
RVT-2: Learning Precise Manipulation
from Few Demonstrations

Anonymous

Pick and insert plug

Pick and insert 16mm peg

Pick and insert 8mm peg

Fig. 1: RVT-2 performing high precision tasks. Given a language instruction, a single RVT-2 model can perform multiple 3D
manipulation tasks, including ones requiring millimeter-level precision like inserting peg in hole and inserting plug in socket.
RVT-2 is trained with ∼10 demonstrations per task and uses only a single third-person RGB-D camera.

Abstract—In this work, we study how to build a robotic system
that can solve multiple 3D manipulation tasks given language
instructions. To be useful in industrial and household domains,
such a system should be capable of learning new tasks with
few demonstrations and solving them precisely. Prior works, like
PerAct [40] and RVT [17], have studied this problem, however,
they often struggle with tasks requiring high precision. We study
how to make them more effective, precise, and fast. Using a
combination of architectural and system-level improvements, we
propose RVT-2, a multitask 3D manipulation model that is 6X
faster in training and 2X faster in inference than its predecessor
RVT. RVT-2 achieves a new state-of-the-art on RLBench [24],
improving the success rate from 65% to 82%. RVT-2 is also
effective in the real world, where it can learn tasks requiring
high precision, like picking up and inserting plugs, with just
10 demonstrations. Visual results, code, and trained model are
provided at: anonymous.

I. INTRODUCTION

One of the holy grails of robot learning is building general-
purpose robotic systems that can solve multiple tasks and
generalize to unseen environment configurations. To be useful,
such systems should be capable of precise manipulation and
only need a few demonstrations of a new task. For example,

in an industrial manufacturing setting, we can expect a person
to demonstrate a high-precision task like peg insertion to a
robot just a few times, after which the robot should start
doing that task independently. Similar examples can be found
in other domains like household and retail. In this work, we
study the problem of building a manipulation system that can
solve various tasks precisely, given just a few demonstrations.
The systems should have three key characteristics: (1) handle
multiple tasks, (2) require only a few demonstrations, and (3)
solve tasks with high precision.

Prior work has made significant progress towards this
goal. Starting with works like Transporter Networks [52] and
IFOR [16] that studied planar pick-and-place tasks, recent
works have gone beyond the 2D plane and studied ma-
nipulation in 3D with a few examples [25]. Some notable
methods are PerAct [40] and RVT [17]. Given a language
instruction, PerAct [40] adopted a multi-task transformer
model for 3D manipulation by predicting the next keyframe
pose. Even though PerAct achieved impressive performance,
it uses a voxel-based representation for the scene, limiting its
scalability. RVT [17] addressed the limitations of PerAct by

anonymous

proposing a novel multi-view representation for encoding the
scene. The multi-view representation has various advantages,
including faster training speed, faster inference, and better task
performance. Compared to PerAct, RVT demonstrated a 36X
faster training speed and improved the performance from 48%
to 63% on 18 tasks in RLBench [24].

We were motivated by the question of what prevents RVT
from achieving even higher performance. Upon careful anal-
ysis, we find that RVT struggles with tasks requiring high
precision, like screwing bulb or inserting a peg. During our
analysis, we also identified several opportunities to further
improve the training and inference speed of the system.
Through our architectural and system-level improvements, we
were able to boost both the speed and efficacy of RVT. We
thereby present RVT-2, which improves RVT on the training
speed by 6X (from 2.4M samples per day to 16M samples
per day), inference speed by 2X (from 11.6 fps to 20.6 fps),
and task success rate by 15 points (from 62.9 to 77.6) on the
RLBench benchmark, achieving state-of-the-art results.

We also find that a single RVT-2 model is able to solve mul-
tiple tasks in the real world with as few as 10 demonstrations.
Specifically, RVT-2 can perform tasks requiring millimeter-
level precision, like inserting a peg in a hole and inserting a
plug in a socket, while only using a single third-person camera.
To the best of our knowledge, this is the first time a vision-
based policy trained with a few examples has been tested to
work on such high-precision tasks.

Overall, the gains in RVT-2 were achieved by a combina-
tion of architectural and system-level improvements. For the
architectural improvement, we introduce three main design in-
novations. First, we equip RVT-2 with a multi-stage inference
pipeline that allows the network to zoom into the region of
interest and predict more precise end-effector poses. Further,
to save GPU memory during training and to improve speed, we
adopt a convex upsampling technique. Lastly, we improve end-
effector rotation prediction by utilizing location-conditioned
features instead of just the global features as done in RVT.

For the system-level optimizations, we create a custom
virtual image renderer to replace the generic renderer used
in RVT (PyTorch3D [35]). With this custom accelerated ren-
dering library, we improve the speed and reduce the mem-
ory usage of RVT in both training and inference. We also
investigate and incorporate cutting-edge practices in training
transformer models, including fast, optimized optimizers and
mixed-precision training. While each of these changes in itself
is not novel and has appeared in some form in prior works, our
contribution lies in building a precise 3D manipulation system
by incorporating these changes successfully.

To summarize, we push the frontiers of 3D manipulation
with few-shot demonstrations. We achieve significant improve-
ments and demonstrate superior real-world performance. We
also provide a careful analysis ablating and quantifying the
improvements sourced from different factors. Our code is
available at anonymous.

II. RELATED WORK

Robotic Manipulation in 3D. Compared to manipulation
in the 2D top-down setting [52, 16, 39], inferring robots’
movements and interactions in full 3D space is much more
challenging due to the higher degrees of freedom in the
action space and the complexity of 3D spatial reasoning [14].
To tackle manipulation in the 3D space, recent works have
leveraged various perceptual representations. Camera images
have been widely used for vision-based manipulation, e.g., in
models such as RT-1 [1], RT-2 [2], and ALOHA [53]. For more
effective 3D spatial reasoning, depth information is commonly
required, where RGB-D images are assumed as input to the
manipulation policy [44]. PolarNet [5] and M2T2 [51] directly
use the point cloud reconstructed from RGB-D images and
process it with an encoder plus a transformer to predict actions.
C2F-ARM [25], PerAct [40], and FourTran [22] voxelize
the point clouds and use a 3D convolutional network as the
backbone for action inference. Act3D [13] and ChainedDif-
fuser [48] represent the scene as a multi-scale 3D feature
cloud. To boost both the time efficiency and task efficacy,
RVT [17] proposes to use multi-view virtual images as the
scene representation. Nonetheless, most of these prior models
are only applied to real-world tasks that do not require high
precision actions. We hereby aim to leverage these advances
and push the boundary further on high precision manipulation
problems. Inspired by prior work that uses a multi-stage
“coarse-to-fine” inference strategy [25, 13], our model selects
a task-critical part of the scene to “zoom into” and examine
in a finer resolution through virtual images.
Transformers for Manipulation. Transformer architectures
have been widely adopted in robot learning for enhancing
control performance [28, 4, 8, 50]. With the flexibility to re-
ceive heterogeneous observations as inputs, transformer-based
models have emerged as powerful tools to extract features from
multi-modality sensory inputs [9, 3, 29, 27, 32, 53, 17, 42, 41].
Recent works also extend this multi-modal flexibility by
integrating the transformer backbone with diffusion models
to facilitate long-horizon motion planning [7, 34]. A notable
trend in prior studies is their reliance on large training datasets,
often involving hundreds of demonstrations per task, to train
robust transformer models. In contrast, our RVT-2 model
demonstrates efficacy and proficiency in high-precision tasks
with as few as 10 demos per task in real-world experiments.
MimicPlay [47] is another work that attempts to learn from
few demonstrations. It leverages videos of humans doing
the relevant task to create a pre-trained latent representation,
and is then fine-tuned with 20-40 robot demonstrations to
learn a task. In contrast, RVT-2 learns directly with 10 robot
demonstrations for the task. Further, MimicPlay focuses on
long-horizon tasks and attempts to learn a continuous control
policy, while RVT-2 focuses on learning high-precision tasks
requiring millimeter-level precision, like inserting a plug in a
socket and operates at the level of key-points.
High Precision Manipulation. High-precision manipulation
is required for tasks that have low motion error tolerance

anonymous

such as those in industrial settings. To learn high-precision
manipulation policies, previous works have relied on various
sensory modalities and data-expensive learning algorithms.
As an earlier work, proprioception sensory data is used to
learn a peg-in-hole policy via imitation learning [18]. By
using camera images, Schoettler et al. [37] presents a resid-
ual reinforcement learning algorithm to accomplish industrial
insertion tasks from visual sensory inputs. Tang et al. [45]
propose to detect the peg location from the initial camera
frame and apply reinforcement learning to learn a final-inch
insertion policy from proprioception data. To further improve
the execution accuracy, touch feedback such as force-torque
sensors [30, 33] and vision-based tactile sensors [11, 49] are
exploited. However, these works leverage algorithms requiring
expensive training data (e.g., either reinforcement learning or
imitation learning from hundreds of demonstrations) and still
only learn a single model per task. In contrast, our RVT-
2 is able to learn a multi-task high-precision manipulation
policy from much fewer demonstrations per task. ACT [53] is
another method that aims to learn precise manipulation from a
few demonstrations. However, there are significant differences
between ACT and RVT-2. Given language input, RVT-2 can
solve different variations of a task while ACT does not take
language as input and can only be trained with one variation
of a task at a time. RVT-2 makes key-point based predictions
while ACT makes continuous joint state predictions. RVT-2
takes point cloud as input while ACT works with multiview
images.
Virtual Views for 3D Vision. The use of virtual views pro-
vides a strategic lever for exploiting well-established image-
based neural network architectures, such as convolutional neu-
ral networks and transformer models, for processing 3D scene
information. Prior works have shown the benefit of virtual
view rendering over sophisticated point-based methods in var-
ious vision tasks, from object recognition [43, 15, 20, 21], ob-
ject detection [6], to 3D visual grounding [23]. The application
of virtual views in the field of robotics has been less explored.
Recently, RVT [17] leverages multi-view representation for
predicting robot actions for object manipulation. Our work
builds upon RVT using a series of architectural and system-
level improvements to make it more performant and efficient.

III. METHOD

Our method, RVT-2, allows for three-dimensional and pre-
cise manipulation. A single RVT-2 model is trained to solve
multiple tasks from language instructions and requires only a
few demonstrations per task. RVT-2 builds upon RVT [17], a
state-of-the-art model for 3D object manipulation. Similar to
RVT, RVT-2 is based on the paradigm of key-frame based ma-
nipulation. But it achieves better task performance, precision,
and speed through a series of improvements. We group these
improvements into two categories: architectural for the ones
related to changes in the neural network, and system-related
for those related to software optimizations.

A. Background

Key-frame based manipulation. In key-frame based manip-
ulation, the robot trajectory is described using a sequence
of key (or bottleneck) poses. For example, a trajectory for
drawer opening could be described by a sequence of key
poses like pre-grasp for drawer handle, grasp pose, and pull-
pose for the drawer. These key poses are provided in the
training dataset, and the aim of a key-frame based method
is to learn to predict these poses. Specifically, methods like
PerAct [40] and RVT [17] take as input the language goal
along with the current scene point cloud and predict the next
key-frame pose. The predicted pose is then passed to a motion
planner, which generates a trajectory towards it1. When the
robot reaches the predicted pose, the method takes in a new
scene point cloud and predicts the subsequent key-frame pose.
This process iterates until the task is successful or a predefined
number of steps is reached.

To train a key-frame based behavioral cloning agent, we
assume access to a dataset of samples. Each sample includes
a language goal, current visual observation, and the next key-
frame pose. We can extract such a dataset automatically from
dense robot trajectory datasets by defining rules that specify
the key-frame poses. For instance, when the state of the gripper
changes between open and close, the pose is a key-frame pose.
We use the same key-frame extraction scheme as PerAct and
encourage readers to refer to Shridhar et al. [40] for details.
Robotic View Transformer (RVT). To predict the key-frame
pose, RVT first reconstructs a point cloud of the scene using
the input RGB-D images. The scene is then rendered from
virtual cameras along orthogonal directions. RVT renders five
virtual views, including the top, front, left, back, and right
view. RVT shows that using these fixed virtual views around
the robot, instead of the original input camera views, results
in more effective performance.

These virtual images are then passed to a multi-view
transformer model that jointly reasons over all the views.
The transformer model predicts a heatmap for each of the
views. The heatmap score across views is then back-projected
into 3D, where each 3D point receives a score that is the
average of the score received by its 2D projections. The 3D
point with the largest heatmap score represents the predicted
gripper location. Along with the heatmaps, RVT extracts a
global feature concatenated from across the views to predict
the gripper rotation and state (open or close). We encourage
readers to refer to [17] for a detailed overview of RVT.

B. Architectural Changes: RVT → RVT-2

Multi-stage Design. RVT predicts the gripper pose using a
fixed set of views around the robot. These fixed views might
not be sufficient in tasks when the object of interest is very
small, and the gripper pose needs to be very precise, like
inserting a peg in a hole. Hence, RVT-2 adopts a multi-stage
design (see Fig. 2), where, in the first or coarse stage, it

1Along with the pose, these methods also output whether or not the motion
planner should avoid collision.

Multi-View
Transformer

(Coarse)

Multi-View
Transformer

(Fine)

MLP

• Gripper Orientation
• Fingers Open/Close
• Collisions On/Off

RGB-D Images:

Virtual Images
(RGB + Depth + XYZ)

Predicted
Heatmaps

Predicted Heatmaps +
Image Features

Point Cloud
Reconstruction

Output

Instruction:

Zoomed-in
Point Cloud

Lifting to 3D

Coarse Branch

Fine Branch

Feature Lookup at
Gripper Position

Gripper
Position

Zoom in and crop point cloud around 3D consensus point

Input

“Push the cube on the blue square”

Virtual Images
(RGB + Depth + XYZ)

Next Gripper State

Instruction

Virtual
Camera

Fig. 2: RVT-2 Architecture. Given the current scene and a task instruction, RVT-2 predicts the next key-frame pose. It consists
of two stages. The first stage uses fixed virtual views around the robot to predict the area of interest. The second stage uses
zoomed-in views from the area of interest to predict the gripper pose.

predicts the area of interest using a fixed set of views. RVT-
2 then zooms in the area of interest and re-renders images
around it. We use a zoom-in factor of 4, meaning that zoomed-
in cameras cover a region of size 1/4th the coarse cameras.
It uses these close-up images to make precise gripper pose
predictions. Such adaptive rendering is possible due to the
flexibility provided by the virtual rendering proposed in RVT.

Convex Upsampling. RVT is based on ViT (Vision Trans-
former) [12], which divides an image into t1×t2 patches. Each
image patch is processed as a single token of dimension d. To
predict a heatmap from the image tokens, RVT first arranges
the image tokens at their corresponding patch location. This
results in a 3D feature of shape t1 × t2 × d. RVT then uses
transposed convolutions to upsample these features to the
image resolution of h×w, creating a feature of shape h×w×d.
Finally, these features of shape h×w×d are used to predict
the heatmap. This sequence of operations is effective, however,
it is memory intensive due to the large intermediate feature of
shape h×w×d.

To address this, RVT-2 removes the feature upsampling and
directly predicts heatmap of shape h×w from features at the
token resolution. Specifically, it uses convex upsampling layer
proposed by [46]. The convex upsampling layer uses a learned
convex combination of features in the coarse grid to make
predictions in the higher resolution. [46] shows how it leads

to sharper predictions at higher resolution. We empirically
find that convex upsampling saves memory without sacrificing
performance (see Tab. III). The convex upsampling layer does
not require any special implementation and can be represented
using the native fold function in PyTorch.
Parameter Rationalization. We find that network parameters
in RVT, like the virtual image size (220) and patch size (11)
may not be optimal for GPU as they are not divisible by
powers of 2 like 162. RVT-2 rationalizes these parameters
to make the neural network more GPU-friendly, improving
its speed. RVT-2 adopts parameters similar to ViT [12], i.e.
image size of 224 and patch size of 14. Apart from being
more GPU-friendly, these parameters reduce the total number
of tokens inside the multi-view transformer which is equal to
(image size/patch size)2, boosting the speed further. These
choices make RVT-2 faster during training and testing without
affecting performance (see Tab. III).
Location Conditioned Rotation. RVT and PerAct use global
visual features, like max-pooling over the entire image, to
make predictions for end-effector rotation. This can be prob-
lematic when there are multiple valid end-effector locations,
and the end-effector rotation depends on the location. For

2Exact power of 2 depends on the data-type and NVIDIA GPU archi-
tecture. More details can be found at https://docs.nvidia.com/deeplearning/
performance/dl-performance-fully-connected/index.html.

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html

example, consider the task of stacking blocks where the scene
has two similar blocks but in different orientations. Here,
picking either of the two blocks is a valid step. However,
since the blocks have different orientations, the end-effector
rotation would depend on the chosen end-effector location.
Since RVT only uses global visual features to predict rotation,
it cannot handle such cases. To address this, RVT-2 uses
local features pooled from the feature map at the end-effector
location for rotation prediction. This allows RVT-2 to make
location-dependent rotation prediction.
Fewer Virtual Views. RVT renders the scene point cloud with
five virtual cameras placed in orthogonal locations i.e. back,
front, top, left, and right. This choice was based on their
observation that fewer camera views reduced performance.
However, in our multi-stage RVT-2 model, we find that using
only three views, i.e., front, top, and right, suffices and does
not sacrifice performance. This is likely because RVT-2 uses
zoomed-in views for the final prediction. Fewer virtual views
reduce the number of images to be rendered by the renderer
and the number of tokens to be processed by the multi-view
transformer. Thus, this improves training and inference speed.

C. System-Related Changes: RVT → RVT-2

Point-Renderer. RVT uses PyTorch3D [35] to render virtual
RGB-D images. PyTorch3D is an appealing choice because
of its easy-to-use interface. However, it is a fully-featured
differentiable renderer that incurs significant time and mem-
ory overhead for point-cloud rendering. To avoid this, we
implement a custom projection-based point-cloud renderer in
CUDA. Our renderer performs 3 steps to render a point cloud
with N points to an RGB image and depth image of size (h,w):

a) Projection: For each 3D point of index n∈ {0,1 . . .N}
and RGB value fn, it computes the depth dn and image
pixel coordinate (xn,yn) using camera intrinsics and extrinsics.
From the 2D pixel coordinate (xn,yn), it computes the linear
pixel index in = xn ·w+ yn. The projection operation is easily
accelerated using GPU matrix multiplications.

b) Z-ordering: For each pixel of linear-index j in the
image, it finds the point index with smallest depth dn among
the set of points that project to the pixel {n | in = j}. It assigns
that point’s RGB value fn to pixel j of the RGB image and
depth dn to pixel j of the depth image.

To accelerate Z-ordering, we pack each point’s depth and
index into a single 64-bit integer, such that the most significant
32 bits encode depth, while the least significant bits encode
the point index. Then, Z-ordering can be implemented with
two CUDA kernels. First, a parallel loop over point cloud
points, tries to store each packed depth-index into a depth-
index image at the pixel j using the atomicMin operation. Only
the depth-index stored by the minimum-depth point at each
pixel survives. The second kernel, in a loop over pixels, creates
depth and feature images by unpacking the depth-index, and
looking up the point feature. This trick was proposed by
Schütz et al. [38] for rendering color point-clouds by packing
the 32-bit color. We extend this to images with arbitrary
number of channels, by packing the point index instead.

c) Screen-space splatting: The first two steps are suf-
ficient to produce rendered images. However, the points are
treated as infinitesimal light sources, which creates noise in
areas where the screen-space point cloud resolution is not
higher than the image resolution. A common way to counter
this is 3D splatting, whereby each point is modelled by some
geometry of a finite size. We represent each point as a disc of
radius r facing the camera. This splatting can be computed in
screen space after projection and z-ordering, thereby reducing
the computation required in the projection and z-ordering. For
each pixel j in the image, search in a neighbourhood for
another pixel k of lowest depth. If the pixel k has depth dk < d j,
and is closer than r · f ocal length/dk, replace the feature and
depth of pixel j with that of pixel k.
Improved training pipeline. We optimize RVT’s training
pipeline by adopting the latest developments in training trans-
formers. We analyze various techniques and adopt the ones
that improve speed without affecting performance. Specifi-
cally, we use mixed precision training, 8-bit LAMB opti-
mizer [10], and fast GPU implementation of the attention layer
based on xFormers [31].

IV. EXPERIMENTS

We evaluate RVT-2 by conducting comprehensive experi-
ments in both the simulation and the real-world.

A. Simulation

Dataset and Setup. We conduct the experiments on a standard
multi-task manipulation benchmark developed in RLBench
[24] and adopted by previous works [40, 13, 17]. The bench-
mark contains 18 tasks, including non-prehensile tasks like
push buttons, common pick-and-place tasks like place wine,
and peg-in-hole tasks that require high precision like insert
peg. Each task is specified by a language description and
consists of 2 to 60 variations such as handling objects in
different colors or locations. A Franka Panda robot with a
parallel jaw gripper is commanded to complete the tasks.
The task and the robot are simulated via CoppelaSim [36].
The input RGB-D images are of resolution 128 × 128 and
are captured by four noiseless cameras mounted at the front,
left shoulder, right shoulder, and wrist of the robot. We train
and test RVT-2 with the same dataset as PerAct and RVT,
with 100 demonstrations per task for training and 25 unseen
demonstrations for testing3

Training and Evaluation Details. We train RVT-2 with
similar computing resources as RVT and PerAct. Specifically,
we use a node with 8 NVIDIA V100 16 GB GPUs. Like
RVT and PerAct, we use translation augmentation of 12.5 cm
along the x, y, and z axis, as well as rotation augmentation of
45◦ along the z axis. We train RVT-2 for ∼80K steps with a
cosine learning rate decay schedule and an initial warmup of
2000 steps. The batch size is 192 (24 × 8) and the learning

3for the close jar task, we use the success criteria fixed by
Tsung-Wei Ke here: https://github.com/buttomnutstoast/RLBench/commit/
587a6a0e6dc8cd36612a208724eb275fe8cb4470. The fix is used in Act3D.
This fix did not affect the performance of the released RVT [17].

https://github.com/buttomnutstoast/RLBench/commit/587a6a0e6dc8cd36612a208724eb275fe8cb4470
https://github.com/buttomnutstoast/RLBench/commit/587a6a0e6dc8cd36612a208724eb275fe8cb4470

0 2 4 6 8 10 12 14
Training Time (in Days)

0

10

20

30

40

50

60

70

80

Av
g.

 S
uc

ce
ss

+32 points

+19 points

PerAct
RVT
RVT-2

Fig. 3: Training time vs Success rate on RLBench. All
models are trained on 8 NVIDIA V100 GPUs. RVT-2 trains
significantly faster and achieves higher performance than prior
state-of-the-art RVT and PerAct.

rate is 2.4×103. We use the final model for evaluation. Since
RLBench uses a sampling-based motion planner, we evaluate
each model four times on each task and report the mean and
variance. We measure the inference speed of RVT-2, RVT, and
PerAct on an NVIDIA RTX 3090 GPU.

Baselines. We compare RVT-2 with various baselines. These
include simple image-to-action behavioral cloning baselines,
Image-BC (CNN) [26, 40] and Image-BC (ViT) [26, 40], that
use a CNN and ViT backbone respectively. We also compare
with models that have been specifically designed for 3D object
manipulation including C2F-ARM-BC [24], PerAct [40] and
HiveFormer [19]; as well as more recently proposed methods
like RVT [17], PolarNet [5] and Act3D [13]. All baselines and
RVT-2 are trained and tested with input images of 128×128,
while Act3D uses images of size 256×256.

Training time vs. Performance. In Fig. 3, we compare the
training time and success rate on RLBench for RVT-2, RVT,
and PerAct. We find that RVT-2 significantly outperforms both
while requiring much less compute to train. Because of the
efficiency gains, with the same compute, RVT-2 trains 6X
faster4 than RVT, while improving performance by 19% in
absolute or 29% in relative terms. While comparing with
PerAct, RVT-2 improves the relative performance by 65%.
We find that within 2 hours of training, RVT-2 outperforms
RVT trained for 24 hours and PerAct trained for 16 days.
These efficiency gains could allow for further scaling up RVT-
2 in the future. In inference speed, RVT-2 exhibits around 2X
improvement compared to RVT. With an inference speed of
20 fps, RVT-2 opens up new possibilities for real-time reactive
control.

4RVT can fit a batch size of 24 and train for 100K steps, equivalent to
training over 2.4M samples in 24 hours. RVT-2 fits a batch size of 192 and
trains for 83.3k steps, equivalent to 16M samples in 20 hours.

Mulit-Task Performance. Table I summarizes the comparison
of RVT-2 with prior methods on the RLBench tasks. Among
all the methods, RVT-2 achieves the highest average success
rate of 81.4%. RVT-2 outperforms the prior best-performing
model Act3D by 16.4% absolute or 25% relative improvement
while requiring 6X less compute to train (5 days vs. within
20 hours). From Fig. 3, we see that RVT-2 achieves higher
performance than Act3D with just 4 hours of training. Overall,
RVT-2 achieves the best results in 13 out of 18 tasks and an
average rank of 1.5.

Out of the 18 tasks, the task where RVT-2 does not
achieve close to the best results is open drawer. Upon further
investigation, we find that on open drawer, RVT-2 achieves
higher success rates like 86% on earlier checkpoints than
the final one. The lower performance on the final checkpoint
could be an artifact of over-fitting or multi-task training where
performance on some tasks degrades while improving on
others.
High-Precision Tasks. We find that RVT-2 outperforms other
methods on high-precision tasks like insert peg, stack cups and
screw bulb. In insert peg, the robot must pick up a square peg
on the tabletop and insert it onto a specific cuboid stick. This
task can effectively examine the precision of the learned model
since the clearance between the stick and the peg is very tight,
and the robot has to align the square peg perfectly with the
cuboid stick; otherwise, any tiny error will result in a failure
insertion. In stack cups, a minor error in the pick and place
locations of the cup results in failure as seen in the low success
rate of prior methods. Similarly, in screw bulb, the bulb’s base
must be well aligned with the socket for successful screwing.
Our experiments show that RVT-2 achieves a significantly
higher success rate on these tasks, achieving 88% versus 48%
for the previous best on scew bulb; 69% versus 26.4% on stack
cups and 40% versus 27% on insert peg.

B. Real World

Dataset and Setup. We compare RVT-2 with RVT on a real-
world manipulation setup similar to that used in RVT (Fig. 4
top). The setup consists of a statically mounted Franka Emika
Panda arm and a static third-person view Azure Kinect RGB-
D camera. Instead of following the camera position in RVT,
we move the camera closer to the robot’s workspace to ensure
the point cloud’s quality for high-precision manipulation. We
use this camera position for all tasks. Besides the same five
tasks used in RVT (stack blocks, press sanitizer, put marker
in mug/bowl, put object in drawer, put object in shelf),
we additionally evaluate on three high-precision tasks from
IndustRealKit [45]: pick and insert 16mm peg, pick and insert
8mm peg, pick and insert plug. The two peg tasks consist of
picking up the peg from a hole and inserting it into another
hole (Fig. 4). Both the pick and place locations are randomized
over the work surface during evaluation. The plug task consists
of picking up a 2-prong plug from a tray and inserting it into
a vertically mounted socket (Fig. 5). This task further goes
beyond 2D pick-and-place and requires precise manipulation
in the 3D space. Similarly, the location of the plug tray

Avg. Avg. Train time Inf. Speed Close Drag Insert Meat off Open Place Place
Models Success ↑ Rank ↓ (in days) ↓ (in fps) ↑ Jar Stick Peg Grill Drawer Cups Wine
Image-BC (CNN) [26, 40] 1.3 7.4 - - 0 0 0 0 4 0 0
Image-BC (ViT) [26, 40] 1.3 7.7 - - 0 0 0 0 0 0 0
C2F-ARM-BC [25, 40] 20.1 5.8 - - 24 24 4 20 20 0 8
HiveFormer [19] 45.3 5.2 - - 52.0 76.0 0.0 100.0 52.0 0.0 80
PolarNet [5] 46.4 4.8 - - 36.0 92.0 4.0 100.0 84.0 0.0 40
PerAct [40] 49.4 4.4 16.0 4.9 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8
Act3D [13] 65.0 2.8 5.0 92.0 92.0 27.0 94.0 93.0 3.0 80
RVT [17] 62.9 2.8 1.0 11.6 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2
RVT-2 (ours) 81.4 1.5 0.83 20.6 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3

Push Put in Put in Put in Screw Slide Sort Stack Stack Sweep to Turn
Models Buttons Cupboard Drawer Safe Bulb Block Shape Blocks Cups Dustpan Tap
Image-BC (CNN) [26, 40] 0 0 8 4 0 0 0 0 0 0 8
Image-BC (ViT) [26, 40] 0 0 0 0 0 0 0 0 0 0 16
C2F-ARM-BC [25, 40] 72 0 4 12 8 16 8 0 0 0 68
HiveFormer [19] 84 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80
PolarNet [5] 96 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80
PerAct [40] 92.8 ± 3.0 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
Act3D [13] 99 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94
RVT [17] 100.0 ± 0.0 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 (ours) 100.0 ± 0.0 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7

TABLE I: Multi-Task Performance on RLBench. We report the success rate for 18 RLBench [24] tasks and the average
success rate across all the tasks. The success condition is as defined in RLBench. RVT-2 outperforms all methods while having
higher training and inference speed. Performance of HiveFormer and PolarNet are reported by [5]; RVT and PerAct are reported
by [17]; and Act3D is reported by [13]. All are trained with 100 demonstrations and a single model is evaluated on all the
tasks. All methods use input images of resolution 128×128, except Act3D, which uses 256×256.

Peg

Hole
(pick)

Peg tray
(insert)

16mm 8mm

Franka Emika Panda

Azure
Kinect
camera

Variations in
pick and insert

locations

Fig. 4: Our real-world setup (top) and the peg picking and
insertion task from [45].

and socket are randomized over their work surface during
evaluation. For tasks in RVT [17], we collect the same number
of demonstrations (∼ 10) as reported by them. For new high-
precision tasks, we collect 10 demonstrations per task. The
dataset statistics are provided in Tab. II.

Variations in
socket and

plug locations

2-prong socket 2-prong plug tray 2-prong plug

Fig. 5: The 2-prong plug picking and insertion task from [45];
and the considered variations in object locations.

Training and Evaluation Details. We train both RVT and
RVT-2 on the same dataset for fairness. We train a single
RVT and RVT-2 model for all eight tasks. Both models are
trained for 10 epochs using a cosine learning rate schedule and
the same data augmentation as in our simulation experiments.
For RVT-2 we use the same batch size and learning rate as in

of # of # of Models
Task vari. train test RVT RVT-2 (ours)

Stack blocks 3 15 10 80% 80%
Press sanitizer 1 7 10 90% 80%
Put marker in mug/bowl 4 12 10 20% 50%
Put object in drawer 3 12 10 30% 50%
Put object in shelf 2 8 10 100% 100%

All tasks in RVT [17] 13 54 50 64% 72%

Pick and insert 16mm peg 1 10 10 50% 60%
Pick and insert 8mm peg 1 10 10 40% 50%
Pick and insert plug 1 10 10 10% 50%

All high precision tasks 3 30 30 33.3% 53.3%

All tasks 16 84 80 52.5% 65%

TABLE II: Results in the real world. Both RVT-2 and RVT
use a single model for all 8 tasks with 16 variations. RVT-2
outperforms RVT on the tasks from [17] and the new high-
precision tasks.

the simulation experiments. For RVT, we cannot fit a larger
batch size as RVT-2 in memory, so we use the official training
parameters of batch size 24 and learning rate 2.4×103 [17].
We use the final model for evaluation.

Experiment Results. Table II shows the results in the real
world. We find that RVT-2 can perform multiple tasks with
only a handful of demonstrations (∼ 10) per task. Of the five
tasks from RVT [17], RVT-2 outperforms RVT by 8 absolute
points and 12.5 in relative terms. On all three new tasks that
require high precision, RVT-2 constantly outperforms RVT and
achieves 53.3% average success rate versus 33.3% for RVT.
Although RVT-2 achieves encouraging results on the high-
precision tasks with just a single camera, a common reason
for failure was small errors during insertion. We believe aug-
menting RVT-2 with a reactive policy to make fine adjustments
in the final stages of insertion could be an exciting future
direction. We encourage readers to view video results provided
on the project website for success and failure examples.

Failure Modes. We conduct a study of all failure cases across
all tasks in the real world and report failure modes. We classify
each failed episode into a “mode” that signifies the reason
for failure. For each task, we report the percentage of failure
because of a particular mode out of all the failures.

• Stack blocks: Placement on the incorrect block (100%)

• Press sanitizer: Missed sanitizer top (100%)

• Put marker in mug/bowl: Picking the wrong marker
(80%); Not going to the goal (20%)

• Put object in drawer: Picking wrong marker (40%); Not
going to the goal (20%); Failure while grasping (40%)

• Put object in shelf: No failure

• Pick and insert 16mm peg: Small error while placing
peg (75%); Not going to the goal (25%)

• Pick and insert 8mm peg: Small error while placing peg

(40%); Not going to the goal (40%); Failure to grasp
peg (20%)

• Pick and insert plug: Small error while plugging into the
socket (100%)

Overall, minor inaccuracies in the position prediction is the
major reason for failure in the “Press sanitizer”, “Pick and
insert 16mm peg”, “Pick and insert 8mm peg,” and “Pick
and insert plug.” For the “Put marker in mug/bowl” and “Put
object in drawer,” picking up the incorrect colored marker is
a major failure mode. This could be because the markers are
thin structures with few points in the point cloud informing
about the color of the marker. Further, failure to grasp the
object contributed to 40% of the failed episodes in the “Put
object in drawer” and 20% of the failed episodes in the “Pick
and insert 8mm peg” task.

C. Ablations

We conduct an extensive ablation study in simulation to
analyze the effect of each component of RVT-2. Results are
shown in Table III.

a) Multi-Stage Design: Comparing row 1 and 2, we can
see that including multi-stage design introduces a slowdown in
the training time due to the extra stage of rendering and infer-
ence. However, it brings a 17.5% success rate improvement
since the zoom-in view provides more task-relevant details
about the region of interest.

b) Parameter Rationalisation: Comparing row 1 and 3,
we see employing GPU-friendly network parameters accel-
erates the training process without compromising the perfor-
mance of the network.

c) Location Conditioned Rotation: From row 1 and 4,
we see that predicting the rotation using the local features
improves performance by 4.2%.

d) Fewer Virtual Views: We vary the number of views
in row 1 and 9. It reveals that reducing the number of camera
views from 5 to 3 not only maintains task performance but also
leads to a twofold increase in training speed. Unlike RVT, the
multi-stage network in RVT-2 performs well even with fewer
virtual views per stage.

e) Convex Upsampling: On comparing row 6 and 7, we
find that removing convex upsampling increases the training
time by 20.7 hours. We observe that removing convex up-
sampling but keeping the mixed precision leads to undefined
gradients during training. Hence, to ablate convex upsampling,
we compare row 6 and 7, both without mixed precision.

f) Point-Renderer: By replacing PyTorch3D with our
customized Point-Rederer, the forward pass is significantly
sped up, resulting in 3.6X faster training as seen in row 5.

g) Improved Training Pipeline: Comparing rows 1 and
7, we see that removing automatic mixed precision training
leads to a 300% increase in training time. Further removing
the 8-bit LAMB optimization and fast attention (row 8) further
increases the training time by 20%. Although the improve-
ments due to 8-bit LAMB optimizer and fast attention are not
large, they are helpful for the most optimized pipeline and
could potentially be beneficial for scaling up RVT-2.

Row Multi- Parameter Loc. Cond. Point Convex Mixed 8-bit Opt. # of Training Time Training Time Avg. Avg. Succ.
ID Stage Rational. Rot Render Upsamp. Prec. + Fast Attn. Views (in hours) % of base Succ. diff. wrt. base

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3 19.5 100% 81.4 0
2 ✗ ✓ ✓ ✓ ✓ ✓ ✓ 3 13.0 67% 63.9 - 17.5
3 ✓ ✗ ✓ ✓ ✓ ✓ ✓ 3 26.7 137% 77.2 - 4.2
4 ✓ ✓ ✗ ✓ ✓ ✓ ✓ 3 19.3 99% 78.9 -2.5
5 ✓ ✓ ✓ ✗ ✓ ✓ ✓ 3 71.1 366% 79.3 -2.1
6 ✓ ✓ ✓ ✓ ✗ ✗ ✓ 3 79.2 406% 82.0 +0.6
7 ✓ ✓ ✓ ✓ ✓ ✗ ✓ 3 58.5 300% 81.2 -0.2
8 ✓ ✓ ✓ ✓ ✓ ✗ ✗ 3 62.4 320% 81.3 -0.1
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 5 40.3 207% 79.7 -1.7

TABLE III: Ablations on RLBench. We quantify the impact of all the architectural and system-level improvements in RVT-2.
All these contribute to increasing the training speed, inference speed and performance of RVT-2.

D. Generalization Case Study

Similar to prior works, we test generalization to unseen
environment configurations. The object configurations are dif-
ferent in training and testing, and object positions vary in a
workspace of dimension 2 feet X 2 feet. We also test RVT-2 on
other generalization scenarios, where we vary lighting condi-
tions, background (table) appearance, and objects’ appearance.
Specifically, we test the block stacking task and find that even
when trained with few demonstrations, RVT-2 demonstrates
generalization to unseen lighting conditions, background, and
modifications to the objects’ appearance.

The video of this test can be found on the project web-
site (anonymous). We also investigate the generalization to
language input. For block stacking, the language input in the
training dataset is of the format “put x block on y block”
where x and y are different colors. We find our model to be
robust to language inputs like “move x block such that it is
on y block,” “move x block onto y block,” “stack x block on
y block,” and “move blocks such that x is under y.”

E. Failure Recovery Case Study

RVT-2 uses the observation from the current time step to
predict the pose in the next time step. Hence, the network is
closed loop at the frequency of key-points. To demonstrate
this, we do a study for the stack block task where we move
the target block mid-way of the execution and find that the
policy adjusts accordingly. Please see the video of this test on
the project website.

We further examined various episodes and found failure
recovery behavior across several tasks in the simulation. For
example, in an episode of “stack two black blocks,” the system
repeatedly tries to stack the blocks when the block falls. This
suggests that the architecture is capable of learning recovery
behavior. We show examples for three tasks: “stack blocks,”
“place cups,” and “slide block to the color target.”, whose
videos are on the project website.

V. CONCLUSIONS AND LIMITATIONS

In this work, we proposed RVT-2, a fast and precise model
for 3D object manipulation. It is built on the prior state-of-the-
art RVT. Using a combination of architectural and system-level
improvements, we significantly improved the speed, precision,
and task performance. Although none of the techniques we

used is novel in itself, our contribution lies in combining
them effectively to advance the state-of-the-art in few-shot 3D
manipulation. We found that RVT-2 significantly outperforms
prior methods on RLBench while requiring much less com-
pute. In the real world, we found that RVT-2 can solve high-
precision tasks that involve inserting pegs and plugs using a
single third-person camera and with just 10 demonstrations.

We identify various limitations of RVT-2 which could be
avenues of future work. RVT-2, like RVT and PerAct, works
with object instances that it was trained on. Extending this
to unseen object instances would be an exciting direction.
Although on high precision tasks, RVT-2 achieves surprising
success with just a single RGB-D sensor, it sometimes fails
due to minor insertion position errors. Augmenting RVT-2 to
use force information to adjust fine-grained motions could be
very interesting. As seen with the open drawer task for RVT-
2, multi-task optimization could worsen performance on some
tasks as training progresses. Developing a strategy to prevent
this would be very useful. Lastly, although RVT-2 improves
the overall performance on multi-task 3D manipulation by
17 points, the task is still far from being solved with RVT-
2 achieving a success rate of 82% in simulation and 72% in
the real world.

REFERENCES

[1] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas
Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-
Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jor-
nell Quiambao, Kanishka Rao, Michael Ryoo, Grecia
Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei
Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: Robotics transformer for real-
world control at scale. arXiv preprint arXiv:2212.06817,
2022.

[2] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen

anonymous

Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, Pete Flo-
rence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana
Gopalakrishnan, Kehang Han, Karol Hausman, Alexan-
der Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey
Levine, Yao Lu, Henryk Michalewski, Igor Mordatch,
Karl Pertsch, Kanishka Rao, Krista Reymann, Michael
Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet,
Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran,
Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Ste-
fan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. RT-2: Vision-language-action models transfer
web knowledge to robotic control. In CoRL, 2023.

[3] Théo Cachet, Julien Perez, and Seungsu Kim.
Transformer-based meta-imitation learning for robotic
manipulation. In NeurIPS Workshop on Robot Learning.
2020.

[4] Devendra Singh Chaplot, Deepak Pathak, and Jitendra
Malik. Differentiable spatial planning using transformers.
In ICML, 2021.

[5] Shizhe Chen, Ricardo Garcia-Pinel, Cordelia Schmid,
and Ivan Laptev. PolarNet: 3D point clouds for language-
guided robotic manipulation. In CoRL, 2023.

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3D object detection network for autonomous
driving. In CVPR, 2017.

[7] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin CM Burchfiel, and Shuran Song.
Diffusion Policy: Visuomotor Policy Learning via Action
Diffusion. In RSS, 2023.

[8] Henry M. Clever, Ankur Handa, Hammad Mazhar, Kevin
Parker, Omer Shapira, Qian Wan, Yashraj Narang, Ireti-
ayo Akinola, Maya Cakmak, and Dieter Fox. Assistive
tele-op: Leveraging transformers to collect robotic task
demonstrations. In NeurIPS Workshop on Robot Learn-
ing. 2021.

[9] Sudeep Dasari and Abhinav Gupta. Transformers for
one-shot visual imitation. In CoRL, 2020.

[10] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 8-bit optimizers via block-wise quantiza-
tion. In ICLR, 2022.

[11] Siyuan Dong, Devesh K. Jha, Diego Romeres, Sangwoon
Kim, Daniel Nikovski, and Alberto Rodriguez. Tactile-
RL for insertion: Generalization to objects of unknown
geometry. In ICRA, 2021.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

[13] Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and
Katerina Fragkiadaki. Act3D: 3D feature field transform-

ers for multi-task robotic manipulation. In CoRL, 2023.
[14] Ankit Goyal and Jia Deng. Packit: A virtual environment

for geometric planning. In International Conference on
Machine Learning, pages 3700–3710. PMLR, 2020.

[15] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell,
and Jia Deng. Revisiting point cloud shape classification
with a simple and effective baseline. In ICML, 2021.

[16] Ankit Goyal, Arsalan Mousavian, Chris Paxton, Yu-Wei
Chao, Brian Okorn, Jia Deng, and Dieter Fox. IFOR:
Iterative flow minimization for robotic object rearrange-
ment. In CVPR, 2022.

[17] Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei
Chao, and Dieter Fox. RVT: Robotic view transformer
for 3D object manipulation. In CoRL, 2023.

[18] Sagar Gubbi, Shishir Kolathaya, and Bharadwaj Amrutur.
Imitation learning for high precision peg-in-hole tasks. In
ICCAR, 2020.

[19] Pierre-Louis Guhur, Shizhe Chen, Ricardo Garcia Pinel,
Makarand Tapaswi, Ivan Laptev, and Cordelia Schmid.
Instruction-driven history-aware policies for robotic ma-
nipulations. In CoRL, 2022.

[20] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem.
MVTN: Multi-view transformation network for 3D shape
recognition. In ICCV, 2021.

[21] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem.
Voint Cloud: Multi-view point cloud representation for
3D understanding. In ICLR, 2023.

[22] Haojie Huang, Owen Howell, Xupeng Zhu, Dian Wang,
Robin Walters, and Robert Platt. Fourier Transporter: Bi-
equivariant robotic manipulation in 3D. In ICLR, 2024.

[23] Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang.
Multi-view transformer for 3D visual grounding. In
CVPR, 2022.

[24] Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J. Davison. RLBench: The robot learning
benchmark & learning environment. RA-L, 5(2):3019–
3026, 2020.

[25] Stephen James, Kentaro Wada, Tristan Laidlow, and
Andrew J. Davison. Coarse-to-fine Q-attention: Efficient
learning for visual robotic manipulation via discretisa-
tion. In CVPR, 2022.

[26] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,
Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea
Finn. BC-Z: Zero-shot task generalization with robotic
imitation learning. In CoRL, 2021.

[27] Rishabh Jangir, Nicklas Hansen, Sambaran Ghosal, Mo-
hit Jain, and Xiaolong Wang. Look closer: Bridging
egocentric and third-person views with transformers for
robotic manipulation. RA-L, 7(2):3046–3053, 2022.

[28] Jacob J. Johnson, Uday S. Kalra, Ankit Bhatia, Linjun
Li, Ahmed H. Qureshi, and Michael C. Yip. Motion
Planning Transformers: A motion planning framework
for mobile robots. arXiv preprint arXiv:2106.02791,
2021.

[29] Heecheol Kim, Yoshiyuki Ohmura, and Yasuo Ku-
niyoshi. Transformer-based deep imitation learning for

dual-arm robot manipulation. In IROS, 2021.
[30] Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth

Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, and
Jeannette Bohg. Making sense of vision and touch:
Self-supervised learning of multimodal representations
for contact-rich tasks. In ICRA, 2019.

[31] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich,
Wenhan Xiong, Vittorio Caggiano, Sean Naren, Min Xu,
Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut,
and Daniel Haziza. xFormers: A modular and hack-
able Transformer modelling library. https://github.com/
facebookresearch/xformers, 2022.

[32] Weiyu Liu, Chris Paxton, Tucker Hermans, and Di-
eter Fox. StructFormer: Learning spatial structure for
language-guided semantic rearrangement of novel ob-
jects. In ICRA, 2022.

[33] Yifang Liu, Diego Romeres, Devesh K. Jha, and Daniel
Nikovski. Understanding multi-modal perception us-
ing behavioral cloning for peg-in-a-hole insertion tasks.
arXiv preprint arXiv:2007.11646, 2020.

[34] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You
Liang Tan, Dorsa Sadigh, Chelsea Finn, and Sergey
Levine. Octo: An open-source generalist robot policy.
https://octo-models.github.io, 2023.

[35] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3D deep learning with Py-
Torch3D. arXiv preprint arXiv:2007.08501, 2020.

[36] Eric Rohmer, Surya P. N. Singh, and Marc Freese. V-
REP: A versatile and scalable robot simulation frame-
work. In IROS, 2013.

[37] Gerrit Schoettler, Ashvin Nair, Jianlan Luo, Shikhar
Bahl, Juan Aparicio Ojea, Eugen Solowjow, and Sergey
Levine. Deep reinforcement learning for industrial in-
sertion tasks with visual inputs and natural rewards. In
IROS, 2020.

[38] Markus Schütz, Bernhard Kerbl, and Michael Wimmer.
Rendering point clouds with compute shaders and vertex
order optimization. Computer Graphics Forum, 40(4):
115–126, 2021.

[39] Lucy Xiaoyang Shi, Archit Sharma, Tony Z. Zhao, and
Chelsea Finn. Waypoint-based imitation learning for
robotic manipulation. In CoRL, 2023.

[40] Mohit Shridhar, Lucas Manuelli, and Dieter Fox.
Perceiver-Actor: A multi-task transformer for robotic
manipulation. In CoRL, 2022.

[41] Anthony Simeonov, Ankit Goyal, Lucas Manuelli, Lin
Yen-Chen, Alina Sarmiento, Alberto Rodriguez, Pulkit
Agrawal, and Dieter Fox. Shelving, stacking, hanging:
Relational pose diffusion for multi-modal rearrangement.
arXiv preprint arXiv:2307.04751, 2023.

[42] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating

situated robot task plans using large language models.
ICRA, 2022.

[43] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and
Erik Learned-Miller. Multi-view convolutional neural
networks for 3D shape recognition. In ICCV, 2015.

[44] Priya Sundaresan, Suneel Belkhale, Dorsa Sadigh,
and Jeannette Bohg. KITE: Keypoint-conditioned
policies for semantic manipulation. arXiv preprint
arXiv:2306.16605, 2023.

[45] Bingjie Tang, Michael A. Lin, Iretiayo A. Akinola, Ankur
Handa, Gaurav S. Sukhatme, Fabio Ramos, Dieter Fox,
and Yashraj Narang. IndustReal: Transferring Contact-
Rich Assembly Tasks from Simulation to Reality. In
RSS, 2023.

[46] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs
field transforms for optical flow. In ECCV, 2020.

[47] Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang,
Li Fei-Fei, Danfei Xu, Yuke Zhu, and Anima Anand-
kumar. Mimicplay: Long-horizon imitation learning by
watching human play. arXiv preprint arXiv:2302.12422,
2023.

[48] Zhou Xian, Nikolaos Gkanatsios, Theophile Gervet,
Tsung-Wei Ke, and Katerina Fragkiadaki. ChainedDif-
fuser: Unifying trajectory diffusion and keypose predic-
tion for robotic manipulation. In CoRL, 2023.

[49] Jie Xu, Sangwoon Kim, Tao Chen, Alberto Rodriguez
Garcia, Pulkit Agrawal, Wojciech Matusik, and Shinjiro
Sueda. Efficient tactile simulation with differentiability
for robotic manipulation. In CoRL, 2022.

[50] Ruihan Yang, Minghao Zhang, Nicklas Hansen, Huazhe
Xu, and Xiaolong Wang. Learning vision-guided
quadrupedal locomotion end-to-end with cross-modal
transformers. In ICLR, 2022.

[51] Wentao Yuan, Adithyavairavan Murali, Arsalan Mousa-
vian, and Dieter Fox. M2T2: Multi-task masked trans-
former for object-centric pick and place. In CoRL, 2023.

[52] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Jonathan Chien, Maria Attarian, Travis Arm-
strong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and
Johnny Lee. Transporter networks: Rearranging the
visual world for robotic manipulation. In CoRL, 2020.

[53] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and
Chelsea Finn. Learning Fine-Grained Bimanual Manip-
ulation with Low-Cost Hardware. In RSS, 2023.

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://octo-models.github.io

	Introduction
	Related Work
	Method
	Background
	Architectural Changes: RVT RVT-2
	System-Related Changes: RVT RVT-2

	Experiments
	Simulation
	Real World
	Ablations
	Generalization Case Study
	Failure Recovery Case Study

	Conclusions and Limitations

