0
−u 1 0
0 −v 1

]
W1

[
1 0 0

−(au+ b)/a 1 0
−c/a −v 1

]
W2

Figure 6: An example of different CICA solutions for X. W1 is a CICA solution that renders X′

conditionally independent given L, while W2 renders X′ conditionally independent given E1, the
exogenous noise of X1. The gray/white rectangle denotes non-zero/zero entries.

A.3 PROOF

A.3.1 PRELIMINARIES

Lemma 13 (Darmois-Skitovich Theorem (Darmois, 1953)). Given n independent scalar random
variables X1, . . . , Xn that are not necessarily identically distributed. Consider two linear statistics
L1 =

∑
αiXi, L2 =

∑
βiXi, where αi, βi are constant coefficients. L1 and L2 are independent if

and only if the random variables Xj for which αjβj ̸= 0 follow a normal distribution.

Lemma 14 (Graphical implication of TIN (Dai et al., 2022)). Let Z, Y be two subsets of variables,
we have:

TIN(Z,Y) = min{|S| | S is a vertex cut from Anc(Z) to Y}. (3)

In a linear non-Gaussian system, the Darmois–Skitovich theorem (Darmois, 1953) plays a key role
in determining the independence of two linear statistics. It tells us that two linear combinations of
independent non-Gaussian variables are independent if they do not share any non-Gaussian com-
ponent. As ω⊤X is a linear combination of independent noises of V, characterizing all possible
independence that can be constructed from observational data requires understanding which noise
combinations can be represented by ω⊤X. To this end, we introduce a new definition that describes
the noise combinations attainable through linear combinations of observed variables.
Definition 10 (Constructible Noise Combination). A noise combination Z ⊆ E, which consists
of some independent noises of variables in V. The noise combination Z is constructible by some
observed variables X if there exists a coefficient vector ω such that ω⊤X is a linear combination
of the noise variables in Z with non-zero coefficients, i.e., ω⊤X =

∑
Ei∈Z νiEi(νi ̸= 0). In other

words, ω⊤X contains and only contains noise variables in Z.

Example 5. In the figure below, L is the latent confounder of two observed variables X and Y .
We have ∅, {EL, EX}, {EL, EY }, {EX , EY } and {EL, EX , EY } are constructible while the other
noise combinations are not.
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L

X Y

α

β

γ
(
X
Y

)
=

(
α 1 0

αβ + γ β 1

)(EL

EX

EY

)

∅ {EL} {EX} {EY } {EL, EX} {EL, EY } {EX , EY } {EL, EX , EY }
✓ × × × ✓ ✓ ✓ ✓

Table 2: All constructive noise combinations of the graph above.

Definition 11 (Bottleneck). Let J,K and B be three subsets of V that are not necessarily disjoint.
We say that B is a bottleneck from J to K if, for every j ∈ J and every k ∈ K, each directed path
from j to k includes some b ∈ B.

Definition 12 (Latest Minimal bottleneck (LM bottleneck)). Let J,K and B be three subsets of V
that are not necessarily disjoint. We say that a bottleneck B from J to K called minimal if every
bottleneck B′ from J to K has |B′| ≥ |B|. Furthermore, B is the (topologically) latest minimal
bottleneck (LM bottleneck) from J to K if for every minimal bottleneck B′ from J to K, B is the
bottleneck from B′ to K.

L1

L2

L3

L4

L5

X1

X2

X3

Example 6. In the figure above, {L3} is a minimal bottleneck from {L1, L2} to X. More precisely,
it is also the corresponding LM bottleneck. {L3, L5} is a minimal bottleneck from {L1, L5} to X
but it is not the corresponding LM bottleneck. Instead, it should be {L4, L5}.
Definition 13. We define the LM bottleneck-dominated set of B with respect to K as the set of all
nodes in V such that B is the LM bottleneck from the node to K. Formally,

DB,→K := {v ∈ V|B is the LM bottleneck from v to K} (4)

This is the maximal set of nodes for which B serves as a bottleneck toward K.
Lemma 15. Let J,K ⊆ V that are not necessarily disjoint. The LM bottleneck from J to K always
exists and is unique.

Proof. Build the standard vertex–splitting network G′ = (V′,E′) with capacities as follows. For
each v ∈ V, create two nodes v−, v+ and add a unit–capacity edge v−→ v+. For each u→ v ∈ E,
add an infinite–capacity edge u+ → v−. Add a source s and a sink t; for each j ∈ J add an
infinite–capacity edge s→ j−, and for each k ∈ K add an infinite–capacity edge k+ → t.

Then for any B ⊆ V, B is a bottleneck from J to K ⇐⇒ C(B) := {v− → v+ : v ∈ B}
is an s–t cut in G′. Moreover, the capacity of C(B) equals |B|. Indeed, every path j ⇝ k in G

lifts to a path s⇝ j− ⇝ · · ·⇝ k+ ⇝ t in G′ that necessarily traverses the split edge x−→ x+ for
each visited x; cutting precisely the split edges in C(B) blocks all lifted s–t paths iff every j ⇝ k
path in G meets B. Since only split edges have finite capacity, the cut capacity is |B|.
Therefore, a minimal bottleneck (of smallest cardinality) exists because it corresponds to a minimum
s–t cut in the finite network G′.

Let f be any maximum flow on G′ and let Rf be the residual network. Define

Tf := {x ∈ V ′ : t can reach x in Rf }, Sf := V ′ \ Tf .

Standard max–flow theory implies that (Sf , Tf ) is a minimum s–t cut, and that Tf is inclusion–wise
maximal among the sink sides of all minimum cuts (the “closest-to-t” minimum cut); in particular,
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Tf is unique. For completeness: if (S′, T ′) is any minimum cut, then edges from T ′ to S′ carry zero
residual capacity and edges from S′ to T ′ are saturated; hence every node reachable from t in Rf

must lie in T ′, so T ′ ⊆ Tf .

Map the t-closest minimum cut back to a vertex set:

B⋆ := { v ∈ V : v− ∈ Sf and v+ ∈ Tf }.

By construction, C(B⋆) is the cut (Sf , Tf ), hence B⋆ is a minimal bottleneck.

Let B′ be any other minimal bottleneck, and let (S′, T ′) be its corresponding minimum cut in G′.
From the previous paragraph T ′ ⊆ Tf (equivalently Sf ⊆ S′). Take any path b′ ⇝ k in G with
b′ ∈ B′ and k ∈ K; its lift in G′ goes from b′− ∈ S′ ⊇ Sf to k+ ∈ Tf , hence must cross the
cut (Sf , Tf ) through some split edge v−→ v+ with v ∈ B⋆. Therefore every b′ ⇝ k path passes
through B⋆, i.e., B⋆ is a bottleneck from B′ to K. Since B′ was an arbitrary minimal bottleneck,
B⋆ is the latest minimal (LM) bottleneck.

If B̃ is another LM bottleneck with minimum cut (S̃, T̃ ), then by the same argument its sink side T̃

must contain the sink side of every minimum cut, hence T̃ = Tf by the maximality/uniqueness of
Tf . Thus B̃ = B⋆. In summary, the LM bottleneck from J to K exists and is unique.

Lemma 16. A variable set Vb ⊆ V is an LM bottleneck from some variable set Vs to X if and
only if Vb itself is the LM bottleneck from Vb to X.

Proof. If Vb is the LM bottleneck from some Vs to X, then Vb is the LM bottleneck from Vb to
X. Since Vb is a bottleneck from Vs to X, every Vs⇝X path meets Vb. Consequently Vb is
trivially a bottleneck from Vb to X (every v ∈ Vb–X path contains v ∈ Vb at its first node).

We show that Vb is minimal for the pair (Vb,X). Assume, for contradiction, that there exists a
bottleneck C from Vb to X with |C| < |Vb|. Then for any s ∈ Vs and x ∈ X, each s⇝x path first
hits Vb and, from that hit, must pass C (because C meets every Vb⇝X path). Hence C is also a
bottleneck from Vs to X, contradicting the minimality of Vb for (Vs,X).

It remains to verify the latest property for (Vb,X). Let C be any minimal bottleneck from Vb to X.
We claim that every C⇝X path meets Vb. Indeed, otherwise there would exist c ∈ C and x ∈ X
with a path c⇝x avoiding Vb. Concatenate a path s⇝ c with s ∈ Vs whose internal nodes avoid
Vb (which exists because Vb is minimal for (Vs,X); otherwise c would be redundant in C), and
then follow the c⇝x path; this would give an Vs⇝X path avoiding Vb, contradicting that Vb is a
bottleneck from Vs to X. Thus Vb is a bottleneck from C to X; since C was arbitrary minimal for
(Vb,X), Vb is the LM bottleneck from Vb to X.

If Vb is the LM bottleneck from Vb to X, then Vb is the LM bottleneck from some Vs to X. Take
Vs := Vb. By assumption, Vb is a (latest) minimal bottleneck for (Vb,X); in particular it is a
bottleneck from Vs to X and, for every minimal bottleneck C from Vs to X, every C⇝X path
meets Vb. Hence Vb is the LM bottleneck from Vs to X.

Theorem 4 (Graphical criteria of the constructible noise combination). Any noise combination α
is constructible by X if and only if (i) ∃T ⊆ V s.t. T is the LM bottleneck of T to X in G. (ii)
∀Vi ∈ V, αi = 0⇐⇒ T is a bottleneck from Vi to X in G.

Proof. Constructibility =⇒ (i)–(ii). Assume α is constructible, let S := { i ∈ V : αi ̸= 0 } be the
support of α. By Lemma 15, the LM bottleneck T⋆ from S to X exists and is unique; by Lemma 16,
T⋆ is also the LM bottleneck from T⋆ to X. This gives (i).

It remains to show (ii). Fix i ∈ V. If αi = 0, then T⋆ is a bottleneck from Vi to X. Suppose to the
contrary that there exists a directed path P : i⇝ x avoiding T⋆ (with x ∈ X). Since T⋆ is the LM
bottleneck from S to X, it is, by definition, the bottleneck from every minimal bottleneck for (S,X)
to X; in particular, P can be concatenated with an S⇝ i path that avoids T⋆ up to i (otherwise i
would be separated from S by T⋆ and αi would inherit a nonzero contribution through i’s first hit
in T⋆). Consequently there exists at least one directed path from S to x that avoids T⋆ and can be
continued by P , contradicting that T⋆ intercepts all S⇝X paths. Hence every i⇝X path hits T⋆,
i.e., T⋆ is a bottleneck from Vi to X.
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If αi ̸= 0, then T⋆ is not a bottleneck from Vi to X. If every i⇝x path met T⋆, then any ω whose
latent terms have been canceled via constraints indexed by T⋆ would give νi = 0 (all contributions
must pass through T⋆ and are nullified), contradicting αi ̸= 0. Thus i has a path to some x ∈ X
that avoids T⋆.

Combining the two implications yields (ii) with T = T⋆.

(⇐) (i)–(ii) =⇒ constructibility. Assume (i)–(ii) hold for some T ⊆ V. Let

S := { i ∈ V : αi ̸= 0 } = { i ∈ V : T is not a bottleneck from Vi to X }.

By (i) and Lemma 16, T is the LM bottleneck from T to X and, therefore, from S to X as well
(latest with respect to any minimal bottleneck for (S,X)).

Consider the vertex–splitting network G′ used in Lemma 15. Let (Sf , Tf ) be the unique t-closest
minimum cut in G′ (induced by any maximum flow); it induces T by T = {v ∈ V : v− ∈
Sf , v

+ ∈ Tf}. Choose |T | distinct nodes {x1, . . . , x|T|} ⊆ X reached by the |T| vertex–disjoint
paths guaranteed by Menger’s theorem from T to X (tightness of the cut). Define ω supported
on {x1, . . . , x|T|} as the unique solution to the linear system that zeroes the contributions flowing
through T (the |T|×|T| system is non-singular because the T⇝ {xℓ} paths are vertex-disjoint).
Then 1) for any i such that T is a bottleneck from Vi to X, every i⇝X path must traverse some
t ∈ T, hence its contribution to νi is canceled by construction; thus νi = 0. 2) for any i such that T
is not a bottleneck from Vi to X, there exists a path P : i ⇝ x that avoids T. Since our constraints
only cancel flows that pass through T, the term corresponding to P survives so νi ̸= 0.

Finally, impose additional linear constraints (orthogonality) on ω to remove latent terms (these con-
straints are independent of the T-cancellation because the latter acts only on flows that cross T),
which is always possible as we only eliminate |T| directions associated with the cut while retaining
degrees of freedom on X. Thus α is constructible by X.

Corollary 1. Any noise combination α is constructible by X̃ ⊆ X if and only if (i) ∃T ⊆ V s.t. T
is the LM bottleneck of T to X in G. (ii) ∀Vi ∈ V, αi = 0⇐⇒ T is a bottleneck from Vi to X in G.

A.3.2 ILLUSTRATION OF NON-IDENTIFIABILITY ISSUE ON FIG. 1A AND 1B

Z
Y {X1} {X2} {X3} {X1, X2} {X1, X3} {X2, X3} {X1, X2, X3}

{X1} 1 1 1 2 2 2 2
{X2} 1 1 1 2 2 2 3
{X3} 1 1 1 2 2 2 3

Table 3: TIN value of different Y and Z of Fig. 1a

Z
Y {X1} {X2} {X3} {X1, X2} {X1, X3} {X2, X3} {X1, X2, X3}

{X1} 1 1 1 2 2 2 2
{X2} 1 1 1 2 2 2 3
{X3} 1 1 1 2 2 2 3

Table 4: TIN value of different Y and Z of Fig. 1b

Proof. We use G1 and G2 to represent the causal graph in Fig. 1a, and Fig. 1b, respectively. By some
simple calculations, we can find that both G1 and G2 have no rank-deficiency constraints. Thus, for
each pair of (Z,Y), rankG1

(ΣZ,Y) = min(Z,Y) = rankG2
(ΣZ,Y). In addition, as we can see in

Table 3 and 4, G1 and G2 have the same TIN value for each (Z,Y). As GIN(Z,Y) is satisfied if and
only if TIN(Z,Y) = rank(ΣZ,Y) < |Y| (Dai et al., 2022), whether the GIN condition is satisfied
for a certain pair (Z,Y) keeps the same in G1 and G2.
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A.3.3 PROOF OF LEMMA 1

Proof. NS(Z) = Anc(Z). By Theorem 4, Anc(Z) is constructible. Therefore, according to the
definition of constructible noise combination, we can always find a non-zero coefficient ω2 such that
NS(ω⊤

2 Z) = Anc(Z). Since ω⊤
1 Y⊥⊥Z, we naturally obtain ω⊤

1 Y⊥⊥ω⊤
2 Z.

A.3.4 PROOF OF REMARK 1

Proof. By Theorem 4, we can enumerate all constructive noise combinations by finding all LM
bottlenecks. All LM bottlenecks can be identified by testing for Lemma 16. All constructive noise
combinations by {X1, X2}, {X1, X3} and {X2, X3} in Fig. 1a are shown in Tab. 5. All constructive
noise combinations by {X1, X2}, {X1, X3} and {X2, X3} in Fig. 1b are shown in Tab. 6.

Z = {X1, X2} ∅ {L} {X1} {X2}
{EL, E1, E2} {E1, E2} {EL, E2} {EL, E1}

Z = {X1, X3} ∅ {L} {X1} {X3}
{EL, E1, E2, E3} {E1, E2, E3} {EL, E2, E3} {EL, E1, E2}

Z = {X2, X3} ∅ {L} {X2} {X3}
{EL, E1, E2, E3} {E1, E2, E3} {EL, E3} {EL, E1, E2}

Table 5: All constructive noise combinations by {X1, X2}, {X1, X3} and {X2, X3} in Fig. 1a.
Each constructive noise combination is shown together with its corresponding LM bottleneck in a
pairwise manner.

Z = {X1, X2} ∅ {L} {X1} {X2}
{EL, E1, E2, E3} {E1, E2, E3} {EL, E2, E3} {EL, E1, E3}

Z = {X1, X3} ∅ {L} {X1} {X3}
{EL, E1, E3} {E1, E3} {EL, E3} {EL, E1}

Z = {X2, X3} ∅ {L} {X2} {X3}
{EL, E1, E2, E3} {E1, E2, E3} {EL, E1, E3} {EL, E2}

Table 6: All constructive noise combinations by {X1, X2}, {X1, X3} and {X2, X3} in Fig. 1b.
Each constructive noise combination is shown together with its corresponding LM bottleneck in a
pairwise manner.

From Tab. 5, when Z = {X1, X2},Y = {X2, X3}, we can construct NS(ω⊤
1 Z) = {E1, E2} and

NS(ω⊤
2 Y) = {EL, E3} with non-zero ω1, ω2 ∈ R2. In contrast, in Tab. 6, each pair of constructive

noise combinations by Z and Y has shared noise components, thus cannot be independent. The
conclusion for Z = {X1, X3} and Y = {X2, X3} can be analyzed similarly.

A.3.5 PROOF OF LEMMA 2

Lemma 2 (Indeterminacy of CICA). Given Assump. 1, let X be m observed variables, W1,W2 ∈
Rm×m be two p-order CICA solutions for X. The following two statements are equivalent:

(i) There exists p latent variables L such that, writing Z(k) := WkX, the components of Z(k)

are mutually conditionally independent given L for k ∈ {1, 2}.
(ii) There exist a permutation matrix Pπ (for some permutation π of [m]) and a non-singular

diagonal matrix D such that W2 = PπDW1.

Proof. Under Assumption 1 there exist an invertible A ∈ Rm×m, a latent vector L ∈ Rp, a matrix
M ∈ Rm×p, and a noise E = (E1, . . . , Em)⊤ with mutually independent coordinates, E⊥⊥L, finite
non-zero variances, and with at most one Gaussian coordinate, such that X = AS and S = ML+E.
For k ∈ {1, 2} write Z(k) := WkX and set Bk := WkA (hence Z(k) = BkS).
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For every ℓ, Z(k) | {L = ℓ} = Bk(ML + E) | {L = ℓ} = (BkM) ℓ + BkE. Thus, for each k,
the coordinates of Z(k) are mutually independent given L if and only if the coordinates of BkE are
mutually independent (a deterministic shift (BkM)ℓ does not affect independence). In particular,
we have an ICA model with independent sources E and mixing matrices Bk.

(⇒) Assume (i) holds: there exists a single latent L such that Z(k) has mutually independent coor-
dinates conditional on L for k = 1, 2. By the reduction above, both B1E and B2E have mutually
independent coordinates. Since E has mutually independent coordinates with at most one Gaussian,
the standard ICA identifiability implies that the only invertible linear maps sending E to a vector
with independent coordinates are permutation–scalings. Concretely, there exists a permutation ma-
trix Pπ and a non-singular diagonal matrix D such that B2 = PπDB1. Multiplying on the right
by A−1 (recall Bk = WkA) yields W2 = PπDW1.

(⇐) Assume (ii) holds: W2 = PπDW1 with Pπ a permutation and D diagonal nonsingular. Let
L be any latent vector for which W1 is a p-order CICA solution (which exists by assumption that
W1 is a CICA solution). Then for almost every ℓ,

Z(2) | {L = ℓ} = W2X | {L = ℓ} = PπDW1X | {L = ℓ} = PπDZ(1) | {L = ℓ}.

Since permutation and nonzero per-coordinate scaling preserve mutual independence of coordinates,
the coordinates of Z(2) are mutually independent given L whenever those of Z(1) are. Hence (i)
holds. Therefore, the two statements are equivalent.

A.3.6 PROOF OF LEMMA 3

Lemma 3. Let X be m observed variables, and W be a p-order CICA solution of X. Let
X′ = WX,Y and Z are two subsets of X′, then if max{|Y|, |Z|} > p, ω⊤

1 Y
′⊥⊥ω⊤

2 Z
′ has a non-

zero solution (ω1, ω2) for (Y′,Z′), where Y′ = {Xi|
∑

Xk∈Y Wk,i ̸= 0}, Z′ are defined similarly.

Proof. Y = WY,:Y
′, Z = WZ,:Z

′, Y and Z are conditional independent given p latent variables.
Since max{|Y|, |Z|} > p, without losing generality, we assume |Y| > p. Then we can find a
non-zero ω1 that ω⊤

1 Y⊥⊥Z. By Lemma 1, there exist a non-zero ω2 that makes ω⊤
1 Y⊥⊥ω⊤

2 Z. Thus,
ω⊤
1 WY,:Y

′⊥⊥ω⊤
2 WZ,:Z

′.

A.3.7 PROOF OF LEMMA 4

Lemma 4. For an observed variable set X with |X| = m, denote p = pmin(X). Suppose m ≥
2p + 2, and set X′ := WX, then W is a p-order CICA solution of X if and only if for every pair
of disjoint coordinate subsets X1,X2 of X′ with |X1| = |X2| = p + 1, det(ΣX1,X2) = 0, where
Σ := Cov(X′) denotes the covariance matrix on X′ and ΣX1,X2 is the (p+1)× (p+1) sub-matrix
of Σ with rows indexed by X1 and columns by X2.

Proof. (⇒) Necessity. If W is a p-order CICA solution, there exist a p-dimensional latent vector
L and independent noises E = (E1, . . . , Em) (independent of L) such that Zi = a⊤i L + Ei, i =

1, . . . ,m. Hence Σ = AΣLA
⊤︸ ︷︷ ︸

rank≤p

+(diag(Var(Ei))︸ ︷︷ ︸
diagonal

. For disjoint X1,X2 the diagonal term vanishes,

so ΣX1,X2 = AX1ΣLA
⊤
X2

has rank at most p. Therefore det(ΣX1,X2) = 0 for every such pair.

(⇐) Sufficiency. Assume that for every disjoint X1,X2 of size p + 1, rank(ΣX1,X2
) ≤ p (equiv-

alently, all (p+1)-minors vanish). By the trek separation theorem, for each such pair there exists a
t-separating pair (L1, L2) with |L1| + |L2| ≤ p that t-separates X1 from X2. Since p = pmin(X),
no separator of size < p works uniformly; hence the minimum size is exactly p for all these pairs.

Consider some (XA,XB) with XA ∩ Xb = ∅ and both |XA| and |Xb| equals p + 1, let (L1, L2)
be a minimal t-separator for this pair, so |L1|+ |L2| = p. We claim that (L1, L2) t-separates every
other disjoint (XC ,XD) with | · | = p + 1 and is minimal for that pair as well. Suppose (L1, L2)
does not t-separate XC from XD. Then there exists a trek from some c ∈ XC to d ∈ XD avoiding
L1 ∪ L2. Because |L1|+ |L2| = p while |XA| = |XB | = p+ 1, Menger’s theorem for treks imply
that there are p vertex-disjoint treks connecting XA \ {a} to XB \ {b} for some a ∈ XA, b ∈ XB ,
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all avoiding L1 ∪ L2. Together with the trek c⇝ d (also avoiding L1 ∪ L2) we obtain p+1 vertex-
disjoint treks between the modified sets X′

A = (XA \ {a}) ∪ {c} and X′
B = (XB \ {b}) ∪ {d},

hence rank(ΣX′
A,X′

B
) ≥ p+ 1, contradicting our hypothesis. Thus (L1, L2) t-separates every such

pair. If for some (XC ,XD) there were a smaller separator (L′
1, L

′
2) with |L′

1| + |L′
2| < p, then

rank(ΣXC ,XD
) ≤ |L′

1| + |L′
2| < p, again contradicting the assumption that all those ranks equal

p by minimality of p = pmin(X). Hence the same (L1, L2) is a minimal t-separator (of size p) for
every such pair. We fix this global separator (L1, L2).

Let i ̸= j be nodes outside L1 ∪ L2. If there existed a trek from i to j avoiding L1 ∪ L2, then by
the same replacement argument as above we could build p+1 vertex-disjoint treks between some
disjoint (p+1)-subsets, forcing a cross-rank≥ p+1, which is a contradiction. Therefore, every trek
from i to j meets L1 ∪ L2, i.e., all covariance between distinct observed coordinates flows through
(L1, L2). Equivalently, Σ admits a decomposition Σ = AΣL A⊤ + D with rank(AΣLA

⊤) ≤ p
and diagonal D collecting variances.

Under Assumption 1, noises are mutually independent and independent of the latents. The diagonal
D found in Step 2 implies that each observed coordinate has a unique private noise, and distinct
coordinates share no private noise. Therefore, we may write, for some p-vector L, Zi = a⊤i L +
Ei, E = (E1, . . . , Em) mutually independent, E⊥⊥L. Thus the coordinates of Z are mutually
independent given L, i.e., W is a p-order CICA solution.

Combining both directions proves the equivalence.

A.3.8 PROOF OF LEMMA 5

Lemma 5. For an observed variable set X with |X| = m, suppose that pmin(X) = 1 and m ≥ 3

hold, set X′ ≜WX, then the invertible matrix W is a 1-order CICA solution of X if and only if for
every ordered triple (X ′

i, X
′
j , X

′
k) of X′, {X ′

i, X
′
j} and X ′

k satisfies the Triad constraint.

Proof. (⇒) Necessity. If W is a 1-order CICA solution, then for some latent L we have Zi =
m̃iL + Ẽi with Ẽ = (Ẽ1, . . . , Ẽm) mutually independent, Ẽ⊥⊥L, and Var(Ẽi) ∈ (0,∞). For
i ̸= j ̸= k, Cov(Zj , Zk) = m̃jm̃kVar(L) and hence

E(i,j|k) = m̃kVar(L) (m̃jZi − m̃iZj) = m̃kVar(L) (m̃jẼi − m̃iẼj),

which depends only on (Ẽi, Ẽj) and is independent of Zk = m̃kL+ Ẽk. Thus the Triad constraint
holds for all distinct triples.

(⇐) Sufficiency. Assume the Triad constraint holds for every distinct (i, j, k). Fix k and set

βik :=
Cov(Zi, Zk)

Var(Zk)
, E

(k)
i := Zi − βikZk (i ̸= k).

Then for any distinct i, j, k, E(i,j|k) = Var(Zk)
(
βjkE

(k)
i − βikE

(k)
j

)
⊥⊥ Zk. Varying (i, j), the

family of non-degenerate linear forms {βjkE
(k)
i − βikE

(k)
j }i ̸=j ̸=k is independent of Zk. By the

classical characterization of independence of linear forms for non-Gaussian sources, this is only
possible if the vector E(k) = (E

(k)
i )i ̸=k has mutually independent coordinates and is independent

of Zk. Therefore, we obtain a one-factor representation

Zi = βik L+ E
(k)
i , L := Zk, E(k)⊥⊥L, and {E(k)

i }i ̸=k mutually independent,
which means the coordinates of Z are mutually independent given L. Hence W is a 1-order CICA
solution. Combining both directions proves the claim.

A.3.9 PROOF OF LEMMA 6

Lemma 6. I−BX,X is a pmin(X)-order CICA solution of X with latent conditional set LPa(X).

Proof. In the setting of our paper, A−1
X,X = I−BX,X. In the proof of Theorem 3, we prove that

A−1
X,XX deletes all the outgoing edges from X graphically. Therefore, A−1

X,XX is conditional in-
dependent given LPa(X). Given Condition 1 holds, pmin(X) = |LPa(X)|. Thus, I−BX,X is a
pmin(X)-order CICA solution of X with latent conditional set LPa(X).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3.10 PROOF OF LEMMA 7

Lemma 7. Suppose W is a pmin(X)-order CICA solution of X whose latent conditional set is
LPa(X), there exists a unique row permutation matrix P that makes PW whose diagonal elements
have non-zero values, simultaneously.

Proof. By Lemma 2 and Lemma 6, we can find a permutation matrix P and non-singular diagonal
matrix D that makes W = PD(I − BX,X). Subsequent proofs can be analogized to Lemma 1
in (Shimizu et al., 2006).

A.3.11 PROOF OF LEMMA 8

Lemma 8. I−BX,X ∈ argmin{∥W∥0 : W is a pmin(X)-order CICA solution of X}. .

Proof. For ω ∈ Rm, denote X′ = α⊤E = ω⊤X = ω⊤AE = ω⊤(I−BX,X)E, where α ∈
Rm+d. As AX,X is a non-singular matrix, denote the row indices corresponding to X as αX for
convenience, then we have A⊤

X,Xω = αX, ω = A−T
X,XαX = (I−BX,X)TαX = αX −BT

X,XαX.
αL is defined similarly, then αL = A⊤

L,Xω = A⊤
L,X(I−BX,X)TαX. In summary, we can represent

ω and αL as the linear combination of αX:[
αL

αX

]
=

[
A⊤

L,X

A⊤
X,X

]
ω =⇒

[
αL

ω

]
=

[
A⊤

L,XA−T
X,X

A−T
X,X

]
αX (5)

Here, since we focus mainly on the sparsity of W (i.e., ∥W∥0) rather than the specific value in W,
we use 0 to represent a value 0, and × represents a nonzero value as (Ghassami et al., 2020).

According to Lemma 5, X ′ is conditionally independent given a latent variable. Then, for W =
A−1

X,X, denote its corresponding noise coefficients of observed variables αX = [αX,1, αX,2, · · · ,
αX,m], we have αX,i = [0, · · · , 0︸ ︷︷ ︸

(i−1)-times

,×, 0, · · · , 0︸ ︷︷ ︸
(m−i)-times

]⊤, αL,i = [×, · · · ,×]⊤. For other feasible solu-

tions except for A−1
X,X, it corresponds to choosing d variables in d+m independent noises.

If W is a 1-order CICA solution whose latent conditional set is LPa(X), then we can find a permuta-
tion matrix P and non-singular diagonal matrix D that makes W = PDA−1

X,X. As the permutation
matrix P and non-singular diagonal matrix D do not change the sparsity pattern of W, we can
analyze W = A−1

X,X directly for convenience.

For the j-th row of W, we have exactly one × in each column of αX. As A−1
X,X = I − BX,X,

W = (I−B⊤
X,X)αX. For ∀t ∈ [m], Wj,t = (Ij,: −Bj,X)αX

:,t = (Ij,t −Bj,t)α
X
t,t.

Case (i): If t = j (Ij,t ̸= 0), then Wj,j = αX
j,j = ×.

Case (ii): If Xt ∈ Pa(Xj) (Bj,t ̸= 0), then Wj,t = −Bj,tα
X
t,t = ×.

Case (iii): If Xt does not fall into any of the two cases above, then Wj,t = 0.

In summary, ∀t ∈ [m], Wj,t ̸= 0⇐⇒ Xt ∈ {Xj} ∪ Pa(Xj). Thus, ∥W∥0 = |X|+ |GX|.
If W is a 1-order CICA solution whose latent conditional set is not LPa(X), then X′ is conditionally
independent given another latent variable than L. Without loss of generality, we assume that X′

is conditionally independent given the exogenous noise of Xk, Ek. Therefore, Ek ∈ NS(X ′
j)

for any j ∈ [m]. In other words, we have αX,j ∈ Rm has a × in its k-th position. Besides,
exact only one αX,j has a × in j-th position for j ∈ [m] \ {k}. On the other hand, we have
αL = [ 0, · · · , 0︸ ︷︷ ︸

(k−1)-times

,×, 0, · · · , 0︸ ︷︷ ︸
(m−k)-times

]. Essentially, in this scenario we exchange the position between EL

and Ek compared to W ∼ A−1
X,X.
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For example, Equ. (6) presents an example of αX when k = 3.

× 0 0 0 · · · 0
0 × 0 0 · · · 0
× × × × · · · ×
0 0 0 × · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ×

 (6)

Based on the expression of αX above, we can now check the sparsity of ∥W∥ of each row.

For the k-th row of W, we have exactly one × in αX
:,k, in the k-th rows. In addition, αL

:,k = ×.
Therefore, the support of αL

:,k is exactly the same as in the scenario W ∼ A−1
X,X.

For the j-th column of W with j ̸= k, we have two× in αX
:,j , in the j-th and k-th rows, respectively.

As A−1
X,X = I −BX,X, W = (I −B⊤

X,X)αX. For ∀t ∈ [m], Wt,j ̸= 0 ⇐⇒ (It,: −Bt,X)αX
:,j ̸=

0⇐⇒ (It,j −Bt,j)α
X
j,j + (It,k −Bt,k)α

X
k,j ̸= 0.

Case (i): If t = j (It,j ̸= 0, It,k = 0), then Wt,j = (Ij,j − Bj,j)α
X
j,j + (Ij,k − Bj,k)α

X
k,j =

αX
j,j −Bj,kα

X
k,j . On the other hand,

αL
:,j = A⊤

L,X(I−B⊤
X,X)αX

:,j

= A⊤
L,X(I:,j −B⊤

X,j)α
X
j,j +A⊤

L,X(I:,k −B⊤
X,k)α

X
k,j

= (A⊤
L,j −A⊤

L,XB⊤
X,j)α

X
j,j + (A⊤

L,k −A⊤
L,XB⊤

X,k)α
X
k,j

= 0

If Wj,j = 0, as αX
j,j and αX

k,j are non-zero, then the following system of equations has a non-zero
solution x1 = αX

j,j , x2 = αX
k,j .{

x1 − Bj,kx2 = 0

(A⊤
L,j −A⊤

L,XB⊤
X,j)x1 + (A⊤

L,k −A⊤
L,XB⊤

X,k)x2 = 0
(7)

Therefore, we have the determinant of the coefficient matrix being zero, that is, (A⊤
L,k −

A⊤
L,XB⊤

X,k) + (A⊤
L,j −A⊤

L,XB⊤
X,j)Bj,k = 0. Here, A⊤

L,k −A⊤
L,XB⊤

X,k measures the total causal
effects of L to Xk without passing through other observed variables, (A⊤

L,j − A⊤
L,XB⊤

X,j)Bj,k

measures the total causal effects of L to Xk without passing through X \ {Xj} and end with Xj .
Therefore, the causal effect of L on Xk is zero given all observed variables other than Xj and Xk.
In other words, L⊥⊥Xk|X \ {Xk, Xj} and Rank(ΣL,Xk|X\{Xk,Xj}) = 0. However, this rank con-
straint is not a generic constraint, which violates the rank faithfulness assumption. Therefore, we
have Wj,j ̸= 0 in contradiction.

Case (ii): If t = k (It,j = 0, It,k ̸= 0), then Wt,j = (Ik,j − Bk,j)α
X
j,j + (Ik,k − Bk,k)α

X
k,j =

−Bk,jα
X
j,j +αX

k,j . Similarly to case (i), if Wk,j = 0, we have (A⊤
L,k−A⊤

L,XB⊤
X,k)Bk,j +(A⊤

L,j−
A⊤

L,XB⊤
X,j) = 0, which means the causal effect of L on Xj is zero given all observed variables

other than Xj and Xk. It implies Rank(ΣL,Xj |X\{Xk,Xj}) = 0. As this rank constraint is not a
generic constraint and violates the rank faithfulness assumption, we have Wk,j ̸= 0.

Case (iii): If Xt ∈ Ch(Xj) \ {Xk} (Bt,j ̸= 0), then Wt,j = −Bt,jα
X
j,j − Bt,kα

X
k,j . Simi-

larly to case (i), if Wt,j = 0, we have (A⊤
L,k − A⊤

L,XB⊤
X,k)Bt,j = (A⊤

L,j − A⊤
L,XB⊤

X,j)Bt,k.
Then Rank(Σ{L,Xt},{Xk,Xj}|X\{Xt,Xk,Xj}) = 1, which violates the rank faithfulness assumption.
Therefore, we have Wt,j ̸= 0.

Case (iv): If Xt ∈ Ch(Xk) \ {Xj} (Bt,k ̸= 0), then Wt,j = −Bt,jα
X
j,j − Bt,kα

X
k,j . Similarly to

case (iii), if Wt,j = 0, we have (A⊤
L,k −A⊤

L,XB⊤
X,k)Bt,j = (A⊤

L,j −A⊤
L,XB⊤

X,j)Bt,k. Therefore,
we can prove Wt,j ̸= 0 as Rank(Σ{L,Xt},{Xk,Xj}|X\{Xt,Xk,Xj}) = 1 violates the rank faithfulness
assumption.
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Case (v): If Xt does not fall into any of the four cases above, then Wt,j = 0.

In summary, ∀t ∈ [m] \ {k}, Wt,j ̸= 0 ⇐⇒ Xt ∈ {Xj , Xk} ∪ Ch(Xj) ∪ Ch(Xk). As {Xj} ∪
Ch(Xj) ⊆ {Xj , Xk} ∪ Ch(Xj) ∪ Ch(Xk), we have ∥A−1

X,X∥0 ≤ ∥W∥0. Therefore, I−BX,X ∈
argmin{∥W∥0 : W is a pmin(X)-order CICA solution of X}.

A.3.12 PROOF OF LEMMA 9

Lemma 9. If Condition 2 holds, W ∈ argmin{∥W̃∥0 : W̃ is a pmin(X)-order CICA solution of
X} if and only if we can find a permutation matrix P and non-singular diagonal matrix D that
makes W = PD(I−BX,X).

Proof. First, during the proof in Lemma 8 we obtain the following results. If W is a 1-order CICA
solution whose latent conditional set is LPa(X), ∀t ∈ [m] \ {k}, Wt,j ̸= 0 ⇐⇒ Xt ∈ {Xj} ∪
Ch(Xj). If W is a 1-order CICA solution whose latent conditional set is not LPa(X), ∀t ∈ [m] \
{k}, Wt,j ̸= 0 ⇐⇒ Xt ∈ {Xj , Xk} ∪ Ch(Xj) ∪ Ch(Xk). If Xk ∈ Ch(Xj) and Ch(Xk) = ∅,
{Xj , Xk}∪Ch(Xj)∪Ch(Xk) = {Xj}∪Ch(Xj), thus Wt,j has the exactly same sparsity pattern.
If Condition 2 holds, then there exist a Xj such that the constraint Xk ∈ Ch(Xj) and Ch(Xk) = ∅
does not hold, {Xj} ∪ Ch(Xj) ⊊ {Xj , Xk} ∪ Ch(Xj) ∪ Ch(Xk), then the CICA solution whose
latent conditional set is LPa(X) has a strictly small number of non-zero entries.

A.3.13 PROOF OF THEOREM 1

Theorem 1. All latent variables in LPa(X) can be identified. Besides, the causal edges of LPa(X)
to X and the causal edges between the observed variables are also identifiable.

Proof. By Lemma 8, if Condition 2 is satisfied, we can identify I − BX,X by adding sparsity
constraints and induce the causal structure. On the other hand, if Condition 2 is not satisfied, I −
BX,X is not identifiable. That is, we can find another p-order CICA solution W′ with the same
number of non-zero entries as I−BX,X. Review the results obtained in the proof of Lemma 8, ∀t ∈
[m]\{k}, Wt,j ̸= 0⇐⇒ Xt ∈ {Xj , Xk}∪Ch(Xj)∪Ch(Xk). If Xk ∈ Ch(Xj) and Ch(Xk) = ∅,
{Xj , Xk}∪Ch(Xj)∪Ch(Xk) = {Xj}∪Ch(Xj), thus Wt,j has the exactly same sparsity pattern.
If the constraint Xk ∈ Ch(Xj) and Ch(Xk) = ∅ holds for every Xj (Condition 2 does not hold),
then the whole W exist exactly same sparsity pattern. In other words, although W′ has different
parameters with I−BS,S, their support matrix remains the same. Therefore, in both cases, the causal
structure among observed variables BX,X within a causal cluster is identifiable. Given Condition 1
holds, pmin(X) = |LPa(X)|, thus we can identify each latent variable in LPa(X). Putting all these
partial results together, all the latent variables in LPa(X), the causal edges of LPa(X) to X and the
causal edges between the observed variables can be identified.

A.3.14 PROOF OF LEMMA 10

Lemma 10. Let L be a latent variable discovered in the current iteration. Denote S = Ch(L). Let
Sk have the highest causal order in S whose index in S is k, and W be the sparsest pmin(S)-order
CICA solution of S. P is the permutation matrix that makes PW have non-zero diagonal elements,
simultaneously. Denote Z = PWS, then the value of Zk can be a suitable surrogate for L.

Proof. By Lemma 8, if Condition 2 is satisfied, we can identify I − BX,X by adding sparsity
constraints and induce the causal structure. Then PW deletes all outgoing edges from S and makes
Zk a pure child of L. As shown in (Xie et al., 2024), it can be a suitable surrogate for L. On the
other hand, if Condition 2 is not satisfied, I−BX,X is not identifiable. Review the results obtained
in the proof of Lemma 8, ∀t ∈ [m] \ {k}, Wt,j ̸= 0⇐⇒ Xt ∈ {Xj , Xk} ∪Ch(Xj) ∪Ch(Xk). If
Xk ∈ Ch(Xj) and Ch(Xk) = ∅, {Xj , Xk}∪Ch(Xj)∪Ch(Xk) = {Xj}∪Ch(Xj), thus Wt,j has
the exactly same sparsity pattern. If the constraint Xk ∈ Ch(Xj) and Ch(Xk) = ∅ holds for every
Xj (Condition 2 does not hold), then the whole W exist exactly same sparsity pattern. In other
words, although W′ has different parameters with I−BS,S, their support matrix remains the same.
Essentially, W′S can be interpreted as swapping the roles of L and Ek on I−BS,SS. Although L
is not contained in the latent conditional set, it is still included in Zk. Therefore, in both cases, Zk

can be a suitable surrogate for L.
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A.3.15 PROOF OF THEOREM 2

Theorem 2. Suppose Condition 1 holds, then the underlying causal graph G is fully identifiable,
including both latent variables and their causal relationships.

Proof. Denote Dis(Vi) the length of the longest direct path from Vi to X. ∀Xi ∈ X,Dis(Xi) = 0.
We collect Yk = {Vi|Dis(Vi) ≤ k}. The proof is based on mathematical induction:

(1) Base: for k = 1, we use Theorem 1 to identify the common latent parents of observed variables
and related causal edges. In other words, we can correctly identify the induced sub-graph of G with
nodes in Y1.

(2) Induction: assume we have correctly identified the induced sub-graph of G with nodes in
{Vi|Dis(Vi) ≤ k}, then using Lemma 10 to find the suitable surrogate for latent variables in
Yk \ Yk−1, we can continue to use Theorem 1 to local the latent variables in Yk+1 and related
causal edges, which concludes the induction.

Therefore, the underlying causal graph G is fully identifiable, including both latent variables and
their causal relationships.

A.3.16 PROOF OF THEOREM 3

Theorem 3. Let the graph obtained after removing all the outgoing edges of X in G be named by
G′, which form several connected components of observed variables X′

C1
,X′

C2
, · · · ,X′

Ck
, where k

be the number of connected components in G′. For an ISA solution W, let WX = (Z⊤
1 , . . . ,Z

⊤
k )

⊤.
Then there is a permutation π of [k] s.t. for any i ∈ [k], ∃Wi ∈ GL(|Ci|) makes Zπ(i) = WiX

′
Ci

.

Proof. Based on the Schur complement, we have

A−1
X,X = (I−BX,X)−BX,L(I−BL,L)

−1BL,X (8)

Denote Z = A−1
X,XX. Then we have NS(Zi) = {Ej |Lj has a directed path to Xi whose interme-

diate nodes, if exist, are all latent nodes}. The reasons are as follows.

Zi =

|X|∑
j=1

(A−1
X,X)i,jXj

=

|X|∑
j=1

((I−BX,X)−BX,L(I−BL,L)
−1BL,X)i,jXj

= Xi −
∑

Xj∈X\{Xi}

(Bi,j +Bi,L(I−BL,L)
−1BL,j)Xj

(9)

Considering all directed paths into Xi, we categorize them into different groups according to the
topologically last observed nodes before Xi on this path. For example, if there is a path P1 : Xt →
L1 → Xk → L2 → Xi, we put this path into the group corresponding to Xk, named G[Xk]. If
there are no observed nodes before Xi in this path, we put this path in the group corresponding to ∅,
named G[∅]. In total, there are |X| groups:

⋃
Xk∈X\{Xi} G[Xk] ∪ G[∅].

Xi is a cumulative sum of all directed paths into Xi. The contribution of each directed path in this
sum is the noise of the start point times the path coefficient. Obviously, any path will be placed in
the group

⋃
Xk∈X\{Xi} G[Xk]∪G[∅]. Then, consider what the subtrahend in the last line of Equ. (9)

denotes. Bi,j denotes the direct causal effect from Xj to Xi, Bi,L(I − BL,L)
−1BL,j denotes the

indirect causal effect from Xj to Xi through latent variables. Consequently, (Bi,j + Bi,L(I −
BL,L)

−1BL,j)Xj includes all causal effects in Xi from Anc(Xi) whose last observed node before
Xi in the causal path is Xj . This term is exactly the sum of causal effects on Xi by paths in G[Xj ].
As a consequence, Zi equals the sum of causal effects on Xi by the paths in G[∅]. That is, those
directed paths whose intermediate nodes are all latent.

Therefore, A−1
X,X deletes all the outgoing edges from X and forms several connected components

which correspond to the subspace in ISA’s definition. Since ISA does not pose any constraints within
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a subspace, any invertible matrix is valid. Since ISA exists block permutation indeterminacy (Theis,
2006), then we can conclude that there is a permutation π of [k] s.t. for any i ∈ [k], ∃Wi ∈ GL(|Ci|)
makes Zπ(i) = WiX

′
Ci

.

A.3.17 PROOF OF REMARK 2

Remark 2. The two causal graphs in Fig. 1a and Fig. 1b cannot be identified by ISA.

Proof. For the causal graphs in Fig. 1a and 1b, after removing all the outgoing edges of X,
X1, X2, X3 are still connected due to the existence of L. According to Theorem 3, ∀W ∈ GL(3)
is an ISA solution in both causal graphs. Consequently, the two causal graphs in Fig. 1a and Fig. 1b
cannot be identified by ISA.

B ILLUSTRATIONS OF ALGORITHMS

B.1 MERGING RULES

Proposition 1 (Merging Rules). Let A be the active variable set and C1 and C2 be two causal
clusters. C1 and C2 share the common latent parent, if one of the following rules holds.

R1. 1) C1 and C2 are both pure clusters, and 2) for any subset C̃ ⊆ C1∪C2 with |C̃| = 2, (A\C̃, C̃)
follows the GIN condition.

R2. 1) One of the clusters is a pure cluster and the other is not, e.g., C1 is pure and C2 is impure,
and 2) ∀ Vi ∈ C1 and ∀ Vj ∈ C2, (A\{C2, Vi}, {Vi, Vj}) follows the GIN condition.

R3. 1) C1 and C2 both are impure clusters, and 2) for ∀ C̃ ⊆ C1 ∪ C2 with |C̃| = 2, (A\{C1 ∪
C2}, C̃) follows the GIN condition.

Otherwise, C1 and C2 do not share the common latent parent.

Corollary 2. Let L1 be a latent variable that was introduced in previous iterations, C2 be a new
cluster, and A be the active variable set in the current iteration. Suppose cluster C1 was a subset of
Ch(L1) found in previous iterations. Then C1 and C2 share the common latent parent L1 if setting
A = A ∪C1\L1 be the active set, one of the three rules in Proposition 2 holds. Otherwise, C1 and
C2 do not share the common latent parent.

B.2 PSEUDO CODE

Algorithm 2 CICA-LiNGAM

Require: Observed variables X.
Ensure: Fully identified causal structure G.

1: Initialize active variable set A = X and G = ∅.
2: while A ̸= ∅ do
3: C← FindCausalClusters(A); (see Algorithm 3)
4: G← SparseCICA(C, G); (see Algorithm 4)
5: G← DetermineLatentVariables(C,A, G). (see Algorithm 5)
6: A← UpdateActiveData(A, G). (see Algorithm 6)
7: end while
8: Return G.

B.3 DISCUSSION OF OPTIMIZATION CRITERION OF CICA

Definition 14 (Cumulant (Brillinger, 2001)). Let X = (X1, X2, . . . , Xn) be a random vector of
length n. The k-th order cumulant tensor of X is defined as a n × · · · × n (k times) table, C(k),
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Algorithm 3 Finding Causal Clusters

Require: Active variable set A.
Ensure: The set of causal clusters C.

1: Initialize C = ∅ and the group size GrLen = 2;
2: while |A| ≥ GrLen + 1 do
3: repeat
4: Select a subset Y from A such that |Y| = GrLen;
5: if (A \Y, Ỹ) follows GIN condition for ∀Ỹ ∈ Y such that |Ỹ| = 2 then
6: Add Y into C;
7: end if
8: until All subsets with group length GrLen in A have been selected;
9: A = A \C; GrLen = GrLen + 1;

10: end while
11: Return C;

Algorithm 4 Sparse CICA

Require: The set of causal clusters C, and partial graph G.
Ensure: Updated partial graph G.

1: for each Ci ∈ C do
2: W← sparsest CICA solution on Ci;
3: P← the permutation matrix that makes diag(PW) non-zero simultaneously;
4: W̃← divide each row of PW by its corresponding diagonal element;
5: Compute an estimate B̂ using B̂ = I− W̃;
6: Update G := G ∪ {j → i|B̂i,j ̸= 0};
7: end for
8: Return G;

whose entry at position (i1, · · · , ik) is

C(k)i1,··· ,ik = cum(Xi1 , . . . , Xik) =
∑

(D1,...,Dh)

(−1)h−1(h− 1)!E

 ∏
j∈Di

Xj

 · · ·E
 ∏
j∈Dh

Xj

 ,

where the sum is taken over all partitions (D1, . . . , Dh) of the set {i1, . . . , ik}.

A p-dimensional shared subspace leaves a low-rank fingerprint not only in covariance but also in
higher-order cumulants. In the covariance view, identifiability comes from the fact that cross-
covariance blocks live in a space of rank at most p; equivalently, all (p + 1)-minors vanish. The
same logic transfers to cumulants: when we form cumulant matrices by linearly contracting the
fourth-order cumulant tensor, the contribution of the shared factors still spans at most p independent
directions. Hence, these cumulant blocks also satisfy a rank deficiency property.

This viewpoint treats cumulants as providing additional low-rank views of the same latent struc-
ture. Because there are many ways to contract a cumulant tensor, we obtain many rank constraints
without needing two large disjoint coordinate subsets, which loosens the requirement on m. At the
same time, the framework strictly contains the second-order case: if we “degrade” the cumulant to
order two, we recover the original covariance criterion. In short, moving from covariance to cumu-
lants preserves the rank-deficiency principle while supplying more constraints and thereby stronger
identifiability with fewer observed variables.

B.4 DISCUSSION ON MULTI-FACTOR SCENARIO

Proposition 2 (Merging Rules). Let A be the active variable set and C1 and C2 be two causal
clusters. Then the following rules hold.

R1. If |LPa(C1)| = |LPa(C2)|, and for any subset C̃ ⊆ {C1 ∪C2} with |C̃| = |LPa(C1)|+ 1,
(A ∪ {C1 ∪C2 \ C̃}, C̃) follows the GIN condition, then C1 and C2 share the same set of latent
variables as parents, i.e., LPa(C1) = LPa(C2).
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Algorithm 5 Determine Latent Variables

Require: A cluster set C, active variable set A, and partial graph G.
Ensure: Updated partial graph G.

1: C←Merge clusters from C according to Rules R1 and R2 of Proposition 1;
2: for each Ci ∈ C do
3: if Lj and Ci satisfy R3 of Corollary 2 then
4: G← G ∪ {Lj → Vi | Vi ∈ Ci};
5: else
6: Introduce a new latent variable Lk to L;
7: G← G ∪ {Lj → Vi | Vi ∈ Ci};
8: end if
9: end for

10: Return G;

Algorithm 6 Update Active Data

Require: Current active variable set A, partial graph G.
Ensure: Updated active variable set A.

1: if no new latent variable introduced in G then
2: A← ∅;
3: else
4: for each new latent variable Li ∈ G do
5: Initialize the value of Li according to Lemma 10;
6: Add Li into A and delete Ch(Li) from A;
7: end for
8: end if

R2. If |LPa(C1)| ≠ |LPa(C2)| (suppose |LPa(C1)| > |LPa(C2)|), and ∀C̃ ⊆ C1 with |C̃| =
|LPa(C1)| and ∀Vi ∈ C2 \ C̃, (A ∪ {C1 ∪ C2 \ {C̃, Vi}}, {C̃, Vi}) follows the GIN condition,
then the common parents of C1 contain the common parents of C2, i.e., LPa(C2) ⊆ LPa(C1).

Otherwise, C1 and C2 do not share any common latent variables as parents.

Corollary 3. Let L̃ be a latent variable set that has been introduced in the previous iterations, C2

be a new cluster, and A be the active variable set in the current iteration. Further, let C1 be the set
of children of L̃ that have been found. Then the following rules hold.

R3. If |L(C2)| = |L̃|, and for any C̃ ⊆ C1 with |C̃| = |L̃|, and any Vi ∈ C2 \ C̃, (A \ L̃ ∪ {C1 ∪
C2} \ {C̃, Vi}, {C̃, Vi}) follows the GIN condition, then the common latent parents of C2 are L̃,
i.e., L(C2) = L̃.

R4. If |L(C2)| ≠ |L̃| (suppose |L̃| > |L(C2)|), and for any C̃ ⊆ C1 with |C̃1| = |L̃| and any
Vi ∈ C2 \ C̃, (A \ L̃ ∪ {C1 ∪C2} \ {C̃, Vi}, {C̃, Vi}) follows the GIN condition, then L̃ contains
the common parents of C2, i.e., L(C2) ⊆ L̃.

C ADDITIONAL INFORMATION ON EXPERIMENTS

C.1 COMPUTING INFRASTRUCTURE

The computing devices and platforms are listed as follows.

• OS: Microsoft Windows 11.

• CPU: AMD Ryzen 7 4800H with Radeon Graphics, 2900 Mhz.

• Memory: 16G.

• Python 3.8.18.
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Algorithm 7 Finding Causal Clusters (multi factors)

Require: Data set X = {X1, . . . , Xm}.
Ensure: The set of causal clusters C and its corresponding latent parent number set L.

1: Initialize a cluster set ClusterList = ∅ and the group size GrLen = 2;
2: while |A| ≥ 2× GrLen− 1 do
3: repeat
4: Select a subset Y from A such that |Y| = GrLen;
5: for LaLen = 1 : GrLen - 1 do
6: if (A \Y, Ỹ) follows GIN condition for ∀Ỹ ∈ Y such that Ỹ = LaLen + 1 then
7: LPa(Y) = LaLen;
8: Add Y into ClusterList;
9: end if

10: end for
11: until All subsets with group length GrLen in A have been selected;
12: end while
13: Return C and L;

Algorithm 8 Determine Latent Variables (multi factors)

Require: A cluster set C, active variable set A, and partial graph G
Ensure: Updated partial graph G

1: C←Merge clusters from C according to Rules R1 and R2 of Proposition 2;
2: for each Ci ∈ C do
3: TagV ar ← TRUE;
4: for each latent set Lj in G′ do
5: if Lj and Ci satisfy R3 of Corollary 1 then
6: G← G ∪ {Lj → Vi | Vi ∈ Ci};
7: TagV ar ← FALSE;
8: break the for loop of line 5;
9: else if |Lj | > LPa(Ci) and Lj and Ci satisfyR4 of Corollary 3 then

10: G← G ∪ {L′
j → Vi | Vi ∈ Ci}, where L′

j ⊂ Lj and |L′
j | = LPa(Ci);

11: TagV ar ← FALSE;
12: break the for loop of line 5;
13: else if |Lj | < LPa(Ci) and Lj and Ci satisfyR4 of Corollary 3 then
14: Introduce a new latent set Lk such that |Lk| = |LPa(Ci)| − |Lj |;
15: G← G ∪ {{Lj ∪ Lk} → Vi | Vi ∈ Ci};
16: TagV ar ← FALSE;
17: break the for loop of line 5;
18: end if
19: end for
20: if TagV ar = TRUE then
21: Introduce a new latent set Lk with length |LPa(Ci)| into G;
22: G← G ∪ {Lk → Vi | Vi ∈ Ci};
23: end if
24: end for

C.2 REAL-WORLD EXPERIMENTS

C.2.1 TEACHER’S BURNOUT STUDY

Barbara Byrne conducted a study to investigate the impact of organizational (role ambiguity, role
conflict, work overload, classroom climate, decision making, superior support, peer support) and
personality (self-esteem, external locus of control) on three facets (emotional exhaustion, deperson-
alization, and personal accomplishment) of burnout in full-time elementary teachers (Byrne, 2016).
The data set consists of 32 observed variables with 599 samples. The details of latent factors and
their indicators are shown in Table 7 (See Chapter 6, Page 191 in (Byrne, 2016) for more details). As
in practice, the ground-truth latent structure is usually hard to know, here we use the hypothesized
model given in (Byrne, 2016) as a reference.
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Latent Factors Children (Indicators)
Role Ambiguity (RA) RA1, RA2

Emotional Exhaustion (EE) EE1, EE2, EE3

Depersonalization (DP) DP1, DP2

Role Conflict (RC) RC1, RC2,WO1,WO2

Self-Esteem (SE) SE1, SE2, SE3

Personal Accomplishment (PA) PA1, PA2, PA3

Peer Support (PS) PS1, PS2

Classroom (CC) CC1, CC2, CC3, CC4

Decision Making (DM) DM1, DM2

Superior Support (SS) SS1, SS2

External Locus of Control (ELC) ELC1, ELC2, ELC3, ELC4, ELC5

Table 7: The latent factors and their indicators in teacher’s burnout study.

Ours RLCD
L1 ∼ {RA1, RA2}

√
L1 ∼ {RA1, RA2, RC1, EE1} ×

L2 ∼ {EE1, EE2, EE3}
√

L2 ∼ {EE2, EE3} ×
L3 ∼ {DP1, DP2}

√
L3 ∼ {DP1, DP2}

√

L4 ∼ {RC1, RC2,WO1,WO2}
√

L4 ∼ {RC2,WO1,WO2} ×
L5 ∼ {SE1, SE2, SE3}

√
L5 ∼ {SE1, SE2, SE3}

√

L6 ∼ {PA1, PA2, PA3}
√

L6 ∼ {PA1, PA2, PA3}
√

L7 ∼ {CC1, CC2, CC3, CC4}
√

L7 ∼ {CC1, CC2, CC3, CC4}
√

L8 ∼ {DM1, DM2, SS1, SS2} × L8 ∼ {DM1, DM2, SS1, SS2} ×
L9 ∼ {ELC1, ELC2, ELC3, ELC4, ELC5}

√
L9 ∼ {ELC1, ELC2, ELC3, ELC4, ELC5}

√

Table 8: The measurement model results of our method and RLCD (Dong et al., 2023).

Locating latent variables. We run our algorithm with the prior knowledge that the underlying
graph contains only the one-factor cluster. The final output of the measurement model is shown
above. Here we rename the name of the latent variables in RLCD’s output for easier comparison.
Compare to the reference model given in (Byrne, 2016), our method merges DM and SS into one
latent factor and keeps other clusters correctly identified. Notice that (Dong et al., 2023) arises
more errors in clustering step (L1, L2, L4). A possible reason is that L1 only have two measurement
variables and are incapable of correctly locating by their method. These results further verify the
efficacy of our algorithm. Besides, the structural model learning results (causal graph on latent
variables) of our method and RLCD are:

Ours RLCD
RA → PA

√
RA → DM/SS ×

EE → SE
√

SE → DP
√

SE → ELC
√

SE → PA
√

DM/SS → SE
√

DP → PA
√

RC → DP × DP → CC ×
CC → EE

√
RC → DP ×

ELC → PA × RC → SE ×
ELC → DP × RC → ELC

√

RC → EE
√

RC → RA ×
EE → ELC ×

Table 9: The structural model results of our method and RLCD (Dong et al., 2023).

Inferring latent variable structure. The F1 score of our results is 0.522. In contrast, RLCD
obtains 0.364. In the output results of the RLCD, most of the edges connected to RC are incorrect.
The possible reason is that some latent factors can not be discovered correctly, which further causes
some unobserved confounding between latent variables. Note that previous method can not identify
SE → ELC in principle, as they form an impure structure on latent variables. By solving CICA
on SE and ELC using their observed descendants, our method can recover the causal direction
SE → ELC, which supports the necessitate of introducing two-sided projection.
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C.2.2 BIG FIVE PERSONALITY

Dataset Description. The Big Five personality dataset is rooted in the Five-Factor Model (FFM),
a seminal theoretical framework in personality psychology to characterize individual personal-
ity differences, proposed by American psychologists Paul Costa and Robert McCrae (Costa &
McCrae, 1992). This dataset encompasses five core personality dimensions, namely Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroticism, abbreviated as the O-C-E-A-N
model. Each dimension is operationally measured by 10 psychometric items, which are designed to
capture the nuanced traits underlying each factor. For example, the Openness dimension includes
items like “I am intrigued by abstract ideas”, while the Conscientiousness dimension features items
such as “I am diligent in fulfilling responsibilities”.

The data were collected via the online interactive personality testing platform hosted on https:
//openpsychometrics.org, a widely recognized and ethically compliant public data acqui-
sition channel in psychological research. The survey implementation adhered to established ethical
norms in empirical psychology, including informed consent and anonymous participation. After
data cleaning and validation, the final dataset utilized in this study comprises approximately 20,000
valid samples, covering 50 psychological measurement indicators (10 items per dimension across
the five factors). Prior to subsequent analyses, we performed standardization on the data to ensure
each variable follows a distribution with a mean of 0 and a variance of 1.

Measurement Model Learning. To determine the causal structure in the Big Five personality
data, we first employed the GIN algorithm (Xie et al., 2022) to construct a measurement model. The
core objective was to identify observed items that highly correspond to each personality dimension.
During the clustering process, some items may reflect multiple personality dimensions: for instance,
item O9 (“I spend time reflecting on things”) has dual connotations. On one hand, it reflects in-depth
thinking about abstract and complex issues, which is consistent with the cognitive exploration traits
of Openness; on the other hand, it involves reviewing and being prudent about one’s own behaviors
and tasks, aligning with the rigorous and self-disciplined traits of Conscientiousness. For item A10

(“I make people feel at ease.”), on one hand, the sense of interpersonal security brought by empathy
and friendliness is in line with the cognitive exploration traits of Agreeableness; from the perspective
of Extraversion, the enthusiasm and talkativeness of extroverts can easily alleviate awkwardness.
Such variables cannot correspond to a specific cluster and are therefore not included in the output of
the measurement model. After screening via the GIN algorithm, the final output of the measurement
model is as follows:

• Openness: L1{O2, O4, O7}, L2{O3, O5, O6, O10}, L3{O1, O8};
• Conscientiousness: L4{C1, C2, C3, C4, C5, C6, C7, C8, C9, C10};
• Extraversion: L5{E1, E2, E4, E5, E6, E7, E8, E9, E10};
• Agreeableness: L6{A1, A2, A3, A4, A5, A6, A7, A8, A9};
• Neuroticism: L7{N1, N2, N3, N4, N5, N6, N7, N8, N9, N10}.

The measurement model reveals that the latent variables L4, L5, L6, and L7 serve as unitary rep-
resentations for Conscientiousness, Extraversion, Agreeableness, and Neuroticism, respectively, ex-
plaining the shared variance in their corresponding item responses. In contrast, the Openness di-
mension exhibits a more granular internal structure, decomposing into three distinct sub-clusters:
L1, L2, and L3. These sub-clusters correspond to the core components of “Cognitive exploration”,
namely abstract reasoning, creative imagination, and linguistic-cognitive complexity.

Causal Analysis Within Clusters. After obtaining the measurement model, we further applied
our algorithm to uncover causal relationships within the clusters. We found several new conclusions
that were not revealed by (Dong et al., 2023).

(i) Openness: In the Openness dimension, “difficulty in understanding” is the direct cause of “lack
of interest”(O2 → O4) — when a person repeatedly fails to understand abstract content, it will
directly weaken their willingness to explore this field, whereas if they can understand it easily, they
will be more likely to develop interest. Imagination is the core source of creative output: on one
hand, “vivid imagination” will directly give rise to “excellent and unique ideas”(O3 → O5), and
conversely, a lack of imagination will directly restrict the quality of ideas; on the other hand, the
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breadth of imagination also directly determines the quantity of ideas, and “vivid imagination” will
be transformed into “a constant stream of ideas”(O3 → O10). In addition, vocabulary reserve is
the foundation of the complexity of language expression: “a rich vocabulary” will directly endow
people with the ability to use complex and rare words(O1 → O8), while a poor vocabulary cannot
support the use of difficult words.

(ii) Conscientiousness: In the Conscientiousness dimension, The intrinsic core trait of “liking or-
der” directly drives individuals to maintain the orderly state of life and work through the behavior
of “following a schedule”(C7 → C9); while the behavioral tendency of “paying attention to details”
directly translates into the specific manifestation of “being exacting in work”(C3 → C10) — a high
sensitivity to details directly acts on the control of omissions in work, thereby presenting a rigorous
work state.

(iii) Extraversion: In the Extraversion dimension, on one hand, the intrinsic mindset of “feeling
comfortable around people” serves as the core prerequisite for active social interaction — if an
individual feels at ease in crowds, this mindset will directly prompt them to initiate conversations
actively (E3 → E5), and at the same time, it will directly drive them to interact with multiple people
in social scenarios such as parties (E3 → E7); on the other hand, the core tendency of “not liking
to draw attention to oneself” is the direct trigger for social avoidance behaviors — the aversion
to others’ attention will directly guide the individual to choose a low - key position “keeping in
the background” (E8 → E4), and this sense of aversion will also directly suppress their desire to
express themselves in front of strangers (E8 → E10).

(iv) Agreeableness: In the Agreeableness dimension, in which A4(“I sympathize with others’ feel-
ings.”) plays a key mediating role: “feeling others’ emotions” is the prerequisite for generating
“sympathizing with others’ feelings”(A9 → A4) — only by accurately capturing others’ emotional
states can one further put oneself in others’ shoes and generate emotional resonance, while the in-
ability to perceive emotions will directly lead to a lack of empathy. On this basis, “sympathizing with
others’ feelings”, as a mediating variable, becomes the direct driving force for altruistic behavior —
a deep resonance with others’ feelings will directly prompt individuals to take time out for others
(A4 → A8); conversely, if such empathy(A4) is lacking, even if one can perceive others’ emotions,
it will directly reduce the willingness to engage in the altruistic behavior of active companionship.

(v) Neuroticism: In the Neuroticism dimension, on one hand, the core trait of “changing mood a lot”
is directly externalized as the specific manifestation of “having frequent mood swings”(N7 → N8);
on the other hand, the emotional tendency of “getting stressed out easily” exerts a direct impact
through the accumulation of sustained states(N1 → N10) — being in a stressed state for a long time
will directly lead to the continuous superposition of negative emotions, which in turn gives rise to
the emotional outcome of “often feeling blue”.

Structural Model Learning. Following the learning of the measurement model and cluster causal
analysis, we further recovered the causal structure among latent variables. While some of our find-
ings are generally consistent with (Dong et al., 2023), we present here only the newly discovered
structural learning results.

Causal Relation: {L1 → L2, L1 → L3, L4 → L6, L6 → L5, L4 → L1, L1 → L5, L7 → L5}.
(i)(L1 → L2, L1 → L3): In the Openness dimension, “Abstract cognitive ability and interest
orientation(L1)” serve as the prerequisite for fostering “creative potential (L2)” and “complexity
of language expression (L3)”. Only by overcoming difficulties in understanding abstract concepts
and maintaining interest in them can one provide cognitive support for the operation of imagination
and the accumulation of vocabulary. On this basis, L1 directly drives the manifestation of L2 and
L3: strong abstract cognitive ability translates into rich imagination and excellent creative output,
while a positive orientation toward abstract thinking enhances the depth of vocabulary reserves and
the ability to use complex words; conversely, deficiencies in L1regarding abstract cognition will
directly restrict the development of creativity and the complexity of language expression.

(ii)(L7 → L5): “Emotional Instability (L7)” exerts a negative regulatory effect on “social partic-
ipation tendency (L5)”. Emotional fluctuations and feelings of anxiety directly suppress people’s
desire to interact, thereby leading to social avoidance behaviors such as staying in the background
and being quiet around strangers.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D RELATED WORK

2020 2021 2022 2023 2024 2025 2026

GIN Condition
ω⊤Y⊥⊥Z, s.t. Cov(ω⊤Y,Z) = 0.

TIN Condition
ω⊤Y⊥⊥Z

CICA
ω⊤
1 Y⊥⊥ω⊤

2 Z|L

Figure 7: A timeline of tools to recover latent causal structure based on constructing independence.

Existing methods for handling causal discovery in the presence of latent confounders can be catego-
rized into the following folds. Here we list the papers focusing on linear continuous variables,

• (i) Conditional independence constraints-based. This line of work uses conditional in-
dependence tests to infer causal graphs. The core idea is to find patterns of conditional
independence among variables to reveal the underlying causal structure. By testing for in-
dependence among observed variables, these methods can discover the causal skeleton and
orient some of the edges. These approaches can handle both linear and nonlinear causal
relationships. Related work in this area include (Spirtes et al., 2000; Colombo et al., 2012;
Akbari et al., 2021; Triantafillou & Tsamardinos, 2015).

• (ii) Rank deficiency-based. This line of work uses rank constraints of covariance matri-
ces to locate latent variables and infer the causal skeleton. The core idea is that in linear
causal models, the covariance matrix or its submatrices exhibit specific rank properties. By
analyzing these rank deficiencies, it’s possible to reveal the connection patterns between
latent and observed variables. Related work in this area includes (Silva et al., 2002; 2006;
Kummerfeld & Ramsey, 2016; Huang et al., 2022; Li et al., 2024).

• (iii) Matrix decomposition-based. This line of work proposes to identify the causal struc-
ture of latent variables by decomposing the covariance or precision matrix into matrices
with specific structures, such as low-rank and sparse. Specifically, the low-rank matrix cap-
tures the causal relationships from latent variables to observed variables, while the sparse
matrix represents the direct causal relationships among observed variables. Representatives
include (Chandrasekaran et al., 2011; 2012; Anandkumar et al., 2013; Frot et al., 2019).

• (iv) Overcomplete independent component analysis (OICA)-based. This line of work lever-
ages Overcomplete Independent Component Analysis (OICA) to handle problems with la-
tent variables. OICA is a variant of Independent Component Analysis (ICA) which allows
more source signals than observed signals, and thus can be used to learn the causal struc-
ture with latent variables. Related work in this area includes (Shimizu et al., 2009; Entner
& Hoyer, 2010; Adams et al., 2021).

• (v) Generalized independent noise (GIN)-based. This line of work extends the independent
noise condition to handle scenarios with latent variables. The core idea is that, for non-
Gaussian linear causal mechanisms, higher-order statistics can be leveraged to identify
latent structures. These methods typically use the non-Gaussianity of the latent variables to
infer causal relationships, even in the presence of confounding. Related work in this area
includes (Cai et al., 2019; Xie et al., 2020; Dai et al., 2022; Xie et al., 2023; Chen et al.,
2022; 2023; Jin et al., 2023; Li et al., 2024; Xie et al., 2024).

• (vi) Higher-order cumulant-based. This line of work leverages higher-order cumulants to
identify the causal structure when latent variables are present. For non-Gaussian distribu-
tions, cumulants can capture richer structural information than covariance alone. These
studies show that the cumulant tensors of observed variables have specific rank con-
straints that can reveal the causal skeleton of latent variables. Related work in this area
includes (Cai et al., 2023; Chen et al., 2024; Schkoda et al., 2024).

• (vii) Score-based. These methods frame the learning of latent variable causal models as
a search problem, aiming to find the graph structure that best fits the data. They define
a scoring function to measure a graph’s goodness of fit, then use search algorithms (like
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hill-climbing or beam search) to find the highest-scoring graph. Related work in this area
includes (Agrawal et al., 2023; Ng et al., 2024).

D.1 RELATION WITH (LI ET AL., 2024)

(Li et al., 2024) is an important contribution to the same problem. The primary contribution of (Li
et al., 2024) is proving the identifiability of this full structure under milder assumptions than typ-
ically required. To achieve this, the authors formulate two identifiable cases. Case I: Arbitrary
Distribution: This case allows for entirely arbitrary noise distributions. It relaxes the two-pure-
children assumption but still requires each latent variable to have at least one pure child. It first uses
tetrad constraints to find all “generalized pure pairs”, then uses the guaranteed pure child as an aux-
iliary variable in further tetrad tests to successfully distinguish the pure pairs from the pseudo-pure
pairs. Case II: Partial Non-Gaussianity: This requires no pure children but imposes a partial non-
Gaussianity distribution requirement on the noise of specific variables. It constructs a specific linear
combination of variables and checks for statistical independence. This condition holds for pseudo-
pure pairs but fails for pure pairs due to the non-Gaussian noise. After identifying and grouping all
latent variables using either Case I or Case II, the authors use a modified PC-MIMBuild algorithm
to infer the final causal relationships between all variables.

While both our paper and (Li et al., 2024) both aim to recover causal structures with latent variables
by relaxing strong assumptions like purity assumptions, we must respectfully clarify that our CICA
framework is fundamentally different and addresses a more general and challenging class of
causal structures that their method is not designed to solve.

1. Difference in methodological tools: the core technical approaches (one-sided vs. two-sided
projection) are entirely different.

In (Li et al., 2024)’s most relevant case (Case II, non-Gaussian), its identification theory is
based on Lemma 3 to identify “pseudo-pure pairs”. This involves finding a linear combina-
tion of variables that is independent of a single variable (e.g., L(O1, O2, O3)⊥⊥O1). This
is a form of the “one-sided projection” (ω⊤Y⊥⊥Z) discussed in our paper.

Our paper’s central motivation (Section 3.1) is that this entire class of “one-sided projec-
tion” tools (including GIN, TIN, and the one used by (Li et al., 2024)) is provably insuffi-
cient for the “fully impure” structures in our Figure 1. Our CICA principle is introduced
specifically to overcome this, using a more powerful “two-sided projection” (ω⊤

1 Y⊥⊥ω⊤
2 Z)

to find the additional identifiable traces that one-sided projection-based methods ignore.

2. Difference in structural limitations: this fundamental difference in tools leads to a critical
difference in the types of graphs each method can solve.

The identifiability results of (Li et al., 2024) are based on its Assumption 1, which requires
that each latent variable has at least one generalized pure pair as children. While relaxing
the full purity assumption, its framework still relies on searching for “generalized pure
pairs” as anchors. In our motivating example (Figure 1(a), L confounds X1, X2, X3 and
X1 → X2 → X3) is a “fully impure” structure. Here, L has no generalized pure pairs. As
a result, the identification procedure of (Li et al., 2024) cannot be started.

Our paper solves “fully impure” structures. Our key theoretical contribution (Lemma 8)
proves that the true causal structure can still be identified from the sparsest CICA solution
even in the absence of “generalized pure pairs”. This further demonstrates that these chal-
lenging impure structures fall outside the scope of (Li et al., 2024), highlighting the distinct
and necessary contribution of our CICA framework.

In summary, our work is fundamentally different from (Li et al., 2024) and is designed to solve a
more general and challenging class of “fully impure” structures (like Figure 1) where no “gener-
alized pure pair” exists, a problem that tetrad-based and one-sided-projection methods (like GIN,
TIN, and (Li et al., 2024)) cannot address. We provide a novel theoretical foundation principle (con-
ditional independence given latents) and a distinct technical solution (optimization via rank-proxies,
identifiability via sparsity) to this challenging problem.
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D.2 RELATION WITH CAUSAL COMPONENT ANALYSIS

Causal component analysis (CauCA) (Wendong et al., 2023) is a nice work which introduces an
intermediate problem between independent component analysis and causal representation learning:
recover causally related latent variables Z from non-linear mixtures X = f(Z) when the causal
graph G among the latent variables Z is assumed to be known. The paper’s primary contribution
is providing identifiability proofs that the unmixing function f is identifiable up to element-wise
scaling if one has access to a perfect stochastic intervention on every latent variable. It also proposes
a likelihood-based estimation procedure using normalizing flows to learn the non-linear unmixing
function and the causal mechanisms.

We would like to politely point out that, despite having similar names, our work and CauCA (Wen-
dong et al., 2023) address fundamentally different questions:

Ours CauCA

Goal Causal discovery based on the
solution of proposed CICA

Learn the unknown unmixing
function f and the causal
mechanisms

Data A single observational dataset Multiple interventional datasets
Causal graph Unknown Known

Main
contribution

1. A novel CICA principle that
extracts components that are
conditionally independent given
latent variables. 2. A new
identification theory and an
estimation algorithm that recover the
underlying causal structure based on
the sparsest CICA solutions.

1. An identifiability proof that the
unmixing function f is identifiable
up to element-wise scaling if one has
access to a perfect stochastic
intervention on every latent variable.
2. A likelihood-based estimation
procedure using normalizing flows to
learn the non-linear unmixing
function and causal mechanisms.

Table 10: Differences between our paper and CauCA.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT to refine writing only. The prompt was: “I am preparing a paper for submission
to an international conference and would like your help to check for any grammatical issues and
refine the wording or sentence structure where necessary to ensure conciseness and precision.” Edits
were applied paragraph-by-paragraph, and all outputs were verified and revised by the authors; no
scientific content, analyses, or references were generated by the tool.
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