© N o oA W N =

a A W N = O ©

17
18
19
20
21
22

23
24
25
26
27

28
29
30
31
32
33
34
35

36
37
38

Statistical Inference for Model Responsiveness Audits

Anonymous Author(s)
Affiliation
Address
email

Abstract

Many safety failures in machine learning arise when models assign predictions
to people — e.g., in lending, hiring, or content moderation — without accounting
for how individuals can change their inputs. We introduce a formal validation
procedure for the responsiveness of predictions with respect to interventions on
their features. Our procedure frames responsiveness as a type of sensitivity analysis
in which practitioners control a set of changes by specifying constraints over
interventions and distributions over downstream effects. We describe how to
estimate responsiveness for the predictions of any model and any dataset using only
black-box access, and design algorithms that use these estimates to support tasks
such as falsification and failure probability analysis. The resulting audits uncover
the problem at hand and enable community or regulatory oversight: when lack (or
excess) of responsiveness is negligible, off-the-shelf models suffice; when material,
findings motivate redesign (e.g., strategic classification) or policy changes. We
demonstrate these safety benefits and illustrate how collective stakeholders can
help steer Al systems.

1 Introduction

Many of the pressing safety issues with machine learning arise in cases where model predictions
affect people [53] — be it to approve loans [27], screen job applicants [6, 48], prioritize organ
transplants [3, 7, 42], or moderate posts on online platforms [20, 22]. In such applications, we fit
models that use features about individuals for predictions but cannot account for changes in the
predictions if the features are intervened upon. As a result, we routinely deploy models whose
predictions are either not responsive to the actions of their decision subjects, or are overly responsive.

When models are under-responsive, they can preclude access to loans, jobs, or healthcare [7, 42, 56].
In lending, for example, models can preclude credit access by assigning fixed predictions that
applicants cannot change [32]. When models are overly responsive, they exhibit unfairness [33],
or are susceptible to gaming [25]. For instance, in content moderation, models can promote the
proliferation of misinformation by allowing malicious actors to evade moderation at scale [1, 49].

A central challenge in addressing these issues is measuring the responsiveness of predictions —i.e.,
how much the output of a model can change over a space of plausible feature vectors. Measuring
this quantity in practice hinges on our ability to specify the set of plausible feature changes. In
applications where features encode semantically meaningful characteristics, this set must adhere to
non-trivial constraints on both the plausible interventions and their downstream effects. Choosing a
set that is too small can underestimate responsiveness by overlooking viable interventions, whereas
choosing a set too large can overestimate responsiveness by considering unrealistic changes that no
individual could enact.

We present a formal procedure to validate models by measuring responsiveness under community-
or practitioner-specified constraints on interventions and downstream effects. Our approach uses
constrained optimization to certify feasibility and generate i.i.d. reachable samples, enabling black-

Submitted to the NeurIPS 2025 Workshop on Algorithmic Collective Action. Do not distribute.

39
40
41
42
43

44
45
46
47

48
49
50
51

52
53

54

55
56

57

58
59
60
61
62
63

64
65
66
67

68

Uniform Sample of Reachable Points Gaming in Content Moderation Preclusion in Lending

Mixed Feature Set: Continuous + Discrete Responsive Prediction for fa at Unresponsive Prediction for fp at @
4 4 4 o O 00
3 ‘
3 B s e 3 Q- o Q-
w é i
8] i
) i 4 | 4
g 2 2 2 | et SIS O O SR
& § :] I Deny -
hi _— i
u?. i i o —~ — " Approve
1 I . A 1
s Bot # s [fp
| o~ Human
0 offa” 0
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
T secs_online_per_ day monthly_income

Figure 1: Responsiveness verification with reachable sets. Left: Using o, we draw a uniform sample of
reachable points X5*" () from interventions on . Here z; € [10,000,60,000] and x> € {0,...,5} are
monotone increasing. Middle: Gaming test in bot detection: flagged bots should not readily flip to “human”
without review [20, 22]; f4 is vulnerable at . Right: Preclusion test in lending [32]; « is precluded under f5.

box estimation with exact binomial guarantees. This supports falsification and failure probability
estimation [30] and produces shareable evidence—failure probabilities with confidence and concrete
counterexamples—that can be used by auditors, advocates, and regulators. The framework is broadly
applicable and designed for reproducible audits in settings where regulation is still nascent. Our
contributions include:

1. We introduce a formal procedure to estimate and test the responsiveness of predictions for models
with semantically meaningful features. Our procedure can specify fine-grained constraints on
interventions and their downstream effects. This allows practitioners to reveal failures that affect
individual or system-wide safety, estimate their prevalence, and pair each failure with examples.

2. We develop algorithms to estimate the responsiveness of predictions for any model and any dataset
using only query access. Our methods generate a uniform sample of reachable points from a
non-convex polytope over discrete and continuous features, and benefit from simple theoretical
guarantees that can guide practical decisions in test design.

3. We demonstrate how our machinery can reliably detect failures in responsiveness in model devel-
opment or deployment. We illustrate this through real-world applications in content moderation.

4. We provide a Python library to estimate and test responsiveness at this anonymized repository.

Full Version and Supplementary Materials In the supplement we include: (1). Related work (2).
Sampling algorithm pseudocode (3). Additional theoretical contributions (4). Additional experiments

2 Framework

We describe a formal validation procedure to test if a machine learning model assigns predictions
that are unsafe as a result on interventions on its features. We consider a task where we are given
black-box access to a model f : X —) to predict an outcome y €) from a set of d features
x = [x1,...,24] € X. We assume that features are semantically meaningful, e.g., features that
encode meaningful characteristics for the task at hand like income and employment_status as opposed
to generic features such as pixel intensities or token embeddings.

We consider a procedure where we validate a model by testing its predictions over a farget population.
We assume the target population covers all points € X, or a subset of instances we can identify
from their features and/or predictions (e.g., all instances with features « such that f(x) = 0). We test
if a model assigns unsafe predictions by measuring the responsiveness of predictions:

Definition 1. Given an instance with features © € A and amodel f : X —), the responsiveness

https://anonymous.4open.science/r/neurips-2025-responsiveness-verification

69

70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98

99

100
101
102
103

104
105

of its prediction f () is the proportion of interventions that lead to a target prediction:
(.’I} f, Xreach Yreach) — Pr (f(:l?l) c Y;each | = Xi‘each(w)) ,
Here:

o X'each(z) C X is a set of reachable points, determined by the types of interventions we allow.

We denote the set of all possible interventions at a point « as A(x), and refer to it as the
intervention set. We assume that includes a null action 0.
YreaCh C YV is a target prediction, which can represent a single value in a binary classification
task (e.g., YreaCh {1}) a set of values in a multiclass classification task (e.g., YreaCh =
{spam hate speech} in content moderation), or an interval in a regression task (e.g., [700 850]
in credit scoring). We write YreaCh to allow the target prediction to change based on .

In what follows, we write p(x) when the model, target prediction and reachable set are clear from
context. We can adapt our framework to various formal validation tasks:

* Preclusion: Consider testing if a loan approval model f : X — {0, 1} assigns “fixed” predictions
that preclude credit access [9, 32]. Here, the target population covers all denied applicants i.e.,
{z : f(x) = 0}. Given a point & € X, we estimate the responsiveness of each prediction j(x) to
see if there exists some interventions that could overturn the current prediction to Yre“h {1}.
Given the estimate, we would test if p(z) > 0 and claim that the model precludes access if we
cannot refute the claim that p(x) = 0.

* Gaming: In a content moderation task where we use a model to detect bot accounts, we may
wish to test if bot accounts can alter their features to pass as a human end-user. In this case, we
would estimate the responsiveness of an account who is predicted as a bot. Contrary to lending,
we could have a toleration threshold e and raise a safety violation if p(x) > . We can also
estimate responsiveness of individual predictions to characterize each point or compute aggregate
responsiveness statistics to describe the model (i.e., mean responsiveness).

* Unaffordability: In an insurance task, where we use a regression model to determine a monthly
insurance premium, we may wish to test that the premium remains affordable for each instance
even if we diagnose a pre-existing condition [10]. In this case, our test population would represent
all instances « € X and our target prediction Yle"LCh C R could change based on their income.

Interventions and Downstream Effects The reliability of these procedures depends on how we
specify the set of reachable points. Consider estimating if a model could be gamed by measuring
the responsiveness of a prediction with respect to all interventions over ||al|, < 4. In this case,
our claims and estimates depend on how we set §: small values may lead to blindspots while large
values may lead to false alarms [see 29, for a discussion]. In tasks with semantically meaningful
features, we can rarely mitigate these issues by setting § because this practice provides no control
over actionability. For example, a decision subject may be unable to change some features, which
leads us to consider infeasible interventions. Alternatively, deliberate interventions could induce
changes on others features and probabilistic changes on others (e.g., taking a medication may alter a
patient’s blood pressure). We would overlook these effects if we only consider constraints that pertain
to a single feature — immutability, bounds or monotonicity.

We consider a general model that distinguishes interventions from downstream effects.

Definition 2. Given an instance x, we assume that an intervention changes its features as:
r=x+a+r,

Here, a € R? captures an intervention — i.e., a deliberate action performed by an individual. In
turn, v € R? specifies downstream effects that stem from the intervention.

We follow [28] and call a feature actionable if it can be directly changed by a decision subject,
and inactionable otherwise. Our model allows practitioners to specify intervention set x, and a
conditional probability distribution to specify downstream effects Py, o (7). This representation allows
us to specify different classes of downstream effects:

* Fixed Effects [9], where interventions induce deterministic changes on features due to feature
encoding or deterministic causal effects.

106
107
108
109

110
111
112
113
114
115

116
117
118
119
120

121

122

123
124
125
126
127
128
129

130
131

132

133
134
135

136

* Random Effects, which capture random effects in feature values that arise independently of the
intervention — e.g., due to noisy measurements or natural variability across repeated predictions.

* Causal Effects, where downstream effects are sampled from a probability distribution that we
obtain from applying an intervention on a structural causal model [see, e.g., 28, 46].

Discussion In many of the use cases above, we can promote safety by detecting predictions that
are unsafe with respect to a minimal response model. In a preclusion detection task, for example, a
minimal model would capture constraints and distributions that are indisputable — e.g., interventions
must ensure the integrity of feature encoding, and distributions must induce deterministic downstream
effects. If we are able to detect instances of preclusion even under this minimal model, then it would
imply that preclusion is likely to arise under any other realistic constraints as well.

Estimating Responsiveness We describe a general framework to verify the responsiveness of
predictions. Consider a probability distribution over the reachable points in X'¥2(z) —i.e., z +
a+r =1z ~ P where we set a ~ Uniform[A(z)] to ensure coverage over the entire space of
interventions, and r ~ Py, 4 (-) according to our model of downstream effects. Given an instance x,
we can compute its responsiveness using i.i.d. samples from this distribution:

p() = B opreacn [I[f (@) € V2]
Given a model f, we estimate this quantity from n i.i.d. sampled points X, ~ (Pzeach)n ag:
pn = L{a' € X, : f(2)) € YEo} = Su/n

This approach has several benefits:

* We can estimate the responsiveness of predictions for any model. Our approach does not depend
on model type and only requires black-box query access.

* It yields simple but reliable statistical guarantees with respect to sample size n and a desired
confidence level. This is a result of building our estimates from i.i.d. samples, allowing .S,, to be a
binomially distributed random variable.

* We can extract a set of points Xypare € X that induce the failure mode and analyze them to
facilitate debugging (e.g., identifying problematic features).

In what follows, we describe how to estimate responsiveness from a sample of reachable points. A
description of our sampling technique may be found in Appendix B.

Procedures and Guarantees We show when reachable sets certify responsiveness.

Proposition 3 (Estimation). Consider estimating the responsiveness of the prediction at x from a
model, f. Given an estimate py, from n reachable points X,, and confidence parameter o € (0, 1),
denote the confidence interval as:

éa(na pn) = [Ba/2(nﬁn7 n—np, +1), Bl—a/2(nﬁn +1,n —npy)]
where B, (a, b) denotes the o' quantile of a Beta distribution with parameters a, b. Then, we have:
Pr(p(x) € Co(n, pn)) >1—a.

We can control the width of the confidence interval to L € (0, 1) by estimating responsiveness with
n > N™"(«, L) reachable points where
C’a (n, i)‘ < L.}
n

In certain cases, we may wish to test if the responsiveness of predictions exceeds a threshold value
e € (0,1). We may want to either identify points with extremely low responsiveness (e.g, detecting
preclusion) or with high responsiveness (e.g., detecting gaming).

N™"(q, L) := min {n eN: m&ﬁ
sen

Proposition 4 (Testing). Consider testing whether the responsiveness of a prediction for a model,
[, at a point T exceeds a threshold value € > 0 using the following hypotheses:

Hy : p(x) > e < at least 100 - £% of interventions lead to target prediction f(x) € Y oah
Hi : p(x) < € < less than 100 - €% of interventions lead to target prediction f(x) € YoM

Given a sample of n reachable points X, let pPn denote the responsiveness estimate and

137

138

140
141

142

143
144
145
146

147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163

Model Pool % Resp. (Perceived) % Resp. (True) AUC
Procedure Description #Models # Cert. Robust Train Test Valid Train Test Valid Train Test Valid

Manual L rain Models with 370 370 00% 00% 00% 00% 00% 00% 0531 0570 0.581

Immutable Features

Consider Responsiveness

. 901 687 03% 00% 09% 562% 57.1% 559% 0.743 0.754 0.759
w.r.t Convex Perturbation Check

Convex

Evaluate Responsiveness

. 901 76 9.6% 99% 93% 9.6% 99% 93% 0.722 0.727 0.734
w.r.t Exact Actions

Exact

Table 1: We report results for the model with the highest validation AUC among Considered models: < 10%
“Bot” predictions with certified responsiveness > € = 0.05. % Responsive show % of “Bot” predictions with
responsiveness > £ = 0.05 under the procedure’s reachable set (Perceived) and the exact reachable set (True).
We see that Convex under-reports model responsiveness and selects models prone to gaming.

P8 (n, pn) == Bi_a(np, +1,n —np,) denote the upper bound of the confidence interval
Caa/(n, pr), where oo € (0,1) is the confidence parameter. In this case, we claim that the re-
sponsiveness is less than € whenever

05, (n, pn) < & <= Reject Hy
Then, the probability of an incorrect unresponsiveness claim is bounded by the confidence level a:
Pr(p5e(n, pn) < | p(x) > €) <o

We calculate the minimum sample size, N™", that allows a correct unresponsiveness claim with
probability 1 — when the difference between € and p, true responsiveness, is at least A € (0,¢):

N™"(q, B,&,A) := min {n € N : F(By(ne,n — ne);n(e — A),n —n(e — A) >1— 6}

Here, F(-;a,b) is the cumulative beta distribution function with parameters a and b. Note that
given the Hy and H; in with confidence parameter o € (0, 1),

Reject Hy = n > log O‘/log(l—a)

Propositions 3 and 4 draw on the fact that S,, ~ Bin(n, p(z)) given an i.i.d. sample. Thus, we can
construct confidence intervals on p(x) using the exact method [11] and numerically compute N™".
We emphasize there is a strict lower bound on n to avoid a trivial testing procedure that fails to reject
H, for all &, thus n > log@/log(1—¢) is a necessary condition to identify an unresponsive prediction.

3 Use Cases for Responsiveness Testing

We will demonstrate how our machinery can promote safety in model development or model auditing
by estimating the responsiveness of predictions. We choose use cases in salient applications where
we can build models with real-world datasets and highlight failure modes of responsiveness. We
include additional details in Appendix C.

Preventing Gaming in Content Moderation Modern approaches for content moderation rely on
machine learning models to limit misinformation or harassment at scale [20, 22]. In such settings, we
often build models to predict if a user account belongs to a “bot” or “human”, using these predictions
to guide follow-up actions (e.g., human review or verification) to facilitate a more pleasant online
experience [37]. Bot detection is difficult at scale — since many accounts lack substantial data, models
must assign millions of predictions from a limited number of features that is available among all
users. At the same time, we want to deploy models that are robust to manipulation — so that “bots”
cannot skirt detection by “gaming” their account history or characteristics. The primary difficulty
arises from the lack of available features, necessitating models to utilize a majority of them, thereby
reducing robustness. In essence, the problem of building a robust model is akin to building a model
that is unresponsive with respect to a realistic attack model.

We consider a task to detect bots derived from the twitterbot dataset [19] with n = 3,431
accounts and d = 22 features on their account characteristics (e.g., n_tweets, inactivity,
tweets_from_mobile_device). To build realistic attack models, we capture feasible interventions
through 4 non-separable constraints like enforcing n_tweets = 0 when inactivity = 1 (and
vice versa), and only allowing changes in tweets_from_mobile_device when n_tweets increases as
one must upload a new post from their mobile device. We also assume some features such as

164
165
166
167
168

169
170
171
172
173

174
175
176
177
178
179
180
181
182
183

184
185
186
187

188

189

191
192
193
194
195

196
197
198

200
201

202

204
205
206
207
208
209

num_followers_leq_1000 are not actionable. Given the intervention model, we use an approach
inspired by Zhang et al. [61] in which we construct classifiers that are robust to manipulation by
penalizing or excluding certain features. We train a pool of penalized logistic regression models over
a large grid of [and [; parameters using glmnet [17]. We train models and assess their robustness
to gaming through three approaches:

* Manual: We only use immutable features. This represents a baseline approach, which ensures
robustness, but should attain low utility due to not utilizing all the available information.

* Convex: We use all features, but consider the convex relaxation of the intervention model to measure
responsiveness, which is a common approach in robustness [see, e.g., 50, for a discussion].

* Exact: We use all features and consider the exact intervention model.

In Table 1, we report the results of the model that achieves the highest validation AUC among robust
models — less than 10% of gameable predictions — that we train. Overall, our results highlight practical
challenges when building a well-performing model that also limits gaming. Although models trained
under the Manual procedure were all robust, they performed poorly with a Test AUC of 0.570.
We also see that verifying responsiveness using a convex relaxation of the reachable set returns a
well-performing model that appears robust. In fact, the test AUC of the model under the Convex
regime (0.754) exceeds that of the model chosen under Exact (0.727). However, we see that the
Convex procedure severely under-reports responsiveness: the perceived proportion of responsive
points is near 0 in all three splits of the data, but, when verified against the actual reachable set, we
see that the proportion of responsive points surges to > 50%.

These results (1) show that there may exist a well-performing model that is robustness to gaming
without additional adversarial training and (2) highlights the importance of validating responsiveness
with respect to accurate interventions. Procedures like Convex can lead to unaccounted harm, where
a model that is thought as robust can be deployed, only to be vulnerable to gaming.

4 Concluding Remarks

Over the past century, we have developed numerous practices to create and deploy technology that
impacts people [43] — from tests that can be automated to standards that can be enforced. Even as we
routinely deploy machine learning models to automate predictions that affect people, our practices
to govern them are still in their infancy. Our work offers a concrete starting point by presenting
practitioners with machinery that can reliably detect failures arising from predictive responsiveness,
which can not only be used by model developers but also by communities, advocates, and regulators
engaged in collective oversight.

One of the benefits of our machinery is that it pairs each failed test with a subset of reachable
points, which can support downstream tasks such as but not limited to debugging, regression testing,
improving the specification of constraints and distributions of interventions. Because these artifacts
are portable and comparable, they can also be aggregated across deployments to support coordinated
audits and to furnish counterexamples when falsifying claims (e.g., “the model will not assign a
prediction that could be gamed”).

Limitations Our framework relies on practitioners specifying intervention constraints and down-
stream effects based on domain knowledge, documentation, or policy rules. While this enables broad
applicability, it does not account for cases where causal relationships must be learned from data. Our
method also does not infer constraints or causal structure automatically. Additionally, the sampling
procedure may be computationally intensive in high-dimensional or tightly constrained settings,
though this cost is amortized by reuse across models. Finally, our uniform sampling approach priori-
tizes coverage over efficiency; future work could explore adaptive or importance-based strategies
[45].for more efficient test generation.

2

0

211
212

213
214
215
216

217
218
219

220
221

222
223

224
225

226

227
228

229
230
231

232
233
234

235
236

237

239

240
241

242
243

244

245
246
247
248
249

250
251

252
253

254

256

257
258

259

261
262
263

References

(1]

(2]

3

—

(4]

[5

—

(6]

[7
[8

—_— =

(9]

(10]

(11]

[12]

[13]

(14]

[15]
[16]

(17]

(18]

(19]

[20]

[21]

(22]

Aimeur, Esma, Sabrine Amri, and Gilles Brassard. Fake news, disinformation and misinformation in social
media: a review. Social Network Analysis and Mining, 13(1):30, 2023.

Attia, Anthony, Jamie Webb, Katherine Connor, Chris JC Johnston, Michael Williams, Tim Gordon-Walker,
Ian A Rowe, Ewen M Harrison, and Ben M Stutchfield. Effect of recipient age on prioritisation for liver
transplantation in the uk: a population-based modelling study. The Lancet Healthy Longevity, 5(5):
e346-e355, 2024.

Attia, Antony, Ian A Rowe, Ewen M Harrison, Tim Gordon-Walker, and Ben M Stutchfield. Implausible
algorithm output in uk liver transplantation allocation scheme: importance of transparency. The Lancet,
401(10380):911-912, 2023.

Austin, James, Roger Ocker, and Avi Bhati. Kentucky pretrial risk assessment instrument validation.
Bureau of Justice Statistics, 2010.

Ben-David, Arie. Monotonicity Maintenance in Information-Theoretic Machine Learning Algorithms.
Machine Learning, 19(1):29-43, 1995.

Bogen, Miranda and Aaron Rieke. Help wanted: An examination of hiring algorithms, equity, and bias.
Upturn, December, 7, 2018.

Burns, Cathering and Vicki Loader. Young people wait four times longer for liver transplants, 2023.

Chen, Yatong, Zeyu Tang, Kun Zhang, and Yang Liu. Model transferability with responsive decision
subjects. In International Conference on Machine Learning, pages 4921-4952. PMLR, 2023.

Cheon, Seung Hyun, Anneke Wernerfelt, Sorelle Friedler, and Berk Ustun. Feature responsiveness scores:
Model-agnostic explanations for recourse. In The Thirteenth International Conference on Learning
Representations, 2025.

Claxton, Gary, Cynthia Cox, Anthony Damico, Larry Levitt, and Karen Pollitz. Pre-existing conditions
and medical underwriting in the individual insurance market prior to the aca. Menlo Park, CA, 2016:1-11,
2016.

Clopper, Charles J and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case of
the binomial. Biometrika, 26(4):404-413, 1934.

Dong, Jinshuo, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic
classification from revealed preferences. In Proceedings of the 2018 ACM Conference on Economics and
Computation, pages 55-70. ACM, 2018.

Dua, Dheeru and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.
edu/ml.

Duwe, Grant and KiDeuk Kim. Sacrificing accuracy for transparency in recidivism risk assessment: The
impact of classification method on predictive performance. Corrections, 1(3):155-176, 2016.

Eaglin, Jessica M. Constructing recidivism risk. Emory LJ, 67:59, 2017.

Estornell, Andrew, Yatong Chen, Sanmay Das, Yang Liu, and Yevgeniy Vorobeychik. Incentivizing
recourse through auditing in strategic classification. In Elkind, Edith, editor, Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, IJCAI-23, pages 400—408. International
Joint Conferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/45. URL
https://doi.org/10.24963/ijcai.2023/45. Main Track.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.

Ghalme, Ganesh, Vineet Nair, Itay Eilat, Inbal Talgam-Cohen, and Nir Rosenfeld. Strategic classification
in the dark. In International Conference on Machine Learning, pages 3672-3681. PMLR, 2021.

Gilani, Zafar, Ekaterina Kochmar, and Jon Crowcroft. Classification of twitter accounts into automated
agents and human users. In Proceedings of the 2017 IEEE/ACM international conference on advances in
social networks analysis and mining 2017, pages 489-496, 2017.

Gillespie, Tarleton. Content moderation, ai, and the question of scale. Big Data & Society, 7(2):
2053951720943234, 2020.

Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. ICLR, 2015.

Gorwa, Robert, Reuben Binns, and Christian Katzenbach. Algorithmic content moderation: Tech-
nical and political challenges in the automation of platform governance. Big Data & Society, 7(1):
2053951719897945, 2020.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.24963/ijcai.2023/45

264

266

267
268
269

270
271
272

273
274

275
276
277

278
279

280
281
282

284

285
286
287

288
289

291

292
293

294
295

297

298
299

300
301

303
304

305
306

307

308
309

310
311

312
313

314
315

316

317
318
319

(23]

[24]

[25]

(26]
(27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

[41]

[42]
[43]

[44]

[45]

[40]

[47]
(48]

Gotlieb, Neta, Amirhossein Azhie, Divya Sharma, Ashley Spann, Nan-Ji Suo, Jason Tran, Ani Orchanian-
Cheff, Bo Wang, Anna Goldenberg, Michael Chassé, et al. The promise of machine learning applications
in solid organ transplantation. NPJ digital medicine, 5(1):89, 2022.

Gupta, Maya, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov,
Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated interpolated look-up tables.
Journal of Machine Learning Research, 17(109):1-47, 2016.

Hardt, Moritz, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages 111-122.
ACM, 2016.

Hester, Rhys. Prior record and recidivism risk. American Journal of Criminal Justice, 44:353-375, 2019.
Hurley, Mikella and Julius Adebayo. Credit scoring in the era of big data. Yale JL & Tech., 18:148, 2016.

Karimi, Amir-Hossein, Bernhard Scholkopf, and Isabel Valera. Algorithmic recourse: from counterfactual
explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pages 353-362, 2021.

Kireev, Klim, Bogdan Kulynych, and Carmela Troncoso. Adversarial robustness for tabular data through
cost and utility awareness. In Network and Distributed System Security (NDSS) Symposium, 2023.

Kochenderfer, Mykel J., Sydney M. Katz, Anthony L. Corso, and Robert J. Moss. Algorithms for validation.
https://algorithmsbook.com/validation/files/val.pdf, 2025. GitHub repository PDF, accessed
May 16, 2025.

Koh, Pang Wei and Percy Liang. Understanding black-box predictions via influence functions. In ICML,
2017.

Kothari, Avni, Bogdan Kulynych, Tsui-Wei Weng, and Berk Ustun. Prediction without preclusion:
Recourse verification with reachable sets. In The Twelfth International Conference on Learning Represen-
tations, 2024.

Kusner, Matt J, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. Advances in
neural information processing systems, 30, 2017.

Latessa, Edward J, Richard Lemke, Matthew Makarios, and Paula Smith. The creation and validation of
the ohio risk assessment system (oras). Fed. Probation, 74:16, 2010.

Lawless, Connor, Tsui-Wei Weng, Berk Ustun, and Madeleine Udell. Understanding fixed predictions via
confined regions, 2025. URL https://arxiv.org/abs/2502.16380.

Levanon, Sagi and Nir Rosenfeld. Strategic classification made practical. In International Conference on
Machine Learning, pages 6243—-6253. PMLR, 2021.

Link, Daniel, Bernd Hellingrath, and Jie Ling. A human-is-the-loop approach for semi-automated content
moderation. In ISCRAM, 2016.

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. /CLR, 2018.

Marx, Charles, Flavio Calmon, and Berk Ustun. Predictive multiplicity in classification. In Proceedings of
Machine Learning and Systems 2020, pages 9215-9224. 2020.

Marx, Charles, Youngsuk Park, Hilaf Hasson, Yuyang Wang, Stefano Ermon, and Luke Huan. But are
you sure? an uncertainty-aware perspective on explainable ai. In International Conference on Artificial
Intelligence and Statistics, pages 7375-7391. PMLR, 2023.

Miller, John, Smitha Milli, and Moritz Hardt. Strategic classification is causal modeling in disguise. In
International Conference on Machine Learning, pages 6917-6926. PMLR, 2020.

Murgia, Madhumita. Algorithms are deciding who gets organ transplants. are their decisions fair?, 2023.

Nader, Ralph. Unsafe at Any Speed: The Designed-in Dangers of the American Automobile. Pocket Books,
1966.

Nagaraj, Sujay, Yang Liu, Flavio P Calmon, and Berk Ustun. Regretful decisions under label noise. arXiv
preprint arXiv:2504.09330, 2025.

Nguyen, Viet Anh, Xuhui Zhang, Jose Blanchet, and Angelos Georghiou. Distributionally robust parametric
maximum likelihood estimation, 2020. URL https://arxiv.org/abs/2010.05321.

Pearl, Judea. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd edition,
2009. ISBN 052189560X.

Pennsylvania Bulletin. Sentence Risk Assessment Instrument, April 2017.

Raghavan, Manish, Solon Barocas, Jon Kleinberg, and Karen Levy. Mitigating bias in algorithmic hiring:
Evaluating claims and practices. In Proceedings of the 2020 conference on fairness, accountability, and
transparency, pages 469-481, 2020.

https://algorithmsbook.com/validation/files/val.pdf
https://arxiv.org/abs/2502.16380
https://arxiv.org/abs/2010.05321

320
321

322
323

324
325
326

327
328

329
330
331

332
333
334

335
336
337

338
339

340
341

342
343
344

345

346
347

349

[49]

(501

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

Saurwein, Florian and Charlotte Spencer-Smith. Automated trouble: The role of algorithmic selection in
harms on social media platforms. Media and Communication, 9(4):222-233, 2021.

Simonetto, Thibault, Salah Ghamizi, and Maxime Cordy. Constrained adaptive attack: Effective adversarial
attack against deep neural networks for tabular data. arXiv preprint arXiv:2406.00775, 2024.

Sivaramakrishnan, Vignesh, Krishna C Kalagarla, Rosalyn Devonport, Joshua Pilipovsky, Panagiotis
Tsiotras, and Meeko Oishi. Saver: A toolbox for sampling-based, probabilistic verification of neural
networks. arXiv preprint arXiv:2412.02940, 2024.

Spooner, Thomas, Danial Dervovic, Jason Long, Jon Shepard, Jiahao Chen, and Daniele Magazzeni.
Counterfactual explanations for arbitrary regression models. arXiv preprint arXiv:2106.15212, 2021.

Staff in the Office of Technology and the Division of Advertising Practices. Ai and the risk
of consumer harm. https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2025/01/
ai-risk-consumer-harm, January 3 2025.

Tolomei, Gabriele, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable predictions
of tree-based ensembles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 465474, 2017.

United States Department Of Justice. Office Of Justice Programs. Bureau Of Justice Statistics. Recidivism
of prisoners released in 1994, 2002. URL https://www.icpsr.umich.edu/web/NACID/studies/3355/
versions/V8.

Ustun, Berk, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. pages 10-19,
2019. doi: 10.1145/3287560.3287566.

Veitch, Victor, Alexander D’ Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invariance to
spurious correlations: Why and how to pass stress tests. arXiv preprint arXiv:2106.00545, 2021.

Weng, Tsui-Wei, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets, and
Luca Daniel. Proven: Verifying robustness of neural networks with a probabilistic approach. In ICML,
2019.

Wolsey, Laurence A. Integer programming. John Wiley & Sons, 2020.

Zeng, Jiaming, Berk Ustun, and Cynthia Rudin. Interpretable classification models for recidivism prediction.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(3):689-722, 2017.

Zhang, Fei, Patrick PK Chan, Battista Biggio, Daniel S Yeung, and Fabio Roli. Adversarial feature
selection against evasion attacks. IEEE transactions on cybernetics, 46(3):766-777, 2015.

https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2025/01/ai-risk-consumer-harm
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2025/01/ai-risk-consumer-harm
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2025/01/ai-risk-consumer-harm
https://www.icpsr.umich.edu/web/NACJD/studies/3355/versions/V8
https://www.icpsr.umich.edu/web/NACJD/studies/3355/versions/V8
https://www.icpsr.umich.edu/web/NACJD/studies/3355/versions/V8

= Statistical Inference for Model Responsiveness Audits

351 Supplementary Materials

352

353

354
355
356
357
358
359
360
361
362

363
364
365
366
367
368
369
370
371
372

A Supplementary Material for Section 1

Related Work Our work is motivated by practical challenges in responsiveness that have broadly
motivated work in adversarial robustness [21, 38], strategic classification [12, 18, 25, 36, 41], and
counterfactual invariance [33, 52, 57]. Our machinery aims to detect these issues rather than resolve
them in model development [c.f. work in strategic classification and robustness, e.g., 12, 16, 18, 25,
29, 36, 41]. To this end, we test with the same kinds of measures used in validation literature [51, 58].
Our work underscores how we can reap benefits from measuring responsiveness of models with
semantically meaningful features — e.g., model selection [8] or identifying examples for debugging
[54]. Our machinery provides a general way to enforce a rich set of semantic constraints for any
model class.

Our work builds on a growing body of research on the reliability of individual predictions [see e.g.,
31, 39, 40, 44]. Our work is closely related to a recent stream of work on recourse verification —i.e.,
a formal validation procedure to test if a model can provide recourse to its decision subjects [see e.g.,
9, 32, 35]. Our approach builds on an idea introduced in Kothari et al. [32], who present a method
to enumerate reachable points box to certify preclusion —i.e., that a model assigns predictions that
cannot change. Their methods can output a deterministic guarantee of responsiveness but is restricted
to datasets with discrete features and deterministic actions. Our methods to estimate responsiveness
overcome these limitations by sampling a set of reachable points. This approach applies to tasks
with discrete or continuous features, and can return estimates that support a broader class of model
validation tasks.

373

374

375
376
377
378
379
380
381

383
384
385
386
387
388
389
390
391

393
394
395
396
397
398
399
400

401
402
403
404
405
406
407
408

409

410

B Supplementary Material for Section 2

B.1 Uniform Sampling of Reachable Points

Class Example Features Constraint

Immutability content_created_at should not change z; = content_created_at a; =0

Monotonicity ~ patient_age can only increase x; = patient_age a; >0
Integrality n_visits must be positive integer xj = n_visits aj € ZN[0—x;,52 — ;]
Feature preserve one-hot encoding of x; = patient_type_in a; +x; € {0,1} xx +ap € {0,1}
Encoding patient_type € {In,0ut} T}, = patient_type_out aj+xjtap+rr=1 aj+z;>ap+ 1
. if no_posts = TRUE
Missing P T; = no_posts aj+z; € {0,1} ap +ay € [0,107]
then num_posts = 0 - - :
Values T = num_posts zjoxp=0 xp>1—x;

else num_posts > 0

Table 2: Examples of constraints on interventions. Each constraint can be expressed in natural language and
embedded into an optimization problem using standard techniques in mathematical programming [see 59].

The main technical challenge in testing respon-

siveness is that it relies on a uniform sample Algorithm 1 Sampler for Reachable Sets

of interventions a ~ Uniform[A(z)], which is Iliequ!re: z i f : IP‘S":"’
challenging due to the unconventional structure 1 avere: 7 = e e

f the intervention set — i.e., some features are Require: Constraints
o Y Require: D C [d} Downstream Features

discrete while others could be continuous, with X — o
certain combinations being infeasible. : repeat
a+0
a; < Samplelnterv(z, j, C) for j € [d] \ D

1
We present a sampling procedure to yield a %
4: if CheckFeasibility(x, a, Cs) then
5:
6

set of reachable points in Algorithm 1. In
Line 3, given a subset .of features S, we 74 < SampleEffect(a, k, C) for k € D
first sample an intervention a; for each ac- . X+ XU{z+ta+r)

tionable feature j € [d] \ D by calling the 7. end if

Samplelnterv(x, j, C) routine. After sampling 8: until | X| =n

all interventions, we check if the resulting a is @atphit knhder constraints 1n the block (Line 4) by
solving a discrete optimization problem: ming e 4(z) =

CheckFeasibility(x, a, C') using a mixed integer program and 1nclude a formulatlon in Appendix B.
In Line 5, we then sample values for each downstream features by calling the SampleEffect(a, k, C)
routine and add « 4+ a + r to X;, the reachable set (Line 6).

We improve the efficiency of the sampling procedure by proposing candidates that obey feature-
level constraints (integrality, monotonicity, bounds) in the Samplnterv routine — e.g., if feature j is
integer-valued, bounded to B, and monotonically increasing, we sample from Uniform(xz;, B). After
sampling based on feature-level constraints, we use CheckFeasibility(x, a, C's) to ensure that they
obey joint actionability constraints like encoding constraints. Given a, we then sample downstream
effects. For deterministic effects, we compute the appropriate feature response value r(a; x) directly.
For stochastic effects, we sample based from the specified condition distribution 7(a; x) ~ Py (a).
By default, we sample from a uniform distribution of feasible values.

We also execute Algorithm 1 over subsets of features that are independent with respect to interventions
and downstream effects. We determine these subsets programmatically by identifying if a pair features
Jj # j' € [d] are coupled through constraints or distributions (e.g., if a; and a/; are linked directly or
indirectly — through another feature ay). Given a graph that encodes this information for all j, j* € [d],
we can construct a maximally independent partition of features —i.e., a set of k < d feature subsets
M= {Sy,..., S} such that A(x) = [[gc 1 As(xs), where Ag specifies intervention constraints
that apply to xg. Partitioning allows us to independently sample interventions within each subset,
which considerably improves sampling efficiency.

B.2 Description of Routines in Algorithm 1

Here we provide further details on each of the routines referenced in Algorithm 1.

411

412

413
414

415

416
417
418
419

420
421

422
423
424

425
426
427
428

429
430
431

Description of the Samplelnterv Routine

The Samplelnterv routine is designed to sample feasible values across features. Given a point x, a
feature j € [d] and a set of constraints as defined by the intervention model C, Samplelnterv(z, j, C)
samples an intervention a; ~ Unif{a} | @’ € A(z)}. The procedure is designed to sample as
efficiently as possible in this setting by enforcing all constraints at the feature level: integrality,
monotonicity, bounds on the value of z;, and bounds on the value of a;. If feature j is discrete, we
take a uniform sample from

[LB; (), UB;(x)]z = [UB;(z)] \ [LB;(x)].
If feature j is continuous, we take a uniform sample from
[LBj(x), LB;(x)].

We define the lower and upper bounds for the intervention on j, LB;(x) and UB,(x) as:

UB, (@) = 1[j 1] - (ub; — ;)

LB;(z) =1[j I] - (z; — b))
Here, II[j 1] = 1if j can increase, I[j |] if j can decrease and [b;, ub; are bounds on feature j (note
that T; € [lbj7 ubj])

Description of CheckFeasibility Routine

CheckFeasibility determines whether a’, the sampled intervention, is feasible under the constraint
set C. Although Samplelnterv ensures that each a; for j € [d] abides by feature level constraints
like integrality, monotonicity and bounds, we must additionally ensure that a’ does not violate
non-separable constraints.

More formally, given x, a sampled intervention a’ and a set of constraints C', CheckFeasibility
solves the following problem:

min I[a’ = a] s.t. a abides by C)]

acA(x)
We implement Eq. (1) as a mixed-integer program that consists of a baseline formulation — enforcing
separable constraints like bounds and monotonicity — and additional constraints, which enforce
non-separable constraints, and optionally, downstream effects. The baseline formulation has the form:

min Z (aj+ +aj) (2a)
jEld]

S.t. a; = a; VES [d] intervene with a’ (2b)

a}', a]-_ S R+ VRS [d] positive, negative compoenets of a ; (2¢)

a; = aj' — llj_ VS [d] absolute value reconstruction (2d)

gj € {07 1} j e [d] sign of a; (2e)

a;L > a; VES [d] positive component of a; (2f)

aj_ Z —Qyj J € [d] negative component ofaj (2g)

aj < UBj (w)aj VES [d] only 1 ofa;r ora; can be positive (2h)

(1; < LBj (:E)(]. — O‘j) VRS [d] only 1 ofa;r ora; can be positive (21)

ac A(m) Jjoint actionability constraints (2])

The baseline formulation in Eq. (2) minimizes the /; norm of a, splitting a into positive and negative
parts a;", a; > 0(2d), of which only one is non-zero. This allows us to use this baseline formulation
for both sampling and enumeration. Here, o; := I[a; > 0] is a boolean variable which we set to 1
when a; is positive to ensure that signed components can have a positive value through (2e).

(2b) stipulates that we intervene with a’ —i.e., find an intervention a such that satisfies the remaining
constraints and is equal to a’. The remaining constraints enforces separable (constraint (2h), (2i))
and non-separable actionability constraints (constraint (2j)).

432
433
434

435
436
437

439

440
441
442

443
444

445
446

447
448
449
450

451

452

453

454

455

457
458

460
461
462

463

464
465
466

467

468
469

470
471
472
473

Below we provide two examples of non-separable actionability constraints and their explicit formu-
lation in Eq. (2). For additional examples of how we can explicitly encode constraints into Eq. (2),
refer to [32].

Encoding Directional Linkage Constraints We often encounter features where intervening on
them has a direct (and sometimes deterministic) effect on other features. For example, in Table 8,
joint constraint 4 stipulates that urls_count increases at most as the change in num_tweets. Here, the
“source variable” — the source of the effect — is num_tweets and the “target variable" — the feature
affected — is urls_count.

We capture this effect, called Directional Linkage, by adding additional constraints to Eq. (2). Given
source feature k € [d], a non-empty set of target features 7' C [d] \ {k} and a scale vector s € RIT1,
which captures the scale of the effect for each [€ T', we add the following constraints:
bl—sl-akzo (3)
a—a—b =0 “)
for each target feature [€ T, where b; indicates the change in feature [as a result of intervention ay,
and ¢; represents the aggregate change in .

We can also substitute the equality in Eq. (3) with inequalities. The aforementioned example with
num_tweets and urls_count is a case where the relationship is an inequality (<) and s = 1.

Encoding Thermometer Encoding Constraints Datasets often include features that are based on
thresholds. These features are often encoded like unary codes, a number of ones followed by zeros.
For example, in Table 8, age_of_account_geq has a thermometer encoding with thresholds at 180,
365, 730 and 1825 days. Hence there are five possible encoding values:

1. [0,0,0,0]: account is less than 180 days old

|:
2. [1,0,0,0]: account is older than 180 days but less than 365 days old
3. [1,1,0,0]: account is older than 365 days but less than 730 days old
4. [1,1,1,0]: account is older than 730 days but less than 1825 days old
5. [1,1,1, 1]: account is more than 1825 days old

Given an ordered set of feasible values V, like above, we also define a reachability matrix F €
{0, 1}VIXIVI where the (i, j)-th entry of E is 1 when we can reach from the i-th element of V' to
its jth element and O otherwise. Note that there are three possibilities for E: an upper triangular
matrix, a lower triangular matrix of ones, or an all-one matrix. For example, age_of_account_geq,
we also have a monotonicity constraint — age can only increase. So given the set of viable values (in
order), the reachability matrix E is an upper triangle matrix of ones (i.e., can reach [1, 0, 0, 0] from
[0, 0,0, 0], but not ther other way around).

Then, we add the following constraints to Eq. (2):

S w=1 5)

ke[IV]]

aj = Z €j,k(Vk,j — @) uk ©

ke[[V]]

where u; = 1 when resulting feature vector after the proposed intervention a’ corresponds to the
k-th encoding in V, vy, 0 otherwise. e; ;, indicates whether vy, is reachable (based on E). Eq. (5)
ensures that a’ has a valid encoding and Eq. (6) computes the required change (if feasible).

Description of SampleEffect Routine

The implementation SampleEffect changes based on the nature and relationships for the downstream
effects we wish to sample:

¢ For deterministic downstream effects, we do not sample but calculate the effect directly as there is
only one feasible value. We have implemented a baseline sampler for non-deterministic downstream
effects, which takes a uniform sample from possible feature values and runs CheckFeasibility on
the resulting final intervention a + 7.

474
475

476

477
478
479

481
482
483
484

485

486
487
488
489
490
491
492
493
494

495

496
497
498
499
500
501
502

503
504
505
506
507
508

509
510
511
512
513
514
515

516
517
518
519
520

521
522
523
524
525

* For random or causal effects, we sample r(a;) from the specified distribution or model P (a).
Note that the parameters of the distribution need not be the same for all points.

Partitioning for Efficiency

We run Algorithm 1 separately over subsets of features, rather than jointly over all features in [d].
These subsets are disjoint and are independent with respect to interventions and downstream effects.
More formally, we call the collection of these independent subsets a partition M := {S1,S2, ..., Sk}
of [d] such that given two parts Sy, , Sy, there are no joint constraints or downstream effects between
all pairs (p, q) € S, x S, of features. Another way to think about feature partitions would be as
connected components in a graph, where features are nodes and edges represent joint constraints
and/or downstream effects (i.e., 3 edge (p,q) <= there are joint actionability constraints between
p and q).

The benefit of sampling within partitions is two-fold:

* Scalability: We only execute CheckFeasibility when necessary (i.e., when the partition is larger
than size 1. Moreover, we only discard infeasible samples within the partition, rather than throwing
out the entire sampled intervention. This significantly decreases run time for sampling.

* Implementation: We can apply more efficient sampling procedures. In general, a dataset will have
many kinds of features — e.g., continuous and discrete — with many different kinds of actionability
constraints. However, subsets of features are likely to be similar. In effect, we can often find
features that are not related to other features. Alternatively, we may find features that are all
discrete and linked together by a single constraint (e.g., dummy variables with a one-hot encoding).
Decomposition allows us apply different sampling procedures to each to sample more efficiently.

B.3 Validation Study

Convergence Guarantees Our sampling-based procedure provides several statistical guarantees for
our responsiveness estimate: p(x) is an unbiased estimator and the (absolute) estimation error tends
to 0 as the sample size n increases. For testing, our results in Proposition 4 state that the probability
of correctly identifying responsiveness (Specificity) is at least 1 — « and the probability of correctly
identifying unresponsiveness (Recall) is at least 1 — 8 given n > N™". In practice, these guarantees
imply that we can adapt tests to achieve any level of specificity or recall by setting the appropriate
sample size.

We demonstrate these guarantees through an empirical study detailed in Appendix B. We work with
a dataset with discrete features where we can enumerate all reachable points for each instance and
compute ground-truth responsiveness. We use these to estimate the absolute estimation error (| p,, — p|),
specificity (Pr (Claim Responsive | p > ¢)) and recall (Pr (Claim Unresponsive | p < ¢€)). In addition
to verifying these guarantees, we investigate the precision (Pr (p < & | Claim Unresponsive)) of our
tests to gauge their reliability in action.

As shown in Fig. 2, the absolute estimation error decreases as n increases and specificity remains
above 1 — a = 95%. We also observe the results in ??, where both precision and recall are
0 for n < loga/log(1—¢) since the test fails to reject Hy for all predictions (i.e., none flagged as
unresponsive). For n > loga/log(1—¢), we see that the specificity of our test is above the statistical
power (dotted line) computed at n. The precision of the test is also above 95% for n > log @/iog(1—e¢),
indicating that our tests result in very few false positives (i.e., claiming unresponsiveness when the
prediction is responsive).

These results reaffirm our statistical guarantees and highlight that we can achieve low estimation error
and high test reliability with a relatively small sample size. For example, a sampled reachable set
with n = 30 has 4.2% absolute estimation error and 97.9% precision on average across 5 trials, while
taking up 85% less storage. As a result, even in cases where the intervention sets are discrete and can
be enumerated, sampling can lead to a meaningful reduction in compute and storage instances.

In Fig. 2, we conduct a study on sample size n to (1) validate our responsiveness estimation and
testing procedure outlined in Section 2, and (2) determine their reliability under various sample sizes.
We work with a discrete dataset, german, where we can fully enumerate reachable sets using the
enumeration procedure from Kothari et al. [32]. The enumerated reachable sets provides ground
truth responsiveness proportions. We compare our results to determine the error of our estimation

526
527

528
529
530
531

533
534

535
536
537
538
539
540

541
542
543
544
545

546

547
548

549
550
551
552
553
554
555
556
557
558
559
560

561

100% @@ -8 -9 -0 0 -0 -0 -0 0 100% p-@--g--0--0--@--0--0
30% h
S 8 75% 75%
W 209% & s
c £ 2
S 2 50% ‘3 50%
g £ o
E10% ‘S B o
@ o~ 8 o5 - 25%
-
w t,.,‘_i.“.”.”.”. n
0% '
0% 0% e--e
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Sample Size Sample Size Sample Size

Figure 2: Convergence of responsiveness estimates and test metrics for a lending model built from the german
dataset [13]. We compute the true responsiveness of all instances in the dataset by enumeration, build sampled
reachable sets to estimate and test responsiveness (¢ = 0.1, = 0.05). Left: Absolute Estimation Error
(|pn — p|). Middle: Specificity (P(Claim Responsive | p >), analogous to statistical power: 1 — 3) and Recall
(P(Claim Unresponsive | p < ¢), analogous to confidence level 1 — «). The dotted line is the statistical power
across different sample sizes n given effect size A = 0.05. Right: Precision (P(p < € | Claim Unresponsive)).
Red lines in Middle and Right figures show the minimum sample size required to reject the null hypothesis given
no positive observations: 108 @/iog(1—¢) (??).

procedure and the precision (in the main body, we refer to it as “reliability” for simplicity) of our
testing procedure under two model classes: Logistic Regression (LR) and XGBoost (XGB).

The german dataset is a credit dataset originally compiled in 1994 that is publicly available through
the UCI Machine Learning Repository [13]. It contains n = 1,000 de-identified instances, each
representing a credit applicant. It includes d = 20 categorical or discrete features, providing insights
into aspects such as loan history, demographic information (including gender, age, and marital status),
occupation, and past payment behavior. The objective is to predict whether an applicant is a “good”
(y; = 1) or “bad” (y; = 0) credit customer. We note that the dataset does not have missing values,
and have adapted some feature names for clarity.

Intervention Model We consider an intervention model where each applicant can intervene on
current features like account balances, but not history nor credit related features. For example,
Housing=Owner is not actionable since one cannot go from renting to buying without additional loans.
This intervention model is conservative and is intended to capture indisputable actionability con-
straints. In total, our dataset contains 36 features of which 9 are actionable and 10 are mutable. There
a total of four constraints: two Directional Linkage, and two Thermometer Encoding constraints:

* Directional Linkage constraints in this intervention model govern downstream effects on Age from
1) YearsAtResidence and 20 YearsEmployed>1, which form a partition.

e Thermometer Encoding constraints enforce conceptual requirements in this dataset - 1) requiring
CheckingAcct>0=True to be reachable only if CheckingAcct_exists is also True, and 2) requiring
SavingsAcct>100=True to be reachable only if SavingsAcct_exists is True.

These lead to 31 partitions.

We present a list of all features and their corresponding feature-level constraints in Table 3 and list
the non-separable joint constraints below it.

1. DirectionalLinkage: Actions on YearsAtResidence will induce actions on [‘Age’]. Each unit
change in YearsAtResidence leads to a unit change in Age

2. DirectionalLinkage: Actions on YearsEmployed>1 will induce actions on [‘Age’]. Each unit change
in YearsEmployed>1 leads to a unit change in Age

3. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct>0] must preserve ther-
mometer encoding of CheckingAcct., which can only increase. Actions can only turn on
higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and
CheckingAcct>0 is the highest-level-dummy.

4. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct>100] must preserve ther-
mometer encoding of SavingsAcct., which can only increase. Actions can only turn on higher-level
dummies that are off, where SavingsAcctexists is the lowest-level dummy and SavingsAcct>100
is the highest-level-dummy.

Lastly, we report model performance statistics for our LR and XGB model:

Name Type LB UB Actionable Sign Joint Constraints Partition ID

Age VA 19 75 No 1,2 0
YearsAtResidence Z 0 7 Yes + 1 0
YearsEmployed>1 {0,1} O 1 Yes —+ 2 0
CheckingAcct_exists {0,1} © 1 Yes + 3 30
CheckingAcct>0 {0,1} 0 1 Yes + 3 30
SavingsAcct_exists {0,1} O 1 Yes + 4 31
SavingsAcct>100 {0,1} O 1 Yes + 4 31
Male {01 0 1 No - 1
Single {0,1} 0 1 No - 2
ForeignWorker {0,1} 0 1 No - 3
LiablePersons VA 1 2 No - 4
Housing=Renter {0,1} O 1 No - 5
Housing=0wner {0,1} O 1 No - 6
Housing=Free {0,1} 0 1 No - 7
Job=Unskilled {0,1} 0 1 No - 8
Job=Skilled {0,1} © 1 No - 9
Job=Management {0,1} O 1 No - 10
CreditAmt>1000K {0,1} O 1 No - 11
CreditAmt>2000K {0,1} 0 1 No - 12
CreditAmt>5000K {0,1} 0 1 No - 13
CreditAmt>10000K {0,1} 0 1 No - 14
LoanDuration<6 {0,1} O 1 No - 15
LoanDuration>12 {0,1} O 1 No - 16
LoanDuration>24 {0,1} 0 1 No - 17
LoanDuration>36 {0,1} 0 1 No - 18
LoanRate VA 1 4 No - 19
HasGuarantor {0,1} O 1 Yes + - 20
LoanRequiredForBusiness {0,1} O 1 No - 21
LoanRequiredForEducation {0,1} 0 1 No - 22
LoanRequiredForCar {0,1} 0 1 No - 23
LoanRequiredForHome {0,1} © 1 No - 24
NoCreditHistory {0,1} O 1 No - 25
HistoryOfLatePayments {0,1} O 1 No - 26
HistoryOfDelinquency {0,1} 0 1 No - 27
HistoryOfBankInstallments {0,1} 0 1 Yes + - 28
HistoryOfStoreInstallments {0,1} 0 1 Yes + - 29

Table 3: Intervention Model for the processed german dataset. Type indicates the feature type (Z for integer,
{0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates whether the
feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity constraints
— whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable constraint
indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature belongs to.

LR XGB

Train Test Train Test

AUC 0.807 0.768 0.819 0.7615

Expected Calibration Error 20.0% 20.0% 0.0% 10.0%

Error 272% 28.0% 21.9% 23.0%
n 800 200 800 200
Tpos 560 140 560 140
D 70.0% 70.0% 70.0% 70.0%
Telf_pos 738 186 615 120
TNclf_neg 62 14 185 80

Table 4: Additional model statistics of LR and XGB models for the german dataset

562

563

564

B.4 Additional Examples

For Proposition 3

Example 5 (Estimating Responsiveness for Feature Attribution). Consider a task where we need
to identify salient features for a prediction in a lending task where)) = {approve, deny} [9]. If
we were to do this based on responsiveness with a 0.05 margin of error where f(x) = deny, for
each feature j € [d], we would set the parameters as follows:

e Yreach — fapprove}
o A(x): only allow feature j and Jeatures linked via downstream effects to change
* a=0.05, L =0.1, which implies N™™ (a, L) = 402

and estimate responsiveness of the prediction with respect to interventions on each feature,
identifying the most responsive features to report in mandated explanations (i.e., adverse action
notice in the U.S.).

For Proposition 4

Example 6 (Testing Robustness to Random Fluctuations). Consider testing if the predictions
of a sepsis prediction model, f, developed by a third party are stable w.r.t. natural variations
in clinical measurements using the medical devices of the local hospital. For each non-septic
patient with features x, we wish to limit the false alarms due to insignificant variation in certain
measurements to at most 10%. We could set the parameters as follows:

. Yé"“h = {sepsis}
o A(z) is such that asystoric_bp € [—5 mmHg, +5 mmHg|, and
@pilirubin € [—0.1Tpi15rubin MG/AL, 0.1%p;15rubin mg/dL)
e £=0.1,a =0.01, 8= 0.2, A = 0.05, which would imply N™" (o, 3, ¢, A) = 254.

Suppose that we observe 4 sepsis predictions in a set of n = 254 reachable points X,,. Then, we
have pY., ~ 0.045 < &, thus we claim that the model is robust — allowing up to 10% predictions
sensitive to random fluctuations — with probability of the false robustness claim o« = 1%, and the
probability of a correct robustness claim 1 — 3 = 80% when the true responsiveness is at most
e —A =0.05.

565

566

567

568

569

571
572
573
574
575
576
577

578

580
581
582
583
584
585

587
588
589

590
591
592
593
594
595
596
597
598
599
600
601
602

603

605
606
607
608
609
610

611
612

614

615

C Supplementary Material for Section 3

In this Appendix, we provide additional details and results for each of the use cases in Section 3.

C.1 Detecting Fixed Predictions in Recidivism Prediction Tools

C.1.1 Experimental Details and Results

Many recidivism prediction models are designed to use features that cannot readily change — e.g., age
and sex [see e.g., 4, 15, 26, 34], which assign more accurate risk predictions. These models tend to
predict that defendants with certain characteristics beyond their control will recidivate by default —
i.e., regardless of their charges or criminal history. As an example, we point to a risk score developed
by the Pennsylvania Sentencing Commission [47] which assigns fixed predictions to male defendants
under 21. This oversight perpetuates disproportionate harm against a vulnerable population, and was
included in a model that took over five years to be developed by a panel of statisticians (with regular
public feedback opportunities) before being implemented. Here, we show that our machinery could
have revealed this via a simple audit in less than ten minutes.

We work with a sample of prisoners from New York compiled by the U.S. Department of Justice [55],
which contains n = 29,400 and d = 20 features related to their age, sex, and criminal history (note
that we do not include race). Here, the label is y; = 1 if a defendant ¢ is rearrested within three years
of release. We follow common practice [14, 60] and apply a standard 80-20 train-test split to fit
and evaluate a logistic regression model (train/test AUC of 0.704/0.702). We test that this model
assigns fixed predictions with respect to hypothetical interventions that “clear” criminal history —i.e.,
so that each defendant predicted to recidivate would be able to overturn their prediction by clearing
features related to criminal history. We consider a test where € = 0.1, « = 0.05, 5 = 0.2, and target
a resulting); = 1. We say that a prediction is “fixed” when Pr(p(x)) < 0.01. Our intervention
sets contains of 30 constraints — which capture changes to criminal history and their downstream
effects (e.g., setting n_prior_arrests = 5 — 0 would set prior_arrests_for_felony = 1 — 0). We
construct reachable sets with 20 samples per point, satisfying ??.

In Fig. 3, we show the distribution of fixed points. The model predicts that 18,614 individuals will
recidivate on the training test of which 15,986 are assigned fixed predictions. We can also see that
it follows patterns of prior recidivism models such as using age as a crucial indicator, and having a
disproportionate impact across racial groups. We see that 100% of all prisoners under the age of 18
are assigned fixed predictions. This is consistent with prior work showing that lower age is more
correlated with a higher likelihood of models predicting recidivism [60]. We also see that non-white
prisoners are assigned fixed predictions at a higher rate than white prisoners, especially in the > 30
age group. We see further evidence that age and ethnicity govern recidivism in the left-most plot.
This provides further details on the relationship between age and race: as the age increases, race
becomes a more important factor in determining if that prisoner will have recourse. Our methodology
has (1) detected multiple failure modes of the model — racial bias and assigning fixed predictions,
specifically disproportionately assigning fixed predictions across ethnic groups, and, importantly, (2)
enabled finding these failures during model development.

C.1.2 Description of Dataset

We work with a large sample of defendants from New York state derived from the “Recidivism of
Prisoners Released in 1994” dataset released by the U.S. Department of Justice [55], which contains
n = 29,400 and d = 20 features about their criminal history. This dataset has been used in recidivism
studies such as [39, 60]. Here, the label is y; = 1 if a prisoner is rearrested within the 3 years of
release from prison. We include 12 features explicitly related to criminal history, two immutable
characteristics (age and female), and six mutable characteristics, four of which are actionable, do not
provide additional information about criminal history.

* Criminal History Features: All features relating to prior_arrests, all features relating to
time_served, any_prior_prb_or_fine

e Mutable: edu_program_particicipation, voc_program_participation, drug_abuser,
drug_treatment, alcohol_abuser, alcohol_treatment

We bucketize age_at_release as follows:

616
617
618
619
620
621
622
623
624

625

626
627
628
629

630
631
632

633

635
636
637
638
639
640
641
642

643
644
645
646

647

100%

10006 0% 1000% 1000 0% 1000%
B Non-White
§ White
@) é’ 75%
B 75% < 75% © —T e S
14 i 14 o83% 679% a
c c — I
£ 5520 £ 5o e °
© o c 50%
S 50% T 50% o .
o 433% 3] 228% g — Non-White <18
o a o — White <18
® ® ,5-? 25% — Non-White, 19 to 29
3 2% g 25% — White, 19 to 29
— Non-White > 30
— White = 30
0% —
0% 0%
0% 25% 50% 75% 100%
<18 19-29 >30 <18 19-29 >30

Responsiveness Proportion
Age Group Age Group

Figure 3: Distribution of unresponsive predictions in demographic groups. Left: Train sample. Middle: Test
sample. Right: CDF of responsiveness proportion by demographic group

e <16

e 16to 19
* 19to0 23
e 231027
e 271030
* 30to 35
e 35t040
* 40to45
e > 45

C.1.3 Intervention Model

Intervention Model We consider an intervention model where each defendant can perform (1)
actions that change actionable features about their participation in rehabilitation profile (e.g., partici-
pating in educational programs, setting edu_program_participation to True), and (2) hypothetical
actions that would clear their criminal history (see below for detailed examples).

Our dataset contains 20 features of which 7 are actionable and 18 are mutable. The intervention
model contains a total of 27 constraints: 24 Directional Linkage constraints, and three Reachability
Constraints:

e Criminal History Constraints. Each of prior_arrests=1, prior_arrests>2, and prior_arrests>5
has the same sets of constraints: Each time_served variable must decrease, any_prior_prb_or_fine
must decrease, prior_arrests_for_felony, prior_arrests_for_misdemeanor, and
prior_arrests_for_general_violence must decrease, and finally no_prior_arrests must
be True. The associated ReachabilityConstraint forces prior_arrests=1, prior_arrests>2, and
prior_arrests>5 to only be able to reach no_prior_arrests, fully clearing arrest history and
preventing the number of arrests from decreasing by 1.

* Non-Criminal History Constraints: Both drug_abuser and alcohol_abuser have a Reachability-
Constraint with their corresponding treatment feature - this constraint ensures that treatment is
only reachable if abuser is True.

Note that these create corresponding partitions (see Table 5): 0 (alcohol features), and 1 (drug
features), 2 (edu_program_participation, which can only increase), 3 (voc_program_participation,
which can only increase), 4 (age_at_release, immutable), 5 (female, immutable), and 6 (the criminal
history constraints outlined above).

We present a list of all features and their corresponding feature-level constraints in Table 5.

10

Name Type LB UB Actionable Sign Constraints Partition ID
prior_arrests=1 {07 1} 0 1 Yes - 2,5,8,11, 14, 17, 20, 23, 25 6
prior_arrests>2 {0,1} 0 1 Yes - 1,4,7,10, 13,16, 19, 22,25 6
prior_arrests>5 {0,1} O 1 Yes - 3,6,9,12,15,18,21,24,25 6
no_prior_arrests {0,1} © 1 No 25 6
time_served<1_year {0,1} O 1 No 1,2,3 6
time_served_g_1_year {0,1} 0 1 No 4,5,6 6
time_served_g_2_years {0,1} O 1 No 7,8,9 6
time_served_g_5_years {0,1} O 1 No 10, 11, 12 6
prior_arrests_for_misdemeanor {0,1} © 1 No 13, 14, 15 6
prior_arrests_for_felony {0,1} 0 1 No 22,23,24 6
prior_arrests_for_general_violence {0,1} 0 1 No 16,17, 18 6
any_prior_prb_or_fine {0,1} O 1 No 19, 20, 21 6
drug_abuser {0,1} 0 1 No 26 0
drug_treatment {0,1} 0 1 Yes + 26 0
alcohol_abuser {0,1} O 1 No 27 1
alcohol_treatment {0,1} 0 1 Yes + 27 1
edu_program_participation {0,1} © 1 Yes + - 2
voc_program_participation {0,1} 0 1 Yes + - 3
age_at_release R 173 839 No - 4
female {0,1} O 1 No - 5

Table 5: Intervention model for the rearrest_NY dataset. Type indicates the feature type (R for real numbers,
{0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates whether the
feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity constraints
— whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable constraint
indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature belongs to.

e4¢ In this case, the intervention model must enforce a large set of deterministic downstream effects
649 to maintain the semantic relationships between the features of the model while “clearing criminal
650 history.” In general, we would enforce these relationships through the sampling distribution. Given
651 that they are deterministic effects, however, we enforce them by defining non-separable constraints.
652 The final set of joint actionability constraints include:

653 1. DirectionalLinkage: Actions on priorarrests>2 will induce actions on [timeserved<1lyear].

654 Each unit change in priorarrests>2 leads to a unit change in timeserved<lyear

655 2. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeserved<1lyear. Each
656 unit change in priorarrests=1 leads to a unit change in timeserved<lyear

657 3. DirectionalLinkage: Actions on priorarrests>5 will induce actions on timeserved<1lyear. Each
658 unit change in priorarrests>5 leads to a unit change in timeserved<lyear

659 4. DirectionalLinkage: Actions on priorarrests>2 will induce actions on timeservedglyear. Each
660 unit change in priorarrests>2 leads to a unit change in timeservedglyear

661 5. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedglyear. Each
662 unit change in priorarrests=1 leads to a unit change in timeservedglyear

663 6. DirectionalLinkage: Actions on priorarrests>5 will induce actions on timeservedgliyear. Each
664 unit change in priorarrests>5 leads to a unit change in timeservedglyear

665 /. DirectionalLinkage: Actions on priorarrests>2 will induce actions on timeservedg2years. Each
666 unit change in priorarrests>2 leads to a unit change in timeservedg2years

667 8. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg2years. Each
668 unit change in priorarrests=1 leads to a unit change in timeservedg2years

669 9. DirectionalLinkage: Actions on priorarrests>5 will induce actions on timeservedg2years. Each
670 unit change in priorarrests>5 leads to a unit change in timeservedg2years

671 10. DirectionalLinkage: Actions on priorarrests>2 will induce actions on timeservedg5years. Each
672 unit change in priorarrests>2 leads to a unit change in timeservedg5years

673 11. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg5years. Each
674 unit change in priorarrests=1 leads to a unit change in timeservedg5years

675 12. DirectionalLinkage: Actions on priorarrests>5 will induce actions on timeservedg5years. Each
676 unit change in priorarrests>5 leads to a unit change in timeservedgbyears

677 13. DirectionalLinkage: Actions on priorarrests>2 will induce actions on priorarrestsforfelony.
678 Each unit change in priorarrests>2 leads to a unit change in priorarrestsforfelony

679 14. DirectionalLinkage: Actions on priorarrests=1 will induce actions on priorarrestsforfelony.
680 Each unit change in priorarrests=1 leads to a unit change in priorarrestsforfelony

11

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

701
702
703
704
705
706
707
708
709
710
71
712
713
714
715
716
717
718
719
720
721

722

723
724
725

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

DirectionalLinkage: Actions on priorarrests>5 will induce actions on priorarrestsforfelony.
Each unit change in priorarrests>5 leads to a unit change in priorarrestsforfelony
DirectionalLinkage: Actions on priorarrests>2 will induce actions on
priorarrestsformisdemeanor. Each unit change in priorarrests>2 leads to a unit change in
priorarrestsformisdemeanor

DirectionalLinkage: Actions on priorarrests=1 will induce actions on
priorarrestsformisdemeanor. Each unit change in priorarrests=1 leads to a unit change in
priorarrestsformisdemeanor

DirectionalLinkage: Actions on priorarrests>5 will induce actions on
priorarrestsformisdemeanor. Each unit change in priorarrests>5 leads to a unit change in
priorarrestsformisdemeanor

DirectionalLinkage: Actions on priorarrests>2 will induce actions on
priorarrestsforgeneralviolence. Each unit change in priorarrests>2 leads to a unit
change in priorarrestsforgeneralviolence

DirectionalLinkage: Actions on priorarrests=1 will induce actions on
priorarrestsforgeneralviolence. Each unit change in priorarrests=1 leads to a unit
change in priorarrestsforgeneralviolence

DirectionalLinkage: Actions on priorarrests>5 will induce actions on
priorarrestsforgeneralviolence. Each unit change in priorarrests>5 leads to a unit
change in priorarrestsforgeneralviolence

DirectionalLinkage: Actions on priorarrests>2 will induce actions on anypriorprborfine. Each
unit change in priorarrests>2 leads to a unit change in anypriorprborfine

DirectionalLinkage: Actions on priorarrests=1 will induce actions on anypriorprborfine. Each
unit change in priorarrests=1 leads to a unit change in anypriorprborfine

DirectionalLinkage: Actions on priorarrests>5 will induce actions on anypriorprborfine. Each
unit change in priorarrests>5 leads to a unit change in anypriorprborfine
DirectionalLinkage: Actions on priorarrests>2 will induce actions on
['priorarrestsforfelony’]. [Each unit change in priorarrests>2 leads to a unit change
in priorarrestsforfelony

DirectionalLinkage: Actions on priorarrests=1 will induce actions on
[priorarrestsforfelony’]. Each unit change in priorarrests=1 leads to a unit change
in priorarrestsforfelony

DirectionalLinkage: Actions on priorarrests>5 will induce actions on
[priorarrestsforfelony’]. [Each unit change in priorarrests>5 leads to a unit change
in priorarrestsforfelony

ReachabilityConstraint: The values of [priorarrests>2, priorarrests=1, nopriorarrests,
priorarrests>5] must belong to one of 4 values with custom reachability conditions.
ReachabilityConstraint: The values of [drugabuser, drugtreatment] must belong to one of 4 values
with custom reachability conditions.

ReachabilityConstraint: The values of [alcoholabuser, alcoholtreatment] must belong to one of
4 values with custom reachability conditions.

C.1.4 Additional Results

This table includes additional model training and performance statistics. p is the percent of positive
points, n is the number of points,neg pos is the number of points that are classified as positive, and
Telf_neg 15 the number of points that are classified as negative.

12

726

727
728
729
730
731

Train Test
AUC 0.704 0.702
Expected Calibration Error 0.19% 0.24%
Error 352% 35.4%
n 15414 3854
Tipos 7707 1927
D 50.0% 50.0%
Nelf_pos 6407 1606
Tlelf_neg 9007 2248

Table 6: Additional model statistics for the recidivism dataset

This figure is the test component of the left-most figure in Fig. 3.

100%
[%2]
2 75%
© —
o
© -]
c 50%
8
*g — Non-White <18
Q — White<18
s os% — Non-White, 19 to 29
— White, 19 to 29
— Non-White > 30
0% — White > 30
b —
0% 25% 50% 75% 100%

Responsiveness Proportion

Figure 4: CDF of points by responsiveness percentage

Ablation Testing We performed additional ablation tests on the recidivism dataset, and show our
results in the table below. We note that the pattern of unresponsiveness being higher among the non-
white peisoners being higher than the white prisoners continues. The test AUC is also consistently
lower when non-criminal history features (such as program participation and substance abuse) are

removed.

13

% Fixed (White) % Fixed (Non-White) AUC

Dropped Features Dropped Constraints <18 19-29 > 30 <18 19-29 > 30 Train Test
All age Bins None 39.0% 65.6% 39.0% 514% 692% 514% 0.696 0.686
drug.treatment 29,30 498% 66.8% 498% 61.9% 733% 61.9% 0.699 0.69
alcohol_treatment

drug_abuser

alcohol _abuser 29, 30 505% 673% 505% 61.8% 73.1% 61.8% 0.698 0.691
drug_treatment

alcohol_treatment

edu_program._participation o 432% 663% 432% 563% 619% 563% 0.701 0.691

voc_program_participation
None All 421% 643% 42.1% 51.0% 66.8% 51.0% 0.706 0.699

Table 7: Ablation testing results and details for each set of dropped features and constraints. Constraint numbers
are from Table 5. € and « are 0.1 and 0.05.

14

732

733

734
735

737
738
739

740
741
742
743
744
745

746

747
748
749
750

751
752

753

754
755

757
758

C.2 Preventing Gaming in Content Moderation
C.2.1 Description of Dataset

We work with the twitterbot which was originally curated by Gilani et al. [19]. The dataset defines
a binary classification task where we wish to predict if an user account on Twitter belongs to a
human (y; = 1) or a bot (y; = 0). The dataset contains a total of n = 3,431 instances and d = 19
features that encode semantically meaningful characteristics about their interactions and login history
—e.g., age_of_account_in_days for account age, user_tweeted for the number of user tweets, and
source_identity for source of user interaction (mobile, web, etc.).

In this case, the dataset contains a limited number of features given that all features are not readily
available or shared across accounts. We process the dataset to define a subset of additional fea-
tures as follows: (1) we include additional dummies to indicate “missing” values for num_tweets,
num_retweets and num_replies; (2) we binarize features by using a adding a thermometer encoding
to num_followers and age_of_accounts_in_days, setting thresholds that reflect salient milestones for
follows and membership history; (3) we multi-hot encoded source_identity.

C.2.2 Intervention Model

We consider an intervention model where each user can intervene on their platform interaction
features. Our dataset contains 20 features of which 11 are actionable and 15 are mutable. Note that
we do not allow interventions on features that a user cannot change themselves — i.e., number of
followers.

We present a list of all features and their corresponding feature-level constraints in Table 8 and list
joint actionability constraints below it.

Exact Procedure We detail the intervention model for Exact procedure.

Name Type LB UB Actionable Sign Joint Constraints Partition ID
followers>1k {0,1} © 1 No 4 0
followers>100k {0,1} 0 1 No 4 0
followers>1M {0,1} 0 1 No 4 0
followers>160M {0,1} 0 1 No 4 0
num_tweets Z 0 35000 Yes —+ 1,5 5
no_tweets {0,1} © 1 Yes — 1 5
urls_count Z 0 13013 No 5 5
num_retweets Z 0 3000 Yes + 2 6
no_retweets {0,1} 0 1 Yes — 2 6
num_replies Z 0 6991 Yes + 3 7
no_replies {0,1} 0 1 Yes — 3 7
age_of_account>180_days {0,1} 0 1 Yes 1
age_of_account>365_days {0,1} © 1 Yes - 2
age_of__account>730_days {0,1} 0 1 Yes - 3
age_of _account>1825_days {0, l} 0 1 Yes - 4
follower_friend_ratio R 0.0 133643322 Yes — - 8
source_web {0,1} 0 1 No - 10
source_mobile {0,1} 0 1 No - 11
source_app {0,1} 0 1 No - 12
source_news {0,1} © 1 No = 15

Table 8: Intervention Model for the processed twitterbot dataset. Type indicates the feature type (Z for
integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates
whether the feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity
constraints — whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable
constraint indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature
belongs to.

IfThenConstraint: If notweets = 0.0, then numtweets > 1.0

IfThenConstraint: If noretweets = 0.0, then numretweets > 1.0

IfThenConstraint: If noreplies = 0.0, then numreplies > 1.0

DirectionalLinkage: Actions on numtweets will induce to actions on [‘urlscount’]. Each unit
change in numtweets leads to at least 1.00-unit change in urlscount

bl

15

759 C.2.3 Additional Results

Model Pool % Resp. (Perceived) % Resp. (True) AUC
Procedure Description #Models # Cert. Robust Train Test Valid Train Test ~ Valid Train Test Valid
Manual ~ 1rain Models with 370 370 00% 00% 00% 00% 00% 00% 0531 0570 0.581
Immutable Features
Convex Consider Responsiveness 901 687 03% 00% 09% 562% 57.1% 559% 0743 0.754 0.759
w.r.t Convex Perturbation Check
Exact Evaluate Responsiveness 901 76 9.6% 99% 93% 9.6% 99% 93% 0722 0727 0734

w.r.t Exact Actions
Table 9: Full train, test, validation set results for the model with the highest validation AUC among Considered
models: < 10% “Bot” predictions with certified responsiveness > € = 0.05. % Responsive show % of "Bot"
predictions with responsiveness > ¢ = 0.05 under the procedure’s reachable set (Perceived) and the exact

reachable set (True).

=®= Inspection Relaxation =@ Exact
—
0.7
)
2
% 0.6
C C C O
(<8}
=
0.5
0.01 0.05 0.10 0.20

Respnsiveness Threshold (&)

Figure 5: Test AUC of the best model that has less than 10% "Bot" predictions that have higher responsiveness
than ¢ = 0.01,0.05,0.1, 0.2 for each procedure. Model does not change for Inspection since features are

immutable.

16

774

775
776
77
778
779

781
782

784
785
786
787
788
789

791
792
793
794

Need Model Utility Model Prioritization System

99.8% 99.1% 98.9%
100% = - Under 39 3.9% 98.3%

85.3% 40-59 82.0%

s 81.6% .
S 80% T 73.0% 60+ 7L7%
= 9% -
k= 66.6% 68.5%
9 60%
S 48.4%
. 40.2%
D 40% = 308% 30.4% 33.8%
X 18.1% - 23.2%
20%) =
0%
Small Large Small Large Small Large

Figure 6: Average proportion of predictions that violate monotonicity across a cohort of simulated non-cancer
patients, across two intervention sets in which counterfactual simulated patients are assigned cancer with size of
either < 2cm (“small”) or < 5cm (“large”). Error bars show 95% confidence interval around average violation
across the simulated cohort.

C.3 Organ Transplant Score
C.3.1 Experimental Details and Results

Testing Counterfactual Invariance in Organ Transplant Prioritization Predictive statistical
models are routinely used in allocation of organ transplants [23]. Recently, they have attracted
scrutiny both from the public and the academic circles because of their potential to assign fixed
predictions, e.g., with evidence of lower access to transplants for younger patients [2, 42], and
simulation studies showing that cancer patients are less likely to receive high prioritization [3].

We consider Transplant Benefit Score (TBS), a system used to prioritize transplants in the UK since
2018. We aim to test a basic monotonicity condition [5, 24] that the model should assign higher
prioritization scores to a counterfactual patient with cancer, compared to the initial score of the patient
without cancer. According to domain experts [3], having all other features fixed, getting cancer
should increase the priority. Testing this system is challenging, as it comprises several submodules:
two Cox proportional hazard regression model to predict need — survival without transplant — and
two models to predict utility — survival with the transplant over the course of five years. We have the
following component survival functions:

T T
foea(T) = Z Sg’need(t)exp(ﬁﬁe:d(w—uﬁeed))’ e (x) = Z ngneed(t)exp(ﬁﬁii (= Kpeeq))
t=1 t=1
T T

ncT

c N xp(Bihy (b)) e () — N7 qne exp(BLST, (=)
ity () = § S0 utitiey () iy 2 ity)) - f ey () = D Sty () ity 1 iy
t=1 =1

where ¢ and nc indicate models applied to patients with cancer and without, respectively, S . : N —
[0,1] for t € [T] for some T' € N are pre-defined baseline hazard functions, and the vectors 3 and
w are the corresponding model parameters and data normalizers, respectively. The final TBS score
is computed as frps(z) = fyiin (Z) — foear™ (). An inspection of model coefficients 3 does not
yield a simple answer on whether the system preserves monotonicity, especially as getting cancer

involves a modification of several features at once, and using different models, 3°.

To verify violations of monotonicity, we generate a cohort of 1,000 patients without cancer using a
probabilistic model designed to mimic a prior simulation generated based on real patients [3]. We
provide details on the dataset generation in Appendix C.3. We define two intervention sets: “small”
in which we assign a patient to have a cancer with at most 2cm tumor size, and “large” with at
most bcm tumor size. Each intervention involves changing the disease indicator primary_disease,
and the max_tumor_size, tumor_number features. Moreover, we use a random-effect response r(x; a)
which simulates natural variation in liver parameters such as the albumin level (see Appendix C.3).
We measure and report average responsiveness j(x), where the prediction set of interest Y :¢2h =
{y | y < f(=)} is those predictions which violate the monotonicity condition. Thus, in this case,
responsiveness represents the proportion of violations.

We summarize our results in Fig. 6, shown separately for each submodule. These results show that
(1) even inspecting individual components does not paint the full picture of model safety. Indeed,
the need model (left) shows low average violation for the middle age group, but the utility (middle)
shows significantly higher levels of violation. As the final score is a combination of both, it is unclear

17

795
796
797
798
799

800

801

803
804
805
806
807

808
809

810
811

812

813

814

815

824

825

which result will be more important. The final TBS score (right), in the end, shows low violation in
the middle age group. We can also see (2) that our procedure in a simulated cohort reveals that both
younger and older patients could have their TBS scores decreased after getting cancer. Our tools
flag this concrete safety issue on aggregate at the system level, enabling model developers to test
responsiveness individually for each patient, and generate test cases for iterative model development.

C.3.2 Description of Dataset

As the availability of healthcare data is scarce and tightly regulated, we follow the methodology in the
high-profile study of Attia et al. [3], who have demonstrated lower rates of prioritization for cancer
patients using a simulated cohort of patients. Attia et al. generated the realistic simulated cohort by
hand-crafting the probabilistic data model, and checking the resulting distributional characteristic
against the real cohort of liver transplant patients. For this case study, we aim to reproduce their
approach and derive a synthetic dataset which attains similar statistical properties. Specifically, we
generate n = 1,000 simulated patients with d = 32 features.

We note that the TBS model itself is publicly available. For the purposes of our simulation, we
reproduce its implementation based on an interactive R interface by Ewen Harrison.!

We use the default patient case from this implementation to set the baseline characteristics in our
cohort. We modify certain variables in the default case as follows.

Static Variables We simulate the demographics as follows:

Age ~ Uniform({30, 31,...,80}) @)
Gender ~ Bernoulli(0.5) where 0 = man, 1 = woman. 8)

Note that we do not aim to have a representative distribution of a demographics in a population.

We also simulate other lab values as follows:

Albumin ~ Uniform[30, 40] 9
Potassium ~ Uniform[3.5, 5.0] (10)

We detail the model for sampling other clinical variables next.

Liver Parameters We set up the following structural causal model (SCM) [46] for the liver
parameters: bilirubin, sodium, international normalized ratio (INR), and creatinine. We use this
probabilistic model both to generate the initial patient cohort, and to simulate the random effects due
to natural variation in the reachable sets.

Let U = (Ubiti, UNa, UNR, Ucrear) denote the vector of exogenous noise variables, and let @ =
(Xbilis XNay XINR, Xcreat) denote the vector of correlated endogenous variables representing the four
liver parameters.

Exogenous Variables. We set U ~ N (0, X) with:

1.0 0.447 0.320 —0.257
> _ 0.447 1.0 0.370 —0.043 an
0.320 0.370 1.0 —0.091

—-0.257 —-0.043 -0.091 1.0

Structural Equations. The endogenous variables are determined by the following structural equations:

Xpiti = min(200, max (15, exp(0.5 - Upi + 3.5))) (12)
XNa = min(145, max(125,5 - Un, + 137)) (13)
Xmr = min(2.4, max(0.9, exp(0.3 - Ung — 0.2) + 0.8)) (14)
Kerear = min(200, max (45, exp(0.4 - Ugrear + 4.2))) (15)

where:

1https ://github.com/SurgicalInformatics/transplantbenefit/

18

https://github.com/SurgicalInformatics/transplantbenefit/

826
827
828
829

830

832

833

834
835

836
837
838
839

840
841

842
843

844
845

846
847

848

* Xy represents bilirubin levels (clipped to [15, 200])

» Xna represents sodium levels (clipped to [125, 145])

* X|nr represents international normalized ratio (clipped to [0.9, 2.4])
* X rear TEpresents creatinine levels (clipped to [45, 200])

We choose the parameters to approximately match the reported statistics in a simulated cohort from
Attia et al. [3]. We show the statistical properties of our generated cohort in Fig. 7.

C.3.3 Intervention Model

‘We detail the dataset features and the considered intervention model in the table:

Name Type LB UB Actionable Sign Joint Constraints Partition ID
rinpatient_tbs {0,1} 0 1 No - 3
rregistration_tbs Z 1 7 No - 4
rwaiting_time_tbs Z 0 3650 No - 5
rage_tbs Z 30 80 No - 6
rgender_tbs {0,1} 0 1 No - 7
rdisease_primary_tbs Z 1 9 Yes 1,2 1
rdisease_secondary_tbs Z 1 9 No - 8
rdisease_tertiary_tbs Z 1 9 No - 9
previous_tx_tbs {0,1} 0 1 No - 10
rprevious_surgery_tbs {0,1} 0 1 No - 11
rbilirubin_tbs Z 15 200 No - 2
rinr_tbs R 09 24 No - 2
rcreatinine_tbs Z 45 200 No - 2
rrenal_tbs {0,1} 0 1 No - 12
rsodium_tbs Z 125 145 No - 2
rpotassium_tbs R 35 50 No - 13
ralbumin_tbs Z 30 40 No - 14
rencephalopathy_tbs {0,1} 0 1 No - 15
rascites_tbs {0,1} 0 1 No - 16
rdiabetes_tbs {0,1} 0 1 No - 17
rmax_afp_tbs Z 0 1000 No 18
rtumour_number_tbs {’0or I'*, 2%, “3+’} Yes 1,2 1
rmax_tumour_size_tbs R 0 20 Yes 1,2 1
dage_tbs Z 18 80 No - 19
dcause_tbs Z 1 4 No - 20
dbmi_tbs R 15 50 No - 21
ddiabetes_tbs Z 1 3 No - 22
dtype_tbs {0,1} 0 1 No - 23
bloodgroup_compatible_tbs {0,1} 0 1 No - 24
splittable_tbs {0,1} 0 1 No - 25

* This feature value is treated as no tumours if the primary disease does not indicate cancer, rdisease_primary_tbs 7# 1, and as one tumour otherwise.

1. IfThenConstraint: If rtumour_number_tbs € {2’,°3+’}, then rdisease_primary_tbs = 1 (cancer)
2. IfThenConstraint: If rdisease_primary_tbs = 1, then rmax_tumour_size_tbs > 0.

Concretely, to generate counterfactual patients with cancer, we define two intervention sets for small
and large tumours, following Attia et al. [3]. In the small intervention set, we consider interventions
so that the rtumour_number_tbs = ‘2’ and rmax_tumour_size_tbs = 2; in the large intervention set,
the number of tumours is the same but rmax_tumour_size_tbs = 5

Random Effects For generating noise around existing parameter values z(*) =
(xéﬁ?,x&?,xfﬁ%,xﬁ?&l), we first perform approximate abduction to infer the corresponding

exogenous values U(?) using the inverse structural equations. Then, we generate the perturbed
exogenous variables as:

b =u® 4 ¢ (16)
where € ~ N(0, 3) represents correlated noise. The counterfactual endogenous variables (1) are
then computed by applying the structural equations to U1,

Thus, response probability distribution P, () is the distribution of Pr(z(®) — z(®) — a), where
a = (awili, GNas GINR; Qereat) 18 the intervention.

C.3.4 Additional Results

19

Corr: 0.444 Corr: 0.285 Corr: -0.214

g 145
g 140
— 135 Corr: 0.368 Corr: -0.059
=}
5 130
o)
D 125
2.5

2.0

Corr: -0.080

INR
o

(umol/L)

—_ N .
(&) o B
o o o

Creatinine
o o
o o

0 100 200 130 140 1 2 100 200
Bilirubin (umol/L) Sodium (mmol/L) INR Creatinine (umol/L

Figure 7: Pairwise relationships of the four liver parameter distributions according to our probabilistic model.
These statistics are similar to those obtained by Attia et al. [3].

Score type = Survival w/o transplant ~ Score type = Survival w/ transplant Score type = Transplant Benefit Score

1500

[
21000 \ Age Group
>
o A g o =@- Under 39
8 500 =@ 40-59
@ 60+
0
No cancer Small Large No cancer Small Large No cancer Small Large
Cancer Cancer Cancer

Figure 8: Average predictions of the TBS model and its components (need model on the left, utility model in
the middle, combined on the right) over the reachable sets in the simulated cohorts. We can see that only for
the middle-age group the average predicted survival w/o transplant decreases under the intervention, with other
groups having the monotonicity constraints violated.

20

849

850

D Omitted Formal Results

*

Prool. From the definition of the exact binomial confidence interval, we have that:
Pga(nv pn) =Bi—a(npn +1, n—npy)

provides a one-sided guarantee Pr(p(x) < p5., (n, pn)) > 1 — .

The cumulative distribution of the Beta distribution is given by:

B(x;a,b)

F(z;a,b) = B(a.b)

where B(x; a, b) is the incomplete beta function, defined as:
B(z;a,b) = / 211 —)Y at
0

and B(a,b) = B(1;a,b).
Suppose p(x) = 0. Then our parameters for the beta distribution are a = 1, b = n. Hence,

Flz;1,n)=1—-(1—2)"
Since the quantile function is the inverse of the CDF, we have

Bi_o(l,n)=1-— an

To reject Hy, we need B1_,(1,n) =1 — aw <e. By rearranging the inequality, we have

In(a)

"= In(1 —¢)

a7)

21

	Introduction
	Framework
	Use Cases for Responsiveness Testing
	Concluding Remarks
	 Appendices
	Supplementary Material for Section 1
	Supplementary Material for Section 2
	Uniform Sampling of Reachable Points
	Description of Routines in Alg::ReachableSetSampling
	Validation Study
	Additional Examples

	Supplementary Material for Section 3
	Detecting Fixed Predictions in Recidivism Prediction Tools
	Experimental Details and Results
	Description of Dataset
	Intervention Model
	Additional Results

	Preventing Gaming in Content Moderation
	Description of Dataset
	Intervention Model
	Additional Results

	Organ Transplant Score
	Experimental Details and Results
	Description of Dataset
	Intervention Model
	Additional Results

	Omitted Formal Results

