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Abstract: Multi-agent robotic systems are increasingly operating in real-world
environments in close proximity to humans, yet are largely controlled by policy
models with inscrutable deep neural network representations. We introduce a
method for incorporating interpretable concepts from a domain expert into models
trained through multi-agent reinforcement learning, by requiring the model to
first predict such concepts then utilize them for decision making. This allows an
expert to both reason about the resulting concept policy models in terms of these
high-level concepts at run-time, as well as intervene and correct mispredictions
to improve performance. We show that this yields improved interpretability and
training stability, with benefits to policy performance and sample efficiency in a
simulated and real-world cooperative-competitive multi-agent game.
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1 Introduction

With burgeoning adoption in fields such as autonomous driving, service robotics, and healthcare,
multi-agent robotic systems are increasingly operating in real-world environments. The actions of
these systems have a tangible and significant impact, particularly so when operating in close proximity
to humans. While we expect such systems to exhibit safe and accurate behavior, errors are inevitable,
and in such circumstances it is vitally important that the agents are able to explain their behavior to
human operators. Operators can then ascertain whether the agent is operating erroneously – thus
requiring intervention – or correctly but in a non-obvious manner.

However, state-of-the-art multi-agent systems are often controlled by deep neural network models
trained with reinforcement learning techniques [1]. While these methods have shown great ability
to generate effective and generalizable models, they do so at the expense of interpretability, and the
models often remain inscrutable to human operators [2]. This poses a significant risk, especially in
end-to-end models, where it is not clear what information has been extracted from raw observations
in order to make a policy decision. Domain experts often reason about agent behavior in terms of
high-level concepts such as the presence of an obstacle – e.g., “the robot encountered an obstacle
and subsequently changed direction”. However, standard end-to-end models provide no mechanism
for this sort of reasoning, let alone the ability to intervene and correct the model when it is wrong
– e.g., “the robot should have detected an obstacle but it didn’t”. Such a mechanism is particularly
important for robotic systems where we often encounter shifts in data distributions, such as when
transferring policies from simulated environments to the real world, leading to model errors. These
errors are exacerbated in multi-agent systems, where errors in each individual agent are compounded
and produce large errors in environment dynamics.

In this paper, we propose a method for learning interpretable policies – concept policy models –
for multi-agent reinforcement learning (MARL). Our approach is predicated on the insight that
we can leverage domain knowledge from an expert in order to regularize the model and influence
what information is encoded from observations. We organize this domain knowledge into a set of
interpretable concepts and enforce the constraint that the model is able to predict these concepts from
observations, after which the concepts are used to predict policy actions. Concepts are semantically
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Figure 1: Concept policy models predict a set of interpretable concepts from observations, which are
then used along with an (optional) residual to predict a policy action. A domain expert may intervene
and provide corrective concept values to the policy if mis-predicted.

meaningful labels that can be extracted from observations, such as the presence of a concrete or
abstract feature in an observation, e.g., the existence of an obstacle or the intention of a human.
Crucially, we find that the regularization imposed by the concept information helps stabilize the
training process, and as a result leads to improved performance and sample efficiency.

A typical end-to-end neural network policy model maps observations to actions [3]. Our approach
inserts an intermediate concept layer, as shown in Fig. 1 which is required to predict concepts from
observations. While this yields an interpretable model [4], it also imposes the assumption that the
set of concepts are sufficient for policy inference. To ease this constraint, we introduce a scalable
residual layer which passes additional information to the subsequent policy layers while ensuring it
remains decorrelated with the concepts. We posit that the interpretability of the model is proportional
to the capacity of the residual layer; intuitively, the more residual information available, the less the
model may rely on the concepts. We show that this can result in a trade-off between interpretability
and accuracy, given the expressivity of the concepts. Our contributions are as follows, we

• Introduce a method for learning concept policy models in MARL utilizing expert domain
knowledge, enabling the expert to reason about policy behavior in terms of high-level
concepts and improving accuracy, sample efficiency, and training stability.

• Develop two specific formulations based on this method: soft-concept models and hard-
concept models, and empirically show the trade-off between accuracy and interpretability.

• Formulate an intervention methodology and show how this can be used to offset model
errors in general and in transfer learning (sim-to-real) scenarios.

• Empirically show that our proposed approach produces interpretable, intervenable MARL
policy models which exceed the accuracy of baseline MARL policies in a simulated and
real-world game of “tag”, between two teams of 2, 3, and 5 robots each.

2 Related Work

Interpretability in supervised learning: Intepretability has been extensively studied within the
field of supervised learning [5], which can be largely grouped into two categories: the explicit
creation of an intrinsically interpretable model, or the post-hoc transformation of an uninterpretable
model to an interpretable one. The former case typically revolves around considering interpretable
classes of models – decision trees [6, 7], linear models [8, 9], or rule-based methods [10, 11] for
example – and developing algorithms for these models. In the latter case, uninterpretable models are
either transformed into interpretable ones [12, 13, 14], or interpretable models are extracted from an
uninterpretable model for the purpose of explaining a model’s decision rationale [15, 16].

Concept models often fall into the transformation case, and have been studied within the context of
transforming a set of uninterpretable feature embeddings into a set of interpretable concepts [4, 17, 18].
A recent approach [19] similarly uses concepts, but rather than directly predicting such concepts it
attempts to align the internal model representation to coincide with them.

Interpretability in reinforcement learning: As in supervised learning, interpretability for reinforce-
ment learning largely falls into the two categories of intrinsically interpretable models and post-hoc
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transformations. However, there is an additional line of work in which methods are devised to explain
aspects particular to the Markov decision process model employed by RL methods. Some approaches
have focused on interpretable representation learning [20, 21] and hierarchical decompositions [22],
while others have opted to tackle MDP-specific explanations such as an interpretable reward sig-
nal [23] or action explanation [24, 25, 26]. However, to the best of our knowledge, concept-related
methods have not yet been explored in an RL setting, let alone MARL.

3 Preliminaries
Multi-Agent Reinforcement Learning: We model the MARL problem as a decentralized partially
observable Markov decision process (Dec-POMDP) [27]. A Dec-POMDP is defined as a tuple
〈S,U , P,R,Z, O, n, γ〉 in which S is the state space, U shared action space, P the state transition
function, R the shared reward function, Z the observation space, O the observation function, n the
number of agents, and γ the discount factor. For a given time step, the environment has a state s ∈ S
and each agent a ∈ {a0, . . . , an} samples a partial observation za ∈ Z according to the observation
function O(s, a) ∈ Z . The agents simultaneously sample an action ua ∈ U inducing a state
transition according to P (s′|s,u) ∈ [0, 1]. Each agent receives a reward ra according to the shared
reward function R(sa,ua) ∈ R with a discount factor γ ∈ [0, 1]. We follow a centralized training
and decentralized execution approach (CTDE), thus learning a central policy πθ(ua|za) ∈ [0, 1]
parameterized by θ by maximizing the discounted expected cumulative reward: Et[

∑
t γ

tR(sa,ua)].

Multi-Agent Proximal Policy Optimization: Multi-Agent Proximal Policy Optimization
(MAPPO) [28] is a straightforward extension to standard PPO [29] under the CTDE assumption in
which we learn a single actor, πθ, and a single critic, Vφ, parameterized by θ and φ respectively. When
sampling from the environment, each agent executes the same learned policy with their individual
observations and actions. As with all policy gradient methods, PPO seeks to compute the policy
gradient by differentiating the following objective function:

L(θ) = Êt[logπθ(ua|za)Ât], (1)

where Â is the estimated advantage function. PPO extends this objective function by adaptively
clipping the update gradient and applying an entropy bonus to the policy to encourage exploration. If
the value function and policy function share parameters, i.e., θ = φ, then the objective function must
also include the value function loss.

4 Concept Policy Models
We propose a method for learning concept policy models, which integrates domain knowledge from
an expert in the form of concepts into a neural network policy model. These concepts are intended to
serve two purposes: they are useful predictors for the desired policy behavior and as such allow an
expert to reason about the policy in terms of high-level concepts, and mispredicted concepts can be
corrected at run-time by the expert in order to induce correct behavior. The expert – hereafter referred
to as an oracle – provides an oracle function V (·) which can be used to predict a ground truth concept
vector of size j given an observation from an agent a, v = V (za) where v ∈ Rj . Concepts may be
either continuous or discrete, and represent interpretable features which are assumed to be relevant to
the task at hand. As an example, let us consider a cooperative-competitive multi-agent game in which
two teams of agents play a game of “tag” during which one side must prevent the other from reaching
a specific location. In this game, an expert might identify specific features such as the location of the
nearest enemy, or the opposing team’s strategy as a concept.

4.1 Policy Concept and Residual Layers

We integrate this concept information into an end-to-end neural network policy πθ(ua|za) which
predicts the probability for agent a taking action ua given observation za and parameters θ. This is
accomplished by inserting an intermediate layer cθc(·) into the network to predict the concept vector,
dividing the network into two parts: π(1)

θ1 (·) representing the portion of the network before the new
layer, and π(2)

θ2 (·) representing the portion of the network after the new layer, such that

π(ua|za) = π
(2)
θ2 (c(x) + r(x)) where x = π

(1)
θ1 (za) (2)

and r(·) is a residual layer of size k designed to pass through non-concept information and the
concept layer acts as a concept predictor, such that v̂ = c(x). In our proposed concept policy model,
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π
(1)
θ1 : R|z| → Rh acts as a feature encoder mapping an observation to a feature embedding. The

newly inserted concept layer serves as a bottleneck such that c(·) : Rh → Rj maps the feature
embedding to a concept vector, while the residual layer r(·) : Rh → Rk maps the feature embedding
to a residual vector. The final policy layer π(2)

θ2 (·) : Rj+k → R|u| maps the aggregated concept and
residual vectors to a policy action. We train the concept layer c(·) by imposing an additional auxiliary
loss Lc(θ) in the objective function optimized by MAPPO:

L(θ) = Êt[logπθ(ua|za)Ât]− Lc(θ) where,

Lc(θ) =

j∑
i=0

Lci (θ) and Lci (θ) =

{
FL(vi, v̂i) if discrete
MSE(vi, v̂i) if continuous.

(3)

This loss is summed over each concept: mean squared error (MSE) is used for continuous concepts,
and focal loss (FL) [30] for discrete concepts. The focal loss is a cross-entropy variant designed for
class imbalanced situations which are likely to occur in our concept setting, as some concepts may be
significantly rarer than others. In our above example with the strategy concepts, some strategies may
be much less likely to occur than others, for instance. Note that for multi-class discrete concepts, a
single abstract concept may consist of multiple nodes, and we refer to this as a concept group. In the
strategy case, suppose an agent team may only execute one of strategy A, B, or C at a time, thus
these three concepts represent a single concept group and so when we pass the discrete concepts
through a softmax activation in order to calculate the focal loss we do so in a group-wise manner.

The goal of the residual layer is to pass through information from π
(1)
θ1 (·) that is not captured by the

concept vector. Without the residual, the concept vector must sufficiently represent the observation so
that π(2)

θ2 accurately infer the agent’s action from concepts alone (a strict assumption in practice). We
define two concept policy model variants: hard concept policy models which contain no residual
(k = 0), and soft concept policy models which do (k > 0).

By examining the concept layer activations, an oracle can query the predicted concepts v̂ and
understand what concepts the policy model used for prediction. However, we conjecture that there
is an inherent trade-off between the size of the residual layer k and the interpretability of these
activations. While a full interpretability analysis is outside the scope of this work, we posit that the
greater the residual dimension, the less that π(2)

θ2 (·) must rely on the concept vector, i.e., there is a
larger amount of non-concept information on which to base its prediction – which follows that k is
inversely proportional to interpretability.

4.2 Concept and Residual Whitening

In order to constrain the residual r(·) such that it does not encode information related to the concepts,
we decorrelate the neuron activation vectors via whitening. Given a matrix X ∈ Rb×j+k consisting
of the activations from the concatenated concept and residual vectors over a mini-batch of b samples,
we aim to produce a whitened matrix X′ with ZCA whitening via iterative normalization [31]

X′ = DΛ−
1
2 DT (X− µx) (4)

where D and Λ are the eigenvectors and eigenvalues of X respectively. Iterative normalization uses
an iterative optimization technique to incrementally whiten the matrix X, where the hyperparameter
T dictates the number of optimization iterations. This gives us the flexibility of only partially
decorrelating the residual and whitening layers, if desired, by setting T to a smaller value, e.g., T = 2.
In practice, we find that performing fewer iterations is often necessary to stabilize the training process,
as a higher T tends to increase the stochastic normalization disturbance and leads to reduced training
efficiency [31], which is particularly noticeable in a MARL setting. At each training iteration, we first
perform whitening then backpropagate our computed gradients, thus allowing us to decorrelate the
concept and residual layers without requiring an additional optimization step as in prior work [19].

4.3 Policy Intervention

In addition to querying the predicted concepts v̂, an oracle may also decide to intervene when
these predictions are incorrect. This can be achieved by explicitly overwriting the concept layer
node activations (or softmax activations for discrete concepts) with the appropriate values. We
denote the modified concepts as v̄ which leads to the following intervened concept policy model:
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Figure 2: A sequence of steps from a single episode during a policy execution in the real-world. The
blue circle is the attacking team’s (red) goal while the defending team (green) attempts to stop them.

πθ(ua|za, v̄) = π
(2)
θ2 (v̄ + r(x)). This policy intervention corrects prediction errors in the feature

encoder π(1)
θ1 (·). We find that these sorts of errors are particularly prevalent when transferring robot

policies from simulation to the real world due to different observation distributions, and show that
policy interventions are effective at reducing such errors in Sec. 6. Similar to interpretability, we
hypothesize that intervention effectiveness is inversely proportional to the size of the residual k;
we cannot intervene on the residual layer activations so any resulting errors will persist. While our
empirical results hint in this direction, we save a full exploration for future work.

5 Experimental Setup
We show that our proposed concept policy models achieve high policy success rates and concept
accuracy, in addition to improved training stability and sample efficiency, over standard MARL
models in a cooperative-competitive multi-agent game of “tag” previously described in Sec. 4. We
empirically analyze our approach in both simulated and real-world versions of this game, and explore
its strengths and weaknesses especially with respect to interventions and sim-to-real transfer in Sec. 6.

5.1 Tag Game
In our game shown in Fig. 2, two equally sized teams of agents compete with each other in which one
team attempts to reach a specified goal location while the other team defends it and attempts to keep
them away, which we refer to as the attacking and defending team respectively. To allow for complex
behaviors and strategy, an agent from each team may “tag” an agent from the opposing team as long
as it lies within a given proximity and is facing the opposing agent, removing the tagged agent from
play. The attacking team wins if any agent is able to reach the goal location, while the defending
team wins if the attacking agents are all tagged or the maximum number of time steps elapses.

Observation and Action Space: The observations are a set of extracted features consisting of the
positions, velocities, orientations and tagged status of all agents. Actions consist of accelerating
forward or backward by a fixed amount, rotating left or right by a fixed offset, and tagging.

Strategy: Furthermore, we restricted our game such that only the defending team’s policy is trained
via MAPPO. While it is a straightforward extension to train both an attacker and defender policy
iteratively, we opted to restrict the attacking team to sampling strategies from a fixed policy distribution
to better investigate the effects of our concept policy model on performance. We sample attacker
strategies from a distribution consisting of three “types” with equal probabilities, {random, left,
right}, where the attackers execute random actions, move towards the goal by sweeping along the
left side of the environment, and move towards the goal by sweeping along the right, respectively.
Given a sampled team level strategy, each agent then sampled an individual policy with noise from
the strategy distribution, so as to generate stochastic policies.

Concepts: We utilized the following concepts: {Range, Strategy, Target, Orientation, Position}, in
which Range is a boolean concept indicating whether the opposing agent specified by Target is within
tagging range, Strategy is a categorical concept mapping to the above team-level strategies, Target
is a categorical concept indicating an opposing agent that should be pursued, and Orientation and
Position are continuous concepts encoding the relative orientation and position of each opposing
agent, respectively. The hard concept policy models are trained with the full set of concepts, while
the soft models only employ a subset consisting of {Range, Strategy, Target}.
Real-world Equivalent: The real-world version of our tag game is played in a 2v2 scenario on a
6′×6′ play area, with four Khepera IV [32] robots. Policies are trained in the simulation environment,
then executed in the real-world environment; no additional training and no few-shot conditioning
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Figure 3: Left: training curves showing win rate vs iterations over 5 random training seeds for
each tested model type in a 2v2 scenario. Right: a sequence of episode steps showing the concept
activations for agents on the defending team (green).

is employed. The robot positions and orientations are extracted from a Vicon [33] motion capture
system and converted into the model’s expected observation format. The real-world version of the
game exhibits significant differences in the dynamics between the simulated robots and the real-
world robots – particularly in velocities, accelerations, and even control – presenting a challenging
environment for sim-to-real. Further, tagged agents disappear in simulation while the real-world
agents are driven out of the play area, providing a temporary obstacle.

5.2 Concept Policy Models and Baselines

We trained a hard and soft concept model for 10M time steps for each scenario – 2v2, 3v3, and
5v5 – along with a standard policy model without concepts. Each model consists of a series of fully
connected layers, recurrent layers, and the iterative normalization layer applied over the concatenated
concept and residual layers, with full details given in the supplementary material. The concept
dimension j for each hard model differ for each scenario due to the number of agents: j = 13,
j = 18, and j = 28 for 2v2, 3v3, and 5v5 respectively. The concept dimensions for the soft models
are j = 9, j = 12, and j = 18 for 2v2, 3v3, and 5v5. For the soft models, we additionally provide a
residual layer with dimension k = 23, k = 52, k = 78 for 2v2, 3v3, and 5v5, respectively, leading to
a combined bottleneck size of 32, 64, and 96. The baseline model lacks a concept layer (j = 0) and
has a full-width residual k = 128. Residual layers sizes and other hyperparameters are given in the
supplementary material and were chosen through extensive hyperparameter optimization.

6 Results
The win rates and concept accuracy errors for the defending team in both simulation and real-
world are shown in Table 1. These values are computed by training two seeds with the best set of
hyperparameters found during optimization, then rolling out each policy for 100 evaluation episodes
in simulation, and 20 in real-world.

Simulation: We first observe that both concept policy model variants out-perform the baseline model
in each scenario, with the hard concept model outperforming the others by a large margin. This in
itself is unsurprising, given that the concepts were hand-designed so as to provide a sufficient amount
of information for the policy, and the hard concept policy model heavily regularizes the learned model
such that it learns this information. The decreased performance in the soft model is due to the fact
that it is only trained with a subset of concepts and consequently the residual struggles to reliably
encode this information on its own. As evidenced by the large win rate std shown in Table 1 on Lines
1 and 4, some seeds yield similarly strong performance to the hard models while others perform much
worse – with the exception of 5v5 where they failed to learn at all. From this we can conclude that
the soft concept policy models can offer comparable performance to hard concept models without
requiring a fully-descriptive concept set, at the cost of increased training instability (see Figure 3
for a 2v2 scenario). The intervened win rate follows when an algorithmic oracle intervenes at every
time step and sets the correct concept value when a concept is incorrectly predicted by the model,
improving the win rate, particularly in the more complex 3v3 and 5v5 scenarios.

Real-world: In the real-world environment shown in Fig. 2, we can see in Table 1 on Lines 10-12
that the win rates are drastically reduced for the concept policy models, but surprisingly not for the
baseline model. Qualitatively, we have observed that this is because the baseline model became
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Setup Model WR Inter. WR Range Strategy Target Orientation Position

Si
m

ul
at

io
n 2v

2 1 Soft 0.51 (0.35) 0.55 (0.09) 0.03 0.04 0.24 - -
2 Hard 0.83 (0.01) 0.84 (0.01) 0.04 0.07 0.20 0.10 0.11
3 Base 0.19 (0.07) - - - - - -

3v
3 4 Soft 0.55 (0.31) 0.57 (0.27) 0.03 0.10 0.17 - -

5 Hard 0.74 (0.01) 0.80 (0.01) 0.03 0.13 0.23 0.11 0.14
6 Base 0.16 (0.06) - - - - - -

5v
5 7 Soft 0.32 (0.01) 0.40 (0.01) 0.02 0.25 0.52 - -

8 Hard 0.78 (0.04) 0.86 (0.01) 0.03 0.14 0.13 0.11 0.21
9 Base 0.31 (0.04) - - - - - -

R
ea

l

2v
2 10 Soft 0.10 0.00 0.03 0.53 0.13 - -

11 Hard 0.25 0.95 0.04 0.53 0.92 3.48 0.81
12 Base 0.35 - - - - - -

Table 1: The win rate (WR) and concept errors for our proposed models (Soft and Hard) and a
baseline without concepts (Base). The Hard model is trained over all concepts, the Soft model over a
subset, and the Base model with none. The win rate is the average standard win rate of the policy
when the policy is executed over multiple seeds with the standard deviation shown in parentheses,
while the intervened win rate (Inter. WR) is the average win rate when an oracle intervenes over all
concepts and sets correct values. Range, Strategy, and Target are discrete concepts and as such the
error shown is the error in accuracy score, while Orientation and Position are continuous and indicate
mean squared error. Orientation is in radians and Position is a unit-less value in [−1, 1].

trapped in a local minima and learned a policy which was semi-performant and independent of the
actions of the opposing team, causing it to drive in circles while constantly “tagging”. This behavior
highlights the difficulties standard MARL algorithms have when attempting to learn meaningful
feature embeddings. The other interesting result from this experiment is the gain in performance by
the hard model when interventions occur, and similarly the lack of improvement when the soft model
is intervened. We can draw two insights from this: the distribution shift from the simulated to the real
world environment is largely contained within the feature extractor, which is compensated for by the
interventions in the hard model; and that the Orientation and Position concepts are by far the most
important as when we are unable to intervene on them and correct for dynamics errors as in the soft
model, performance fails to improve.

Concept Ablation

R
ng

.
St

r.
T

gt
.

Po
s.

O
ri

. Concept Interv.
2v2 3v3 Sim Real

1 X X X X X 83% 74% 84% 95%
2 X X X 23% 27% 84% 20%
3 X X X X 80% 69% 81% 60%
4 X X 80% 72% 78% 80%

Table 2: Concept ablations when only a
subset of concepts are trained in simula-
tion, and intervention ablations in both
the real and simulated 2v2 scenarios
when only a subset of concepts are in-
tervened over.

Concept Ablations: Next, we examine ablated hard con-
cept policy models which are only trained over a subset
of concepts in the 2v2 simulated scenario. The results are
shown in Table 2 (left) and further support the evidence
that the Orientation and Position concepts are by far the
most important with respect to the win rate. In the sim-
ulation environment, the win rate drops to 23% (Line 2)
in the absence of those concepts, while in the real-world
environment it drops to 27%. Note that the only differ-
ence between the hard model and the soft model with this
concept set is the presence of a residual layer; when this
residual is present and allowed to encode additional infor-
mation the win rate is nearly doubled to 51% as in the soft
model in Table 1 (Line 1).

Intervention Ablations: We performed an ablation over
the set of intervened concepts, with the results shown in
Table 2 (right). We can first observe that ignoring interventions over the Orientation and Position
concepts does not affect the win rate (Line 2), likely because the associated errors for those concepts
are already low as shown in Table 1 (Line 2). As we intervene over fewer and fewer concepts, the
win rate further drops; however, paradoxically the win rate drops to below the base win rate without
any interventions at all. In the real-world we observe more pronounced effects due to the differing
dynamics, where the strategy concept is more difficult to predict and impacts the behavior more
significantly. We conjecture that this is because the agents are less agile in the real-world, and errors
in the predicted strategy lead to less-than-optimal positioning. We note that there is an unexpected
result here: intervening over every concept but Strategy (Line 3) yields a lower win rate than only
Orientation and Position (Line 4). This appears to be a consequence of two factors: intervening over
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Figure 4: (Left) Intervening over Strategy for the 3v3 hard concept policy model in simulation. Each
point is the average position of all the defenders as an episode progresses, where lighter values
indicate earlier in the episode, averaged over 100 episodes. (Center) The probability of an agent
performing the tag action over 1000 episodes when Range is predicted (None) or intervened (Range
= 0/1) in a simulated 2v2 scenario. (Right) The win rate of the defending team over 1000 episodes
when Target is predicted (None) or intervened (Target = A/B) such that both defenders share the same
target in a simulated 2v2 scenario. The mean and 95% concept intervals are shown.

Range and Target but not Strategy increases the prediction error of Strategy which in turn lowers the
win rate; and the policy resulting from intervening over only Orientation and Position results in more
collisions with other agents during execution, making them easier to tag.

Behavioral Effects: Figure 4 shows the effects of concept values on concept policy model behavior.
The left figure visualizes the average position of the defending team as an episode progresses when
the Strategy concept is intervened to always take a specific value, showing that the Strategy concept
is clearly correlated with the defending team’s movement. Specifically, when the attacking team is
predicted to move to the left or the right, the defending team moves in the corresponding direction
and towards the attackers to intercept. The two figures on the right further illustrate behavioral effects
resulting from concept values; the middle figure shows that the probability of performing the tag
action dramatically increases when the Range concept is intervened and forced to 1, while the right
figure shows that the win rate decreases when the agents are forced to have the same Target rather
than predicting their own independently.

These results reveal that high-level concepts can impart meaningful behavioral effects on the down-
stream policy that align with the concept’s interpretation; thus while the concepts do not provide
full transparency into the policy’s decision making process they still provide the ability for an expert
to understand what high-level pieces of information are informing a policy and how these might
influence behavior.

Limitations: In order to analyze the performance of our model for a single team of agents, we have
restricted the variability in our environment and reduced the complexity of possible behaviors. In the
future, we would like to evaluate asymmetric team compositions and learn a policy for the attackers.
We have also only considered low-dimensional inputs in our experiments, and although we expect
our approach to scale well to rich input representations such as images, since concept models have
been traditionally applied in vision domains, this remains an open question. Additionally, we would
like to expand the complexity of our real-world environments by incorporating additional robots.

7 Conclusion
In this work we have introduced concept policy models for Multi-Agent Reinforcement Learning
which incorporate domain knowledge from an expert in the form of concepts. Concept policy models
allow an expert to query the model at run-time and analyze policy behavior in terms of high-level
concepts, and crucially, intervene and correct concept predictions when errors occur. We empirically
show that concept policy models regularize the underlying policy, yielding improved accuracy and
sample efficiency while stabilizing training, and demonstrate how oracle-based interventions can be
leveraged to partially compensate for distributional shift in sim-to-real transfer scenarios. We find
that such interpretability is particularly important in multi-agent settings as even small changes in
agent performance can lead to large changes in team coordination. Allowing an expert to understand
what high-level concepts are used by a policy and reason about how these concepts affect individual
agent behavior provides insight into team dynamics, and provides a mechanism for intervening and
correcting behavior when necessary.
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