EX-NVS: EXTREME NOVEL VIEW SYNTHESIS VIA DEPTH WATERTIGHT MESH

Anonymous authors

Paper under double-blind review

Figure 1: Our EX-NVS framework takes a monocular video as input and generates high-quality videos under extreme viewpoints. By leveraging the proposed Depth Watertight Mesh representation, it effectively handles occlusions in boundaries and ensures geometric consistency, enabling visually

coherent and realistic results.

ABSTRACT

We introduce EX-NVS, a framework that addresses these challenges via a Depth Watertight Mesh (DW-Mesh) representation that explicitly models both visible and occluded regions, providing a robust geometric prior across viewpoints. Unlike traditional surface reconstruction methods that struggle with sparse visibility, our DW-Mesh ensures complete geometric coverage and maintains watertight properties essential for extreme viewpoint synthesis. To overcome the requirement for multi-view paired training data, we propose a simulated masking strategy that produces effective supervision from common monocular videos. A lightweight LoRA-based video diffusion adapter with novel linear aggregation capabilities integrates the DW-Mesh priors to synthesize high-quality, physically consistent, and temporally coherent videos. Extensive experiments demonstrate that EX-NVS outperforms state-of-the-art methods across a variety of metrics, with particularly strong improvements for extreme camera angles ranging from -90° to 90°, enabling practical extreme novel view synthesis.

1 Introduction

Recent advances in video generative models (Blattmann et al., 2023; Yang et al., 2024; et al., 2024; 2025a;b) enable high-quality, controllable video synthesis from text, images, and videos. Within this rapidly evolving field, camera-controllable video generation (He et al., 2024; Zhao et al., 2025; Liu et al., 2024) has emerged as a critical direction: enabling viewers to experience static or dynamic scenes from multiple viewpoints by simultaneously modeling spatial, temporal, and viewpoint dimensions. This capability underpins next-generation mixed reality experiences, free-viewpoint video systems, and immersive 3D content production that are becoming increasingly important in entertainment, education, and virtual collaboration.

However, generating camera-controllable videos for dynamic scenes with extreme viewpoints (e.g., -90° to 90°) remains one of the most challenging problems in computer vision. Current approaches fall into two main paradigms, each with fundamental limitations: 1) Camera-based guidance (He et al., 2024; Bai et al., 2024; Bahmani et al., 2025; Bai et al., 2025; Liu et al., 2023) uses camera parameters as implicit conditions, encoding position and orientation through ray maps (Hodge & Pedoe, 1994), positional embeddings (Mildenhall et al., 2020), or relative pose prompts. While these can generate videos with varying camera poses, they lack physical-consistent controllability and require extensive multi-view datasets with accurate camera calibration, limiting their practical applicability. 2) Geometry-based guidance (Gu et al., 2025; YU et al., 2025; Xiao et al., 2025) leverages explicit 3D representations to enable viewpoint control. These approaches reconstruct 3D geometry (e.g., point clouds, meshes) from input frames using techniques like MVSNet (Yao et al., 2018) or recent point-map methods (Wang et al., 2024b; Zhang et al., 2024; Wang et al., 2025b;a), then render these representations from target cameras to guide generation. While they reduce dependence on camera-calibrated multi-view training data (YU et al., 2025), they face a critical limitation: incomplete representation of occluded regions. This leads to boundary artifacts under extreme viewpoints, compromising visual quality and physical consistency.

To address these limitations, we propose **EX-NVS**, a framework for transforming monocular videos into **EX**treme-viewpoint **N**ovel **V**iew **S**ynthesis (Fig. 1). Our approach represents a paradigm shift that bridges camera- and geometry-based methods, synthesizing convincing extreme-view videos from monocular input without multi-view training data, while achieving physically consistent viewpoint control with seamless boundary-occlusion continuity and robust temporal appearance coherence.

The key module of our framework is the *Depth Watertight Mesh* (DW-Mesh) representation, which serves as a comprehensive geometric prior to guide the video generation process. Unlike traditional surface reconstruction methods that struggle with sparse visibility across viewpoints, the DW-Mesh explicitly models both visible surfaces and occluded boundaries through its watertight structure, ensuring geometric consistency even under the most extreme camera movements. This representation provides reliable and complete visibility masks for every viewpoint, effectively handling occlusion transitions through its mathematically sound watertight formulation.

To overcome the fundamental challenge of multi-view training data scarcity, we introduce a novel simulated masking strategy that creates highly effective training samples from readily available monocular videos. This approach employs two synergistic techniques: (1) Rendering Mask Generation, which creates physically grounded visibility masks from our DW-Mesh to simulate novel viewpoint occlusions; and (2) Tracking Mask Generation, which ensures temporal consistency by tracking feature correspondences across frames. This strategy eliminates the need for expensive multi-view data collection while effectively simulating the full spectrum of extreme viewpoint challenges.

Finally, guided by the DW-Mesh priors, a lightweight *LoRA-based video diffusion adapter* with linear aggregation capabilities synthesizes high-quality videos with enhanced temporal coherence. This adapter efficiently integrates geometric information from the DW-Mesh with pre-trained video diffusion models through an innovative multi-input fusion mechanism, producing visually coherent and physically realistic results while maintaining computational efficiency. Our comprehensive experiments demonstrate that EX-NVS consistently outperforms state-of-the-art methods across different metrics and viewpoint ranges, with the performance gap widening significantly as camera angles become more extreme. Quantitative evaluations show substantial improvements in visual quality (FID), temporal coherence (FVD), and 3D consistency (PSNR), while user studies confirm superior perceptual quality and physical consistency. Importantly, our method produces more realistic and physically consistent videos, particularly for challenging viewpoints ranging from -90° to 90° , representing a significant advance in practical extreme viewpoint video synthesis capabilities.

In summary, our main contributions are:

- 1. We introduce the Depth Watertight Mesh (DW-Mesh) representation that explicitly models both visible and hidden regions with watertight properties, maintaining geometric consistency for extreme viewpoints where traditional surface reconstruction fails.
- 2. We develop a comprehensive simulated masking strategy combining rendering masks and tracking masks that enables effective training without requiring expensive multi-view video datasets, democratizing extreme viewpoint synthesis.

3. Extensive experiments demonstrate EX-NVS consistently outperforms existing methods across all metrics, with particularly strong improvements for extreme camera angles, enabling practical applications in immersive content creation.

2 Related Work

Scene Reconstruction. Recent advances include neural representations like NeRF (Mildenhall et al., 2020), efficient methods such as 3D Gaussian Splatting (Kerbl et al., 2023), and dynamic scene modeling with Shape-of-Motion (Wang et al., 2024a). Approaches like DUSt3R (Wang et al., 2024b), X-Ray (Hu et al., 2024), CUT3R (Wang et al., 2025b), and VGGT (Wang et al., 2025a) have improved efficiency by reconstructing from uncalibrated images. However, these methods often struggle with occlusions and dynamic scenes. Our DW-Mesh explicitly models occluded regions to ensure geometric consistency during extreme viewpoint synthesis.

Video Diffusion Models. The field has evolved from early approaches like Make-A-Video (Singer et al., 2023) and Gen-1 (RunwayML, 2023) to more sophisticated models. SVD (Blattmann et al., 2023) and VideoCrafter (Chen et al., 2023; 2024) enhanced temporal coherence, while large-scale models such as Hunyuan Video (et al., 2024), CogVideoX (Yang et al., 2024), and Wan 2.1 (et al., 2025b) achieve impressive spatiotemporal consistency. Our framework builds on these capabilities to enable extreme-angle video generation with robust geometric and temporal coherence.

Camera and Motion Control. Various approaches enable camera movement in video synthesis, but face significant limitations under extreme viewpoints. CameraCtrl (He et al., 2024) uses camera parameter encoding but struggles with extreme viewpoints due to lack of geometric understanding. GCD (Van Hoorick et al., 2024) employs pose embeddings but requires domain-specific training. TrajectoryCrafter (YU et al., 2025) enables camera redirection using point clouds but suffers from incomplete geometry reconstruction that leads to artifacts under extreme viewing angles. ReCam-Master (Bai et al., 2025) extends T2V models with camera control but needs extensive multi-camera training data. Other approaches like MotionCtrl (Wang et al., 2024c), AnimateDiff (Guo et al., 2024; 2023), and DragNUWA (Yin et al., 2023) support basic camera effects without proper 3D geometric understanding. Our approach fundamentally addresses these limitations through comprehensive DW-Mesh representation that maintains watertight geometric properties, enabling high-quality novel view synthesis from monocular videos without multi-view training data while ensuring physical consistency under extreme camera movements.

3 Our Approach

The goal of our EX-NVS framework is to generate a novel-view video $\hat{V} = \{\hat{I}_t\}_{t=1}^T$ from an input monocular video $V = \{I_s\}_{s=1}^S$ and a target camera trajectory $\{P_t\}_{t=1}^T$. It consists of three key steps: (1) constructing a DW-Mesh as a geometric prior to handle occlusions in boundaries, (2) generating training masks to simulate novel-view occlusions using monocular videos, and (3) using a lightweight video diffusion adapter to produce physically consistent and temporally coherent videos.

3.1 Depth Watertight Mesh

Existing 3D representations for novel view synthesis typically focus on visible surfaces while neglecting occluded regions, leading to artifacts when rendering from extreme viewpoints. Our DW-Mesh addresses this unexplored limitation by implementing a geometric structure that maintains both visible and hidden surfaces through a watertight formulation. This technical design choice enables unified handling of scene topology across arbitrary camera positions without requiring explicit multi-view supervision.

3.1.1 DW-MESH CONSTRUCTION

As shown in Fig. 3, for each video frame I_t , we construct its DW-Mesh $M_t = \{V, F, T, O\}$, where V represents vertices, F denotes faces, T represents mesh textures, and O indicates whether faces are occluded. The construction process involves the following steps:

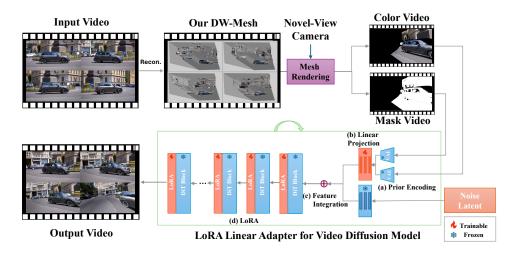


Figure 2: Overview of the EX-NVS framework. Our approach transforms monocular videos into extreme novel view videos through three key components: (1) Depth Watertight Mesh construction, which explicitly models both visible and occluded regions; (2) Color and mask videos are simulated or rendered for training or inference; and (3) a lightweight LoRA-based video diffusion adapter that ensures geometric consistency and temporal coherence in the synthesized videos.

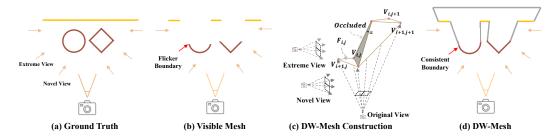


Figure 3: Illustration of DW-Mesh construction. (a) Ground Truth: The original scene with complete geometry. (b) Visible Mesh: 3D reconstructed visible mesh representation showing only the visible regions, causing flicker boundaries during rendering. (c) DW-Mesh Construction: We model both visible and invisible surfaces using watertight mesh from depth maps. (d) DW-Mesh: The watertight mesh representation ensures boundary consistency in extreme viewpoints.

Vertex and Face Construction. We compute per-frame depth maps D_t using a pre-trained video depth estimation model (Hu et al., 2025). Each pixel (i,j) with depth value $D_{i,j}$ is unprojected into 3D space to form a vertex $V_{i,j} = o + D_{i,j} \cdot r_{i,j}$, where o is the canonical camera origin and $r_{i,j}$ is the ray direction. Triangular faces are constructed by connecting adjacent vertices in 2×2 grids. Boundary padding ensures watertight properties by setting D_{\max} for frame-border pixels (details in appendix).

Occlusion and Texture. Rather than directly assigning pixel color as texture, we add an occlusion attribute. For each face, we perform geometric validation through minimum face angle analysis and depth discontinuity detection. Faces with minimum angle less than δ_{angle} or large depth discontinuities $\Delta D > \delta_{\text{depth}}$ are marked as occluded $(O_{i,j}=1)$, with texture set to [0,0,0]. Otherwise, faces use pixel color $C_{i,j}$ as texture. This produces a watertight mesh $M_t = \{V,F,T,O\}$ capturing both visible and occluded regions.

3.1.2 DW-MESH RENDERING

The DW-Mesh is rendered from the target camera trajectory $\{P_t\}_{t=1}^T$ to produce color and mask videos V_T , V_O from mesh texture T and occlusion attribute O. These outputs serve as geometric

priors, conditioning the video diffusion module to synthesize novel-view frames with improved visual consistency and geometric accuracy, even under challenging camera movements.

3.2 Mask Generation for Training

Training video diffusion models for extreme viewpoint synthesis is challenging due to the scarcity of multi-view dynamic video datasets. To address this, we introduce a simulated masking strategy that creates effective training pairs from monocular videos without relying on paired multi-view data. This strategy includes two key components: Rendering Mask Generation and Tracking Mask Generation, as illustrated in Fig. 4.

Figure 4: Illustration of our mask generation methods. Top Row: Input Monocular Video; Middle Row: Rendering Mask Generation uses DW-Mesh to simulate occlusions that would occur in novel viewpoints; Bottom Row: Tracking Mask Generation preserves temporal consistency by tracking points across frames and marking consistent occlusion patterns.

Rendering Mask Generation. This component leverages the DW-Mesh to generate realistic occlusion masks for novel viewpoints. We: 1) Construct DW-Mesh from input video and identify boundary mesh faces; 2) Render DW-Mesh under comprehensive rotation trajectories spanning -90° to produce binary visibility masks; 3) Apply morphological dilation to suppress noise while preserving structural integrity. This creates physically grounded occlusion masks for training.

Tracking Mask Generation. To ensure temporal consistency, we track feature points across frames using CoTracker3 (Karaev et al., 2024). We establish 10-50 points per frame and track their trajectories. When tracked points become occluded, we generate corresponding mask regions, creating temporally coherent occlusion transitions.

3.3 A LIGHTWEIGHT ADAPTER FOR VIDEO DIFFUSION

To synthesize realistic appearances for novel viewpoints, we build upon a pre-trained image-to-video diffusion model (et al., 2025b) and introduce a lightweight adapter. Our architecture integrates geometric priors through: (a) Encoding rendered color/mask videos via frozen VAE; (b) Linear projection to align with diffusion dimensions; (c) Feature integration by adding projected features to noise latents; (d) LoRA-based adaptation for efficient training with frozen backbone.

LoRA Linear Adapter. Our contribution extends standard LoRA by introducing a linear adapter that efficiently aggregates multiple control inputs (color and mask videos). While LoRA handles single tasks effectively, it cannot process multiple control signals simultaneously. Our novel linear adapter enables efficient aggregation through simple injection (x = x + latent), overcoming ControlNet's limitations like struggle in handling multiple control videos. The training objective follows standard diffusion denoising: $\mathcal{L} = \mathbb{E}_{\epsilon,t}[\omega(t)||\epsilon_{\theta}(z_t, I_1, V_T, V_O, t; \theta) - \epsilon||_2^2]$.

Temporal Consistency Analysis. Our approach ensures robust temporal and geometric coherence through three mechanisms: (1) *Temporally Consistent Depth Estimation*: We employ DepthCrafter (Hu et al., 2025), a state-of-the-art video depth estimator that maintains temporal smoothness across frames. While minor depth inconsistencies may occasionally occur, this limitation is shared across all depth-based methods and continues to improve as monocular depth estimation advances. (2) *Geometric Prior Filtering*: Our DW-Mesh representation explicitly filters unreliable geometric regions through occlusion-aware masking, providing stable surface priors that minimize temporal flickering

Table 1: Quantitative comparison of FID and FVD across viewpoint ranges.

270

273 274

275 276

277 278 279

281 283

280

284 285 286

287 288 289

290 291 292

293

294

295

296

301

302

307 308

309

314

315

316 317

322

323

FID. FVD. Method Small $(0^{\circ} \rightarrow 30^{\circ})$ Large $(0^{\circ} \rightarrow 60^{\circ})$ Small $(0^{\circ} \rightarrow 30^{\circ})$ Large $(0^{\circ} \rightarrow 60^{\circ})$ Extreme $(0^{\circ} \rightarrow 90^{\circ})$ Extreme $(0^{\circ} \rightarrow 90^{\circ})$ 59.86 50.88 62.69 TrajectoryAttention (Xiao et al., 2025) 62.49 623.54 659.29 754.80 912.14 943.45 ReCamMaster (Bai et al., 2025) 56.49 64.68 714.62 TrajectoryCrafter (YU et al., 2025) EX-NVS (Ours) 65.33 55.42 633.25 571.18 725.44 685.39

Table 2: Quantitative comparison between methods in VBench metrics for the Full range $(-90^{\circ} \rightarrow 90^{\circ})$.

Method	$\begin{array}{c} \textbf{Aesthetic} \\ \textbf{Quality} \uparrow \end{array}$	Imaging Quality ↑	Temporal Flickering ↑	$\begin{array}{c} \textbf{Motion} \\ \textbf{Smoothness} \uparrow \end{array}$	Subject Consistency ↑	Background Consistency ↑	Dynamic Degree ↑
TrajectoryAttention (Xiao et al., 2025)	0.389	0.567	0.895	0.931	0.834	0.846	0.923
ReCamMaster (Bai et al., 2025)	0.434	0.582	0.909	0.938	0.831	0.849	0.941
TrajectoryCrafter (YU et al., 2025)	0.447	0.607	0.902	0.928	0.838	0.856	0.936
EX-NVS (Ours)	0.450	0.631	0.914	0.934	0.846	0.872	0.948

in boundaries and maintain physical consistency across extreme viewpoint transitions. (3) Diffusion-Based Temporal Modeling: The video diffusion backbone employs self-attention mechanisms that process frame sequences holistically, enabling effective propagation of appearance and geometric information across time to ensure coherent motion dynamics and structural consistency.

EXPERIMENTS

EXPERIMENTAL SETTINGS

Datasets. For training, we utilize OpenVID (Nan et al., 2024), a large-scale monocular video dataset with over 1 million high-quality videos spanning diverse scenes and motion patterns. For comprehensive evaluation, we construct a challenging testing dataset of 150 carefully selected in-thewild videos, comprising 100 static scenes and 50 dynamic scenes with varying complexity levels. We evaluate across four progressive angular ranges to assess performance scalability: Small $(0^{\circ} \rightarrow 30^{\circ})$, Large $(0^{\circ} \rightarrow 60^{\circ})$, Extreme $(0^{\circ} \rightarrow 90^{\circ})$, and Full $(-90^{\circ} \sim 90^{\circ})$, enabling thorough analysis of method robustness under increasingly challenging viewpoint changes.

Metrics. We employ a comprehensive evaluation protocol using multiple complementary metrics: FID (Heusel et al., 2017a) for assessing visual quality and realism, FVD (Heusel et al., 2017b) for evaluating temporal coherence and video dynamics, VBench (Huang et al., 2024) for comprehensive perceptual quality assessment across multiple dimensions, and structured user studies for human perceptual evaluation. For 3D consistency validation, we use novel view synthesis metrics with 3D Gaussian Splatting reconstruction. All methods use identical camera trajectories and depth inputs for rigorous and fair comparison.

Baselines. We compare against state-of-the-art camera-controllable video synthesis methods from both major paradigms: geometry-based approaches including TrajectoryCrafter (YU et al., 2025) and Trajectory Attention (Xiao et al., 2025), and camera-parameter-based conditioning methods such as ReCamMaster (Bai et al., 2025). These baselines represent the current leading approaches in novel view video synthesis.

Implementation Details. Training uses Wan2.1 (et al., 2025b) (14B parameters) as frozen backbone with 140M trainable adapter parameters. We use LoRA rank 16, AdamW optimizer with 1.3×10^{-5} , training on 32 A100 GPUs for 24 hours. Videos are 512×512 resolution with 49 frames. Inference uses 25 denoising steps, taking 4 minutes per video.

4.2 QUANTITATIVE COMPARISON

Video Quality. The results in Table 1 demonstrate that our EX-NVS consistently outperforms all baselines across different metrics and viewpoint ranges. For FID scores, our method achieves 44.19, 50.30, and 55.42 for small, large, and extreme viewpoint ranges respectively, showing significant improvements over the second-best method (TrajectoryCrafter with 48.72, 55.24 for small and

large ranges, and TrajectoryAttention with 62.49 for extreme angles). Similarly, ours achieves the lowest FVD scores (571.18, 685.39, and 823.61) across all viewpoint ranges, demonstrating superior temporal coherence compared to the baselines. Notably, as the viewpoint angles become more extreme, the performance gap widens, highlighting our method's robustness in handling challenging camera movements.

Table 2 shows our method achieves the highest scores on most VBench (Huang et al., 2024) metrics, including aesthetic quality (0.450), imaging quality (0.631), and temporal consistency (0.914). Our scores for subject consistency (0.846) and background consistency (0.872) demonstrate the geometric stability of our DW-Mesh representation. Our method maintains consistent quality across extreme camera movements, confirming the effectiveness of our DW-Mesh approach. We also evaluated both static and dynamic scenes separately (results in supplementary), showing consistent outperformance across diverse scene types. Table 3 further breaks down performance on static vs dynamic scenes under extreme viewpoints (0° \rightarrow 90°). Our method consistently outperforms all baselines in both scenarios, highlighting the versatility of our DW-Mesh representation for handling diverse content types.

Scene type performance. To demonstrate the robustness of our approach across different scene types, we evaluate our method separately on static and dynamic scenes. Table 3 shows that EX-NVS consistently outperforms all baselines in both scenarios, highlighting the versatility of our DW-Mesh representation for handling diverse content types.

3D Consistency in 6DoF using NVS. Our method supports full 6-degree-of-freedom camera motion. Evaluation on arbitrary translation and rotation combinations shows superior performance with larger margins than pure rotational movements, confirming DW-Mesh's robustness across complex trajectories (details in appendix). To comprehensively assess the geometric consistency of our method, we evaluate 3D consistency via Novel View Synthesis metric by reconstructing 3D scenes with 3D Gaussian Splatting (Kerbl et al., 2023) from generated videos and computing PSNR between generated frames and rendered novel views. As shown in Table 4, our method achieves the highest PSNR of 28.09, significantly outperforming all baselines and demonstrating superior 3D consistency in camera-driven video generation.

Table 3: Scene type performance $(0^{\circ} \rightarrow 90^{\circ})$.

Method	St	tatic	Dynamic		
	FID↓	FVD↓	FID↓	FVD↓	
TrajectoryAttention	66.24	974.32	66.78	967.85	
ReCamMaster	68.92	1007.21	69.08	1001.45	
TrajectoryCrafter	69.65	953.94	69.77	958.12	
EX-NVS (Ours)	59.14	879.72	58.96	881.34	

Table 4: 3D Consistency in 6DoF using NVS.

Method	PSNR ↑
TrajectoryAttention (Xiao et al., 2025)	18.45
ReCamMaster (Bai et al., 2025)	19.65
TrajectoryCrafter (YU et al., 2025)	24.17
EX-NVS (Ours)	28.09

4.3 QUALITATIVE COMPARISON

We present comprehensive qualitative comparisons in Fig. 5 across diverse challenging scenarios. Existing geometry-based approaches (TrajectoryCrafter and TrajectoryAttention) show fundamental limitations with extreme viewpoints, producing severe ghosting artifacts, geometric distortions, and inconsistent object boundaries due to their inability to properly model hidden surfaces and handle occlusion transitions. These methods often fail to maintain object shape integrity under large viewpoint changes, resulting in warped or disconnected structures. ReCamMaster exhibits inconsistent object boundaries, temporal flickering, and struggles with extreme camera trajectories, often producing unrealistic viewpoint deviations outside its training distribution.

In stark contrast, our EX-NVS method produces physically consistent videos with superior occlusion handling, maintaining object shapes, spatial relationships, and temporal coherence even under the most challenging extreme camera movements. Our DW-Mesh representation ensures smooth occlusion transitions and prevents the geometric artifacts that plague existing methods, resulting in visually convincing and temporally stable extreme viewpoint videos. Additional qualitative results spanning diverse scene types are provided in the supplementary material.

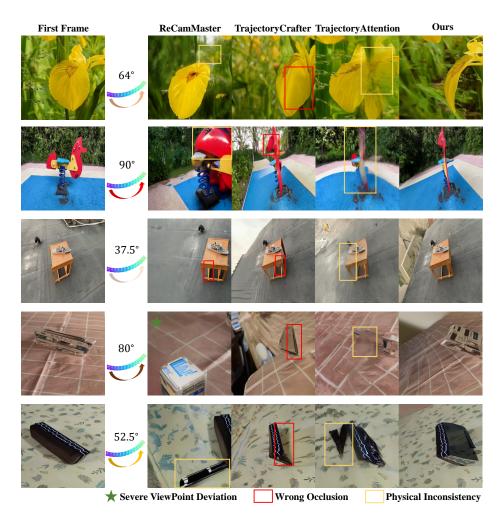


Figure 5: Qualitative comparison under extreme viewpoints. Our approach produces physically consistent videos with effective occlusion handling and temporal coherence. In contrast, baselines exhibit artifacts such as **physical inconsistency** (shape/scale distortion), **wrong occlusion** (leaking/ghosting near boundaries), and **severe viewpoint deviation** in scenes outside their training distribution.

Table 5: Ablation study on the components of EX-NVS in Extreme Viewpoint ($0^{\circ} \rightarrow 90^{\circ}$).

Variant	FID↓	FVD↓
Full Method (DW-Mesh + LoRA Rank 16 + Wan2.1)	55.42	823.61
w/o DW-Mesh	74.31 (worse 34.085%)	1103.21 (worse 33.948%)
w/ Random Masks	69.36 (worse 25.153%)	993.64 (worse 20.644%)
w/o Rendering Masks	63.35 (worse 14.309%)	972.93 (worse 18.130%)
w/o Tracking Masks	60.24 (worse 8.697%)	924.47 (worse 12.246%)
w/ LoRA Rank 64	53.68 (better 3.140%)	802.47 (better 2.567%)

4.4 USER STUDY

We conducted a comprehensive user study with 50 participants evaluating 12 video sets across diverse scenes and camera movements. Participants selected the method with best physical consistency and extreme viewpoint synthesis quality. As shown in Fig. 6, our method received 70.70% preference compared to TrajectoryCrafter (14.96%), ReCamMaster (9.50%), and TrajectoryAttention (4.84%), demonstrating superior handling of complex occlusions and temporal transitions.

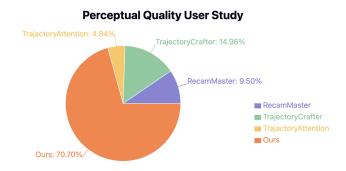


Figure 6: User study results comparing our EX-NVS method against baselines. Participants evaluated videos based on quality of physical consistency and extreme viewpoint, with our approach receiving significantly higher preference ratings.

4.5 ABLATION STUDY

Model contribution. Table 5 shows the impact of each component. Removing the DW-Mesh (W/o DW-Mesh) leads to the largest performance drop (FID: +34.1%, FVD: +33.9%), underscoring its critical importance for extreme viewpoint synthesis. Using random masks significantly degrades performance (FID: +25.2%, FVD: +20.6%), demonstrating the value of our structured geometric guidance over arbitrary masking strategies. Both rendering and tracking masks are crucial for optimal performance, with rendering masks providing stronger geometric constraints and tracking masks ensuring temporal consistency. Switching from Wan2.1 to smaller backbones reduces performance, but our method still outperforms baselines. Increasing LoRA rank from 16 to 64 yields minimal improvements, confirming our lightweight design is already effective.

Backbone Model Fairness Analysis. To address fairness concerns, we tested our method with smaller backbones. Table 6 shows that even with Wan2.1-1.3B (1.3B parameters), our method (FID: 62.12, FVD: 878.95) outperforms TrajectoryCrafter with CogVideoX-5B (FID: 65.33, FVD: 893.80), confirming improvements stem from DW-Mesh representation rather than model scale.

Table 6: Backbone model fairness comparison.

Method	FID↓	FVD↓
TrajectoryCrafter w/ CogVideoX-5B (YU et al., 2025)	65.33	893.80
EX-NVS w/ Wan2.1-1.3B	62.12	878.95
EX-NVS w/ CogVideoX-5B	59.76	867.25
EX-NVS w/ Wan2.1-14B	55.42	823.61

5 Conclusion

We introduced EX-NVS, a framework for generating high-quality videos from monocular input under extreme viewpoints. Our key innovation, the Depth Watertight Mesh (DW-Mesh), ensures geometric consistency by explicitly modeling visible and occluded regions. Our simulated masking strategy eliminates the need for multi-view training data, while the lightweight LoRA adapter efficiently integrates geometric priors into video diffusion models. Extensive experiments demonstrate consistent outperformance of state-of-the-art methods, with particularly significant improvements at extreme camera angles. User studies confirm superior perceptual quality and physical consistency.

Limitations: Our framework relies on depth estimation quality, may struggle with fine structures, and requires significant computation for high-resolution generation. Future work will focus on involving dynamic scene reconstruction and improving model efficiency.

REFERENCES

- Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, Andrea Tagliasacchi, David B. Lindell, and Sergey Tulyakov. Ac3d: Analyzing and improving 3d camera control in video diffusion transformers. *Proc. CVPR*, 2025.
- Jianhong Bai, Menghan Xia, Xintao Wang, Ziyang Yuan, Xiao Fu, Zuozhu Liu, Haoji Hu, Pengfei Wan, and Di Zhang. Syncammaster: Synchronizing multi-camera video generation from diverse viewpoints, 2024. URL https://arxiv.org/abs/2412.07760.
- Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji Hu, Xiang Bai, Pengfei Wan, and Di Zhang. Recammaster: Camera-controlled generative rendering from a single video, 2025. URL https://arxiv.org/abs/2503.11647.
- Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach. Stable video diffusion: Scaling latent video diffusion models to large datasets. *CoRR*, 2023.
- Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter1: Open diffusion models for high-quality video generation, 2023.
- Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models, 2024.
- Guoqing Ma et al. Step-video-t2v technical report: The practice, challenges, and future of video foundation model, 2025a. URL https://arxiv.org/abs/2502.10248.
- WanTeam et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025b.
- Weijie Kong et al. Hunyuanvideo: A systematic framework for large video generative models, 2024. URL https://arxiv.org/abs/2412.03603.
- Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng Lin, Ziwei Liu, Wenping Wang, and Yuan Liu. Diffusion as shader: 3d-aware video diffusion for versatile video generation control. *arXiv preprint arXiv:2501.03847*, 2025.
- Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Sparsectrl: Adding sparse controls to text-to-video diffusion models. *arXiv preprint arXiv:2311.16933*, 2023.
- Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. *International Conference on Learning Representations*, 2024.
- Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang. Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint arXiv:2404.02101*, 2024.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017a. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8ald694707eb0fefe65871369074926d-Paper.pdf.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a nash equilibrium. *CoRR*, abs/1706.08500, 2017b. URL http://arxiv.org/abs/1706.08500.
- W. V. D. Hodge and D. Pedoe. *Methods of Algebraic Geometry*. Cambridge University Press, 1994 edition, 1994.

- Tao Hu, Wenhang Ge, Yuyang Zhao, and Gim Hee Lee. X-ray: A sequential 3d representation for generation. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 136193–136219.
 Curran Associates, Inc., 2024.
 - Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying Shan. Depthcrafter: Generating consistent long depth sequences for open-world videos. In *CVPR*, 2025.
 - Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.
 - Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. In *Proc. arXiv:2410.11831*, 2024.
 - Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), July 2023.
 - Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular primitives for high-performance differentiable rendering. *ACM Transactions on Graphics*, 39(6), 2020.
 - Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, and Yueqi Duan. Reconx: Reconstruct any scene from sparse views with video diffusion model, 2024. URL https://arxiv.org/abs/2408.16767.
 - Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object, 2023.
 - Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.
 - Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang, and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. *arXiv* preprint arXiv:2407.02371, 2024.
 - RunwayML. Gen-1: The next step forward for generative ai, 2023. URL https://runwayml.com/research/gen-1. Accessed May 7, 2025.
 - Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video: Text-to-video generation without text-video data. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=nJfylDvgzlq.
 - Basile Van Hoorick, Rundi Wu, Ege Ozguroglu, Kyle Sargent, Ruoshi Liu, Pavel Tokmakov, Achal Dave, Changxi Zheng, and Carl Vondrick. Generative camera dolly: Extreme monocular dynamic novel view synthesis. *European Conference on Computer Vision (ECCV)*, 2024.
 - Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025a.
 - Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of motion: 4d reconstruction from a single video, 2024a. URL https://arxiv.org/abs/2407.13764.
 - Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Continuous 3d perception model with persistent state. *arXiv preprint arXiv:2501.12387*, 2025b.

- Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 20697–20709, June 2024b.
- Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024c.
- Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan. Trajectory attention for fine-grained video motion control. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=2z1HT5lw5M.
- Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.
- Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mysnet: Depth inference for unstructured multi-view stereo. In *Computer Vision ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VIII*, pp. 785–801, Berlin, Heidelberg, 2018. Springer-Verlag. ISBN 978-3-030-01236-6. doi: 10.1007/978-3-030-01237-3_47. URL https://doi.org/10.1007/978-3-030-01237-3_47.
- Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, and Nan Duan. Dragnuwa: Fine-grained control in video generation by integrating text, image, and trajectory, 2023. URL https://arxiv.org/abs/2308.08089.
- Mark YU, Wenbo Hu, Jinbo Xing, and Ying Shan. Trajectorycrafter: Redirecting camera trajectory for monocular videos via diffusion models, 2025. URL https://arxiv.org/abs/2503.05638.
- Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion. *arXiv* preprint arxiv:2410.03825, 2024.
- Yuyang Zhao, Chung-Ching Lin, Kevin Lin, Zhiwen Yan, Linjie Li, Zhengyuan Yang, Jianfeng Wang, Gim Hee Lee, and Lijuan Wang. Genxd: Generating any 3d and 4d scenes. In *ICLR*, 2025.

MORE IMPLEMENTATION DETAILS

A.1 DW-MESH CONSTRUCTION DETAILS

648

649 650

651 652

653

654

655 656

657

658

659

660

662 663

664

665

666 667

668 669

670

671

672

673 674

675 676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

696

697 698

699 700 For vertex and face construction, triangular faces are formed using:

$$F_{i,j,1} = \{(i,j), (i+1,j), (i,j+1)\},$$

$$F_{i,j,2} = \{(i+1,j), (i+1,j+1), (i,j+1)\}.$$
(1)

$$F_{i,j,2} = \{(i+1,j), (i+1,j+1), (i,j+1)\}. \tag{2}$$

Two additional boundary faces $\{(0,0),(0,W),(H,0)\}$ and $\{(H,0),(H,W),(0,W)\}$ ensure complete watertight mesh construction.

For occlusion detection, the criteria are:

$$O_{i,j} = \begin{cases} 1, & \text{if Min}(\angle(F_{i,j})) < \delta_{\text{angle or }} \Delta D > \delta_{\text{depth}}, \\ 0, & \text{otherwise.} \end{cases}$$
 (3)

The texture assignment follows:

$$T_{i,j} = \begin{cases} [0,0,0], & \text{if } O_{i,j} = 1, \\ C_{i,j}, & \text{otherwise,} \end{cases}$$
 (4)

A.2 DETAILED TRAINING PROCESS

The video diffusion model parameters θ are defined as: ϵ : ground-truth noise, z_t : noisy latents, $\omega(t)$: training weight at timestep t, I_1 : first frame, ϵ_{θ} : denoising model.

The adapter uses LoRA rank 16 across attention layers (q, k, v, o) and feed-forward blocks (ffn.0, ffn.2). Training uses AdamW optimizer with detailed hyperparameters in supplementary material.

A.3 Network Structure

The EX-NVS Adapter consists of four main modules: Prior Encoding, Linear Projection, Feature Integration, and LoRA. Below, we provide detailed descriptions of each module:

Prior Encoding leverages a frozen Video VAE encoder from Wan Text-to-Vodeo model (et al., 2025b) to extract compact latent representations from both the input color video and the corresponding mask video. Specifically, given input sequences of shape $\mathbb{R}^{49 \times 512 \times 512}$, the VAE encodes each into latent tensors of shape $\mathbb{R}^{7\times64\times64}$, where 49 is the number of frames and 512×512 is the spatial resolution. This encoding preserves essential spatiotemporal information while significantly reducing dimensionality, enabling efficient downstream processing. The encoded latents from the color and mask videos are then concatenated along the channel dimension to form a unified geometric prior, which is subsequently fed into the linear projection module for further feature transformation.

Linear Projection is implemented as a sequence of $1 \times 1 \times 1$ Conv3d layers followed by a final Conv3d layer with kernel size (1,2,2) and stride (1,2,2). The concatenated latent features from the prior encoding stage are first projected to a higher-dimensional hidden space using the $1 \times 1 \times 1$ convolutions with SiLU activations. The final Conv3d layer then downsamples the spatial dimensions to produce patch embeddings that match the expected input shape of the diffusion model. This design ensures efficient channel mixing and spatial alignment between the geometric priors and the video diffusion backbone.

The following code snippet illustrates the implementation of both prior encoding and linear projection layer within the EX-NVS adapter:

```
import torch
2 import torch.nn as nn
4 class PriorEncoding(nn.Module):
     A VAE model for encoding camera information and video features.
```

```
702
             def ___init___(
703
       10
                  self,
704
                  in_channels: int = 16,
       11
                  hidden_channels: int = 1024,
705
       12
       13
                 out_channels: int = 5120,
706
              ) -> None:
707
       15
                 super().__init__()
708
       16
709
       17
                  self.latent_encoder = torch.nn.Sequential(
710
                      torch.nn.Conv3d(in_channels * 2, hidden_channels,
             kernel_size=1, stride=1, padding=0),
711
                      torch.nn.SiLU(),
       19
712
                      torch.nn.Conv3d(hidden_channels, hidden_channels,
       20
713
             kernel_size=1, stride=1, padding=0),
714
       21
                      torch.nn.SiLU(),
                      torch.nn.Conv3d(hidden_channels, hidden_channels,
715
             kernel_size=1, stride=1, padding=0)
716
       23
717
                  self.latent_patch_embedding = torch.nn.Conv3d(hidden_channels,
718
             out_channels, kernel_size=(1, 2, 2), stride=(1, 2, 2))
719
                  nn.init.zeros_(self.latent_patch_embedding.weight)
       25
720
       26
                  nn.init.zeros_(self.latent_patch_embedding.bias)
       27
721
       28
             def _set_gradient_checkpointing(self, module, value=False):
722
                  if isinstance(module, nn.Module):
       29
723
                      module.gradient_checkpointing = value
       30
724
       31
725
       32
             def forward(self, video, mask, vae) -> torch.Tensor:
                  with torch.no_grad():
       33
726
                      video = vae.encode(video, device=video.device)
       34
727
                      mask = vae.encode(mask * 2 - 1, device=mask.device)
       35
728
                  latent = torch.cat([video, mask], dim=1)
729
       37
                 latent = self.latent_encoder(latent)
                  latent = self.latent_patch_embedding(latent)
730
       38
                  return latent
       39
731
       40
732
       41 def prepare_camera_embeds(
733
       42
             prior_encoding,
734
       43
             vae.
       44
             video,
735
             mask=None,
736
       46 ) -> torch.Tensor:
737
       47
            prior_latent = prior_encoding(video, mask, vae)
738
          return prior_latent
739
```

Listing 1: EX-NVS Adapter: Prior Encoding and Linear Projection.

Feature Integration fuses the projected geometric priors with the noise latent features used in the diffusion process. The integration is performed by element-wise addition, allowing the model to condition the generation process on both the appearance and occlusion information encoded in the priors. This design enables the adapter to inject geometric consistency and mask-aware guidance into the video synthesis pipeline.

```
746
       import torch
747
       2 import torch.nn as nn
748
       3 % === EX-NVS: Prior Encoding ===
749
       4 x = self.patch_embedding(noise_latent)
750
       5 prior_latent = prior_encoding(video, mask, vae)
751
       7 % === Start: EX-NVS Adapter: Feature Integration ===
752
       8 x = self.patch_embedding(noise_latent)
753
       9 x = x + prior_latent
754
       10 % === End: EX-NVS Adapter: Feature Integration ===
755
       12 % === EX-NVS: Diffusion Transformer ===
```

```
x = self.transformer(x, context, time_embedding)
```

Listing 2: EX-NVS Adapter: Feature Integration.

LoRA (**Low-Rank Adaptation**) is employed to enable efficient fine-tuning of the adapter with minimal trainable parameters. In our implementation, LoRA layers are applied to the following modules: q, k, v, o, ffn.0, and ffn.2 within each attention block of the video diffusion backbone. The LoRA module introduces low-rank updates to these linear projection weights, allowing the adapter to adapt to new tasks or domains without updating the full set of backbone parameters. This approach significantly reduces memory and computational consumption, making the EX-NVS Adapter lightweight and scalable for large-scale video generation tasks.

Together, these modules enable the EX-NVS Adapter to effectively incorporate geometric priors and mask information into the video diffusion process, resulting in high-quality, physically consistent, and temporally coherent video synthesis under extreme viewpoints.

A.4 LORA INTEGRATION IN VIDEO DIFFUSION MODELS

We employ Low-Rank Adaptation (LoRA) to efficiently fine-tune our video diffusion backbone. The following Python function demonstrates how LoRA modules are injected into a model, targeting specific layers such as attention projections and feed-forward blocks. This approach enables parameter-efficient adaptation by updating only a small subset of weights.

```
1 def add_lora_to_model(self, model, lora_rank=16, lora_alpha=16,
      lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="
      kaiming", pretrained_path=None, state_dict_converter=None):
      # Add LoRA to UNet
      self.lora_alpha = lora_alpha
      if init_lora_weights == "kaiming":
          init_lora_weights = True
      lora_config = LoraConfig(
          r=lora_rank,
          lora_alpha=lora_alpha,
          init_lora_weights=init_lora_weights,
          target_modules=lora_target_modules.split(","),
11
12
      )
      model = inject_adapter_in_model(lora_config, model)
13
      for param in model.parameters():
          # Upcast LoRA parameters into fp32
15
          if param.requires_grad:
16
17
              param.data = param.to(torch.float32)
19
      # Lora pretrained lora weights
      if pretrained_path is not None:
20
          state_dict = load_state_dict(pretrained_path)
21
22
          if state_dict_converter is not None:
23
              state_dict = state_dict_converter(state_dict)
          missing_keys, unexpected_keys = model.load_state_dict(
24
      state_dict, strict=False)
25
          all_keys = [i for i, _ in model.named_parameters()]
          num_updated_keys = len(all_keys) - len(missing_keys)
27
          num_unexpected_keys = len(unexpected_keys)
          print(f"LORA: {num_updated_keys} parameters are loaded from {
      pretrained_path }. {num_unexpected_keys} parameters are unexpected."
```

Listing 3: EX-NVS Adapter: Feature Integration module.

This function configures and injects LoRA modules into the specified target layers, optionally loading pretrained LoRA weights. It ensures all trainable parameters are in float16 for numerical stability. This design allows for scalable and memory-efficient adaptation of large video diffusion models.

(b) Tracking Mask Generation: Preserving temporal consistency through point tracking across frames.

Figure 7: Detailed visualization of our mask generation methods. (a) Rendering masks are created by simulating novel viewpoint occlusions using the DW-Mesh representation. (b) Tracking masks ensure temporally consistent occlusion patterns by tracking points across consecutive frames.

A.5 DETAILS ABOUT MASK GENERATION

Fig. 7 illustrates more examples about our rendering and tracking mask approaches.

Rendering mask generation relies on uniform sampling of diverse viewpoint angles across the full -90° to 90° range, ensuring comprehensive coverage of potential camera positions during inference. This technique leverages the DW-Mesh representation to simulate realistic occlusions that would occur when viewing the scene from novel perspectives. To ensure the generation of realistic occlusion masks, we enforce adjacent faces $\{(i,j),(i+1,j),(i,j+1)\}$ and $\{(i+1,j),(i,j+1),(i+1,j+1)\}$ must be either simultaneously occluded or unoccluded. Subsequently, We apply morphological dilation

operation with the kernel size of 5×5 on the binary mask. This process effectively removes isolated noise pixels while preserving the structural integrity of major occlusion regions, ensuring smooth and continuous occlusion boundaries.

The tracking mask approach establishes a grid of 10-50 points per frame, with grid size randomly selected for each training instance to ensure model learning from varied point distributions. We maintain balance between spatial coverage and computational efficiency by adjusting density based on scene complexity. An off-the-shelf tracker (Karaev et al., 2024) follows points across consecutive frames, preserving consistent visibility patterns to simulate temporal occlusion effects. The principle of tracking mask generation is illustrated in Fig. 8.

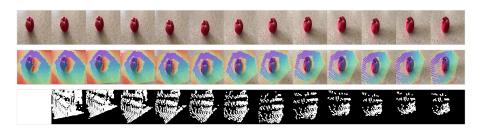


Figure 8: Principle of tracking mask generation. Points are tracked across frames to create consistent occlusion patterns, ensuring temporal coherence. Different colors represent corresponding tracked points between frames, helping maintain consistent visibility relationships during motion.

Additional video augmentation techniques enhance training diversity. Our smooth cropping procedure operates in both horizontal and vertical directions, using crop window sizes of 85-95% of the original frame. Rather than static crops, we generate smooth trajectories following Bezier curves with controlled acceleration and deceleration. This approach introduces viewpoint variations without requiring explicit 3D understanding, improving the model's ability to generalize to diverse camera movements.

A.6 THE EFFECT OF DW-MESH

To evaluate the impact of the DW-Mesh representation, we conduct ablation studies comparing it with visible mesh-based methods (w/o DW-Mesh). As illustrated in Figure 9, our experiments demonstrate that DW-Mesh significantly improves occlusion handling and view synthesis quality, particularly in scenes with complex geometry and dynamic occlusions. Even our DW-Mesh occludes the background, it still generates high-quality results.

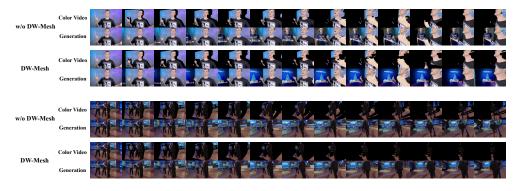


Figure 9: Comparison of DW-Mesh vs. w/o DW-Mesh under extreme viewpoints.

A.7 FAILURE CASES

Despite EX-NVS's effectiveness for extreme viewpoint synthesis, several challenging scenarios can lead to suboptimal results:

(a) Failure due to inaccurate depth estimation: incorrect geometry leads to distorted occlusion boundaries.

(b) Failure on fine/thin structures: mesh oversmoothing or missing thin objects causes loss of detail or floating artifacts.

Figure 10: Representative failure cases of EX-NVS. (a) Depth estimation errors causing visible distortions in novel views; (b) Fine structure handling limitations where thin objects are lost or misrepresented.

Depth Estimation Limitations. Our framework relies heavily on monocular depth estimation quality. When depth maps contain errors due to challenging scenes (reflective surfaces, complex lighting, rapid motion), the resulting DW-Mesh may exhibit geometric inaccuracy. As shown in Fig. 10a, these inaccuracies can propagate to synthesized views, causing visible distortions or incorrect occlusion boundaries.

Fine Geometric Detail Preservation. The watertight mesh construction process may struggle with very thin structures or fine details. Features like wires, fences, or small protruding elements might be oversmoothed or entirely missing in the reconstructed geometry. Fig. 10b demonstrates how this limitation can result in loss of detail or floating artifacts in rendered outputs.

A.8 FUTURE WORK: DW-MESH REFINEMENT PROCESS

While EX-NVS demonstrates significant improvements in extreme novel view synthesis, DW-Mesh is still in its early stages and can benefit from further refinement. A promising future direction is developing an iterative refinement stage that can be applied after initial video synthesis. This refinement process would address potential temporal inconsistencies and improve background surface reconstruction quality through multi-pass optimization. The refinement would re-estimate depth maps from generated video frames, leveraging the temporal smoothing and geometric consistency enforced during video generation to produce more accurate depth estimates than the initial monocular predictions.

A.9 USER STUDY SETTINGS

We conducted a comprehensive user study to evaluate the perceptual quality of our method compared to baseline approaches. The study involved 50 participants evaluating 12 randomly selected video sequences from our test dataset. Each video sequence contained results from our EX-NVS method and all three baseline approaches (ReCamMaster, TrajectoryCrafter, and TrajectoryAttention).

Participants were asked to select which method produced the most visually compelling results based on two key criteria: physical consistency (maintaining object integrity without unrealistic deformations) and extreme viewpoint quality (demonstrating significant camera movement with a strong sense of 3D space). As shown in Fig.11, the study interface presented videos in randomized order (labeled as Methods A-D) to avoid position bias.

To ensure reliable results, we included attention check questions and allowed participants to replay videos multiple times before making selections. The results, as presented in Fig. 6, showed a strong preference for our method, with 70.70% of participants selecting EX-NVS as producing the most physically consistent and convincing extreme viewpoint videos.

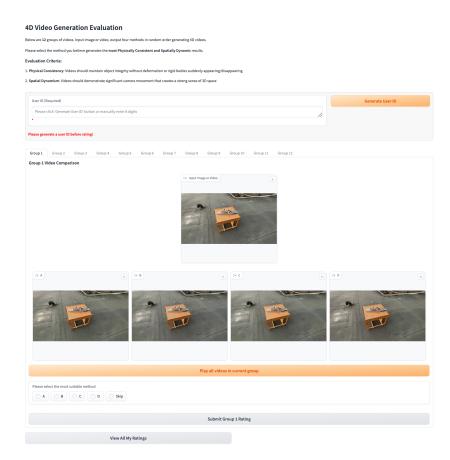


Figure 11: User study interface. Participants were presented with four methods (labeled A-D in randomized order) and asked to select the one that produced the most physically consistent and convincing extreme viewpoint videos. The interface allowed for multiple viewings before selection to ensure informed comparisons.

A.10 MORE VISUALIZATION

We provide additional visual comparisons between our EX-NVS method and state-of-the-art approaches. Fig. 12, Fig. 13. Fig. 14, Fig. 15, Fig. 16 and Fig. 17 show results across diverse scenes and challenging camera trajectories.

A.11 ADDITIONAL ABLATION STUDY DETAILS

In addition to the main ablation results presented in Table 5, we provide additional implementation details and analysis:

Masking Strategy Analysis. Both rendering and tracking masks are crucial—removing rendering masks increases FID by 14.3% and FVD by 18.1%, while removing tracking masks raises FID by 8.7% and FVD by 12.2%. The combination of both strategies provides optimal performance.

LoRA Rank Analysis. Increasing the LoRA rank from 16 to 64 yields only slight improvements (3.1% on FID, 2.6% on FVD), indicating our lightweight adapter with rank 16 is already effective and efficient, providing a good balance between performance and computational efficiency.

Implementation Parameter Details. We set the depth threshold $\delta_{\text{depth}} = 0.013 \, (\max(D_t) - \min(D_t))$ per frame, and $D_{\text{max}} = 100$ for boundary padding. Nvdiffrast (Laine et al., 2020) is

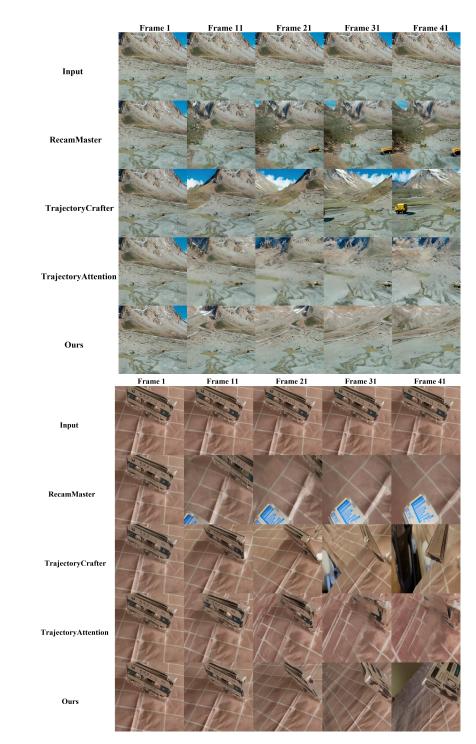


Figure 12: Comparison of EX-NVS with state-of-the-art methods.

adopted as the renderer for both training and validation. Input videos are resized to 512×512 with 49 frames per sequence, and we use 25 denoising steps during inference.

A.12 DETAILED ALGORITHM DESCRIPTIONS

Due to space constraints in the main paper, we provide the detailed algorithmic descriptions here.

Algorithm 1 DW-Mesh Construction (per frame)

Require: RGB frame I_t , depth map D_t , camera origin o, pixel rays $\{r_{i,j}\}$, thresholds δ_{angle} , δ_{depth} , boundary depth D_{max}

- 1: Pad frame-border pixels in D_t with D_{max}
- 2: Unproject each pixel: $V_{i,j} \leftarrow o + D_{i,j} \cdot r_{i,j}$
- 3: Form triangular faces on 2×2 grids; add two large boundary triangles
- 4: For each face $F_{i,j}$, compute min angle and depth discontinuity ΔD
- 5: Set occlusion: $\tilde{O}_{i,j} \leftarrow \mathbb{1}[\min \angle (F_{i,j}) < \delta_{\text{angle}} \lor \Delta D > \delta_{\text{depth}}]$
- 6: Set texture: $T_{i,j} \leftarrow \begin{cases} [0,0,0] & O_{i,j} = 1 \\ C_{i,j} & \text{otherwise} \end{cases}$
- 7: **return** $M_t = \{V, F, T, O\}$

Algorithm 2 Simulated Mask Generation for Training

Require: Video $\{I_s\}_{s=1}^S$, target trajectory $\{P_t\}_{t=1}^T$, DW-Mesh renderer, dilation kernel \mathcal{K}

- 1: Build DW-Mesh $\{M_s\}$ from $\{I_s\}$ (Alg. 1)
- 2: Render visibility masks $\{m_t\}$ along $\{P_t\}$ from $\{M_s\}$
- 3: Denoise masks via morphological dilation: $m_t \leftarrow m_t * \mathcal{K}$
- 4: Track points across frames and zero-out local rectangles when occluded
- 5: Compose final mask video V_O and masked color video V_T
- 1100 6: **return** (V_T, V_O)

To address concerns about our method's performance on different types of camera movements, we conducted comprehensive evaluations comparing translational versus rotational viewpoint changes. While our primary focus is on demonstrating extreme-view performance, our method is capable of generating free navigation across all translational and rotational movements. The demo video included in the supplementary material showcases arbitrary camera motion in 6DOF.

We performed additional evaluations comparing our method with state-of-the-art approaches under arbitrary combinations of camera translation and rotation. We constrain the trajectory of camera within the range:

Camera Trajectory Constraints:

- Camera position: $x_{cam} \in [-r/1.3, r/1.3], y_{cam} \in [-r/2, r/4], z_{cam} \in [-0.5, r-0.1]$
- Look-at point: $x_{lookat} \in [-r/7, r/7], y_{lookat} \in [-r/4, r/4], z_{lookat} \in [r-0.1, r+0.1]$

where r is the minimum depth value of the first frame. This random strategy prevents drastic view shifts while providing diverse 6DOF camera motions, ensuring robust evaluation across different motion types.

A.13 DEMO VIDEO

We provide a demo video showcasing the capabilities of our EX-NVS framework in the supplementary file. Using scenes synthesized by SOTA video generation models such as Veo3, Sora, and Kling, we generate highly physically consistent novel views under extreme and complex camera trajectories. The results highlight the effectiveness of our approach in generating high-quality, temporally consistent videos under extreme viewpoints.

A.14 USE OF LARGE LANGUAGE MODELS

We confirm that large language models (LLMs) were used only for minor editorial and coding assistance (grammar, phrasing, and clarity). They were not involved in formulating ideas, designing the method, running or analyzing experiments, drafting technical sections, or drawing conclusions. All scientific contributions, experiments, analyses, and interpretations are solely by the authors.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided comprehensive implementation details and supporting materials. The core source code was provided in the supplementary material. We also detailed our training procedures, hyperparameters, and evaluation protocols.

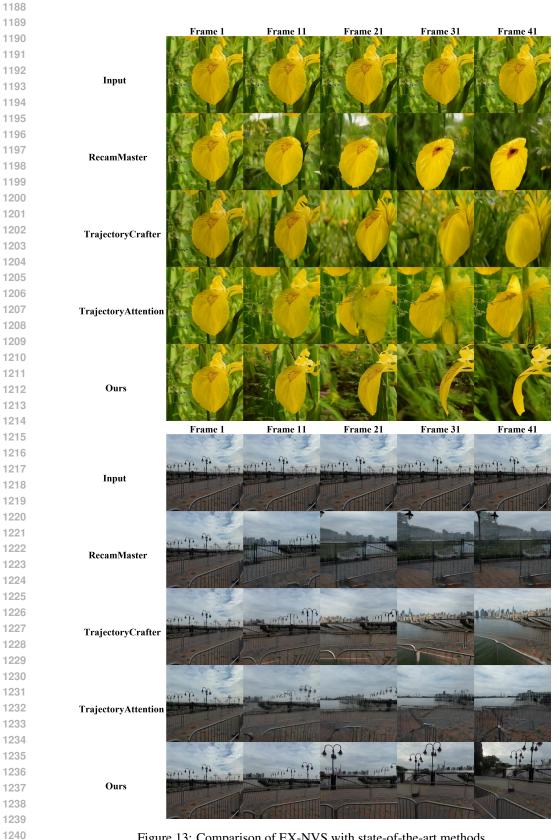


Figure 13: Comparison of EX-NVS with state-of-the-art methods.

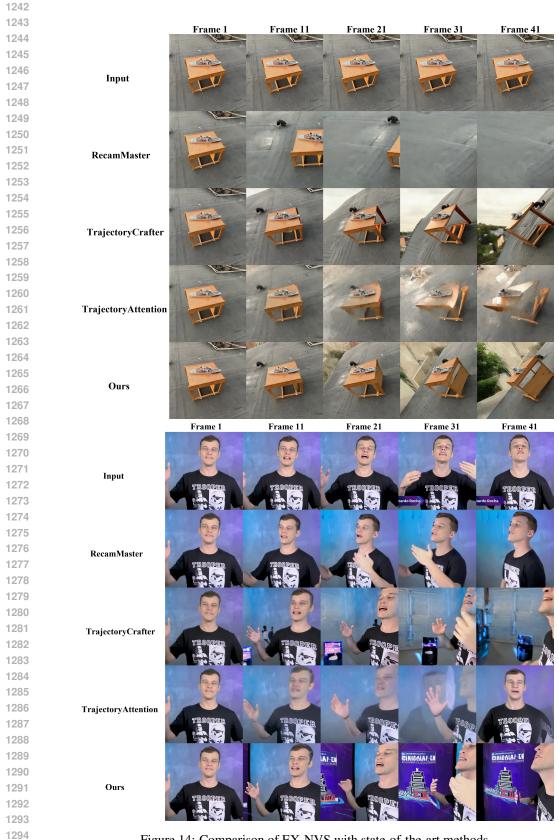


Figure 14: Comparison of EX-NVS with state-of-the-art methods.

Figure 15: Comparison of EX-NVS with state-of-the-art methods.

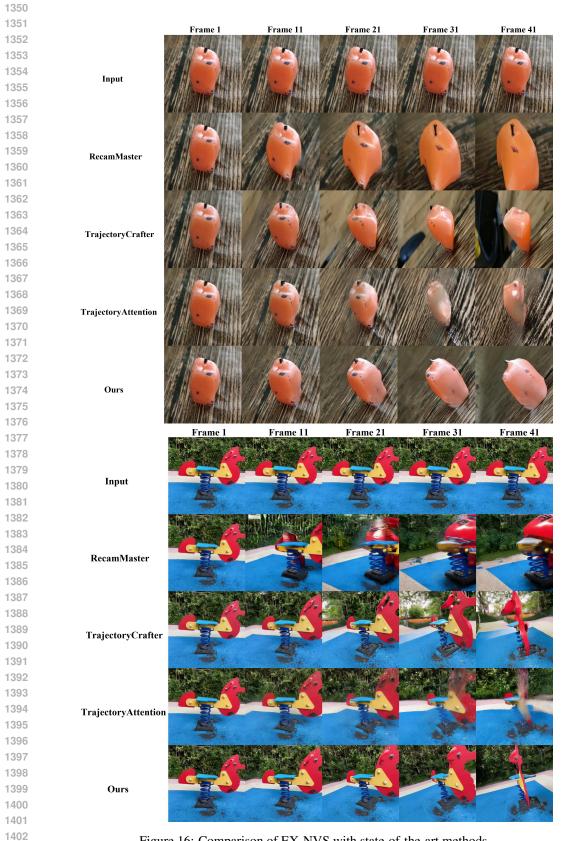


Figure 16: Comparison of EX-NVS with state-of-the-art methods.

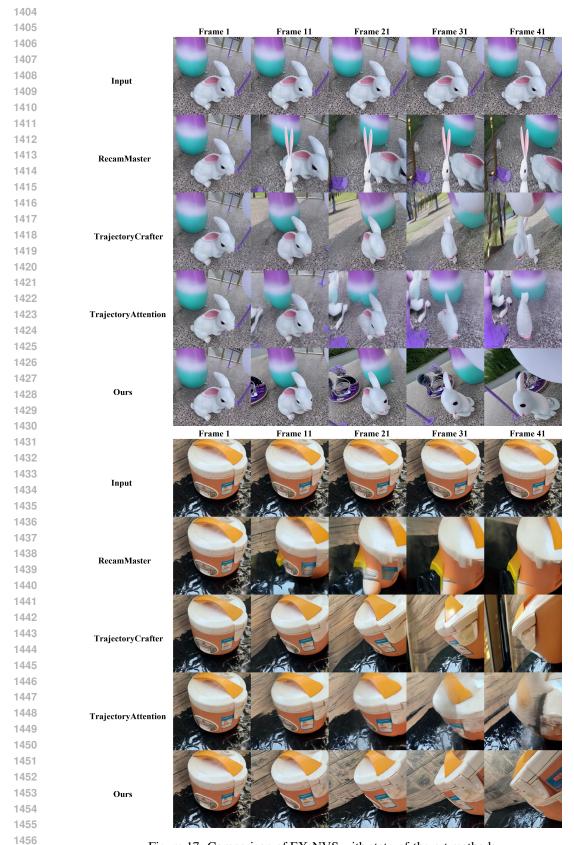


Figure 17: Comparison of EX-NVS with state-of-the-art methods.