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Abstract

Intracortical brain-machine interfaces (iBMIs) have enabled movement and speech
in people living with paralysis by using neural data to decode behaviors in real-
time. However, intracortical neural recordings exhibit significant instabilities over
time, which poses problems for iBMIs, neuroscience, and machine learning. For
iBMIs, neural instabilities require frequent decoder recalibration to maintain high
performance, a critical bottleneck for real-world translation. Several approaches
have been developed to address this issue, and the field has recognized the need for
standardized datasets on which to compare them, but no standard dataset exists for
evaluation over year-long timescales. In neuroscience, a growing body of research
attempts to elucidate the latent computations performed by populations of neurons.
Nonstationarity in neural recordings imposes significant challenges to the design
of these studies, so a dataset containing recordings over large time spans would
improve methods to account for instabilities. In machine learning, continuous
domain adaptation of temporal data is an area of active research, and a dataset
containing shift distributions on long time scales would be beneficial to researchers.
To address these gaps, we present the LINK Dataset (Long-term Intracortical
Neural activity and Kinematics), which contains intracortical spiking activity and
kinematic data from 312 sessions of a non-human primate performing a dexterous,
2 degree-of-freedom finger movement task, spanning 1,242 days. We also present
longitudinal analyses of the dataset’s neural spiking activity and its relationship to
kinematics, as well as overall decoding performance using linear and neural network
models. The LINK dataset and code are freely available to the public through the
dataset website (https://chesteklab.github.io/LINK_dataset/).
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1 Introduction

Due to their limited ability to independently engage in activities of daily living, people living with
paralysis often report feelings of isolation and lack of personal agency [1–3]. Brain-machine interfaces
(BMIs) aim to restore this ability by using recordings from intact neural circuits in the brain and
‘decoding’ user intent to control an end effector. BMIs have enabled humans and nonhuman primates
(NHPs) to control computer cursors, robotic arms, individuated fingers on a virtual hand, and their
own (paralyzed) arms through electrical stimulation [4–17]. Additionally, BMIs have helped restore
speech in people living with ALS using recurrent-neural network decoders [18–20]. Intracortical
brain-machine interfaces (iBMIs) in particular have emerged as a highly promising avenue, due to
the high specificity of spiking activity they capture.

However, the specificity of iBMI recordings also leads to one of the primary barriers for real-world
translation: instability of neural signals over time. While semi-stable over very short timescales
[21–25], intracortical recordings exhibit significant non-stationarities on longer ones [24, 26], due to
factors including the foreign body response, scarring, neuronal death, and constant micro-motions in
the brain [27–30]. Because of these shifts, current iBMI decoders require frequent recalibration on
supervised data, which typically involved a disruptive and lengthy training session. Many approaches
have been proposed for addressing this problem, typically aiming to limit the time spent recalibrating
or eliminate recalibration altogether through continual unsupervised alignment of neural data [31–42].
Many have recognized the need for standardized benchmarks on which to compare such methods,
such as the FALCON dataset [43]. While FALCON covers a broad variety of tasks in the BMI space,
the amount of data per task is limited and the timespan is limited to months, not years.

Adjacent to iBMIs, a growing body of neuroscience research uses intracortical recordings to study
the dynamics of neural populations, often in the context of motor or cognitive behavior. These studies
apply dimensionality reduction and latent variable models to uncover how neural populations perform
the computations driving behavior [44–48]. Multiple studies have shown that this latent structure
remains stable on a population-level over time, despite recording from unstable individual units
[49, 50, 45]. This has led to the hypothesis that behaviorally-relevant computations are embedded in
stable manifolds, which persist over time despite turnover at the level of single neurons [40, 49, 39].
However, evidence remains sparse over long timescales, and questions remain about the degree to
which these manifolds evolve with experience or become harder to observe with array degradation.

In machine learning, research on domain adaptation for timeseries forecasting generalizes the issue
observed in neural decoding to any non-stationary signal over time. Typical forecasting models can be
limited by the amount of data available for training, and their training is further complicated by when
the underlying distributions of input features and output spaces evolve over time. Domain adaptation
methods seek to resolve this problem of changing data distributions [51–53]. For timeseries data,
domain adaptation is additionally challenging due to the temporal nature of the data, where patterns
learned on an early section of data are not useful for prediction on a later portion. Neural decoders
capable of adapting to domain changes in neural and/or kinematic data can indeed be more robust to
performance degradation across time [54, 38]. Yet continuous domain adaptation methods for neural
network models and times series data have not yet been widely applied, in part due to the lack of
available data sampled across both short and long timescales.

To address these needs, we present the Long-term Intracortical Neural activity and Kinematics Dataset
(LINK), which contains 312 sessions on 303 days, spanning ~3.5 years of a single non-human primate
performing a trial-based dexterous finger movement task. The dataset contains two pre-processed
neural features for use in neural decoding tasks and population-level analyses of neural dynamics
over time. We hope it can serve as a test bed for developing new domain adaptation approaches for
timeseries data more generally. In this work, we describe the dataset and present initial analyses on
the quality of neural signals, their relationships with behavior, and some iBMI decoding results.

2 Related Work

Several publicly available datasets have supported progress in BMI decoder performance and ro-
bustness, as well as neural population dynamics research. The Neural Latents Benchmark (NLB)
[55] introduced a dataset with good task variability, including motor and cognitive tasks, but its
temporal span is limited, with most tasks containing single sessions. The more recent FALCON
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benchmark [43] includes a wide breadth of tasks and subjects, including data from birds, monkeys,
and humans performing multiple motor tasks. However, it is limited in its temporal span and has a
sparser distribution of days, making it difficult to study long-term stability.

Beyond benchmark datasets, other relevant open-access datasets have been released through scientific
publications. These range from single-session data, such as Brochier et al. [56], to longer spans
with lower resolution, such as Gallego-Carracedo et al. [57], which includes data from one subject
over 540 days, but only 10 recording sessions. Some studies have examined decoder alignment
and stability over extended periods, but the data are either not open-access [49, 40] or cover shorter
timescales [58, 18]. LINK fills a key gap by providing long-term, open-access, preprocessed neural
and kinematic data with high trial counts, suitable for both decoder stability studies and broader
neuroscience research.

3 The LINK Dataset

Figure 1: Overview of Experimental Setup. A. A non-human primate (Monkey N) performed
a 2 degree-of-freedom (DOF) finger movement task where he moved his fingers to match targets
presented over a virtual hand on a screen. We simultaneously recorded neural activity from 96
channels of a Utah microelectrode array and the positions (using flex sensors) of the two finger
groups, index and middle-ring-small. Note that the illustration depicts Monkey N performing the task
with his right hand, but in reality he performed the task with his left. B. In this dataset, we provide
two standard neural features used in iBMI decoding, spiking-band power and threshold crossing rates.
The process for extracting each feature (per channel) is shown here. C. Monkey N was implanted
with 3 Utah arrays, 2 of which were implanted in the motor cortex. Given available hardware, we
were able to record 96 channels simultaneously, specified by the colored rectangles. D. We included
two variations to the task in this dataset, determined by the pattern of targets presented. The first
is ‘center-out’ which enforces stereotyped movements ‘out’ with every other trial being a return to
‘rest’ (the 50% flexion and extension dot) and the second is ‘random’, where targets are randomly
presented but with a maximum 50% separation of the fingers. E. A histogram showing the number of
available trials per week over the 1,242 days contained in the dataset.

The Long-term Intracortical Neural and Kinematics (LINK) Dataset contains data from a single non-
human primate, Monkey N, performing a trial-based, 2 degree-of-freedom (DOF) finger task, recorded
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on 303 days spanning 1,242 days. The dataset comprises 312 ’sessions’ of 375 (mostly) contiguous
trial acquisitions. Each session contains one of two variations to the task, ‘center-out’ or ‘random’,
described below. On 9 days, two sessions are available as both tasks were performed. Monkey N
was implanted with three microelectrode arrays, two in the right motor cortex and one in the sensory
cortex. While Monkey N performed the task, we synchronously measured the spiking activity of
neurons from 96 motor array electrodes and the kinematics of the 2DOF task. In each session, we
provide neural data preprocessed into two neural features in 20ms bins: spiking-band power (SBP)
and threshold crossing rate (TCR). We also provide the position and velocity of the 2DOF at the same
resolution. The dataset also includes trial and session-specific information, like the date of acquisition,
target pattern used for the session, target positions per trial, and trial timestamps. Each session is
included as a separate file conforming to the Neurodata without Borders (NWB) standard, which
can be loaded using the pyNWB or MatNWB APIs. The dataset is publicly available on the DANDI
archive, dandiarchive.org/dandiset/001201, and code for loading the dataset and replicating
all analyses in this paper is available at github.com/chesteklab/LINK_dataset. Additionally,
the dataset and code can be accessed through the landing page at https://chesteklab.github.
io/LINK_dataset/.

3.1 Experimental Setup

Behavioral Task. A nonhuman primate (NHP, Macaca mulatta), Monkey N, was trained to sit in
a chair and perform a trial-based, two DOF dexterous finger movement task, shown in Figure 1A.
Monkey N’s left hand was positioned in a manipulandum, in which he moved two ‘finger groups’,
the index (IDX) and middle-ring-small (MRS) fingers, to control the positions of matching fingers of
a virtual hand present on a screen in front of him. The positions of these finger groups along their
respective movement arcs were measured using flex sensors calibrated so that a 0 reading was full
extension and 1 was full flexion for each DOF. The trial-based task was as follows: Monkey N was
presented with two spherical targets at the beginning of each trial, and had to move his fingers so that
the virtual finger groups were in each target (see Figure 1A). After holding each finger group in the
targets for 750 ms, the trial was considered a success, and he received a juice reward. If unable to
acquire targets after a set time (typically 10 seconds), the trial was considered a failure, and the next
set of targets was shown. In this dataset, only successful trials are included. Trials were performed in
continuous blocks, called ‘sessions’. During a session, targets were presented in different patterns of
succession, referred to as ‘target styles’. The LINK dataset contains two target styles, ‘center-out’
(CO), which mimics the center-out-and-back pattern described in previous studies [59, 60], and
‘random’ (RD), in which targets were pseudo-randomly chosen. Both are shown in Figure 1D. In both
cases, the range of movement for split targets (e.g., IDX flex, MRS extended) was limited to 50%
of the full movement arc, as Monkey N could not reliably extend past this due to natural dexterity.
Please see Appendix A for more details on the behavioral task.

Hardware and Feature Extraction. Monkey N was implanted with 3 Utah microelectrode ar-
rays (Blackrock Neurotech, Salt Lake City, UT, USA). One 10 × 10 array was implanted in the
somatosensory cortex, and two 8 × 8 arrays were implanted in the hand area of the motor cortex
based on anatomical targets, shown in Figure 1C and previously described in [61, 62]. The protocols
in this study were approved by the Institutional Animal Care and Use Committee at the University of
Michigan. Due to hardware limitations, the dataset contains a subset of 96 out of the 128 available
motor cortex channels and no somatosensory channels. These were recorded in 32-channel banks,
indicated in Figure 1C, labeled by their relative laterality along the motor cortex. For further details on
the implants, refer to Appendix A. Neural activity was recorded at 30 kHz by a Cerebus Neural Signal
Processor (Blackrock Neurotech), which then extracted two neural features per channel: spiking-band
power (SBP) and threshold crossings (TC), outlined in Figure 1B and described in Appendix A.
Spiking-band power applies a 300-1000 Hz bandpass filter to each channel, a band which contains
the majority of spiking activity, as shown in [63–65]. Threshold crossings are measured by recording
time points at which a channel’s voltage passes a −4.5 × RMS (root mean square) threshold set
per-channel per day. Both of these features are then binned (averaging for SBP, summing for TCs)
into 20ms bins. These binned features will be referred to as SBP and threshold crossing rate (TCR).
The recordings included in the dataset begin on day 349 post-implant, up to 1591 days post-implant.
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3.2 Data Selection

Over the ~3.5 years that Monkey N’s arrays were active and usable for real-time decoding, he typically
performed the 2-DOF task 5 days a week (excluding holidays and breaks). However, many were
unsuitable for this dataset due to factors like task variation, modification to recording paradigms,
high noise, or poor NHP behavior (e.g., low motivation that day). To limit external variability,
we performed a three-stage dataset curation process: First, we reviewed all experimental notes for
Monkey N and identified candidate blocks of contiguous trials (sessions) for each day, if any were
present. Second, we loaded every candidate session and filtered out unsuccessful trials, trials with the
wrong target style, closed-loop trials, and trials whose hold times were not 750 ms. To prevent bias in
decoder training due to uneven numbers of trials across days, we capped the number of trials to 375
per available target style per day. At this point, we also extracted and binned the neural, kinematic,
and trial data. Finally, we conducted a full manual review of each session, inspecting neural data for
artifacts, baseline shifts, and other issues, excluding sessions with unsuitable data. These stages were
repeated as needed until we settled on a final version of the dataset. For details on each stage of the
process, please see Appendix B.

3.3 Data Format and Contents

Each session is contained in an HDF5 file compliant with the Neurodata Without Borders (NWB,
[66]) standard. NWB aims to define a common data standard to allow for collective development of
tools for neurophysiological data. In each file, we provide the timeseries data (SBP, TCR, behavior,
and experiment time) and relevant trial information (target positions, trial start times, lengths, target
style). We also provide mappings of the channels to their locations on each array, along with
approximate impedance measurements per channel when available. A visual diagram of the channel
mappings to electrode positions is available in Figure S1. For ease of use, we have also included
code in the dataset repository that converts the NWB files into simple Python dictionaries. Data
and associated metadata were organized into a BIDS-like ([67]) structure and uploaded to the
DANDI archive ([RRID:SCR_017571], https://dandiarchive.org/dandiset/001201), using
the Python command line tool dandi-cli. Further details on data format and contents are included
in Appendix B.

4 Analyses

Here we present several analyses that highlight potential applications of the LINK dataset. Please
refer to Appendix C for detailed descriptions of the methods used in these analyses.

4.1 Characterizing Neural Activity Over Time

To our knowledge, this is the largest and time-dense set of neural recordings from a Utah array ever
released. As such, we aimed to describe how the neural data evolved over the lifespan of the array,
irrespective of behavior. We started by measuring the average SBP of each channel, for each session,
shown in Figure 2A. Average SBP across channels decreased gradually by approximately 0.033
µV per month, as estimated by a linear model. There are periods where groups of channels exhibit
irregular shifts (e.g. ~2022-07 to ~2022-11), but these did not affect overall decoding performance.
During iBMI experiments, we can roughly estimate the number of active channels by counting those
with mean TCR > 1 Hz, shown in Figure 2B. Note that this appears to decrease over time. We then
used the SBP of these active channels to calculate participation ratio (PR) per day, shown in Figure
2C. Participation ratio roughly corresponds to the number of dimensions required to explain 80%
of the total variance in the neural population, as described in [68]. Generally, 10 dimensions were
sufficient to capture the majority of the variance in active channels, and a linear model estimated
that PR decreased by ~0.07 PR per month. In Figures S4 and S5, we grouped average SBP of each
channel by electrode location (32 channel banks) and by active/inactive channels. We observed lower
overall activity on the ’lateral’ channels and lower SBP in ’inactive’ channels over the course of the
dataset. All categories saw steady decreases in average SBP over time.

Additionally, we investigated the evolution of neural activity at a population level. We first concate-
nated the SBP across all sessions, z-scored per channel, and fit a PCA transform across the entire
dataset. Then, we measured the per-day centroid of the top 3 PCs and plotted them in Figure 2D.
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We also measured the centroids when grouping the data per-quarter (of a year), shown in larger
points, and plotted the standard deviation of these larger groupings as shaded ellipsoids. Visually,
these centroids appear to move throughout the PCA space over time, and except for two quarters, the
standard deviation of the top 3 PCs does not exhibit large changes.

We then examined the behavior of the neural population during different movements. To do this,
we fit PCA transforms to per-channel z-scored neural data within each day, and grouped trials by
year and required movement direction (as shown in Figure 2E). Trajectories through the PC space
were then averaged over time-aligned trials (by max jerk pre-movement onset) within each year
and movement direction. This was performed over both center-out and random trials. The average
trajectories for 2020 and 2023 (up to the end of the dataset, containing ~6 months) are shown in
Figure 2E. The trajectories shown remain visually separable at the beginning and end of the dataset.
For further details about how we examined neural activity over time, please refer to Appendix C.3.

Figure 2: Changes in neural signals over time. Here we investigated the change in neural activity
over time using various metrics. Additionally, we briefly examine how low-dimensional representa-
tions of population-level neural activity relates to behavior of the course of the dataset. A. In this
plot, each point represents the average SBP of a single channel on a single day. In red, a linear model
shows the change in average SBP across channels over time (slope 0.033 µV per month). For ease
of visualization, the y-axis is limited, but outliers are marked with blue X’s. B. We counted the
number of ‘active’ channels each day with an average TCR of >1 Hz. This plot shows the number of
active channels on each day included in the dataset. C. We measured the participation ratio using
the SBP of all ‘active’ channels for each day and plot them over time. A linear model was fit to
the data, shown in red. D. We z-scored SBP per-channel and fit a PCA transformation across the
entire dataset. The mean of the top 3 PCs per day (small dots) are shown as the small dots, colored
by date as shown in the colorbar. The mean of the top 3 PCs per-quarter (of a year) are shown as
the larger dots, also colored by date. The shaded ellipsoids represent the standard deviation of the
top 3 PC scores grouped by quarter. For visual clarity, axis limits were restricted to what is shown,
but any outliers are represented with X’s at the axis limits, colored by date. E. On each day, SBP
was z-scored per-channel and a PCA transform was applied. Trials were then grouped by general
direction of required movement and aligned by max jerk before movement onset. The two plots show
the average trajectories in the top 3 PCs for each movement direction in the first and last year.
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4.2 Preferred Tuning Direction

One approach to investigating how the relationship between neural activity and behavior changes
over time is via the individual relationship between a channel and each degree of freedom. We
calculated the preferred tuning vector of each channel for each session by fitting independent linear
regressions between each channel and the position of both degrees of freedom, and taking the weights
of each as a vector, as described in Appendix C.2. These vectors are then decomposed into a ’tuning
direction’ and ’tuning strength’, as shown in Figure 3A. Figure 3B visualizes the preferred tunings
of two channels over the entire dataset, one point for each day colored by date. Both channels were
considered active, with average TCRs >1 Hz across the dataset. Channel 7 was strongly tuned to
MRS flexion throughout the dataset, whereas channel 32 exhibited large shifts in tuning angle. The
preferred tuning angles and strengths of all channels on all days are shown in Figures 3C and D,
respectively. Per-channel tuning angles and strengths generally appear consistent throughout the
dataset; however, many channels have very low tuning strengths throughout the lifespan of the arrays.
Such channels also typically showed low average TCRs per day, as shown in Figure S3. To quantify
the range of tuning angles per channel across time, we measured the circular median and circular
IQR (inter-quartile range) of tuning angle per channel over the whole dataset and the median and
IQR of tuning strength per channel over the whole dataset (Figure 3E, described in Appendix C.2).
From these plots, it appears that channels in the medial array (see Figure 1) are mainly tuned to MRS
flexion, with some IDX flexion, while channels in the lateral array are more tuned to extension of
both DOF. In most channels, the circular IQR of tuning angles was small, suggesting their tunings
did not change much throughout the dataset.

4.3 Neural Decoding

To validate each session and corresponding decoders, each session was split into 300 trials of training
data and 75 hold-out trials. The SBP of the training data was z-scored and used to train a ridge
regression (RR) and a long short-term memory network (LSTM, [69]). More details on decoder
training can be found in Appendix C.1. These decoders predicted both position and velocity of
the two finger groups, although in most BMI applications, only velocity is used for closed-loop
control. Prediction accuracy (R2) across DOFs for each day can be seen in Figure 4A. Within-day
decoding accuracy remains relatively stable across time, and the majority of shifts in accuracy are
reflected in both decoders, suggesting these shifts may be due to changes in modulation strength
highlighted in Figure 3B. Prediction accuracy by DOF (and position and velocity) is shown in Figure
4B. In general, the position accuracies of the two finger groups outperformed velocities, and MRS
predictions outperformed IDX predictions, suggesting there may be more information regarding the
MRS finger group in the neural data than IDX.

To visualize the problem of decoder failure over time, all decoders were evaluated on all holdouts
within 100 days of training. All decoder predictions were grouped by the number of days out from
decoder training, starting with day 0 (decoder training). Figure 4D shows average accuracy across
these groups. Decoding accuracy across DOFs was averaged over all predictions. Each performance
was labeled with the dates of decoder training, hold-out sets, and the number of days from training.
LSTM outperformed RR on all days, but both followed a similar decay curve.

Many BCI decoding algorithms use multiple days of pre-training to improve performance. To test
this, we trained LSTMs on up to 5 consecutive session and evaluated their performance on all sessions
within 180 days of day 0 (latest day). We excluded days with multiple sessions and the first 10
sessions of the dataset. Note that since sessions are not evenly distributed the time span covered
by training sessions varies. Performances (R2) were grouped by relative day of prediction (day k
from training) and by number of sessions included in training (1-5). These are plotted in Figure 5A.
Multi-day training, reduced the initial decrease in performance (within ~5 days of training), improving
performance over time, but did not seem to impact the longer term decay, and slightly decreases day
0 performance. A double-exponential fit (Fig. 5A) to the single-session and 5-session conditions
over all evaluation sessions (within 180 days of day 0) show steeper decays in the single-session
case, confirming our observations: the initial decay decreases with more training sessions, but the
long-term decay is not significantly affected.

A complementary approach to multi-session pretraining is continual fine-tuning small amounts of
(labelled) incoming data, gradually adapting the decoder to shifting neural signals while removing the
need to collect entire training sessions every day. To simulate this, we trained an LSTM on a seed day,
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Figure 3: Single-channel preferred tuning over time. We investigated the relationship between
the SBP of individual neural channels to behavior over the entire dataset by measuring the preferred
tuning vectors of each channel for every session. In general, channels tended to stay tuned to the same
direction throughout the dataset, with varying tuning strengths. A. Toy example illustrating how to
interpret preferred tuning for a channel. Preferred tuning is a vector, measured on SBP, whose angle
denotes the ‘preferred’ movement direction, and whose magnitude indicates the ‘strength’ of tuning
towards this angle. B. Here we show the preferred tuning of two channels throughout the dataset.
Each point shows the tuning of a single day, colored to indicate its temporal position in the dataset.
The black crosses are centered at the median and circular median of the tuning strength and angle,
respectively, while the size of the line and arc indicate the IQR (inter-quartile range) and circular IQR
of the tuning strength and angle, respectively. C. Preferred tuning angles for all channels on all days.
The preferred angle for each channel on each day in the dataset is colored according to the cyclical
color bar and presented as a heatmap. D. Preferred tuning strengths for all channels on all days.
The preferred tuning strength for each channel on each day is colored according to the colorbar and
presented as a heatmap. Any breaks between sessions are removed for visual clarity E. Per-channel
tuning ranges across the dataset, grouped by bank. Channels were recorded in 32-channel banks,
one from one array, and two from another. Here, we capture the range of tunings measured for each
channel by plotting the circular median/median of the preferred angle/strength for each channel, and
the circular IQR/IQR of each channel as error bars. We separated each bank into separate plots.
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Figure 4: Baseline decoding performance over the whole dataset. Each session was split into a
300-trial training dataset and 75-trial hold-out, used to train two decoders, ridge regression (RR) and
a long-short term RNN (LSTM). Prediction accuracy was measured using R2. A. R2 of each decoder
tested on the same-day hold-out set. Points show per day R2 averaged across DOF and the line shows
the 5-day rolling average. B-C. Same-day performance separated by DOF for RR (B) and LSTM
(C). D. Decoders were evaluated on hold-out sets within 100 days of training. Each line shows the
average R2 across all evaluations K days from decoder training, separated by decoder. Day 0 R2

for each decoder is the average of the points in A. ± Standard errors are shown as shaded regions.
Neither RR nor LSTM generalized well over time.

and then, for up to 200 days following training, we fine-tuned the LSTM on each consecutive session
using 30 s to 5 minutes of training data. We repeated this for 20 seed days approximately evenly
spaced across the dataset. We then plotted the average R2 across the 20 seed days for each relative day
from initial training, as shown in 5B. Fine-tuning with as little as 30 s of data helped reduce both the
short and long-term decays in accuracy. Note that since fine-tuning was performed continually (e.g. a
decoder fine-tuned on day 200 had also been fed data from all prior available sessions), performance
generally improved gradually over time. In fact, fine-tuning on 120s or 300s led to later decoders
outperforming the baseline day 0 decode. These results suggest that daily finetuning with relatively
small amounts of labeled data can help with recovering performance.

5 Limitations, Discussion, and Conclusions

To our knowledge, LINK is one of the largest and longest spanning public releases of behaviorally-
relevant intracortical data to date. The dataset contains two standard neural features (for iBMI
decoding and neural population analysis), with two different tasks and details about each of the 96
channels. This data is provided for hundreds of trials per day, on hundreds of days, spanning almost
4 years. We believe the LINK dataset fills a critical gap and will enable new and interesting research
in BMI decoding and neuroscience. However, the dataset has multiple limitations. First, the dataset
only contains one subject, which may bias data. Secondly, the dataset contains multiple extended
time gaps, some of which span months, mostly due to clusters of days failing to meet quality criteria
(see Supplementary Materials). Additionally, due to storage limitations, raw voltage signals were not
recorded for the majority of the sessions included in the dataset, limiting its use for developing new
neural features or decoding methods which use raw data. Finally, due to the trial-based, constrained
nature of the task, the actual task itself is not as behaviorally rich nor broadly labeled as might be
desired for the development of foundational models for neuroscience [70, 71].
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Figure 5: Modified training paradigms for recalibration. Here we test the ability of two training
paradigms to improve the performance of LSTM decoders over time. A. On 283 days, 5 LSTM
decoders were trained, using from 1-5 past sessions of data (current day inclusive). The plot shows
the average prediction R2 of the decoders tested on future sessions, across all models, grouped by the
number of sessions included in the training data. B. We also tested performance when the LSTM
model was fine-tuned on small amounts of future data every day, up to 200 days.

Figure 2 demonstrated that across all channels, neural activity generally decreased over time. This has
been previously observed in [21], and is expected, as the array is gradually encapsulated by scar tissue
over time [27]. However, this did not correspond to decreases in decoding performance throughout
the dataset, suggesting that sufficient behavioral information remained for high-accuracy decoding.
This is further supported by observations where, when projected into a low-dimensional neural space,
neural trajectories for different directions remained separable throughout. More advanced and neuro-
focused methods for latent feature extraction/dimensionality reduction (e.g. LFADS [48, 39], jPCA
[47], dPCA [46], Isomap [72, 73]) may provide further insight into the evolution of population-level
activity over time. In future datasets, it would be interesting to see if the gradual decrease in neural
activity has an earlier observable impact on decoding accuracy for more complex tasks.

In Figure 3, we observed that many channels maintained a relatively stable preferred tuning direction
over time (while tuning strength varied). Given that SBP and TCR capture the spiking activity of
individual neurons close to the electrode [63], this stability in tuning direction could suggest that
many electrodes are recording from the same neurons. We also observed that channels located on
the same array tended to exhibit similar tuning angles, as could be expected from a somatotopic
organization [74]. A potentially novel observation from the preferred tuning directions is the apparent
separation of MRS flexion and extension tunings by array, but this data comes from only a single
subject and task, and such a claim would require extensive investigation across several subjects.

In general, single-day decoding performance was fairly consistent throughout the lifespan of the
array. While the LSTM outperformed RR on every day, we noted that there were baseline shifts in
decoding performance that impacted both decoders, suggesting there are underlying shifts in the
behaviorally-relevant information available in the neural data. When testing decoders on past and
future data, we noted that both RR and LSTM exhibited sharp decreases in performance over the
short-term, agreeing with previous observations [32, 26]. However, this decreases stabilizes on longer
timescales, suggesting that there may be a stable subspace of neural activity that is at least partially
behaviorally-relevant and nonlinearly related to behavior (hence the increased performance of the

10



LSTM decoder). This may also be supported by the shape of the decay being agnostic to the decoder
used and the relatively consistent tuning directions of single channels.
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Justification: In Section 3, we provide a link to the publicly available github repository
containing all the code needed to reproduce the results shown in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As this is a dataset release paper, the data is publicly available at the link posted
in Section 3. Additionally, the GitHub repository with all the code needed to reproduce all
results in Section 4 is also included in Section 3.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test details are mostly specified in the Supplemental materials,
with any further details included in the code (which is also publicly available and referenced
in the paper).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, where appropriate, error bars are reported, such as in Figure 2D and
Figure 4D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources needed to reproduce the experiments are described in
Appendix C of the Supplemental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: With respect to the NeurIPS Code of Ethics, this paper conforms in every
respect. With regards to Representative evaluation practice, we make no claims that this
dataset represents all intracortical neural datasets, with regard to Data and model documen-
tation and licensing, all data are structured according to the NWB standard, valid Croissant
metadata is provided, and both data and code are licensed (licenses are available at their
respective URLs).
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: As discussed in Sections 1 and 5, the release of this dataset is directly motivated
by a desire to develop better brain-machine interfaces and improve the lives of those living
with paralysis. We do not see a direct path to a negative societal impact with this dataset
release.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As this paper contains a non-human primate neural dataset, we do not believe
it poses high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The dataset and code were produced by the authors of the publication, and
where relevant, citations to previous publications are included.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The core of the paper, the LINK dataset is described in Section 3 as well as in
further detail in Appendix A and B. All documentation is provided here or with the dataset
and code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not contain crowdsourcing experiments or research with
human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not include any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved in the core method development of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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