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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved impressive advances,
yet object hallucination remains a persistent challenge. Existing methods, based
on the flawed assumption that omission and fabrication hallucinations share a
common cause, often reduce omissions only to trigger more fabrications. In this
work, we overturn this view by demonstrating that omission hallucinations arise
from insufficient confidence when mapping perceived visual features to linguistic
expressions, whereas fabrication hallucinations result from spurious associations
within the cross-modal representation space due to statistical biases in the training
corpus. Building on findings from visual attention intervention experiments, we
propose the Visual-Semantic Attention Potential Field, a conceptual framework
that reveals how the model constructs visual evidence to infer the presence or
absence of objects. Leveraging this insight, we introduce VPFC, a plug-and-play
hallucination mitigation method that effectively reduces omission hallucinations
without introducing additional fabrication hallucinations. Our findings reveal a
critical oversight in current object hallucination research and chart new directions
for developing more robust and balanced hallucination mitigation strategies.

1 INTRODUCTION

Multimodal Large Language Models (Liu et al., 2023a) (Touvron et al., 2023) (Liu et al., 2024a)
have achieved significant advancements in visual-language tasks. Nevertheless, the problem of object
hallucination remains unresolved. Object hallucination can be categorized into two types: omission
hallucination, where the model fails to identify or describe objects present in the visual input, and
fabrication hallucination, where the model erroneously generates information about objects that do
not exist in the input. Existing studies generally suggest that the causes of both types of hallucination
are similar, primarily attributed to over-reliance on statistical bias and unimodal priors.

Under this unified cause hypothesis, current mitigation methods (Leng et al., 2024) typically employ
a single strategy to address both omission and fabrication hallucinations simultaneously. However,
empirical results indicate that these methods often achieve only limited success in reducing omission
hallucinations, and do so at the cost of exacerbating fabrication hallucinations, thereby revealing the
limitations of current approaches in understanding the underlying mechanisms. This paper proposes
that omission and fabrication hallucinations differ fundamentally in their underlying mechanisms.

Section 3.1 reveals that the cause of omission hallucinations lies not only in the limited ability of
the visual encoder to recognize fine-grained objects but also in the fact that, even when the MLLM
successfully captures the visual features of a specific object during the visual perception phase, the
model’s confidence in these features remains low during the process of mapping them to linguistic
symbols. Therefore, during the generation phase, the model is unable to confidently express the
identified objects, leading to omission hallucinations.

In contrast, Fabrication hallucinations primarily stem from erroneous associations within the cross-
modal joint representation space, as elaborated in Section 3.2. During training, due to the frequent
co-occurrence of certain object combinations in large-scale corpora, MLLMs establish overly strong
and sometimes unreasonable connections between visual features and semantic concepts. When
the visual input contains only a subset of the associated objects, the model, influenced by joint
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distribution biases, mistakenly activates descriptions of additional, non-existent objects, leading to
fabrication hallucinations.

In Section 3.3, we examine the mapping from visual features to semantic concepts through attention
intervention experiments, investigating how the model constructs visual evidence to infer the presence
or absence of objects. Building on this analysis, we propose the concept of the Visual-Semantic
Attention Potential Field: each visual token is embedded within a potential field, where High-
Credibility Visual Regions lie at the bottom of potential valleys, facilitating object confirmation,
while Low-Credibility Visual Regions occupy the peaks, making confirmation more difficult and
biasing the model toward negation.

Building on the above insights, we introduce a plug-and-play hallucination mitigation method in
Section 4, called Visual Potential Field Calibration (VPFC). VPFC operates by recalibrating the
confidence assigned to visual evidence during the mapping from visual features to semantic concepts,
specifically with respect to object existence. This strategy effectively reduces omission hallucinations
while avoiding the introduction of fabrication hallucinations. Extensive experiments on multiple
benchmarks, including POPE, MM-Hallucination, CHAIR, and LLaVA-Bench, demonstrate that
VPFC achieves State-of-the-Art performance among training-free mitigation approaches. In summary,
our contributions are as follows:

• We challenge the common assumption that omission and fabrication hallucinations share
the same underlying cause. While existing methods can reduce omission hallucinations, we
observe that they often simultaneously exacerbate fabrication hallucinations.

• We conduct an investigation into the distinct mechanisms behind these two types of halluci-
nations. Our analysis reveals that omission hallucinations stem from insufficient confidence
in the mapping of visual features, whereas fabrication hallucinations result from erroneous
associations within the cross-modal representation space.

• We introduce the concept of the Visual-Semantic Attention Potential Field, which illustrates
how the model constructs visual evidence to infer the presence or absence of objects.
Building on this foundation, we propose a plug-and-play hallucination mitigation method,
VPFC, which effectively reduces omissions while avoiding the introduction of additional
fabrications.

2 MOTIVATION: BEYOND THE ASSUMPTION OF UNIFIED HALLUCINATION
CAUSES

Object hallucinations fall into two types: omission hallucination, where the model misses existing
objects in the visual input, and fabrication hallucination, where it describes non-existent objects.
Current methods for mitigating hallucinations in MLLMs are generally founded on a unified assump-
tion: that both omission hallucinations and fabrication hallucinations stem from the same underlying
causes, namely the model’s overreliance on statistical biases and unimodal priors during generation.
However, this understanding presents clear limitations. In reality, omissions and fabrications may
fundamentally differ in their generative mechanisms.
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Figure 1: Effects of Visual Contrastive Decoding on the Mitigation and Aggravation of Hallucinations.

Strategies rooted in this unified framework typically seek to address both hallucination types con-
currently using the same intervention. For example, Visual Contrastive Decoding (VCD) (Leng
et al., 2024) contrasts outputs produced under original versus distorted visual inputs as a corrective
mechanism to mitigate the model’s excessive dependence on linguistic priors from integrated LLMs
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and statistical biases present in pretraining corpora. Nevertheless, in practice, such methods reveal
significant shortcomings: while they can partially alleviate omission hallucinations, they often trigger
a substantial increase in fabrication hallucinations, thereby further compromising the reliability of
model outputs. In the following, we will demonstrate this phenomenon through experiments.

Experimental Setup. LLaVA-v1.5-7B served as the backbone MLLM, with greedy search utilized
for decoding. We conducted a systematic evaluation of VCD, a well-established method for miti-
gating hallucinations, analyzing its impact on both the mitigation and exacerbation of omission and
fabrication hallucinations. Evaluations were performed using the COCO dataset within the POPE
Benchmark (Li et al., 2023c), which focuses on a discriminative task assessing whether the object
referenced in a query is present in the visual input.

Experimental Results and Analysis. Figure 1 presents the effects of VCD in mitigating and
exacerbating two types of hallucinations. While VCD reduced omission hallucinations, it concurrently
triggered a notable rise in fabrication ones, particularly on the Adversarial subset, where overall
output quality deteriorated. These findings reveal limitations of the unified causality hypothesis.

3 ANALYSIS: DIVERGENT ROOTS OF OMISSION AND FABRICATION
HALLUCINATIONS

In this section, we systematically investigate the causes of omission and fabrication hallucinations
through the use of attention maps and attention intervention. In Section 3.1, we demonstrate that
omission hallucinations stem from insufficient confidence in mapping perceived visual features
to corresponding linguistic expressions. In Section 3.2, we reveal that fabrication hallucinations
originate from spurious associations within the cross-modal representation space, largely driven by
statistical biases in the training corpus.

3.1 CAUSE OF OMISSION HALLUCINATIONS

It is widely recognized that a primary cause of omission hallucinations in MLLMs is the limited
capacity of their visual encoders, which often struggle with the accurate recognition of fine-grained
objects. However, we demonstrate that, in many instances, MLLMs have already encoded effective
visual features of the target objects within their latent visual knowledge space, yet fail to articulate
this information in the generated textual output.

(Kang et al., 2025) observe that certain attention heads in frozen MLLMs possess strong visual
grounding abilities. These heads, which reliably identify object locations relevant to the accompanying
text, are referred to as localization heads. Building on this insight, we leverage these localization
heads to investigate what visual features are actually captured in the latent visual space of MLLMs
when omission hallucinations occur.

Question: Is there a spoon in the image?    Prediction: No     Label: Yes

Layer: 14 Head: 24 Layer: 14 Head: 13

Omission Hallucination

Figure 2: The cause behind omission hallucina-
tions.

Figure 2 illustrates a representative case of an
omission hallucination. In the visual input, a per-
son is holding a spoon. However, when prompted
with the question “Is there a spoon in the image?”,
the MLLM produces an omission hallucination by
incorrectly responding “no.” The prevailing expla-
nation attributes this failure to the small size of the
spoon, which supposedly prevents the visual en-
coder from capturing its features. Contrary to this
view, attention maps from the model’s localization
heads reveal that the model did, in fact, attend to
the correct region and successfully captured the
visual features of the spoon.

These findings suggest that omission hallucinations often do not result from the model’s inability
to capture meaningful visual features via its visual encoder. Instead, they arise during the mapping
from visual representations to semantic concepts, where the model assigns low confidence to the
visual evidence. Consequently, the model tends to infer that the object is absent. We provide a more
detailed analysis of this mechanism in Section 3.3.
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3.2 CAUSE OF FABRICATION HALLUCINATIONS

In contrast to omission hallucinations, fabrication hallucinations occur when the model incorrectly
aligns certain visual features with semantic concepts while assigning a high degree of confidence
to this misalignment. As illustrated in Figure 3, when presented with an image containing a toilet
and asked “Is there a toilet in the image?”, the model correctly identifies the visual features of the
toilet and maps them to the corresponding semantic concept, yielding an accurate response. However,
when asked “Is there a sink in the image?”, the model mistakenly interprets part of the toilet’s visual
features as evidence of a sink, ultimately producing the incorrect answer that a sink is present.

Question: Is there a toilet in the image?   Prediction: Yes     Label: Yes

Question: Is there a sink in the image?    Prediction: Yes     Label: No

Layer: 14 Head: 24 Layer: 14 Head: 24

Fabrication Hallucination

Figure 3: The cause behind fabrication halluci-
nations.

This phenomenon can be attributed to the frequent
co-occurrence of sink and toilet within individ-
ual training instances in the model’s training cor-
pus. As a result, the model may learn to incor-
rectly align certain visual features of a toilet with
the semantic concept of a sink. Consequently,
even when the visual input contains only a toi-
let, the model may infer the presence of a sink
based on these overlapping visual cues. This also
explains why fabrication hallucinations are partic-
ularly prevalent in the Adversarial subset of the
POPE Benchmark. In this subset, the queried ob-
jects tend to be highly correlated and frequently
co-occur in everyday settings. Their visual fea-
tures and semantic representations are often entangled and misaligned, resulting in more severe cases
of fabricated hallucinations.

At a broader level, fabrication hallucinations can be viewed as the result of statistical bias. Yet,
current mitigation strategies, designed to correct over-reliance on such biases and unimodal priors,
have not effectively reduced these hallucinations. On the contrary, in attempting to mitigate omission
hallucinations, they frequently introduce fabrication ones. We explore this mismatch between
theoretical motivation and practical results in Section 3.4.

3.3 VISUAL-SEMANTIC ATTENTION POTENTIAL FIELD

In Section 3.1, we demonstrated that omission hallucinations arise when the model correctly captures
visual features but assigns low confidence to the corresponding visual evidence. Conversely, in
Section 3.2, we showed that fabrication hallucinations occur when the model captures incorrect
visual features yet assigns high confidence to them. These findings indicate that the misallocation
of confidence plays a central role in the emergence of object hallucinations. This subsection seeks
to investigate how the model assigns confidence to visual evidence during the mapping from visual
representations to semantic concepts.

We begin by extracting the visual attention maps associated with the model’s localization heads.
These maps are segmented into two distinct regions: (1) High-Credibility Visual Regions (HCVRs),
corresponding to areas with high attention scores, and (2) Low-Credibility Visual Regions (LCVRs),
corresponding to areas with low attention scores. We then apply targeted interventions to each region
independently to examine the direct impact of attention manipulation on the recognition performance.

As illustrated in Figure 4, enhancing attention to the HCVRs leads the model to increasingly judge
that the queried object is present. In contrast, amplifying attention to the LCVRs causes the model to
more frequently conclude that the object is absent. Notably, these effects are consistently observed,
regardless of whether the model’s initial prediction was correct or whether the object actually appears
in the visual input.

These intervention results lead to the following conclusions: (1) HCVRs correspond to areas where
visual features have a clear and stable mapping to the semantic concept of the target object. The
model consistently interprets these features as positive visual evidence for the presence of the queried
object. (2) LCVRs, by contrast, contain visual features that lack a reliable or consistent semantic
association with the target object. The model exhibits uncertainty or ambiguity in interpreting these
features, effectively treating them as negative visual evidence, indicative of the object’s absence.
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HCVRs Top 25%

LCVRs Bottom 25%Visual Attention Map

Question: Is there a spoon in the image?

Visual Attention Intervention

(a) Outcomes of visual attention interventions.

Attention Map HCVRs LCVRs

Visual Evidence for 

Absence of Object

Visual Evidence for  

Presence of Object

Visual-Semantic Attention Potential Field

(b) Illustration of the visual potential field.

Figure 4: (a) Visual attention interventions and (b) visual potential field.

When attention to HCVRs is artificially increased, the model receives more salient and reliable
visual evidence, thereby boosting its confidence in the presence of the queried object. This attention
enhancement effectively activates a high-confidence pathway within the model’s visual-to-semantic
mapping, reinforcing the alignment between visual features and semantic concepts. In contrast,
increasing attention to LCVRs forces the model to extract information from areas that are inherently
uncertain or semantically ambiguous. Because the visual-to-semantic mappings in these regions are
unstable or unclear, the model is more inclined to draw negative or evasive conclusions, i.e., that the
object is absent, as a risk-averse strategy to manage uncertainty.

As shown in Figure 4, we introduce the concept of a Visual-Semantic Attention Potential Field
(VSAPF), in which each visual token is embedded within a potential landscape. In this field, HCVRs
reside at the bottom of potential wells, zones where the model can readily affirm the presence of
an object, while LCVRs are positioned atop potential peaks, where the model encounters greater
difficulty in making a positive identification and tends toward negation. The model’s reasoning
process can be analogized to a ball rolling across the VSAPF: when attention steers the model toward
a potential well, it quickly arrives at an affirmative decision; conversely, when attention shifts toward
a potential peak, the model is more likely to issue a negative judgment, as a risk-averse response to
uncertainty.

3.4 OMISSION–FABRICATION IMBALANCE: THE DILEMMA OF CURRENT METHODS

In Section 2, we showed that current hallucination mitigation methods are effective primarily in
addressing omission hallucinations. However, while reducing omissions, these methods often
exacerbate fabrication hallucinations. Although they are motivated by the goal of correcting the
model’s over-reliance on statistical biases and unimodal priors, they fail to mitigate fabrication
hallucinations that stem from such biases, and in many cases, they inadvertently increase their
occurrence. What, then, explains this disconnect between theoretical motivation and empirical
outcome?

In Section 3.3, we demonstrated that artificially increasing attention to HCVRs explicitly activates
the model’s inherent high-confidence pathways within the visual-semantic mapping. This process
amplifies the model’s confidence in the visual evidence supporting the presence of an object, regardless
of whether the object is actually present. Consequently, if current methods are not genuinely correcting
the model’s over-reliance on statistical biases and unimodal priors, but are instead merely amplifying
attention to HCVRs, thereby reinforcing confidence in object presence, then the observed pattern,
mitigating omission hallucinations while simultaneously introducing a large number of fabricated
hallucinations, can be fully explained.

To illustrate our point, we take the recently proposed Self-Introspective Decoding (SID) (Huo et al.,
2025) as an example to briefly demonstrate that current hallucination mitigation methods are, in
essence, equivalent to increasing attention to HCVRs. We consider a MLLM parametrized by θ.
The model takes as input a textual query x and a visual input v, where v provides contextual visual
information to assist the model in generating a relevant response y to the textual query. The response
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y is sampled auto-regressively from the probability distribution conditioned on the query x and the
visual context v. Mathematically, this can be formulated as:

yt ∼ pθ (yt | v, x, y<t)

∝ exp logitθ (yt | v, x, y<t)
(1)

where yt denotes the token at time step t, and y<t represents the sequence of generated tokens up to
the time step (t− 1).

The core motivation behind SID is to harness the model’s introspective capabilities to selectively
retain visual information by adaptively evaluating the importance of visual tokens, with the aim of
deliberately amplifying and suppressing specific vision-text association hallucinations. To this end,
SID modifies the model architecture by preserving only a small subset of image tokens with low
attention scores after the early decoder layers. This adaptive mechanism is designed to encourage the
emergence of vision-text hallucinations during auto-regressive decoding. These hallucinations are
then intended to be isolated from the original probability distribution, thereby defining a contrastive
distribution psid as:

psid(yi) = softmax
[
logitθ

(
yi | v, x

)
+ α·(

logitθ
(
yi | v, x

)
− logitθ

(
yi | vlow, x

))]
,

(2)

where α is a tunable hyperparameter controlling the strength of the contrastive adjustment and vlow
denotes the low-importance visual tokens.

Correspondingly, we denote the distribution of the predicted outputs after artificially enhancing
attention to HCVRs as penh, defined as:

penh(yi) = softmax
[
logitθ

(
yi | v, x

)
+ β·(

logitθ
(
yi | vhigh, x

)
− logitθ

(
yi | v, x

))]
,

(3)

where β is the hyperparameter that controls the degree of attention enhancement toward HCVRs.

A comparison between Equation 2 and Equation 3 reveals that the two operations are, in essence,
dual to each other with respect to their impact on the final decoding outcomes. When α and β are
appropriately set, the two decoding formulations become effectively equivalent or transformable into
one another. Thus, at the decoding level, the methods are mathematically equivalent, the distinction
lies only in their computational pathways, not in their underlying semantics.

4 PROPOSED METHOD: VISUAL POTENTIAL FIELD CALIBRATION

In the analysis presented in Section 3.3, we identify the following requirements:

• When the object is present, it is essential to enhance HCVRs in order to explicitly activate the
high-confidence pathways within the model’s visual-semantic connections. This strengthens
the model’s confidence in the visual evidence supporting the object’s presence and helps
mitigate omission hallucinations.

• Conversely, when the object is absent, it is necessary to enhance LCVRs, compelling the
model to extract cues from uncertain or semantically ambiguous areas. This promotes
the generation of negative or avoidant conclusions (i.e., confirming the object’s absence),
thereby reducing the risk of fabrication hallucinations.

Focused Region for Visual Potential Calibration. However, due to the lack of ground truth regarding
the presence of the object, we are unable to apply targeted interventions directly. Nonetheless, we
observe a consistent pattern: when the object is absent, HCVRs tend to be spatially dispersed,
whereas when the object is present, HCVRs are typically more spatially concentrated. Leveraging
this observation, we propose the strategy illustrated in Figure 5: (1) First, we compute the centroid
of the HCVRs. Specifically, we define HCVRs as the top 25% of visual tokens ranked by attention
weights, as this subset generally captures the majority of the target object. (2) Next, we enhance the
attention within a concentrated square region centered at the computed centroid. The size of this
enhanced region is set to match that of HCVRs.

6
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Object is Present

Object is Absent

Object is Present

Object is Absent Compute Centroid

Compute Centroid

Region EnhancementRegion Enhancement

Region EnhancementRegion Enhancement

Region Enhancement

Region Enhancement

 Visual Potential Calibration

Figure 5: Illustration of visual potential calibra-
tion.

The advantages of this approach are as follows:
(1) When the object truly exists, HCVRs tend to
be spatially concentrated, and the region surround-
ing the centroid typically aligns well with HCVRs.
Enhancing attention in this region increases the
model’s confidence in the visual evidence of the
object’s presence. As a result, when visual fea-
tures are mapped to semantic concepts, the model
can more confidently infer the existence of the
object. (2) When the object is actually absent,
HCVRs are generally dispersed, and the region
around the centroid often overlaps partially with
LCVRs. Enhancing attention in this area thus si-
multaneously increases the model’s confidence in
determining that the object is not present. This
helps prevent the introduction of new fabrication
hallucinations, and may even correct existing ones.

Direct Modification of Hidden States. While enhancing attention in the centroid region can improve
the model’s confidence in visual evidence, relying solely on attention adjustment often requires
substantial amplification, which may destabilize generation. This is because the model’s implicit
knowledge is primarily encoded in the hidden states across layers (Burns et al., 2022). To address
this, we propose a strategy that computes a confidence-steering direction based on a slight attention
boost and directly modifies the hidden states accordingly.

We first apply a mild enhancement (by a factor of 0.05) to the centroid region and compute the
difference in hidden states before and after this change to obtain the steering direction ∆l,h(x):

∆l,h(x) = h+
l,h(x)− h−

l,h(x), (4)

where h+
l,h(x) and h−

l,h(x) represent the hidden states of the h-th attention head in the l-th layer under
the enhanced and original attention conditions, respectively. Next, we apply the following update to
the hidden states using a steering coefficient α:

h̃l,h(x) = hl,h(x) + α∆l,h. (5)

This approach enables targeted and effective modification of the model’s predictions, while preserving
generation stability.

Selection of Attention Heads. (Li et al., 2023b) revealed that interventions on hidden states should
not be applied across all attention heads, but rather selectively on a subset of the most important ones.
Here, we adopt a saliency analysis tool (Michel et al., 2019) to evaluate the importance of all heads.
The importance score is computed as:

Ih,l = ∥Al,h ⊙ ∂L(x)
∂Al,h

∥1. (6)

where L(x) denotes the loss function, and Al,h is the attention map of the h-th head in the l-th layer.
Based on the computed importance scores Ih,l, we select only the top γ% attention heads to perform
the intervention.

5 EXPERIMENT

Section 5.1 outlines the experimental setup, including the selection of baselines and evaluation tasks.
Section 5.2 presents the evaluation results across multiple benchmarks, along with detailed analysis.
Section 5.3 reports the results of the ablation studies conducted to assess the proposed method.

5.1 EXPERIMENTAL SETUP

Evaluation Datasets. To ensure the generalizability of the proposed VPFC method, we evaluated it
on a variety of benchmarks encompassing both discriminative tasks (e.g., POPE (Li et al., 2023c)

7
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Table 1: Performance of VPFC on POPE. The best result for each setting is highlighted in bold.

Model Method Random Popular Adversarial

Accuracy F1-score Accuracy F1-score Accuracy F1-score

LLaVA-1.5

Regular 87.10 ↑ 0.00 85.53 ↑ 0.00 84.83 ↑ 0.00 83.33 ↑ 0.00 83.60 ↑ 0.00 82.29 ↑ 0.00

VCD 88.44 ↑ 1.34 86.83 ↑ 1.30 85.65 ↑ 0.82 85.37 ↑ 2.04 79.31 ↓ 4.29 79.28 ↓ 3.01

SID 87.53 ↑ 0.43 86.45 ↑ 0.92 85.21 ↑ 0.38 85.50 ↑ 2.17 80.88 ↓ 2.72 80.69 ↓ 1.60

MemVR 88.50 ↑ 1.40 87.34 ↑ 1.81 86.10 ↑ 1.27 85.01 ↑ 1.68 79.20 ↓ 4.40 79.28 ↓ 3.01

VPFC 89.80 ↑ 2.70 88.90 ↑ 3.37 87.60 ↑ 2.77 87.02 ↑ 3.69 85.80 ↑ 2.20 84.60 ↑ 2.31

Qwen-VL

Regular 87.43 ↑ 0.00 86.48 ↑ 0.00 84.70 ↑ 0.00 83.96 ↑ 0.00 82.50 ↑ 0.00 81.70 ↑ 0.00

VCD 88.80 ↑ 1.37 88.11 ↑ 1.63 85.13 ↑ 0.43 84.69 ↑ 0.73 79.83 ↓ 2.67 79.23 ↓ 2.47

SID 87.83 ↑ 0.40 87.17 ↑ 0.69 84.57 ↓ 0.13 84.67 ↑ 0.71 81.50 ↓ 1.00 80.90 ↓ 0.80

MemVR 88.47 ↑ 1.04 87.62 ↑ 1.14 85.27 ↑ 0.57 84.73 ↑ 0.77 80.90 ↓ 1.60 79.80 ↓ 1.90

VPFC 89.73 ↑ 2.30 89.07 ↑ 2.59 87.90 ↑ 3.20 87.00 ↑ 3.04 84.50 ↑ 2.00 83.40 ↑ 1.70

Table 2: Performance of VPFC on MM-Hallucination. The best result for each setting is highlighted
in bold.

Model Method MM-Hall Object-Level Attribute-Level

Total Existence Count Position Color

LLaVA-1.5

Regular 620.00 ↑ 0.00 185.00 ↑ 0.00 146.67 ↑ 0.00 128.33 ↑ 0.00 160.00 ↑ 0.00
VCD 598.36 ↓ 21.64 190.00 ↑ 5.00 128.33 ↓ 18.34 133.33 ↑ 5.00 146.70 ↓ 13.30
SID 598.33 ↓ 21.67 185.00 ↑ 0.00 130.00 ↓ 16.67 128.33 ↑ 0.00 155.00 ↓ 5.00

MemVR 610.00 ↓ 10.00 190.00 ↑ 5.00 130.00 ↓ 16.67 130.00 ↑ 1.67 160.00 ↑ 0.00
VPFC 635.00 ↑ 15.00 190.00 ↑ 5.00 146.67 ↑ 0.00 133.33 ↑ 5.00 165.00 ↑ 5.00

Qwen-VL

Regular 618.33 ↑ 0.00 175.00 ↑ 0.00 140.00 ↑ 0.00 128.33 ↑ 0.00 175.00 ↑ 0.00
VCD 603.33 ↓ 15.00 170.00 ↓ 5.00 130.00 ↓ 10.00 123.33 ↓ 5.00 180.00 ↑ 5.00
SID 616.66 ↓ 1.67 175.00 ↑ 0.00 138.33 ↓ 1.67 128.33 ↑ 0.00 175.00 ↑ 0.00

MemVR 608.33 ↓ 10.00 170.00 ↓ 5.00 135.00 ↓ 5.00 133.33 ↑ 5.00 170.00 ↓ 5.00
VPFC 645.00 ↑ 26.67 185.00 ↑ 10.00 145.00 ↑ 5.00 135.00 ↑ 6.67 180.00 ↑ 5.00

and MME (Fu et al., 2023)) and generative tasks (e.g., CHAIR (Rohrbach et al., 2018) and LLaVA-
Bench-in-the-wild (Liu et al., 2023b)). Further details can be found in Appendix B.

Baseline Selection. We adopt VCD (Leng et al., 2024), a well-established hallucination mitigation
method, alongside two recently introduced State-of-the-Art approaches, SID huo2025selfintrospective
and Memory-Space Visual Retracing (MemVR) (Zou et al., 2025), as experimental baselines to
facilitate a fair comparison with our proposed method.

Implementation Details. We use LLaVA-v1.5-7B (Liu et al., 2024b) and Qwen-VL-7B (Bai et al.,
2023) as the MLLM backbones. The enhancement factor, denoted as α, is set to 4, and the proportion
of selected attention heads, denoted as γ, is set to 25%. Greedy search is used as the decoding strategy
in all experiments.

5.2 RESULTS AND ANALYSIS

Results on Discriminative Tasks. Table 1 presents the experimental results of VPFC on COCO
dataset within POPE benchmark. Across the Random and Popular subsets, all methods, including
VPFC, exhibit performance improvements. Notably, VPFC demonstrates a more substantial increase
in accuracy. We attribute this to VPFC’s balanced distribution of confidence between visual evi-
dence indicating the presence and absence of objects. This design helps reduce omissions while
simultaneously preventing the introduction of fabrications.

This interpretation is further validated by results on Adversarial subset, where fabrications signif-
icantly outnumber omissions (Yin et al., 2025). Existing methods, while somewhat effective in

8
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Table 3: Performance on CHAIR and LLaVA-Bench. Best per column in bold.

Method CHAIR LLaVA-Bench

CHAIR_S ↓ CHAIR_I ↓ Average ↓ Conversation Description Reasoning

Regular 50.2 ↑ 0.00 15.6 ↑ 0.00 32.9 ↑ 0.00 59.6 ↑ 0.00 53.4 ↑ 0.00 75.6 ↑ 0.00
VCD 54.8 ↑ 4.60 16.5 ↑ 0.90 35.6 ↑ 2.70 57.4 ↓ 2.20 50.9 ↓ 2.50 76.9 ↑ 1.30
SID 49.2 ↓ 1.00 15.1 ↓ 0.50 32.1 ↓ 0.80 59.2 ↓ 0.40 51.3 ↓ 2.10 76.1 ↑ 0.50
MemVR 51.2 ↑ 1.00 15.9 ↑ 0.30 33.5 ↑ 0.60 58.1 ↓ 1.50 51.2 ↓ 2.20 77.4 ↑ 1.80
VPFC 46.8 ↓ 3.40 13.8 ↓ 1.80 30.3 ↓ 2.60 62.1 ↑ 2.50 53.8 ↑ 0.40 77.9 ↑ 2.30

reducing omissions, tend to introduce numerous additional fabrications, thereby degrading overall
performance. In contrast, VPFC effectively alleviates omission hallucinations without inducing new
fabrications, resulting in improved predictive accuracy even under such conditions.

Table 2 shows performance of VPFC on MME. VPFC maintains or improves accuracy across almost
all subsets, whereas existing methods often suffer accuracy drops on certain subsets, highlighting
a key issue: their mitigation of omission hallucinations frequently comes at the cost of introducing
excessive fabrication errors.

Results on Generative Tasks. Table 3 presents the experimental results of VPFC on LLaVA-Bench-
in-the-wild, while Table reports results on CHAIR benchmark. Across both generative benchmarks,
VPFC consistently outperforms existing methods in prediction accuracy, clearly demonstrating its
effectiveness in reducing object hallucinations. Similar to its performance on discriminative tasks,
VPFC achieves superior accuracy on generative tasks by effectively mitigating omission hallucinations
while avoiding the introduction of additional fabrication hallucinations.

5.3 ABLATION STUDIES

We performed an ablation study to investigate the effectiveness of the centroid-focused strategy,
using LLaVA-v1.5-7B as the MLLM backbone on the COCO dataset within the POPE benchmark.
The study compares different methods for computing the steering direction. Specifically, instead
of deriving the confidence steering direction from the concentrated region around the centroid of
HCVRs, we compute it directly based on the HCVRs themselves, defined as the top 25% of visual
tokens with the highest attention weights.

74

76

78

80

82

84

86

88

90

92

Random Popular Adversarial

Regular VPFC VPFC w/o Centroid VCD

Figure 6: Ablation study on the centroid-focused
strategy.

As illustrated in Figure 6, removing the centroid-
focused computation leads to a significant drop
in VPFC performance. On the Adversarial subset,
the prediction accuracy of VPFC even falls below
that of the baseline, reaching the same level as
VCD. These results highlight the critical role of
the centroid-focused strategy in calibrating the
Visual Potential Field. It effectively redistributes
confidence across visual evidence regarding object
existence, thereby mitigating omissions without
introducing additional fabrications. Additional
ablation results can be found in Appendix C.

6 CONCLUSION

This work challenges the prevailing assumption that omission and fabrication hallucinations share a
unified cause, revealing their fundamentally different origins. By introducing VPFC, we demonstrate
a training-free approach that effectively mitigates omissions without exacerbating fabrications. Our
findings lay the foundation for more balanced hallucination mitigation strategies in MLLMs.
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ETHICS STATEMENT

This work aims to mitigate hallucination in multimodal large language models (MLLMs) by improving
the reliability of their outputs. Our study does not involve human subjects, personal data, or sensitive
demographic information. All experiments are conducted on publicly available benchmarks (e.g.,
POPE, CHAIR, MME), which are distributed under academic or research-friendly licenses.

By reducing hallucinated or misleading generations, our method has the potential to improve the
safety and trustworthiness of MLLMs in downstream applications. Nevertheless, we recognize that
efficiency gains and reliability improvements can also accelerate the deployment of large models,
including in contexts where risks may arise (e.g., misinformation generation). We stress that such
risks stem from downstream misuse rather than from our method itself, and we encourage responsible
application of this research in line with the ICLR Code of Ethics.

We affirm that this work complies with ethical research standards, respects dataset usage guidelines,
and raises no conflicts of interest or legal concerns.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Detailed descriptions of
our algorithm, experimental protocols, and evaluation metrics are provided in the main paper and
appendix. To further support replication, we release runnable code and scripts via supplementary
materials. Upon acceptance, we will open-source the complete implementation, including training and
evaluation pipelines. All datasets used in our experiments are publicly available, and data processing
steps are carefully documented to ensure transparency.
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LLaVA and Qwen-VL adopt simpler linear projection methods that streamline alignment, leading to
superior performance in vision-language tasks. Despite these advancements, hallucination remains a
persistent challenge that warrants further investigation.

Hallucination Mitigation Methods. Visual Contrastive Decoding (VCD) addresses object hallucina-
tion by comparing output distributions generated from standard visual inputs and distorted visual
inputs. This approach reduces the model’s dependence on linguistic priors within integrated LLMs
and minimizes the impact of statistical biases in MLLM pretraining corpus. Instruction Contrastive
Decoding (ICD) (Wang et al., 2024b), in contrast, focuses on the role of instruction perturbations in
amplifying hallucinations. By examining the differences in output distributions between standard and
perturbed instructions, ICD detects hallucination-prone content and mitigates its impact effectively.

Building upon these two hallucination mitigation methods, numerous approaches, including Adaptive
Focal-Contrast Decoding (HALC) (Chen et al., 2024), Self-Introspective Decoding (SID), and Visual
Layer Fusion Contrastive Decoding (VaLiD) (Wang et al., 2024a), have been developed based on
similar principles. However, in reality, these methods offer limited relief for omission hallucinations
but tend to introduce substantial new fabrications during mitigation.

B EVALUATION DATASETS

Polling-based Object Probing Evaluation. POPE is a novel framework designed to evaluate object
hallucinations in MLLMs. Departing from traditional caption-based approaches, POPE frames
hallucination detection as a binary task by posing straightforward yes-or-no questions regarding the
presence of specific objects in an image (e.g., "Is there a chair in the image?"). Performance on POPE
is measured across four metrics: Accuracy, Precision, Recall, and F1 score, allowing for a thorough
evaluation of hallucinations in MLLMs.

Multimodal Model Evaluation. MME benchmark provides a comprehensive framework for evaluat-
ing MLLMs across both perceptual and cognitive dimensions. It consists of ten perception-oriented
tasks and four cognition-oriented tasks, with model performance assessed through accuracy metrics.
In addition to the full dataset, we leverage specific subsets, such as object existence and counting
to analyze object-level hallucinations, while position and color subsets are employed to examine
attribute-level hallucinations.

Caption Hallucination Assessment with Image Relevance. CHAIR is a metric designed to evaluate
how accurately generated captions align with image content. It comprises two components: CHAIRi,
which measures object-level hallucinations by calculating the ratio of falsely mentioned objects to
all mentioned objects, and CHAIRs, which assesses sentence-level errors by computing the fraction
of sentences containing at least one hallucinated object. For evaluation, we use the val2014 split
of the MSCOCO dataset, which includes 80 object categories. A random subset of 500 images
was selected, and captions were generated using the prompt: “Please describe this image in detail.”
Together, CHAIRi and CHAIRs provide complementary insights into the prevalence and granularity
of hallucinated content in image captioning systems.

C ADDITIONAL ABLATION STUDIES

We performed an ablation study on the attention head selection ratio, using LLaVA-v1.5-7B as the
MLLM backbone on the COCO-Random dataset from the POPE benchmark. The objective was to
evaluate how different selection ratios impact prediction performance. As illustrated in Figure 7,
applying confidence steering intervention across too many attention heads leads to a noticeable
decline in prediction accuracy. A more reliable and effective approach is to constrain the selection
ratio to γ < 50%.

We conducted an ablation study on the steering coefficient, using LLaVA-v1.5-7B as the MLLM
backbone on the COCO-Random dataset from the POPE benchmark. The goal was to assess the
effect of the steering coefficient on prediction performance. As illustrated in Figure 8, when the
coefficient is set within the range 3 < α < 6, the model consistently yields stable and improved
accuracy. These findings suggest that the hyperparameter α possesses a broad and robust tuning
range, making it straightforward to configure effectively in practical settings to enhance performance.
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Figure 7: Ablation Study on Head Selection Ratio.

Figure 8: Ablation Study on Steering Coefficient.

D CASE STUDY ON LLAVA-BENCH

Figure 9 shows a case study of object hallucination mitigation on LLaVA-Bench. It is clear that
VPFC effectively mitigates object hallucinations.

E LIMITATION

While this work provides a detailed analysis of the distinct mechanisms underlying omission and
fabrication hallucinations, highlighting that the former arises from low confidence in visual-semantic
mapping and the latter from spurious cross-modal associations, our proposed method, VPFC, primar-
ily focuses on mitigating omission hallucinations without inducing fabrication. We do not explicitly
target the suppression of fabrication hallucinations. However, this choice does not undermine the
method’s value: VPFC still achieves state-of-the-art performance among plug-and-play hallucination
mitigation approaches, offering the best balance between reducing omissions and avoiding fabri-
cations. Notably, existing training-free methods have consistently failed to suppress fabrication
hallucinations, often aggravating them while addressing omissions. Therefore, we believe that
identifying the root causes of fabrication hallucinations is a necessary first step, and we leave the
development of targeted mitigation strategies as promising future work.
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Question: How many uncut 

fruits are in the image?

Question: How many 

coffee mugs are in the set?

Ground Truth Caption: 3

LLaVA-v1.5: There are five uncut fruits in the image.

SID: There are four uncut fruits in the image.

VPFC: There are three uncut fruits in the image.

Ground Truth Caption: 3

LLaVA-v1.5: There are four coffee mugs in the set.

SID: There are three coffee mugs in the set.

VPFC: There are three coffee mugs in the set.

Figure 9: Case Study on Object Hallucination Mitigation on LLaVA-Bench.
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