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Abstract

Many safety failures in machine learning arise when models assign predictions1

to people – e.g., in lending, hiring, or content moderation – without accounting2

for how individuals can change their inputs. We introduce a formal validation3

procedure for the responsiveness of predictions with respect to interventions on4

their features. Our procedure frames responsiveness as a type of sensitivity analysis5

in which practitioners control a set of changes by specifying constraints over6

interventions and distributions over downstream effects. We describe how to7

estimate responsiveness for the predictions of any model and any dataset using only8

black-box access, and design algorithms that use these estimates to support tasks9

such as falsification and failure probability analysis. The resulting audits uncover10

the problem at hand and enable community or regulatory oversight: when lack (or11

excess) of responsiveness is negligible, off-the-shelf models suffice; when material,12

findings motivate redesign (e.g., strategic classification) or policy changes. We13

demonstrate these safety benefits and illustrate how collective stakeholders can14

help steer AI systems.15

1 Introduction16

Many of the pressing safety issues with machine learning arise in cases where model predictions17

affect people [53] – be it to approve loans [27], screen job applicants [6, 48], prioritize organ18

transplants [3, 7, 42], or moderate posts on online platforms [20, 22]. In such applications, we fit19

models that use features about individuals for predictions but cannot account for changes in the20

predictions if the features are intervened upon. As a result, we routinely deploy models whose21

predictions are either not responsive to the actions of their decision subjects, or are overly responsive.22

When models are under-responsive, they can preclude access to loans, jobs, or healthcare [7, 42, 56].23

In lending, for example, models can preclude credit access by assigning fixed predictions that24

applicants cannot change [32]. When models are overly responsive, they exhibit unfairness [33],25

or are susceptible to gaming [25]. For instance, in content moderation, models can promote the26

proliferation of misinformation by allowing malicious actors to evade moderation at scale [1, 49].27

A central challenge in addressing these issues is measuring the responsiveness of predictions – i.e.,28

how much the output of a model can change over a space of plausible feature vectors. Measuring29

this quantity in practice hinges on our ability to specify the set of plausible feature changes. In30

applications where features encode semantically meaningful characteristics, this set must adhere to31

non-trivial constraints on both the plausible interventions and their downstream effects. Choosing a32

set that is too small can underestimate responsiveness by overlooking viable interventions, whereas33

choosing a set too large can overestimate responsiveness by considering unrealistic changes that no34

individual could enact.35

We present a formal procedure to validate models by measuring responsiveness under community-36

or practitioner-specified constraints on interventions and downstream effects. Our approach uses37

constrained optimization to certify feasibility and generate i.i.d. reachable samples, enabling black-38
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Figure 1: Responsiveness verification with reachable sets. Left: Using x, we draw a uniform sample of
reachable points X reach

A (x) from interventions on x. Here x1 ∈ [10,000, 60,000] and x2 ∈ {0, . . . , 5} are
monotone increasing. Middle: Gaming test in bot detection: flagged bots should not readily flip to “human”
without review [20, 22]; fA is vulnerable at x. Right: Preclusion test in lending [32]; x is precluded under fB .

box estimation with exact binomial guarantees. This supports falsification and failure probability39

estimation [30] and produces shareable evidence—failure probabilities with confidence and concrete40

counterexamples—that can be used by auditors, advocates, and regulators. The framework is broadly41

applicable and designed for reproducible audits in settings where regulation is still nascent. Our42

contributions include:43

1. We introduce a formal procedure to estimate and test the responsiveness of predictions for models44

with semantically meaningful features. Our procedure can specify fine-grained constraints on45

interventions and their downstream effects. This allows practitioners to reveal failures that affect46

individual or system-wide safety, estimate their prevalence, and pair each failure with examples.47

2. We develop algorithms to estimate the responsiveness of predictions for any model and any dataset48

using only query access. Our methods generate a uniform sample of reachable points from a49

non-convex polytope over discrete and continuous features, and benefit from simple theoretical50

guarantees that can guide practical decisions in test design.51

3. We demonstrate how our machinery can reliably detect failures in responsiveness in model devel-52

opment or deployment. We illustrate this through real-world applications in content moderation.53

4. We provide a Python library to estimate and test responsiveness at this anonymized repository.54

Full Version and Supplementary Materials In the supplement we include: (1). Related work (2).55

Sampling algorithm pseudocode (3). Additional theoretical contributions (4). Additional experiments56

2 Framework57

We describe a formal validation procedure to test if a machine learning model assigns predictions58

that are unsafe as a result on interventions on its features. We consider a task where we are given59

black-box access to a model f : X → Y to predict an outcome y ∈ Y from a set of d features60

x = [x1, . . . , xd] ∈ X . We assume that features are semantically meaningful, e.g., features that61

encode meaningful characteristics for the task at hand like income and employment_status as opposed62

to generic features such as pixel intensities or token embeddings.63

We consider a procedure where we validate a model by testing its predictions over a target population.64

We assume the target population covers all points x ∈ X , or a subset of instances we can identify65

from their features and/or predictions (e.g., all instances with features x such that f(x) = 0). We test66

if a model assigns unsafe predictions by measuring the responsiveness of predictions:67

Definition 1. Given an instance with features x ∈ X and a model f : X → Y , the responsiveness
68
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of its prediction f(x) is the proportion of interventions that lead to a target prediction:

ρ(x; f,Xreach
A , Ŷ reach) = Pr (f(x′) ∈ Ŷ reach

x | x′ ∈ Xreach
A (x)) ,

Here:

• Xreach
A (x) ⊂ X is a set of reachable points, determined by the types of interventions we allow.

We denote the set of all possible interventions at a point x as A(x), and refer to it as the
intervention set. We assume that includes a null action 0.

• Ŷ reach
x ⊆ Y is a target prediction, which can represent a single value in a binary classification

task (e.g., Ŷ reach
x = {1}), a set of values in a multiclass classification task (e.g., Ŷ reach

x =
{spam, hate_speech} in content moderation), or an interval in a regression task (e.g., [700, 850]
in credit scoring). We write Ŷ reach

x to allow the target prediction to change based on x.
69

In what follows, we write ρ(x) when the model, target prediction and reachable set are clear from70

context. We can adapt our framework to various formal validation tasks:71

• Preclusion: Consider testing if a loan approval model f : X → {0, 1} assigns “fixed” predictions72

that preclude credit access [9, 32]. Here, the target population covers all denied applicants i.e.,73

{x : f(x) = 0}. Given a point x ∈ X , we estimate the responsiveness of each prediction ρ̂(x) to74

see if there exists some interventions that could overturn the current prediction to Ŷ reach
x = {1}.75

Given the estimate, we would test if ρ(x) > 0 and claim that the model precludes access if we76

cannot refute the claim that ρ(x) = 0.77

• Gaming: In a content moderation task where we use a model to detect bot accounts, we may78

wish to test if bot accounts can alter their features to pass as a human end-user. In this case, we79

would estimate the responsiveness of an account who is predicted as a bot. Contrary to lending,80

we could have a toleration threshold ε and raise a safety violation if ρ(x) > ε. We can also81

estimate responsiveness of individual predictions to characterize each point or compute aggregate82

responsiveness statistics to describe the model (i.e., mean responsiveness).83

• Unaffordability: In an insurance task, where we use a regression model to determine a monthly84

insurance premium, we may wish to test that the premium remains affordable for each instance85

even if we diagnose a pre-existing condition [10]. In this case, our test population would represent86

all instances x ∈ X and our target prediction Ŷ reach
x ⊂ R could change based on their income.87

Interventions and Downstream Effects The reliability of these procedures depends on how we88

specify the set of reachable points. Consider estimating if a model could be gamed by measuring89

the responsiveness of a prediction with respect to all interventions over ∥a∥p ≤ δ. In this case,90

our claims and estimates depend on how we set δ: small values may lead to blindspots while large91

values may lead to false alarms [see 29, for a discussion]. In tasks with semantically meaningful92

features, we can rarely mitigate these issues by setting δ because this practice provides no control93

over actionability. For example, a decision subject may be unable to change some features, which94

leads us to consider infeasible interventions. Alternatively, deliberate interventions could induce95

changes on others features and probabilistic changes on others (e.g., taking a medication may alter a96

patient’s blood pressure). We would overlook these effects if we only consider constraints that pertain97

to a single feature – immutability, bounds or monotonicity.98

We consider a general model that distinguishes interventions from downstream effects.99

Definition 2. Given an instance x, we assume that an intervention changes its features as:

x′ = x+ a+ r,

Here, a ∈ Rd captures an intervention – i.e., a deliberate action performed by an individual. In
turn, r ∈ Rd specifies downstream effects that stem from the intervention.

We follow [28] and call a feature actionable if it can be directly changed by a decision subject,100

and inactionable otherwise. Our model allows practitioners to specify intervention set x, and a101

conditional probability distribution to specify downstream effects Px,a(r). This representation allows102

us to specify different classes of downstream effects:103

• Fixed Effects [9], where interventions induce deterministic changes on features due to feature104

encoding or deterministic causal effects.105
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• Random Effects, which capture random effects in feature values that arise independently of the106

intervention – e.g., due to noisy measurements or natural variability across repeated predictions.107

• Causal Effects, where downstream effects are sampled from a probability distribution that we108

obtain from applying an intervention on a structural causal model [see, e.g., 28, 46].109

Discussion In many of the use cases above, we can promote safety by detecting predictions that110

are unsafe with respect to a minimal response model. In a preclusion detection task, for example, a111

minimal model would capture constraints and distributions that are indisputable – e.g., interventions112

must ensure the integrity of feature encoding, and distributions must induce deterministic downstream113

effects. If we are able to detect instances of preclusion even under this minimal model, then it would114

imply that preclusion is likely to arise under any other realistic constraints as well.115

Estimating Responsiveness We describe a general framework to verify the responsiveness of116

predictions. Consider a probability distribution over the reachable points in Xreach
A (x) – i.e., x +117

a+ r = x′ ∼ P reach
x , where we set a ∼ Uniform[A(x)] to ensure coverage over the entire space of118

interventions, and r ∼ Px,a(·) according to our model of downstream effects. Given an instance x,119

we can compute its responsiveness using i.i.d. samples from this distribution:120

ρ(x) = Ex′∼P reach
x

[I[f(x′) ∈ Ŷ reach
x ]]

Given a model f, we estimate this quantity from n i.i.d. sampled points X̂n ∼ (P reach
x )n as:121

ρ̂n := 1
n |{x

′ ∈ X̂n : f(x′) ∈ Ŷ reach
x }| = Ŝn/n

This approach has several benefits:122

• We can estimate the responsiveness of predictions for any model. Our approach does not depend123

on model type and only requires black-box query access.124

• It yields simple but reliable statistical guarantees with respect to sample size n and a desired125

confidence level. This is a result of building our estimates from i.i.d. samples, allowing Ŝn to be a126

binomially distributed random variable.127

• We can extract a set of points Xunsafe ⊆ X that induce the failure mode and analyze them to128

facilitate debugging (e.g., identifying problematic features).129

In what follows, we describe how to estimate responsiveness from a sample of reachable points. A130

description of our sampling technique may be found in Appendix B.131

Procedures and Guarantees We show when reachable sets certify responsiveness.132

Proposition 3 (Estimation). Consider estimating the responsiveness of the prediction at x from a
model, f . Given an estimate ρ̂n from n reachable points X̂n and confidence parameter α ∈ (0, 1),
denote the confidence interval as:

Ĉα(n, ρ̂n) := [Bα/2(nρ̂n, n− nρ̂n + 1),B1−α/2(nρ̂n + 1, n− nρ̂n)]

where Bα(a, b) denotes the αth quantile of a Beta distribution with parameters a, b. Then, we have:

Pr (ρ(x) ∈ Ĉα(n, ρ̂n)) ≥ 1− α.

We can control the width of the confidence interval to L ∈ (0, 1) by estimating responsiveness with
n ≥ Nmin(α,L) reachable points where

Nmin(α,L) := min

{
n ∈ N : max

s∈[n]

∣∣∣Ĉα

(
n,

s

n

)∣∣∣ ≤ L.

}
In certain cases, we may wish to test if the responsiveness of predictions exceeds a threshold value133

ε ∈ (0, 1). We may want to either identify points with extremely low responsiveness (e.g, detecting134

preclusion) or with high responsiveness (e.g., detecting gaming).135

Proposition 4 (Testing). Consider testing whether the responsiveness of a prediction for a model,
f, at a point x exceeds a threshold value ε > 0 using the following hypotheses:

H0 : ρ(x) ≥ ε ⇔ at least 100 · ε% of interventions lead to target prediction f(x) ∈ Ŷ reach
x

H1 : ρ(x) < ε ⇔ less than 100 · ε% of interventions lead to target prediction f(x) ∈ Ŷ reach
x

,

Given a sample of n reachable points X̂n, let ρ̂n denote the responsiveness estimate and
136
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Model Pool % Resp. (Perceived) % Resp. (True) AUC

Procedure Description # Models # Cert. Robust Train Test Valid Train Test Valid Train Test Valid

Manual
Train Models with
Immutable Features

370 370 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.531 0.570 0.581

Convex
Consider Responsiveness
w.r.t Convex Perturbation Check

901 687 0.3% 0.0% 0.9% 56.2% 57.1% 55.9% 0.743 0.754 0.759

Exact
Evaluate Responsiveness
w.r.t Exact Actions

901 76 9.6% 9.9% 9.3% 9.6% 9.9% 9.3% 0.722 0.727 0.734

Table 1: We report results for the model with the highest validation AUC among Considered models: ≤ 10%
“Bot” predictions with certified responsiveness ≥ ε = 0.05. % Responsive show % of “Bot” predictions with
responsiveness ≥ ε = 0.05 under the procedure’s reachable set (Perceived) and the exact reachable set (True).
We see that Convex under-reports model responsiveness and selects models prone to gaming.

ρU
2α(n, ρ̂n) := B1−α(nρ̂n + 1, n− nρ̂n) denote the upper bound of the confidence interval

Ĉ2α(n, ρ̂n), where α ∈ (0, 1) is the confidence parameter. In this case, we claim that the re-
sponsiveness is less than ε whenever

ρU
2α(n, ρ̂n) < ε ⇐⇒ Reject H0

Then, the probability of an incorrect unresponsiveness claim is bounded by the confidence level α:

Pr(ρU
2α(n, ρ̂n) < ε | ρ(x) ≥ ε) ≤ α.

We calculate the minimum sample size, Nmin, that allows a correct unresponsiveness claim with
probability 1− β when the difference between ε and ρ, true responsiveness, is at least ∆ ∈ (0, ε):

Nmin(α, β, ε,∆) := min {n ∈ N : F(Bα(nε, n− nε);n(ε−∆), n− n(ε−∆) ≥ 1− β}

Here, F(·; a, b) is the cumulative beta distribution function with parameters a and b. Note that
given the H0 and H1 in with confidence parameter α ∈ (0, 1),

Reject H0 =⇒ n > logα/log(1−ε)
137

Propositions 3 and 4 draw on the fact that Ŝn ∼ Bin(n, ρ(x)) given an i.i.d. sample. Thus, we can138

construct confidence intervals on ρ(x) using the exact method [11] and numerically compute Nmin.139

We emphasize there is a strict lower bound on n to avoid a trivial testing procedure that fails to reject140

H0 for all x, thus n > logα/log(1−ε) is a necessary condition to identify an unresponsive prediction.141

3 Use Cases for Responsiveness Testing142

We will demonstrate how our machinery can promote safety in model development or model auditing143

by estimating the responsiveness of predictions. We choose use cases in salient applications where144

we can build models with real-world datasets and highlight failure modes of responsiveness. We145

include additional details in Appendix C.146

Preventing Gaming in Content Moderation Modern approaches for content moderation rely on147

machine learning models to limit misinformation or harassment at scale [20, 22]. In such settings, we148

often build models to predict if a user account belongs to a “bot” or “human”, using these predictions149

to guide follow-up actions (e.g., human review or verification) to facilitate a more pleasant online150

experience [37]. Bot detection is difficult at scale – since many accounts lack substantial data, models151

must assign millions of predictions from a limited number of features that is available among all152

users. At the same time, we want to deploy models that are robust to manipulation – so that “bots”153

cannot skirt detection by “gaming” their account history or characteristics. The primary difficulty154

arises from the lack of available features, necessitating models to utilize a majority of them, thereby155

reducing robustness. In essence, the problem of building a robust model is akin to building a model156

that is unresponsive with respect to a realistic attack model.157

We consider a task to detect bots derived from the twitterbot dataset [19] with n = 3,431158

accounts and d = 22 features on their account characteristics (e.g., n_tweets, inactivity,159

tweets_from_mobile_device). To build realistic attack models, we capture feasible interventions160

through 4 non-separable constraints like enforcing n_tweets = 0 when inactivity = 1 (and161

vice versa), and only allowing changes in tweets_from_mobile_device when n_tweets increases as162

one must upload a new post from their mobile device. We also assume some features such as163
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num_followers_leq_1000 are not actionable. Given the intervention model, we use an approach164

inspired by Zhang et al. [61] in which we construct classifiers that are robust to manipulation by165

penalizing or excluding certain features. We train a pool of penalized logistic regression models over166

a large grid of l1 and l2 parameters using glmnet [17]. We train models and assess their robustness167

to gaming through three approaches:168

• Manual: We only use immutable features. This represents a baseline approach, which ensures169

robustness, but should attain low utility due to not utilizing all the available information.170

• Convex: We use all features, but consider the convex relaxation of the intervention model to measure171

responsiveness, which is a common approach in robustness [see, e.g., 50, for a discussion].172

• Exact: We use all features and consider the exact intervention model.173

In Table 1, we report the results of the model that achieves the highest validation AUC among robust174

models – less than 10% of gameable predictions – that we train. Overall, our results highlight practical175

challenges when building a well-performing model that also limits gaming. Although models trained176

under the Manual procedure were all robust, they performed poorly with a Test AUC of 0.570.177

We also see that verifying responsiveness using a convex relaxation of the reachable set returns a178

well-performing model that appears robust. In fact, the test AUC of the model under the Convex179

regime (0.754) exceeds that of the model chosen under Exact (0.727). However, we see that the180

Convex procedure severely under-reports responsiveness: the perceived proportion of responsive181

points is near 0 in all three splits of the data, but, when verified against the actual reachable set, we182

see that the proportion of responsive points surges to > 50%.183

These results (1) show that there may exist a well-performing model that is robustness to gaming184

without additional adversarial training and (2) highlights the importance of validating responsiveness185

with respect to accurate interventions. Procedures like Convex can lead to unaccounted harm, where186

a model that is thought as robust can be deployed, only to be vulnerable to gaming.187

4 Concluding Remarks188

Over the past century, we have developed numerous practices to create and deploy technology that189

impacts people [43] – from tests that can be automated to standards that can be enforced. Even as we190

routinely deploy machine learning models to automate predictions that affect people, our practices191

to govern them are still in their infancy. Our work offers a concrete starting point by presenting192

practitioners with machinery that can reliably detect failures arising from predictive responsiveness,193

which can not only be used by model developers but also by communities, advocates, and regulators194

engaged in collective oversight.195

One of the benefits of our machinery is that it pairs each failed test with a subset of reachable196

points, which can support downstream tasks such as but not limited to debugging, regression testing,197

improving the specification of constraints and distributions of interventions. Because these artifacts198

are portable and comparable, they can also be aggregated across deployments to support coordinated199

audits and to furnish counterexamples when falsifying claims (e.g., “the model will not assign a200

prediction that could be gamed”).201

Limitations Our framework relies on practitioners specifying intervention constraints and down-202

stream effects based on domain knowledge, documentation, or policy rules. While this enables broad203

applicability, it does not account for cases where causal relationships must be learned from data. Our204

method also does not infer constraints or causal structure automatically. Additionally, the sampling205

procedure may be computationally intensive in high-dimensional or tightly constrained settings,206

though this cost is amortized by reuse across models. Finally, our uniform sampling approach priori-207

tizes coverage over efficiency; future work could explore adaptive or importance-based strategies208

[45].for more efficient test generation.209
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A Supplementary Material for Section 1353

Related Work Our work is motivated by practical challenges in responsiveness that have broadly354

motivated work in adversarial robustness [21, 38], strategic classification [12, 18, 25, 36, 41], and355

counterfactual invariance [33, 52, 57]. Our machinery aims to detect these issues rather than resolve356

them in model development [c.f. work in strategic classification and robustness, e.g., 12, 16, 18, 25,357

29, 36, 41]. To this end, we test with the same kinds of measures used in validation literature [51, 58].358

Our work underscores how we can reap benefits from measuring responsiveness of models with359

semantically meaningful features – e.g., model selection [8] or identifying examples for debugging360

[54]. Our machinery provides a general way to enforce a rich set of semantic constraints for any361

model class.362

Our work builds on a growing body of research on the reliability of individual predictions [see e.g.,363

31, 39, 40, 44]. Our work is closely related to a recent stream of work on recourse verification – i.e.,364

a formal validation procedure to test if a model can provide recourse to its decision subjects [see e.g.,365

9, 32, 35]. Our approach builds on an idea introduced in Kothari et al. [32], who present a method366

to enumerate reachable points box to certify preclusion – i.e., that a model assigns predictions that367

cannot change. Their methods can output a deterministic guarantee of responsiveness but is restricted368

to datasets with discrete features and deterministic actions. Our methods to estimate responsiveness369

overcome these limitations by sampling a set of reachable points. This approach applies to tasks370

with discrete or continuous features, and can return estimates that support a broader class of model371

validation tasks.372
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B Supplementary Material for Section 2373

B.1 Uniform Sampling of Reachable Points374

Class Example Features Constraint

Immutability content_created_at should not change xj = content_created_at aj = 0

Monotonicity patient_age can only increase xj = patient_age aj ≥ 0

Integrality n_visits must be positive integer xj = n_visits aj ∈ Z ∩ [0− xj , 52− xj ]

Feature
Encoding

preserve one-hot encoding of
patient_type ∈ {In, Out}

xj = patient_type_in

xk = patient_type_out

aj + xj ∈ {0, 1} xk + ak ∈ {0, 1}
aj + xj + ak + xk = 1 aj + xj ≥ ak + xk

Missing
Values

if no_posts = TRUE

then num_posts = 0

else num_posts ≥ 0

xj = no_posts

xk = num_posts

aj + xj ∈ {0, 1} ak + xk ∈ [0, 107]

xj · xk = 0 xk ≥ 1− xj

Table 2: Examples of constraints on interventions. Each constraint can be expressed in natural language and
embedded into an optimization problem using standard techniques in mathematical programming [see 59].

Algorithm 1 Sampler for Reachable Sets
Require: x ∈ X Point
Require: n ≥ 1 Sample Size
Require: C Constraints
Require: D ⊆ [d] Downstream Features

X̂ ← ∅
1: repeat
2: a← 0
3: aj ← SampleInterv(x, j, C) for j ∈ [d] \D
4: if CheckFeasibility(x,a, CS) then
5: rk ← SampleEffect(a, k, C) for k ∈ D
6: X̂ ← X̂ ∪ {x+ a+ r}
7: end if
8: until |X̂| = n

Output X̂

The main technical challenge in testing respon-375

siveness is that it relies on a uniform sample376

of interventions a ∼ Uniform[A(x)], which is377

challenging due to the unconventional structure378

of the intervention set – i.e., some features are379

discrete while others could be continuous, with380

certain combinations being infeasible.381

We present a sampling procedure to yield a382

set of reachable points in Algorithm 1. In383

Line 3, given a subset of features S, we384

first sample an intervention aj for each ac-385

tionable feature j ∈ [d] \ D by calling the386

SampleInterv(x, j, C) routine. After sampling387

all interventions, we check if the resulting a is feasible under constraints in the block (Line 4) by388

solving a discrete optimization problem: mina′∈A(x) I[a
′ = a] s.t. a′ satisfies C. We formulate389

CheckFeasibility(x,a, C) using a mixed integer program and include a formulation in Appendix B.390

In Line 5, we then sample values for each downstream features by calling the SampleEffect(a, k, C)391

routine and add x+ a+ r to X̂i, the reachable set (Line 6).392

We improve the efficiency of the sampling procedure by proposing candidates that obey feature-393

level constraints (integrality, monotonicity, bounds) in the SampInterv routine – e.g., if feature j is394

integer-valued, bounded to B, and monotonically increasing, we sample from Uniform(xj , B). After395

sampling based on feature-level constraints, we use CheckFeasibility(x,a, CS) to ensure that they396

obey joint actionability constraints like encoding constraints. Given a, we then sample downstream397

effects. For deterministic effects, we compute the appropriate feature response value r(a;x) directly.398

For stochastic effects, we sample based from the specified condition distribution r(a;x) ∼ Px(a).399

By default, we sample from a uniform distribution of feasible values.400

We also execute Algorithm 1 over subsets of features that are independent with respect to interventions401

and downstream effects. We determine these subsets programmatically by identifying if a pair features402

j ̸= j′ ∈ [d] are coupled through constraints or distributions (e.g., if aj and a′j are linked directly or403

indirectly – through another feature ak). Given a graph that encodes this information for all j, j′ ∈ [d],404

we can construct a maximally independent partition of features – i.e., a set of k ≤ d feature subsets405

M := {S1, . . . , Sk} such that A(x) =
∏

S∈M AS(xS), where AS specifies intervention constraints406

that apply to xS . Partitioning allows us to independently sample interventions within each subset,407

which considerably improves sampling efficiency.408

B.2 Description of Routines in Algorithm 1409

Here we provide further details on each of the routines referenced in Algorithm 1.410
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Description of the SampleInterv Routine411

The SampleInterv routine is designed to sample feasible values across features. Given a point x, a
feature j ∈ [d] and a set of constraints as defined by the intervention model C, SampleInterv(x, j, C)
samples an intervention aj ∼ Unif{a′j | a′ ∈ A(x)}. The procedure is designed to sample as
efficiently as possible in this setting by enforcing all constraints at the feature level: integrality,
monotonicity, bounds on the value of xj , and bounds on the value of aj . If feature j is discrete, we
take a uniform sample from

[LBj(x),UBj(x)]Z = [UBj(x)] \ [LBj(x)].

If feature j is continuous, we take a uniform sample from

[LBj(x),LBj(x)].

We define the lower and upper bounds for the intervention on j, LBj(x) and UBj(x) as:412

UBj(x) = I[j ↑] · (ubj − xj)

LBj(x) = I[j ↓] · (xj − lbj)

Here, I[j ↑] = 1 if j can increase, I[j ↓] if j can decrease and lbj , ubj are bounds on feature j (note413

that xj ∈ [lbj , ubj ]).414

Description of CheckFeasibility Routine415

CheckFeasibility determines whether a′, the sampled intervention, is feasible under the constraint416

set C. Although SampleInterv ensures that each aj for j ∈ [d] abides by feature level constraints417

like integrality, monotonicity and bounds, we must additionally ensure that a′ does not violate418

non-separable constraints.419

More formally, given x, a sampled intervention a′ and a set of constraints C, CheckFeasibility420

solves the following problem:421

min
a∈A(x)

I[a′ = a] s.t. a abides by C (1)

We implement Eq. (1) as a mixed-integer program that consists of a baseline formulation – enforcing422

separable constraints like bounds and monotonicity – and additional constraints, which enforce423

non-separable constraints, and optionally, downstream effects. The baseline formulation has the form:424

min
∑
j∈[d]

(a+
j + a−

j ) (2a)

s.t. aj = a′
j j ∈ [d] intervene with a

′ (2b)

a+
j , a

−
j ∈ R+ j ∈ [d] positive, negative compoenets of aj (2c)

aj = a+
j − a−

j j ∈ [d] absolute value reconstruction (2d)

σj ∈ {0, 1} j ∈ [d] sign of aj (2e)

a+
j ≥ aj j ∈ [d] positive component of aj (2f)

a−
j ≥−aj j ∈ [d] negative component of aj (2g)

a+
j ≤UBj(x)σj j ∈ [d] only 1 of a+

j or a−
j can be positive (2h)

a−
j ≤LBj(x)(1− σj) j ∈ [d] only 1 of a+

j or a−
j can be positive (2i)

a ∈A(x) joint actionability constraints (2j)

The baseline formulation in Eq. (2) minimizes the l1 norm of a, splitting a into positive and negative425

parts a+j , a
−
j ≥ 0 (2d), of which only one is non-zero. This allows us to use this baseline formulation426

for both sampling and enumeration. Here, σj := I[aj > 0] is a boolean variable which we set to 1427

when aj is positive to ensure that signed components can have a positive value through (2e).428

(2b) stipulates that we intervene with a′ – i.e., find an intervention a such that satisfies the remaining429

constraints and is equal to a′. The remaining constraints enforces separable (constraint (2h), (2i))430

and non-separable actionability constraints (constraint (2j)).431
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Below we provide two examples of non-separable actionability constraints and their explicit formu-432

lation in Eq. (2). For additional examples of how we can explicitly encode constraints into Eq. (2),433

refer to [32].434

Encoding Directional Linkage Constraints We often encounter features where intervening on435

them has a direct (and sometimes deterministic) effect on other features. For example, in Table 8,436

joint constraint 4 stipulates that urls_count increases at most as the change in num_tweets. Here, the437

“source variable” – the source of the effect – is num_tweets and the “target variable" – the feature438

affected – is urls_count.439

We capture this effect, called Directional Linkage, by adding additional constraints to Eq. (2). Given440

source feature k ∈ [d], a non-empty set of target features T ⊆ [d] \ {k} and a scale vector s ∈ R|T |,441

which captures the scale of the effect for each l ∈ T , we add the following constraints:442

bl − sl · ak = 0 (3)
cl − al − bl = 0 (4)

for each target feature l ∈ T , where bl indicates the change in feature l as a result of intervention ak,443

and cl represents the aggregate change in l.444

We can also substitute the equality in Eq. (3) with inequalities. The aforementioned example with445

num_tweets and urls_count is a case where the relationship is an inequality (≤) and s = 1.446

Encoding Thermometer Encoding Constraints Datasets often include features that are based on447

thresholds. These features are often encoded like unary codes, a number of ones followed by zeros.448

For example, in Table 8, age_of_account_geq has a thermometer encoding with thresholds at 180,449

365, 730 and 1825 days. Hence there are five possible encoding values:450

1. [0, 0, 0, 0]: account is less than 180 days old451

2. [1, 0, 0, 0]: account is older than 180 days but less than 365 days old452

3. [1, 1, 0, 0]: account is older than 365 days but less than 730 days old453

4. [1, 1, 1, 0]: account is older than 730 days but less than 1825 days old454

5. [1, 1, 1, 1]: account is more than 1825 days old455

Given an ordered set of feasible values V , like above, we also define a reachability matrix E ∈456

{0, 1}|V |×|V |, where the (i, j)-th entry of E is 1 when we can reach from the i-th element of V to457

its jth element and 0 otherwise. Note that there are three possibilities for E: an upper triangular458

matrix, a lower triangular matrix of ones, or an all-one matrix. For example, age_of_account_geq,459

we also have a monotonicity constraint – age can only increase. So given the set of viable values (in460

order), the reachability matrix E is an upper triangle matrix of ones (i.e., can reach [1, 0, 0, 0] from461

[0, 0, 0, 0], but not ther other way around).462

Then, we add the following constraints to Eq. (2):463 ∑
k∈[|V |]

uk = 1 (5)

aj =
∑

k∈[|V |]

ej,k(vk,j − xj)uk (6)

where uk = 1 when resulting feature vector after the proposed intervention a′ corresponds to the464

k-th encoding in V , vk, 0 otherwise. ej,k indicates whether vk is reachable (based on E). Eq. (5)465

ensures that a′ has a valid encoding and Eq. (6) computes the required change (if feasible).466

Description of SampleEffect Routine467

The implementation SampleEffect changes based on the nature and relationships for the downstream468

effects we wish to sample:469

• For deterministic downstream effects, we do not sample but calculate the effect directly as there is470

only one feasible value. We have implemented a baseline sampler for non-deterministic downstream471

effects, which takes a uniform sample from possible feature values and runs CheckFeasibility on472

the resulting final intervention a+ r.473
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• For random or causal effects, we sample r(a;x) from the specified distribution or model Px(a).474

Note that the parameters of the distribution need not be the same for all points.475

Partitioning for Efficiency476

We run Algorithm 1 separately over subsets of features, rather than jointly over all features in [d].477

These subsets are disjoint and are independent with respect to interventions and downstream effects.478

More formally, we call the collection of these independent subsets a partition M := {S1, S2, . . . , Sk}479

of [d] such that given two parts Sm, Sn, there are no joint constraints or downstream effects between480

all pairs (p, q) ∈ Sm × Sn of features. Another way to think about feature partitions would be as481

connected components in a graph, where features are nodes and edges represent joint constraints482

and/or downstream effects (i.e., ∃ edge (p, q) ⇐⇒ there are joint actionability constraints between483

p and q).484

The benefit of sampling within partitions is two-fold:485

• Scalability: We only execute CheckFeasibility when necessary (i.e., when the partition is larger486

than size 1. Moreover, we only discard infeasible samples within the partition, rather than throwing487

out the entire sampled intervention. This significantly decreases run time for sampling.488

• Implementation: We can apply more efficient sampling procedures. In general, a dataset will have489

many kinds of features – e.g., continuous and discrete – with many different kinds of actionability490

constraints. However, subsets of features are likely to be similar. In effect, we can often find491

features that are not related to other features. Alternatively, we may find features that are all492

discrete and linked together by a single constraint (e.g., dummy variables with a one-hot encoding).493

Decomposition allows us apply different sampling procedures to each to sample more efficiently.494

B.3 Validation Study495

Convergence Guarantees Our sampling-based procedure provides several statistical guarantees for496

our responsiveness estimate: ρ̂(x) is an unbiased estimator and the (absolute) estimation error tends497

to 0 as the sample size n increases. For testing, our results in Proposition 4 state that the probability498

of correctly identifying responsiveness (Specificity) is at least 1− α and the probability of correctly499

identifying unresponsiveness (Recall) is at least 1− β given n ≥ Nmin. In practice, these guarantees500

imply that we can adapt tests to achieve any level of specificity or recall by setting the appropriate501

sample size.502

We demonstrate these guarantees through an empirical study detailed in Appendix B. We work with503

a dataset with discrete features where we can enumerate all reachable points for each instance and504

compute ground-truth responsiveness. We use these to estimate the absolute estimation error (|ρ̂n−ρ|),505

specificity (Pr (Claim Responsive | ρ ≥ ε)) and recall (Pr (Claim Unresponsive | ρ < ε)). In addition506

to verifying these guarantees, we investigate the precision (Pr (ρ < ε | Claim Unresponsive)) of our507

tests to gauge their reliability in action.508

As shown in Fig. 2, the absolute estimation error decreases as n increases and specificity remains509

above 1 − α = 95%. We also observe the results in ??, where both precision and recall are510

0 for n < logα/log(1−ε) since the test fails to reject H0 for all predictions (i.e., none flagged as511

unresponsive). For n > logα/log(1−ε), we see that the specificity of our test is above the statistical512

power (dotted line) computed at n. The precision of the test is also above 95% for n > logα/log(1−ε),513

indicating that our tests result in very few false positives (i.e., claiming unresponsiveness when the514

prediction is responsive).515

These results reaffirm our statistical guarantees and highlight that we can achieve low estimation error516

and high test reliability with a relatively small sample size. For example, a sampled reachable set517

with n = 30 has 4.2% absolute estimation error and 97.9% precision on average across 5 trials, while518

taking up 85% less storage. As a result, even in cases where the intervention sets are discrete and can519

be enumerated, sampling can lead to a meaningful reduction in compute and storage instances.520

In Fig. 2, we conduct a study on sample size n to (1) validate our responsiveness estimation and521

testing procedure outlined in Section 2, and (2) determine their reliability under various sample sizes.522

We work with a discrete dataset, german, where we can fully enumerate reachable sets using the523

enumeration procedure from Kothari et al. [32]. The enumerated reachable sets provides ground524

truth responsiveness proportions. We compare our results to determine the error of our estimation525
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Figure 2: Convergence of responsiveness estimates and test metrics for a lending model built from the german
dataset [13]. We compute the true responsiveness of all instances in the dataset by enumeration, build sampled
reachable sets to estimate and test responsiveness (ε = 0.1, α = 0.05). Left: Absolute Estimation Error
(|ρ̂n−ρ|). Middle: Specificity (P (Claim Responsive | ρ ≥ ε), analogous to statistical power: 1−β) and Recall
(P (Claim Unresponsive | ρ < ε), analogous to confidence level 1− α). The dotted line is the statistical power
across different sample sizes n given effect size ∆ = 0.05. Right: Precision (P (ρ < ε | Claim Unresponsive)).
Red lines in Middle and Right figures show the minimum sample size required to reject the null hypothesis given
no positive observations: logα/log(1−ε) (??).

procedure and the precision (in the main body, we refer to it as “reliability” for simplicity) of our526

testing procedure under two model classes: Logistic Regression (LR) and XGBoost (XGB).527

The german dataset is a credit dataset originally compiled in 1994 that is publicly available through528

the UCI Machine Learning Repository [13]. It contains n = 1,000 de-identified instances, each529

representing a credit applicant. It includes d = 20 categorical or discrete features, providing insights530

into aspects such as loan history, demographic information (including gender, age, and marital status),531

occupation, and past payment behavior. The objective is to predict whether an applicant is a “good”532

(yi = 1) or “bad” (yi = 0) credit customer. We note that the dataset does not have missing values,533

and have adapted some feature names for clarity.534

Intervention Model We consider an intervention model where each applicant can intervene on535

current features like account balances, but not history nor credit related features. For example,536

Housing=Owner is not actionable since one cannot go from renting to buying without additional loans.537

This intervention model is conservative and is intended to capture indisputable actionability con-538

straints. In total, our dataset contains 36 features of which 9 are actionable and 10 are mutable. There539

a total of four constraints: two Directional Linkage, and two Thermometer Encoding constraints:540

• Directional Linkage constraints in this intervention model govern downstream effects on Age from541

1) YearsAtResidence and 20 YearsEmployed≥1, which form a partition.542

• Thermometer Encoding constraints enforce conceptual requirements in this dataset - 1) requiring543

CheckingAcct≥0=True to be reachable only if CheckingAcct_exists is also True, and 2) requiring544

SavingsAcct≥100=True to be reachable only if SavingsAcct_exists is True.545

These lead to 31 partitions.546

We present a list of all features and their corresponding feature-level constraints in Table 3 and list547

the non-separable joint constraints below it.548

1. DirectionalLinkage: Actions on YearsAtResidence will induce actions on [‘Age’]. Each unit549

change in YearsAtResidence leads to a unit change in Age550

2. DirectionalLinkage: Actions on YearsEmployed≥1 will induce actions on [‘Age’]. Each unit change551

in YearsEmployed≥1 leads to a unit change in Age552

3. ThermometerEncoding: Actions on [CheckingAcctexists, CheckingAcct≥0] must preserve ther-553

mometer encoding of CheckingAcct., which can only increase. Actions can only turn on554

higher-level dummies that are off, where CheckingAcctexists is the lowest-level dummy and555

CheckingAcct≥0 is the highest-level-dummy.556

4. ThermometerEncoding: Actions on [SavingsAcctexists, SavingsAcct≥100] must preserve ther-557

mometer encoding of SavingsAcct., which can only increase. Actions can only turn on higher-level558

dummies that are off, where SavingsAcctexists is the lowest-level dummy and SavingsAcct≥100559

is the highest-level-dummy.560

Lastly, we report model performance statistics for our LR and XGB model:561
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Name Type LB UB Actionable Sign Joint Constraints Partition ID

Age Z 19 75 No 1, 2 0
YearsAtResidence Z 0 7 Yes + 1 0
YearsEmployed≥1 {0, 1} 0 1 Yes + 2 0
CheckingAcct_exists {0, 1} 0 1 Yes + 3 30
CheckingAcct≥0 {0, 1} 0 1 Yes + 3 30
SavingsAcct_exists {0, 1} 0 1 Yes + 4 31
SavingsAcct≥100 {0, 1} 0 1 Yes + 4 31
Male {0, 1} 0 1 No – 1
Single {0, 1} 0 1 No – 2
ForeignWorker {0, 1} 0 1 No – 3
LiablePersons Z 1 2 No – 4
Housing=Renter {0, 1} 0 1 No – 5
Housing=Owner {0, 1} 0 1 No – 6
Housing=Free {0, 1} 0 1 No – 7
Job=Unskilled {0, 1} 0 1 No – 8
Job=Skilled {0, 1} 0 1 No – 9
Job=Management {0, 1} 0 1 No – 10
CreditAmt≥1000K {0, 1} 0 1 No – 11
CreditAmt≥2000K {0, 1} 0 1 No – 12
CreditAmt≥5000K {0, 1} 0 1 No – 13
CreditAmt≥10000K {0, 1} 0 1 No – 14
LoanDuration≤6 {0, 1} 0 1 No – 15
LoanDuration≥12 {0, 1} 0 1 No – 16
LoanDuration≥24 {0, 1} 0 1 No – 17
LoanDuration≥36 {0, 1} 0 1 No – 18
LoanRate Z 1 4 No – 19
HasGuarantor {0, 1} 0 1 Yes + – 20
LoanRequiredForBusiness {0, 1} 0 1 No – 21
LoanRequiredForEducation {0, 1} 0 1 No – 22
LoanRequiredForCar {0, 1} 0 1 No – 23
LoanRequiredForHome {0, 1} 0 1 No – 24
NoCreditHistory {0, 1} 0 1 No – 25
HistoryOfLatePayments {0, 1} 0 1 No – 26
HistoryOfDelinquency {0, 1} 0 1 No – 27
HistoryOfBankInstallments {0, 1} 0 1 Yes + – 28
HistoryOfStoreInstallments {0, 1} 0 1 Yes + – 29

Table 3: Intervention Model for the processed german dataset. Type indicates the feature type (Z for integer,
{0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates whether the
feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity constraints
– whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable constraint
indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature belongs to.

LR XGB

Train Test Train Test

AUC 0.807 0.768 0.819 0.7615

Expected Calibration Error 20.0% 20.0% 0.0% 10.0%

Error 27.2% 28.0% 21.9% 23.0%

n 800 200 800 200

npos 560 140 560 140

p 70.0% 70.0% 70.0% 70.0%

nclf_pos 738 186 615 120

nclf_neg 62 14 185 80
Table 4: Additional model statistics of LR and XGB models for the german dataset

.
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B.4 Additional Examples562

For Proposition 3563

Example 5 (Estimating Responsiveness for Feature Attribution). Consider a task where we need
to identify salient features for a prediction in a lending task where Y = {approve, deny} [9]. If
we were to do this based on responsiveness with a 0.05 margin of error where f(x) = deny, for
each feature j ∈ [d], we would set the parameters as follows:

• Ŷ reach
x = {approve}

• A(x): only allow feature j and features linked via downstream effects to change
• α = 0.05, L = 0.1, which implies Nmin(α,L) = 402

and estimate responsiveness of the prediction with respect to interventions on each feature,
identifying the most responsive features to report in mandated explanations (i.e., adverse action
notice in the U.S.).

For Proposition 4564

Example 6 (Testing Robustness to Random Fluctuations). Consider testing if the predictions
of a sepsis prediction model, f , developed by a third party are stable w.r.t. natural variations
in clinical measurements using the medical devices of the local hospital. For each non-septic
patient with features x, we wish to limit the false alarms due to insignificant variation in certain
measurements to at most 10%. We could set the parameters as follows:

• Ŷ reach
x = {sepsis}

• A(x) is such that asystolic_bp ∈ [−5 mmHg,+5 mmHg], and
abilirubin ∈ [−0.1xbilirubin mg/dL, 0.1xbilirubin mg/dL]

• ε = 0.1, α = 0.01, β = 0.2, ∆ = 0.05, which would imply Nmin(α, β, ε,∆) = 254.

Suppose that we observe 4 sepsis predictions in a set of n = 254 reachable points X̂n. Then, we
have ρU

2α ≈ 0.045 < ε, thus we claim that the model is robust – allowing up to 10% predictions
sensitive to random fluctuations – with probability of the false robustness claim α = 1%, and the
probability of a correct robustness claim 1− β = 80% when the true responsiveness is at most
ε−∆ = 0.05.
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C Supplementary Material for Section 3565

In this Appendix, we provide additional details and results for each of the use cases in Section 3.566

C.1 Detecting Fixed Predictions in Recidivism Prediction Tools567

C.1.1 Experimental Details and Results568

Many recidivism prediction models are designed to use features that cannot readily change – e.g., age569

and sex [see e.g., 4, 15, 26, 34], which assign more accurate risk predictions. These models tend to570

predict that defendants with certain characteristics beyond their control will recidivate by default –571

i.e., regardless of their charges or criminal history. As an example, we point to a risk score developed572

by the Pennsylvania Sentencing Commission [47] which assigns fixed predictions to male defendants573

under 21. This oversight perpetuates disproportionate harm against a vulnerable population, and was574

included in a model that took over five years to be developed by a panel of statisticians (with regular575

public feedback opportunities) before being implemented. Here, we show that our machinery could576

have revealed this via a simple audit in less than ten minutes.577

We work with a sample of prisoners from New York compiled by the U.S. Department of Justice [55],578

which contains n = 29,400 and d = 20 features related to their age, sex, and criminal history (note579

that we do not include race). Here, the label is yi = 1 if a defendant i is rearrested within three years580

of release. We follow common practice [14, 60] and apply a standard 80-20 train-test split to fit581

and evaluate a logistic regression model (train/test AUC of 0.704/0.702). We test that this model582

assigns fixed predictions with respect to hypothetical interventions that “clear” criminal history – i.e.,583

so that each defendant predicted to recidivate would be able to overturn their prediction by clearing584

features related to criminal history. We consider a test where ε = 0.1, α = 0.05, β = 0.2, and target585

a resulting Yi = 1. We say that a prediction is “fixed” when Pr(ρ(x)) < 0.01. Our intervention586

sets contains of 30 constraints – which capture changes to criminal history and their downstream587

effects (e.g., setting n_prior_arrests = 5 → 0 would set prior_arrests_for_felony = 1 → 0). We588

construct reachable sets with 20 samples per point, satisfying ??.589

In Fig. 3, we show the distribution of fixed points. The model predicts that 18,614 individuals will590

recidivate on the training test of which 15,986 are assigned fixed predictions. We can also see that591

it follows patterns of prior recidivism models such as using age as a crucial indicator, and having a592

disproportionate impact across racial groups. We see that 100% of all prisoners under the age of 18593

are assigned fixed predictions. This is consistent with prior work showing that lower age is more594

correlated with a higher likelihood of models predicting recidivism [60]. We also see that non-white595

prisoners are assigned fixed predictions at a higher rate than white prisoners, especially in the ≥ 30596

age group. We see further evidence that age and ethnicity govern recidivism in the left-most plot.597

This provides further details on the relationship between age and race: as the age increases, race598

becomes a more important factor in determining if that prisoner will have recourse. Our methodology599

has (1) detected multiple failure modes of the model – racial bias and assigning fixed predictions,600

specifically disproportionately assigning fixed predictions across ethnic groups, and, importantly, (2)601

enabled finding these failures during model development.602

C.1.2 Description of Dataset603

We work with a large sample of defendants from New York state derived from the “Recidivism of604

Prisoners Released in 1994” dataset released by the U.S. Department of Justice [55], which contains605

n = 29,400 and d = 20 features about their criminal history. This dataset has been used in recidivism606

studies such as [39, 60]. Here, the label is yi = 1 if a prisoner is rearrested within the 3 years of607

release from prison. We include 12 features explicitly related to criminal history, two immutable608

characteristics (age and female), and six mutable characteristics, four of which are actionable, do not609

provide additional information about criminal history.610

• Criminal History Features: All features relating to prior_arrests, all features relating to611

time_served, any_prior_prb_or_fine612

• Mutable: edu_program_particicipation, voc_program_participation, drug_abuser,613

drug_treatment, alcohol_abuser, alcohol_treatment614

We bucketize age_at_release as follows:615
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Figure 3: Distribution of unresponsive predictions in demographic groups. Left: Train sample. Middle: Test
sample. Right: CDF of responsiveness proportion by demographic group

• ≤ 16616

• 16 to 19617

• 19 to 23618

• 23 to 27619

• 27 to 30620

• 30 to 35621

• 35 to 40622

• 40 to 45623

• ≥ 45624

C.1.3 Intervention Model625

Intervention Model We consider an intervention model where each defendant can perform (1)626

actions that change actionable features about their participation in rehabilitation profile (e.g., partici-627

pating in educational programs, setting edu_program_participation to True), and (2) hypothetical628

actions that would clear their criminal history (see below for detailed examples).629

Our dataset contains 20 features of which 7 are actionable and 18 are mutable. The intervention630

model contains a total of 27 constraints: 24 Directional Linkage constraints, and three Reachability631

Constraints:632

• Criminal History Constraints. Each of prior_arrests=1, prior_arrests≥2, and prior_arrests≥5633

has the same sets of constraints: Each time_served variable must decrease, any_prior_prb_or_fine634

must decrease, prior_arrests_for_felony, prior_arrests_for_misdemeanor, and635

prior_arrests_for_general_violence must decrease, and finally no_prior_arrests must636

be True. The associated ReachabilityConstraint forces prior_arrests=1, prior_arrests≥2, and637

prior_arrests≥5 to only be able to reach no_prior_arrests, fully clearing arrest history and638

preventing the number of arrests from decreasing by 1.639

• Non-Criminal History Constraints: Both drug_abuser and alcohol_abuser have a Reachability-640

Constraint with their corresponding treatment feature - this constraint ensures that treatment is641

only reachable if abuser is True.642

Note that these create corresponding partitions (see Table 5): 0 (alcohol features), and 1 (drug643

features), 2 (edu_program_participation, which can only increase), 3 (voc_program_participation,644

which can only increase), 4 (age_at_release, immutable), 5 (female, immutable), and 6 (the criminal645

history constraints outlined above).646

We present a list of all features and their corresponding feature-level constraints in Table 5.647
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Name Type LB UB Actionable Sign Constraints Partition ID

prior_arrests=1 {0, 1} 0 1 Yes − 2, 5, 8, 11, 14, 17, 20, 23, 25 6
prior_arrests≥2 {0, 1} 0 1 Yes − 1, 4, 7, 10, 13, 16, 19, 22, 25 6
prior_arrests≥5 {0, 1} 0 1 Yes − 3, 6, 9, 12, 15, 18, 21, 24, 25 6
no_prior_arrests {0, 1} 0 1 No 25 6
time_served≤1_year {0, 1} 0 1 No 1, 2, 3 6
time_served_g_1_year {0, 1} 0 1 No 4, 5, 6 6
time_served_g_2_years {0, 1} 0 1 No 7, 8, 9 6
time_served_g_5_years {0, 1} 0 1 No 10, 11, 12 6
prior_arrests_for_misdemeanor {0, 1} 0 1 No 13, 14, 15 6
prior_arrests_for_felony {0, 1} 0 1 No 22, 23, 24 6
prior_arrests_for_general_violence {0, 1} 0 1 No 16, 17, 18 6
any_prior_prb_or_fine {0, 1} 0 1 No 19, 20, 21 6
drug_abuser {0, 1} 0 1 No 26 0
drug_treatment {0, 1} 0 1 Yes + 26 0
alcohol_abuser {0, 1} 0 1 No 27 1
alcohol_treatment {0, 1} 0 1 Yes + 27 1
edu_program_participation {0, 1} 0 1 Yes + – 2
voc_program_participation {0, 1} 0 1 Yes + – 3
age_at_release R 17.3 83.9 No – 4
female {0, 1} 0 1 No – 5

Table 5: Intervention model for the rearrest_NY dataset. Type indicates the feature type (R for real numbers,
{0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates whether the
feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity constraints
– whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable constraint
indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature belongs to.

In this case, the intervention model must enforce a large set of deterministic downstream effects648

to maintain the semantic relationships between the features of the model while “clearing criminal649

history.” In general, we would enforce these relationships through the sampling distribution. Given650

that they are deterministic effects, however, we enforce them by defining non-separable constraints.651

The final set of joint actionability constraints include:652

1. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on [timeserved≤1year].653

Each unit change in priorarrests≥2 leads to a unit change in timeserved≤1year654

2. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeserved≤1year. Each655

unit change in priorarrests=1 leads to a unit change in timeserved≤1year656

3. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeserved≤1year. Each657

unit change in priorarrests≥5 leads to a unit change in timeserved≤1year658

4. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on timeservedg1year. Each659

unit change in priorarrests≥2 leads to a unit change in timeservedg1year660

5. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg1year. Each661

unit change in priorarrests=1 leads to a unit change in timeservedg1year662

6. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeservedg1year. Each663

unit change in priorarrests≥5 leads to a unit change in timeservedg1year664

7. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on timeservedg2years. Each665

unit change in priorarrests≥2 leads to a unit change in timeservedg2years666

8. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg2years. Each667

unit change in priorarrests=1 leads to a unit change in timeservedg2years668

9. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeservedg2years. Each669

unit change in priorarrests≥5 leads to a unit change in timeservedg2years670

10. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on timeservedg5years. Each671

unit change in priorarrests≥2 leads to a unit change in timeservedg5years672

11. DirectionalLinkage: Actions on priorarrests=1 will induce actions on timeservedg5years. Each673

unit change in priorarrests=1 leads to a unit change in timeservedg5years674

12. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on timeservedg5years. Each675

unit change in priorarrests≥5 leads to a unit change in timeservedg5years676

13. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on priorarrestsforfelony.677

Each unit change in priorarrests≥2 leads to a unit change in priorarrestsforfelony678

14. DirectionalLinkage: Actions on priorarrests=1 will induce actions on priorarrestsforfelony.679

Each unit change in priorarrests=1 leads to a unit change in priorarrestsforfelony680

11



15. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on priorarrestsforfelony.681

Each unit change in priorarrests≥5 leads to a unit change in priorarrestsforfelony682

16. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on683

priorarrestsformisdemeanor. Each unit change in priorarrests≥2 leads to a unit change in684

priorarrestsformisdemeanor685

17. DirectionalLinkage: Actions on priorarrests=1 will induce actions on686

priorarrestsformisdemeanor. Each unit change in priorarrests=1 leads to a unit change in687

priorarrestsformisdemeanor688

18. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on689

priorarrestsformisdemeanor. Each unit change in priorarrests≥5 leads to a unit change in690

priorarrestsformisdemeanor691

19. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on692

priorarrestsforgeneralviolence. Each unit change in priorarrests≥2 leads to a unit693

change in priorarrestsforgeneralviolence694

20. DirectionalLinkage: Actions on priorarrests=1 will induce actions on695

priorarrestsforgeneralviolence. Each unit change in priorarrests=1 leads to a unit696

change in priorarrestsforgeneralviolence697

21. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on698

priorarrestsforgeneralviolence. Each unit change in priorarrests≥5 leads to a unit699

change in priorarrestsforgeneralviolence700

22. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on anypriorprborfine. Each701

unit change in priorarrests≥2 leads to a unit change in anypriorprborfine702

23. DirectionalLinkage: Actions on priorarrests=1 will induce actions on anypriorprborfine. Each703

unit change in priorarrests=1 leads to a unit change in anypriorprborfine704

24. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on anypriorprborfine. Each705

unit change in priorarrests≥5 leads to a unit change in anypriorprborfine706

25. DirectionalLinkage: Actions on priorarrests≥2 will induce actions on707

[’priorarrestsforfelony’]. Each unit change in priorarrests≥2 leads to a unit change708

in priorarrestsforfelony709

26. DirectionalLinkage: Actions on priorarrests=1 will induce actions on710

[’priorarrestsforfelony’]. Each unit change in priorarrests=1 leads to a unit change711

in priorarrestsforfelony712

27. DirectionalLinkage: Actions on priorarrests≥5 will induce actions on713

[’priorarrestsforfelony’]. Each unit change in priorarrests≥5 leads to a unit change714

in priorarrestsforfelony715

28. ReachabilityConstraint: The values of [priorarrests≥2, priorarrests=1, nopriorarrests,716

priorarrests≥5] must belong to one of 4 values with custom reachability conditions.717

29. ReachabilityConstraint: The values of [drugabuser, drugtreatment] must belong to one of 4 values718

with custom reachability conditions.719

30. ReachabilityConstraint: The values of [alcoholabuser, alcoholtreatment] must belong to one of720

4 values with custom reachability conditions.721

C.1.4 Additional Results722

This table includes additional model training and performance statistics. p is the percent of positive723

points, n is the number of points,nclf_pos is the number of points that are classified as positive, and724

nclf_neg is the number of points that are classified as negative.725
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Train Test

AUC 0.704 0.702

Expected Calibration Error 0.19% 0.24%

Error 35.2% 35.4%

n 15414 3854

npos 7707 1927

p 50.0% 50.0%

nclf_pos 6407 1606

nclf_neg 9007 2248
Table 6: Additional model statistics for the recidivism dataset

.

This figure is the test component of the left-most figure in Fig. 3.726

Figure 4: CDF of points by responsiveness percentage

Ablation Testing We performed additional ablation tests on the recidivism dataset, and show our727

results in the table below. We note that the pattern of unresponsiveness being higher among the non-728

white peisoners being higher than the white prisoners continues. The test AUC is also consistently729

lower when non-criminal history features (such as program participation and substance abuse) are730

removed.731
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% Fixed (White) % Fixed (Non-White) AUC

Dropped Features Dropped Constraints ≤ 18 19 - 29 ≥ 30 ≤ 18 19 - 29 ≥ 30 Train Test

All age Bins None 39.0% 65.6% 39.0% 51.4% 69.2% 51.4% 0.696 0.686

drug_treatment

alcohol_treatment
29, 30 49.8% 66.8% 49.8% 61.9% 73.3% 61.9% 0.699 0.69

drug_abuser

alcohol_abuser

drug_treatment

alcohol_treatment

29, 30 50.5% 67.3% 50.5% 61.8% 73.1% 61.8% 0.698 0.691

edu_program_participation

voc_program_participation
None 43.2% 66.3% 43.2% 56.3% 67.9% 56.3% 0.701 0.691

None All 42.1% 64.3% 42.1% 51.0% 66.8% 51.0% 0.706 0.699

Table 7: Ablation testing results and details for each set of dropped features and constraints. Constraint numbers
are from Table 5. ϵ and α are 0.1 and 0.05.
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C.2 Preventing Gaming in Content Moderation732

C.2.1 Description of Dataset733

We work with the twitterbot which was originally curated by Gilani et al. [19]. The dataset defines734

a binary classification task where we wish to predict if an user account on Twitter belongs to a735

human (yi = 1) or a bot (yi = 0). The dataset contains a total of n = 3,431 instances and d = 19736

features that encode semantically meaningful characteristics about their interactions and login history737

– e.g., age_of_account_in_days for account age, user_tweeted for the number of user tweets, and738

source_identity for source of user interaction (mobile, web, etc.).739

In this case, the dataset contains a limited number of features given that all features are not readily740

available or shared across accounts. We process the dataset to define a subset of additional fea-741

tures as follows: (1) we include additional dummies to indicate “missing” values for num_tweets,742

num_retweets and num_replies; (2) we binarize features by using a adding a thermometer encoding743

to num_followers and age_of_accounts_in_days, setting thresholds that reflect salient milestones for744

follows and membership history; (3) we multi-hot encoded source_identity.745

C.2.2 Intervention Model746

We consider an intervention model where each user can intervene on their platform interaction747

features. Our dataset contains 20 features of which 11 are actionable and 15 are mutable. Note that748

we do not allow interventions on features that a user cannot change themselves – i.e., number of749

followers.750

We present a list of all features and their corresponding feature-level constraints in Table 8 and list751

joint actionability constraints below it.752

Exact Procedure We detail the intervention model for Exact procedure.753

Name Type LB UB Actionable Sign Joint Constraints Partition ID

followers≥1k {0, 1} 0 1 No 4 0
followers≥100k {0, 1} 0 1 No 4 0
followers≥1M {0, 1} 0 1 No 4 0
followers≥10M {0, 1} 0 1 No 4 0
num_tweets Z 0 35000 Yes + 1, 5 5
no_tweets {0, 1} 0 1 Yes − 1 5
urls_count Z 0 13013 No 5 5
num_retweets Z 0 3000 Yes + 2 6
no_retweets {0, 1} 0 1 Yes − 2 6
num_replies Z 0 6991 Yes + 3 7
no_replies {0, 1} 0 1 Yes − 3 7
age_of_account≥180_days {0, 1} 0 1 Yes – 1
age_of_account≥365_days {0, 1} 0 1 Yes – 2
age_of_account≥730_days {0, 1} 0 1 Yes – 3
age_of_account≥1825_days {0, 1} 0 1 Yes – 4
follower_friend_ratio R 0.0 13364332.2 Yes − – 8
source_web {0, 1} 0 1 No – 10
source_mobile {0, 1} 0 1 No – 11
source_app {0, 1} 0 1 No – 12
source_news {0, 1} 0 1 No – 15

Table 8: Intervention Model for the processed twitterbot dataset. Type indicates the feature type (Z for
integer, {0, 1} for binary). LB, UB are the lower and upper bounds for the feature. Actionable indicates
whether the feature is globally actionable. Non-actionable features are highlighted. Sign indicates monotonicity
constraints – whether feature can only increase (+) or decrease (-). Joint Constraints are a list non-separable
constraint indices (listed below table) it is tied to (if any). Partition ID indicates which partition the feature
belongs to.

1. IfThenConstraint: If notweets = 0.0, then numtweets > 1.0754

2. IfThenConstraint: If noretweets = 0.0, then numretweets > 1.0755

3. IfThenConstraint: If noreplies = 0.0, then numreplies > 1.0756

4. DirectionalLinkage: Actions on numtweets will induce to actions on [‘urlscount’]. Each unit757

change in numtweets leads to at least 1.00-unit change in urlscount758
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C.2.3 Additional Results759

Model Pool % Resp. (Perceived) % Resp. (True) AUC

Procedure Description # Models # Cert. Robust Train Test Valid Train Test Valid Train Test Valid

Manual
Train Models with
Immutable Features

370 370 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.531 0.570 0.581

Convex
Consider Responsiveness
w.r.t Convex Perturbation Check

901 687 0.3% 0.0% 0.9% 56.2% 57.1% 55.9% 0.743 0.754 0.759

Exact
Evaluate Responsiveness
w.r.t Exact Actions

901 76 9.6% 9.9% 9.3% 9.6% 9.9% 9.3% 0.722 0.727 0.734

Table 9: Full train, test, validation set results for the model with the highest validation AUC among Considered
models: ≤ 10% “Bot” predictions with certified responsiveness ≥ ε = 0.05. % Responsive show % of "Bot"
predictions with responsiveness ≥ ε = 0.05 under the procedure’s reachable set (Perceived) and the exact
reachable set (True).
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Figure 5: Test AUC of the best model that has less than 10% "Bot" predictions that have higher responsiveness
than ε = 0.01, 0.05, 0.1, 0.2 for each procedure. Model does not change for Inspection since features are
immutable.
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Figure 6: Average proportion of predictions that violate monotonicity across a cohort of simulated non-cancer
patients, across two intervention sets in which counterfactual simulated patients are assigned cancer with size of
either < 2cm (“small”) or < 5cm (“large”). Error bars show 95% confidence interval around average violation
across the simulated cohort.

C.3 Organ Transplant Score760

C.3.1 Experimental Details and Results761

Testing Counterfactual Invariance in Organ Transplant Prioritization Predictive statistical762

models are routinely used in allocation of organ transplants [23]. Recently, they have attracted763

scrutiny both from the public and the academic circles because of their potential to assign fixed764

predictions, e.g., with evidence of lower access to transplants for younger patients [2, 42], and765

simulation studies showing that cancer patients are less likely to receive high prioritization [3].766

We consider Transplant Benefit Score (TBS), a system used to prioritize transplants in the UK since767

2018. We aim to test a basic monotonicity condition [5, 24] that the model should assign higher768

prioritization scores to a counterfactual patient with cancer, compared to the initial score of the patient769

without cancer. According to domain experts [3], having all other features fixed, getting cancer770

should increase the priority. Testing this system is challenging, as it comprises several submodules:771

two Cox proportional hazard regression model to predict need – survival without transplant – and772

two models to predict utility – survival with the transplant over the course of five years. We have the773

following component survival functions:774

f c
need(x) =

T∑
t=1

Sc
0,need(t)

exp(βc⊤
need(x−µc

need)), f nc
need(x) =

T∑
t=1

Snc
0,need(t)

exp(βnc⊤
need (x−µnc

need))

f c
utility(x) =

T∑
t=1

Sc
0,utility(t)

exp(βc⊤
utility(x−µc

utility)), f nc
utility(x) =

T∑
t=1

Snc
0,utility(t)

exp(βnc⊤
utility(x−µnc

utility))

where c and nc indicate models applied to patients with cancer and without, respectively, S0,· : N →775

[0, 1] for t ∈ [T ] for some T ∈ N are pre-defined baseline hazard functions, and the vectors β and776

µ are the corresponding model parameters and data normalizers, respectively. The final TBS score777

is computed as fTBS(x) = fxcancer

utility (x)− fxcancer

need (x). An inspection of model coefficients β does not778

yield a simple answer on whether the system preserves monotonicity, especially as getting cancer779

involves a modification of several features at once, and using different models, βc.780

To verify violations of monotonicity, we generate a cohort of 1,000 patients without cancer using a781

probabilistic model designed to mimic a prior simulation generated based on real patients [3]. We782

provide details on the dataset generation in Appendix C.3. We define two intervention sets: “small”783

in which we assign a patient to have a cancer with at most 2cm tumor size, and “large” with at784

most 5cm tumor size. Each intervention involves changing the disease indicator primary_disease,785

and the max_tumor_size, tumor_number features. Moreover, we use a random-effect response r(x;a)786

which simulates natural variation in liver parameters such as the albumin level (see Appendix C.3).787

We measure and report average responsiveness ρ̂(x), where the prediction set of interest Ŷ reach
x =788

{y | y < f(x)} is those predictions which violate the monotonicity condition. Thus, in this case,789

responsiveness represents the proportion of violations.790

We summarize our results in Fig. 6, shown separately for each submodule. These results show that791

(1) even inspecting individual components does not paint the full picture of model safety. Indeed,792

the need model (left) shows low average violation for the middle age group, but the utility (middle)793

shows significantly higher levels of violation. As the final score is a combination of both, it is unclear794
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which result will be more important. The final TBS score (right), in the end, shows low violation in795

the middle age group. We can also see (2) that our procedure in a simulated cohort reveals that both796

younger and older patients could have their TBS scores decreased after getting cancer. Our tools797

flag this concrete safety issue on aggregate at the system level, enabling model developers to test798

responsiveness individually for each patient, and generate test cases for iterative model development.799

C.3.2 Description of Dataset800

As the availability of healthcare data is scarce and tightly regulated, we follow the methodology in the801

high-profile study of Attia et al. [3], who have demonstrated lower rates of prioritization for cancer802

patients using a simulated cohort of patients. Attia et al. generated the realistic simulated cohort by803

hand-crafting the probabilistic data model, and checking the resulting distributional characteristic804

against the real cohort of liver transplant patients. For this case study, we aim to reproduce their805

approach and derive a synthetic dataset which attains similar statistical properties. Specifically, we806

generate n = 1,000 simulated patients with d = 32 features.807

We note that the TBS model itself is publicly available. For the purposes of our simulation, we808

reproduce its implementation based on an interactive R interface by Ewen Harrison.1809

We use the default patient case from this implementation to set the baseline characteristics in our810

cohort. We modify certain variables in the default case as follows.811

Static Variables We simulate the demographics as follows:812

Age ∼ Uniform({30, 31, . . . , 80}) (7)
Gender ∼ Bernoulli(0.5) where 0 = man, 1 = woman. (8)

Note that we do not aim to have a representative distribution of a demographics in a population.813

We also simulate other lab values as follows:814

Albumin ∼ Uniform[30, 40] (9)
Potassium ∼ Uniform[3.5, 5.0] (10)

We detail the model for sampling other clinical variables next.815

Liver Parameters We set up the following structural causal model (SCM) [46] for the liver816

parameters: bilirubin, sodium, international normalized ratio (INR), and creatinine. We use this817

probabilistic model both to generate the initial patient cohort, and to simulate the random effects due818

to natural variation in the reachable sets.819

Let U = (Ubili, UNa, UINR, Ucreat) denote the vector of exogenous noise variables, and let x =820

(Xbili, XNa, XINR, Xcreat) denote the vector of correlated endogenous variables representing the four821

liver parameters.822

Exogenous Variables. We set U ∼ N (0,Σ) with:823

Σ =


1.0 0.447 0.320 −0.257

0.447 1.0 0.370 −0.043

0.320 0.370 1.0 −0.091

−0.257 −0.043 −0.091 1.0

 (11)

Structural Equations. The endogenous variables are determined by the following structural equations:824

Xbili = min(200,max(15, exp(0.5 · Ubili + 3.5))) (12)
XNa = min(145,max(125, 5 · UNa + 137)) (13)
XINR = min(2.4,max(0.9, exp(0.3 · UINR − 0.2) + 0.8)) (14)
Xcreat = min(200,max(45, exp(0.4 · Ucreat + 4.2))) (15)

where:825

1https://github.com/SurgicalInformatics/transplantbenefit/
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• Xbili represents bilirubin levels (clipped to [15, 200])826

• XNa represents sodium levels (clipped to [125, 145])827

• XINR represents international normalized ratio (clipped to [0.9, 2.4])828

• Xcreat represents creatinine levels (clipped to [45, 200])829

We choose the parameters to approximately match the reported statistics in a simulated cohort from830

Attia et al. [3]. We show the statistical properties of our generated cohort in Fig. 7.831

C.3.3 Intervention Model832

We detail the dataset features and the considered intervention model in the table:

Name Type LB UB Actionable Sign Joint Constraints Partition ID

rinpatient_tbs {0, 1} 0 1 No – 3
rregistration_tbs Z 1 7 No – 4
rwaiting_time_tbs Z 0 3650 No – 5
rage_tbs Z 30 80 No – 6
rgender_tbs {0, 1} 0 1 No – 7
rdisease_primary_tbs Z 1 9 Yes 1, 2 1
rdisease_secondary_tbs Z 1 9 No – 8
rdisease_tertiary_tbs Z 1 9 No – 9
previous_tx_tbs {0, 1} 0 1 No – 10
rprevious_surgery_tbs {0, 1} 0 1 No – 11
rbilirubin_tbs Z 15 200 No – 2
rinr_tbs R 0.9 2.4 No – 2
rcreatinine_tbs Z 45 200 No – 2
rrenal_tbs {0, 1} 0 1 No – 12
rsodium_tbs Z 125 145 No – 2
rpotassium_tbs R 3.5 5.0 No – 13
ralbumin_tbs Z 30 40 No – 14
rencephalopathy_tbs {0, 1} 0 1 No – 15
rascites_tbs {0, 1} 0 1 No – 16
rdiabetes_tbs {0, 1} 0 1 No – 17
rmax_afp_tbs Z 0 1000 No – 18
rtumour_number_tbs {’0 or 1’∗, ‘2’, ‘3+’} Yes 1, 2 1
rmax_tumour_size_tbs R 0 20 Yes 1, 2 1
dage_tbs Z 18 80 No – 19
dcause_tbs Z 1 4 No – 20
dbmi_tbs R 15 50 No – 21
ddiabetes_tbs Z 1 3 No – 22
dtype_tbs {0, 1} 0 1 No – 23
bloodgroup_compatible_tbs {0, 1} 0 1 No – 24
splittable_tbs {0, 1} 0 1 No – 25

* This feature value is treated as no tumours if the primary disease does not indicate cancer, rdisease_primary_tbs ̸= 1, and as one tumour otherwise.

833

1. IfThenConstraint: If rtumour_number_tbs ∈ {‘2’,‘3+’}, then rdisease_primary_tbs = 1 (cancer)834

2. IfThenConstraint: If rdisease_primary_tbs = 1, then rmax_tumour_size_tbs > 0.835

Concretely, to generate counterfactual patients with cancer, we define two intervention sets for small836

and large tumours, following Attia et al. [3]. In the small intervention set, we consider interventions837

so that the rtumour_number_tbs = ‘2’ and rmax_tumour_size_tbs = 2; in the large intervention set,838

the number of tumours is the same but rmax_tumour_size_tbs = 5839

Random Effects For generating noise around existing parameter values x(0) =840

(x
(0)
bili , x

(0)
Na , x

(0)
INR, x

(0)
creat), we first perform approximate abduction to infer the corresponding841

exogenous values U(0) using the inverse structural equations. Then, we generate the perturbed842

exogenous variables as:843

U(1) = U(0) + ε (16)
where ε ∼ N (0,Σ) represents correlated noise. The counterfactual endogenous variables x(1) are844

then computed by applying the structural equations to U(1).845

Thus, response probability distribution Pa(x) is the distribution of Pr(x(1) − x(0) − a), where846

a = (abili, aNa, aINR, acreat) is the intervention.847

C.3.4 Additional Results848
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1Figure 7: Pairwise relationships of the four liver parameter distributions according to our probabilistic model.
These statistics are similar to those obtained by Attia et al. [3].
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1Figure 8: Average predictions of the TBS model and its components (need model on the left, utility model in
the middle, combined on the right) over the reachable sets in the simulated cohorts. We can see that only for
the middle-age group the average predicted survival w/o transplant decreases under the intervention, with other
groups having the monotonicity constraints violated.
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D Omitted Formal Results849

*850

Proof. From the definition of the exact Binomial confidence interval, we have that:

ρU
2α(n, ρ̂n) = B1−α(nρ̂n + 1, n− nρ̂n) (17)

provides a one-sided guarantee Pr(ρ(x) ≤ ρU
2α(n, ρ̂n)) ≥ 1− α.

The cumulative distribution of the Beta distribution is given by:

F(x; a, b) =
B(x; a, b)

B(a, b)

where B(x; a, b) is the incomplete beta function, defined as:

B(x; a, b) =

∫ x

0

ta−1(1− t)(b−1) dt

and B(a, b) = B(1; a, b).

Suppose ρ̂(x) = 0. Then our parameters for the beta distribution are a = 1, b = n. Hence,

F(x; 1, n) = 1− (1− x)n

Since the quantile function is the inverse of the CDF, we have

B1−α(1, n) = 1− α
1
n

To reject H0, we need B1−α(1, n) = 1− α
1
n < ε. By rearranging the inequality, we have

n >
ln(α)

ln(1− ε)

851
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