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Abstract

Recognition and forecasting of surgical events from video sequences are crucial for
advancing computer-assisted surgery. Surgical events are often characterized by specific
tool-tissue interactions; for example, ”bleeding damage” occurs when a tool unintention-
ally cuts a tissue, leading to blood flow. Despite progress in general event classification,
recognizing and forecasting events in medical contexts remains challenging due to data
scarcity and the complexity of these events. To address these challenges, we propose a
method utilizing video masked autoencoders (VideoMAE) for surgical event recognition.
This approach focuses the network on the most informative areas of the video while mini-
mizing the need for extensive annotations. We introduce a novel mask sampling technique
based on an estimated prior probability map derived from optical flow. We hypothesize
that leveraging prior knowledge of tool-tissue interactions will enable the network to con-
centrate on the most relevant regions in the video. We propose two methods for estimating
the prior probability map: (a) retaining areas with the fastest motion and (b) incorporating
an additional encoding pathway for optical flow. Our extensive experiments on the public
dataset CATARACTS and our in-house neurosurgical data demonstrate that optical flow-
based masking consistently outperforms random masking strategies of VideoMAE in phase
and event classification tasks. We find that an optical flow encoder enhances classification
accuracy by directing the network’s focus to the most relevant information, even in regions
without rapid motion. Finally, we investigate sequential and multi-task training strategies
to identify the best-performing model, which surpasses the current state-of-the-art by 5%
on the CATARACTS dataset and 27% on our in-house neurosurgical data.

Keywords: Surgical Phase Recognition, Optical Flow, Masked Autoencoders, Adverse
Events Recognition.

1. Introduction

Surgical workflow analysis provides valuable insights into the intricate sequence of events
during surgical procedures. By understanding and analyzing these events, it is possible to
enhance performance, optimize patient care, and improve training for medical professionals.
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Figure 1: Overview of the Flow Masked Autoencoder architecture. The model receives
input frames XT and their corresponding optical flow frames FT . The bottom
left section shows the learned optical flow encoding mask, which is applied to
the input before feeding the masked image into the encoder. Path (A) denotes
the decoder head for reconstructing the input XT , while Path (B) denotes the
classification head for predicting surgical phases YT .

It serves two main purposes: aiding intraoperative decision-making by recognizing the cur-
rent surgical phase and guiding timely assistance, as well as enabling retrospective analysis
for education, quality control, and workflow optimization. However, automated surgical
workflow recognition is not widely adopted in operating rooms due to challenges related to
robustness and reliability in complex surgical environments.

Operating room scenes are inherently intricate, often containing numerous irrelevant
elements such as unused instruments, the surgeon’s hands, and holders that obscure the
main regions of interest. Prior studies on cataract surgery videos (Yu et al., 2019) have
demonstrated that leveraging tool information significantly enhances phase segmentation
performance. Similarly, DeepPhase (Zisimopoulos et al., 2018) highlights the importance
of tool features in improving surgical workflow recognition. More recently, dynamic scene
graphs have been employed to represent summaries of surgical scenes and specific tool-
anatomy interactions for better surgical workflow recognition (Holm et al., 2023; Köksal
et al., 2024). However, these methods rely on highly detailed annotations of surgical scenes,
which require substantial resources. Building on these insights, we extend this approach
by focusing not just on tool features but also on the critical tool-tissue interactions that
define surgical workflows. These interactions capture the core dynamics of surgical proce-
dures, making them invaluable for accurate workflow analysis. Video Masked Autoencoder
(VideoMAE)-based solutions have shown that masking strategies can effectively identify rel-
evant regions in video data by learning robust spatiotemporal representations (Tong et al.,
2022). However, existing approaches are often generic and fail to address the unique chal-
lenges posed by surgical videos, where key interactions are often localized and obscured by
irrelevant details.

In this work, we introduce SurgFlowMAE, a novel optical flow-guided masking strategy
that leverages tool-tissue interaction dynamics to enhance VideoMAE for surgical work-
flow analysis. Our approach introduces a smart masking strategy that leverages optical
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flow information to identify and focus on regions with influential motion, such as tool-
tissue interactions while ignoring irrelevant areas. Specifically, we develop two strategies
for incorporating optical flow. First, we use its normalized magnitude directly, to create
a masking probability map. Second, we incorporate an additional encoding pathway for
optical flow, allowing the model to learn the most relevant regions in the scene. Finally,
with both approaches we use the estimated map as a prior probability for mask sampling in
MAE. This ensures that the masked autoencoder focuses on extracting meaningful features,
improving downstream performance on such tasks as phase segmentation and adverse event
classification.

We evaluate SurgFlowMAE on two distinct surgical video datasets, highlighting its
applicability across different surgical domains. SurgFlowMAE achieves state-of-the-art
(SOTA) performance on the task of phase segmentation on the CATARACTS dataset,
outperforming methods that incorporate comprehensive surgical scene information through
complex graph-based representations (Köksal et al., 2024; Holm et al., 2023). We demon-
strate the generalizability and flexibility of our approach through evaluations on distinct
surgical datasets, achieving up to 5% improvement on the CATARACTS dataset and setting
a new benchmark for adverse effect classification in Neurosurgery.

2. Related Work

Recent works in event prediction from video sequences focus on fusing spatiotemporal infor-
mation into relevant features for classification. The Masked Autoencoder (Tong et al., 2022)
is a popular choice for video understanding due to three main reasons. First, it reconstructs
missing parts using contextual information, improving comprehension of complex events
across frames. Second, its transformer architecture facilitates robust representation learn-
ing in the image domain. Lastly, MAE enables unsupervised pre-training without requiring
labels, reducing annotation efforts crucial for video data.

Event recognition in the wild (Mao et al., 2023) proposed a motion-aware masking
strategy (MAMP) for 3D human action recognition that predicts masked joint motion from
spatiotemporal video sequences, adding semantic information to the masking process. (Sun
et al., 2023) focuses on learning video representation by reconstructing the motion of masked
regions, aiming to recover motion trajectories instead of appearance, using the semantics
of masked objects inferred from visible patches. (Bandara et al., 2023) adapted the REIN-
FORCE algorithm (Williams, 1992) to sample visible tokens from a categorical distribution.
Their proposed network maximizes expected reconstruction error through policy gradients,
surpassing fixed distribution methods. (Huang et al., 2023) introduces a motion-guided
masking strategy using optical flow for consistent masking volume. While their approach
offers an online solution for flow masking, it is slower than traditional VideoMAE (Tong
et al., 2022).

Surgical Workflow Recognition The early EndoNet by (Twinanda et al., 2016) of-
fers a method for surgical phase classification and tool position detection in a multi-task
framework; and it outperforms single-task methods on the Cholec80 dataset. The authors
show that incorporating the tool presence task enhances EndoNet’s ability to learn more
discriminative features. SV-RCNet (Jin et al., 2017) combines a CNN and RNN for the
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Cholec80 dataset. Based on integrating ResNet (He et al., 2016) and LSTM networks (Du
et al., 2015), it learns visual and temporal features but requires significant resources for
design optimization. Contrary to LSTM -based methods, TeCNo (Czempiel et al., 2020)
employs full temporal resolution and large receptive fields for surgical phase prediction. It
leverages causal, dilated convolutions for online, fast inference on entire video sequences. Yi
et al . (Yi et al., 2022) explore various multi-stage architectures by combining pre-trained
models for solving surgical phase recognition tasks. Trans-SVNet (Gao et al., 2021) utilizes
transformer architecture to fuse different embeddings for better capturing spatiotemporal
information. Recent works (Basu et al., 2024; Fujii et al., 2024; Jamal and Mohareri, 2023)
enhance MAE with improved masking procedures, such as estimating high-information re-
gions, deriving masks from gaze-capturing data, or sampling tokens from high-information
spatiotemporal areas instead of using random masking.

3. Methodology

Our proposed VideoMAE-based architecture has two parts: the autoencoder, reconstructing
input video frames, and the downstream pathway classifying surgical events. They can be
trained jointly or sequentially. The overall pipeline is illustrated in Figure 1. First, we
outline our SurgFlowMAE methodology and introduce our novel masking strategy. Then,
we describe the multitask approach and conclude with our objective functions.

3.1. Definitions

We are given a dataset of video sequences V = {X1, ..., XT }, and event labels Y =
{y1, ..., yT }, where T is the total number of frames in V , and Xt ∈ RH×W×C is the video
frame at time step t with H,W,C defining the frame’s width, height and the number of
channels. We estimate the magnitude of the optical flow Ft ∈ RH×W for each frame Xt.
From now on, we will refer to it as optical flow. Our SurgFlowMAE model, defined by fθ
and parameterized by θ, receives pairs of video frames and optical flow and outputs the
reconstructed video together with the predicted class label.

V ′, Y ′ = fθ(V, F ) (1)

Optical Flow Estimation The optical flow is precomputed using the SEA-RAFT algo-
rithm (Wang et al., 2025) for each frame, providing a robust measure of motion and activity.
We calculate it by analyzing frame differences over a temporal window of 1 second. Optical
flow magnitude F is defined as F =

√
u2 + v2, where u and v represent the horizontal and

vertical components, respectively.

3.2. Video Masked Autoencoder

Mask Sampling In conventional Masked Autoencoders, mask generation typically in-
volves random patch selection. We hypothesize that regions with high motion, hence, large
optical flow, carry important information for recognizing surgical actions. Thus, we propose
a new sampling strategy (cf. Figure 2) based on the estimated prior probability distribution
P . The choice of retaining or removing the regions according to the probability map from
the frame Xt depends on the training strategy, sequential or multitask.
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Figure 2: Visualization of Sampling Strategies: Subfigure (A) provides an overview of sam-
pling techniques, displaying (from top to bottom) RGB images, optical flow
representations, random tube masking, and flow masking. The left side shows
CATARACTS, while the right side presents Neurosurgical data. Subfigure (B) il-
lustrates the encoder’s impact on feature representation, demonstrating examples
where significant features do not always correspond to areas of highest motion.
RGB images, optical flow, and encoded features arranged in columns.

Each frame Xt is divided into a set of non-intersected patches B. The sampling process
involves drawing k patches from B according to the probability distribution P , Bk ∼ P .
We compare two approaches for calculating probability distribution. The first focuses on
patches with higher motion dynamics. To increase reconstruction task complexity, we en-
courage the network to attend to masked regions, enhancing the pretrained model’s effec-
tiveness. We use min-max normalization ∥F∥ = F

Fmax+ϵ to bring optical flow values into
the (0,1) range. The probability of selecting a patch is inversely proportional to optical
flow magnitude P = 1 − ∥FB∥. In the multi-task training strategy, we reverse masking
to keep the most informative parts visible, tailoring the reconstruction task to better align
with the specific downstream task, with probability distribution proportional to optical flow
magnitude P = ∥FB∥. We observe from surgical videos that the surgeon’s hands sometimes
exhibit more gestures compared to the tools in the scene. However, hand movement does
not contribute to understanding the current phase. Thus, higher flow dynamics might be a
sub-optimal feature for classifying the event. To address this concern, we extend the model
fθ (Equation 1) with an additional encoder e that estimates the probability distribution P
for a set of patches B from optical flow FB.

V ′, Y ′ = fθ(V, e(F )) (2)

In order to facilitate the gradient flow, we concatenate the encoded optical flow to the
input frames [e(Ft), Xt] as an additional channel. Hence, the probability map is implicitly
learned throughout the optimization of the model fθ.
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Multitask Model The sequential approach is extended using a multitask training strat-
egy, where tasks are learned jointly. This model has two distinct output heads: the recon-
struction head operates as a decoder, and the classification head consists of linear layers
(Figure 1-A and Figure 1-B). The reverse masking choice described previously is validated
by comparisons in Table 6, visualized in Figure 4. The encoder-decoder path for recon-
struction follows the VideoMAE framework (Tong et al., 2022). For classification, encoded
features pass through a pooling layer before entering a classification head with two fully
connected layers: the first has 256 hidden dimensions with ReLU activation and dropout,
and the final layer produces class logits.

3.3. Objective Functions

In a multitask learning strategy, the overall loss function is a weighted combination of two
task-specific losses, while the two-step training strategy employs each loss independently.

Ltotal = α·Lrec+γ·LCE, where α and γ are the weighting terms for the reconstruction and
classification losses, respectively. Mean Squared Error (MSE) is used for the reconstruction
task, measuring the difference between pixel values of original and reconstructed frames.
The classification loss is calculated using Cross Entropy Loss, which evaluates the model’s
output probability between 0 and 1.

4. Experiments & Results

The foundational architecture of our model is derived from VideoMAE (Tong et al., 2022),
specifically employing the ViT-Small backbone. We conduct experiments with two distinct
variations of this model: the first is pretrained on the Kinetics-400 Action dataset, followed
by fine-tuning on our specific use case dataset. The second variation involves training the
reconstruction model from scratch.

4.1. Datasets

In our experiments, we use three medical datasets: CATARCTS (Al Hajj et al., 2019)
for fine-grained surgical activity recognition, an in-house Neurosurgical dataset focusing on
bleeding-related adverse events, and Ego-Surgery dataset (Fujii et al., 2024) for general
phases in egocentric open surgery.

CATARACTS The dataset contains 50 cataract surgery videos, each at 1920 × 1080
pixels and 30 fps, annotated with 19 surgical phases. It is split into 25 training, 5 validation,
and 20 testing videos, consistent with prior work (Köksal et al., 2024) for fair comparison.

Microscopic Neurosurgery The dataset for this study consists of 12 neurosurgical
videos recorded at a resolution of 1920 x 1080 pixels and a frame rate of 60 fps. Annotations
focus on two classes: ”adverse bleeding event” and ”non-adverse event”. Due to the nature
of the surgical scene, where bleeding is common—particularly from the opening of the dura
mater—such instances are not classified as adverse events. Adverse events are specifically
annotated when unintentional damage occurs due to tool-tissue interaction, necessitating
immediate surgical intervention. This task is more complex than merely distinguishing be-
tween bleeding and non-bleeding scenarios. In our dataset, there are 205 occurrences of
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Table 1: Comparison to SOTA on Cataracts. *: Own implementation, †, ‡: pretrained on
K400, K400+Cataracts, respectively. St., Dyn.: Static and Dynamic Graph.

Method Training Strategy End2End Acc1 Acc5 Prec. Rec. Jacc. F1

DINO-TCN++ (Köksal et al., 2024) Supervised No 77.0 - - - - 74.4
Xception-TCN++* Supervised ✓ 75.2 - - - - 74.4

Holm (St.) (Holm et al., 2023) Semi-supervised No 64.3 - - - - 50.0
Holm (Dyn.) Semi-supervised No 75.2 - - - - 68.6
SANGRIA (Dyn.) (Köksal et al., 2024) Unsupervised ✓ 83.4 - - - - 78.2

VideoMAE (Tong et al., 2022)*† Reconstruction No 76.3 96.1 48.5 53.9 47.9 -
‡ Reconstruction No 75.8 93.9 48.7 52.5 48.0 -

SurgFlowMAE (Ours) ‡ Multitask ✓ 87.5 97.1 77.9 80.6 76.6 -

Table 2: Ablation study on masking strategies for Flow Mask Models on Cataracts pretrained on K400

Mask
Rec + Cls Multitask

Acc1 Acc5 Prec. Rec. Jacc. Acc1 Acc5 Prec. Rec. Jacc.

Random 75.8 93.9 48.7 52.5 48.0 85.4 96.0 75.8 77.6 74.9

Encoder 81.0 97.1 59.4 62.2 58.6 86.4 97.1 75.5 78.8 74.2

Flow 81.7 96.8 61.1 64.6 60.2 87.5 97.1 77.9 80.6 76.6

adverse events, while the remaining 1,673 sequences are categorized as normal events. The
dataset is divided into training, validation, and test sets, comprising 70%, 15%, and 15%
of the total data, respectively. A patient-wise split is implemented to prevent data leakage,
ensuring that no patient appears in more than one subset, thereby enhancing the model’s
generalizability.

4.2. Experimental Setup

Implementation Details We utilize the ViT-Small backbone with an input patch size
of (16, 16) for all models. The input video and optical flow are processed at a resolution
of 224 × 224 pixels, comprising 16 frames with a sampling rate of 2. For pre-training, in
accordance with best practices established in prior research, the sampling ratio of input
tokens is fixed at 90%. Additional implementation details can be found in section A.

Evaluation Metrics We assess our method using five benchmark metrics for surgical
phase recognition and event classification: Accuracy (Acc1), Top-5 Accuracy (Acc5), Pre-
cision, Recall, and Jaccard index. We report micro-average accuracy for CATARACTS to
compare with SOTA, while macro-average is used for other metrics to ensure equal impor-
tance across smaller classes.

4.3. Quantitative and Qualitative Results

CATARACTS In Table 1, we compare recent methods and SOTA approaches for phase
segmentation on the CATARACTS dataset. The evaluated methodologies include long-
range temporal learning techniques using DINO-TCN++ (Köksal et al., 2024), which fea-
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Table 3: Cross-validation Results for Neuro Multitask Training from Scratch

Random Flow Encoder

Acc1 Prec. Rec. Jacc. Acc1 Prec. Rec. Jacc. Acc1 Prec. Rec. Jacc.

CV 1 70.3 71.2 70.3 67.1 76.8 74.8 76.8 73.2 89.5 80.1 81.1 77.8

CV 2 77.9 73.4 77.9 77.2 79.8 74.1 79.8 73.4 79.4 74.3 79.6 73.9

CV 3 77.6 77.8 77.5 74.7 84.4 83.3 84.4 81.5 83.9 81.0 83.4 79.6

tures a two-step model with DINO as a feature extractor followed by temporal classification.
This is compared to our end-to-end variation that jointly trains Xception and TCN++.
Graph-based approaches from (Holm et al., 2023) and (Köksal et al., 2024) examine static
versus dynamic scene graphs. We also assess the masked encoder approach from (Tong et al.,
2022), which serves as the foundation for our work. Our results show that the proposed
SurgFlowMAE achieves competitive performance, with the multitask model outperforming
the SOTA by 5% (4 points) in accuracy.

In Table 2, we analyze results from various model configurations, distinguishing between
two-step models that separately learn reconstruction and classification tasks and the multi-
task model. Here, ‘ Mask’ denotes different training strategies used for training and testing
the models. Flow refers to masking simply based on the flow map input (Equation 1), while
Encoder is the extended version, where masking is performed based on the estimated prob-
ability of the input flow maps (Equation 2). We assess the impact of masking types on both
models trained from scratch and those fine-tuned from pretrained versions. Our analysis re-
veals three key insights. First, fine-tuning pretrained models from different domains (K400)
benefits both setups. Second, flow-based masking consistently outperforms random tube
masking, which selects the same patches for all frames in a sequence. This results in about
8% (5.90 points) improvement in accuracy (Acc1) for the K400+Cataracts configuration in
the Rec+Cls task and a 2.5% (2 points) enhancement in multitask mode. Third, the multi-
task approach consistently surpasses two-step models, showing that learning reconstruction
aids phase recognition. Extended results are shown in Table 5.

Microscopic Neurosurgery Identifying adverse events in neurosurgery, where only sur-
gical videos are available, poses significant challenges, as detailed in section 4.1. In Figure 5,
we illustrate that not all bleeding instances are damaging events. While previous research
has focused on bleeding detection in endonasal surgery (Pangal et al., 2022) and neurosur-
gical craniotomy (Tang et al., 2022), we are the first to introduce adverse recognition in
microscopic neurosurgical videos. We utilize the multitask strategy for our analysis, which
has proven most effective in the CATARACTS study presented in Table 2. Given that
our dataset is approximately 2.5 times larger in duration, we choose to train the model
from scratch. This decision is supported by the ablation study shown in Table 7. Damage
events are closely linked to tool-tissue interactions, as hypothesized. This is supported by
substantial improvements in flow masking, which targets regions of interest. In Table 3,
we present results from patient-wise cross-validation using three non-intersecting splits. All
three splits achieved an accuracy above 79.4%, with the best split reaching 89.5%. Across
all splits, the optical flow and encoder-based masking methods consistently outperformed
the baseline, a trend that is also observed in the experiments on the Egosurgery dataset,
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Figure 3: Visualization of the reconstruction output from the multitask flow model, orga-
nized into four rows: input RGB, masked RGB, optical flow input, and recon-
structed output. Examples are shown for both CATARACTS and Neurosurgery.

Table 4: Inference Speed Analysis for Multitask Models
Random Flow Encoding

13 ms 13.6 ms 40 ms

as reported in Table 8. We further conduct a qualitative assessment of the reconstruction
output from the multitask model, as shown in Figure 3. The results indicate that masking
50% of the image while retaining key regions based on optical flow enhances the model’s
ability to reconstruct contextual information and the interactions between tissue and the
surgical tool.

Inference Analysis Table 4 shows the runtimes for each 16-frame video sequence. While
we are not targeting real-time applications, our neurosurgical videos are downsampled to 5
fps (200 ms between frames), making runtimes of 13-40 ms suitable for real-time scenarios,
provided hardware requirements are met.

5. Conclusion

Understanding surgical workflows is essential for optimizing medical procedures. Distinct
events, including surgical phases and tool-tissue interactions, provide critical insights. We
propose a novel workflow recognition method that leverages optical flow information to
enhance the capabilities of the baseline established by VideoMAE. Our approach focuses
particularly on significant regions within the surgical scene. Our experiments, conducted
across two diverse datasets, demonstrate that our approach considerably improves event
classification accuracy. Specifically, for the CATARACTS dataset, we achieve a notable
improvement of 5% over the state-of-the-art and 27% improvement on the Microscopic
Neurosurgery dataset. Looking ahead, we aim to conduct a deeper investigation into adverse
event recognition using a broader range of clinical data, paving the way for the anticipation
of critical surgical events and further advancements in surgical workflow optimization.
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Appendix A. Implementation Details

Implementation Details We utilize the ViT-Small backbone with an input patch size
of (16, 16) for all models. The input video and optical flow are processed at a resolution
of 224 × 224 pixels, comprising 16 frames with a sampling rate of 2. For pre-training, in
accordance with best practices established in prior research, the sampling ratio of input
tokens is fixed at 90%. We employ the AdamW optimizer, configured with a weight decay
of 1e − 4 and betas set to (0.9, 0.999). The pretraining phase utilizes a batch size of 32
and is conducted over 1200 epochs. As for the finetuning models, the classification head is
finetuned for 350 epochs with cross-entropy and a batch size of 12.

Appendix B. Supporting Results

B.1. CATARACTS

Table 5: Summary of Experiments and Results for Flow Mask Models

Experiment & Pretrain Model Masking Type
Metrics

Acc1 Acc5 Precision Recall Jaccard Index

Rec + Cls

K400 Random 76.26 96.13 48.52 53.94 47.87

K400 + Cataracts Random 75.76 93.94 48.65 52.48 48.04
K400 + Cataracts Flow 81.65 96.80 61.13 64.58 60.18
K400 + Cataracts Encoder 80.98 97.14 59.40 62.17 58.57

Cataracts Random 56.40 86.53 16.77 23.03 16.71
Cataracts Flow 55.22 84.34 14.25 21.36 14.22
Cataracts Encoder 56.40 85.19 17.16 23.55 17.10

Multitask

Cataracts Random 61.95 90.75 39.71 44.95 38.55
Cataracts Flow 66.67 91.75 41.14 45.16 39.54
Cataracts Encoder 63.13 86.36 40.74 46.27 39.26

K400 + Cataracts Random 85.35 95.96 75.79 77.62 74.89
K400 + Cataracts Flow 87.54 97.14 77.87 80.63 76.62
K400 + Cataracts Encoder 86.7 96.97 76.54 79.00 75.13

Table 6: Comparison of Multi Models with Different Masking Types

Model Mask Type
CATARACTS K400 + CATARACTS

Acc1 Acc5 Prec. Rec. Jacc. Acc1 Acc5 Prec. Rec. Jacc.

In
0.1 65.8 90.6 39.5 44.0 38.0 86.2 97.1 75.4 77.5 73.5
0.9 65.1 89.7 38.2 42.4 36.8 87.0 96.1 75.6 78.4 74.6

Out
0.1 67.3 89.4 41.9 46.7 39.9 86.4 96.3 76.1 78.4 74.4
0.9 63.5 87.2 32.8 36.9 31.5 82.0 96.0 65.6 70.1 64.5
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Figure 4: Example images illustrating different masking strategies and ratios. The first
column shows the RGB image, followed by the corresponding optical flow. The
subsequent columns depict the effects of masking strategies: ”Masking In” at
ratios of 0.1 and 0.9, which retain the informative regions, and ”Masking Out” at
ratios of 0.1 and 0.9, which remove the informative regions. These visualizations
help to understand the impact of different masking techniques on the model’s
performance.

B.2. Neuro

Figure 5: Comparison of surgical events in Microscopic Neurosurgery: The top row shows
a non-adverse bleeding event, which is a common occurrence during surgery and
does not indicate damage. The bottom row illustrates an adverse event caused
by unintentional damage from surgical tools interacting with the tissue.
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Table 7: Summary of Multitask Results for Flow Mask Models

Exp. & Pretrain Model Masking Type
Multitask

Acc1 Prec. Rec. Jacc.

Neuro
Random 70.3 71.2 70.3 67.1
Flow 76.8 74.8 76.8 73.2
Encoder 89.5 80.1 81.1 77.8

K400 + Neuro
Random 56.2 62.7 56.2 51.0
Flow 66.8 68.4 66.8 62.7
Encoder 68.8 64.4 57.8 53.6

B.3. EgoSurgery

Table 8 shows the results of our experiments on phase recognition on the EgoSurgery dataset
(Fujii et al., 2024) with different masking strategies. The results show that Flow -based
masking achieves the best overall results in all metrics compared to other strategies.

Table 8: Phase Recognition Results for Egosurgery Dataset
Mask Accuracy (%) Precision (%) Recall (%) Jaccard (%)

Random 31.7 29.0 31.67 25.71
Flow 39.52 41.75 39.52 33.97

Encoder 38.57 31.43 38.57 29.05
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