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ABSTRACT

A truly intelligent Large Language Model (LLM) should be capable of correcting
errors in its responses through external interactions. However, even the most ad-
vanced models often face challenges in improving their outputs. In this paper, we
explore how to cultivate LLMs with the self-refinement capability through itera-
tive preference training, and how this ability can be leveraged to improve model
performance during inference. To this end, we introduce a novel post-training
and inference framework, called ARIES: Adaptive Refinement and Iterative En-
hancement Structure. This method iteratively performs preference training and
self-refinement-based data collection. During training, ARIES strengthen the
model’s direct question-answering capability while simultaneously unlocking its
self-refinement potential. During inference, ARIES harnesses this self-refinement
capability to generate a series of progressively refined responses, which are then
filtered using either the Reward Model Scoring or a simple yet effective Rule-Based
Selection mechanism, specifically tailored to our approach, to construct a dataset
for the next round of preference training. Experimental results demonstrate the
remarkable performance of ARIES. When applied to the Llama-3.1-8B model
and under the self-refinement setting, ARIES surpasses powerful models such as
GPT-4o, achieving 62.3% length-controlled (LC) and a 63.3% raw win rates on
AlpacaEval 2, outperforming Iterative DPO by 27.8% and 35.5% respectively, as
well as a 50.3% win rate on Arena-Hard, surpassing Iterative DPO by 26.6%. Fur-
thermore, ARIES consistently enhances performance on mathematical reasoning
tasks like GSM8K and MATH.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has been demonstrated as an effective
pathway to enhance Large Language Models’ performance across downstream tasks (Ouyang et al.,
2022; Bai et al., 2022a). The classic RLHF approach utilizes the PPO (Schulman et al., 2017)
algorithm to train Large Language Models (LLMs) for alignment, but its major drawback is the
substantial resource overhead. As an alternative, a more efficient and simple method directly optimizes
the LLM itself (Rafailov et al., 2023; Azar et al., 2024; Ethayarajh et al., 2024; Zeng et al., 2024;
Meng et al., 2024; Hong et al., 2024). However, both approaches critically depend on access to
high-quality, human-annotated preference datasets. As these datasets become increasingly scarce, the
challenge of identifying novel strategies to further enhance LLM capabilities becomes increasingly
urgent.

Recent research highlights that LLMs themselves can serve as a substitute for human feedback,
reducing the reliance on human annotations while significantly increasing the automation of the
training process (Lee et al.; Wang et al., 2022; Yuan et al., 2024; Dubois et al., 2024b; Li et al., 2023).
To further improve LLM performance, the multiple parallel sampling strategy is integrated with
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Figure 1: Length-controlled win rate on Al-
pacaEval 2 improves with ARIES iterations, sur-
passing GPT-4 level for the base versions of
Llama-3.1-8B when utilizing the self-refinement
strategy.

Model Size LC(%) WR(%)

Llama-3.1-8B-Base-ARIES (iter2, SR) 8B 62.3 63.3
GPT-4o (05/13) - 57.5 51.3
GPT-4-turbo (04/09) - 55.0 46.1
GPT-4o-mini (07/18) - 50.7 44.7
Llama-3.1-8B-Base-ARIES (iter1, SR) 8B 50.2 49.9
GPT-4_1106_preview - 50.0 50.0
Llama-3.1-8B-Base-ARIES (iter2, Direct) 8B 45.0 46.8
Claude 3 Opus (02/29) - 40.5 29.1
Llama-3.1-405B-Instruct-Turbo 405B 39.3 39.1
Qwen2-72B-Instruct 72B 38.1 29.9
Llama-3-70B-Instruct 70B 34.4 33.2
Llama-3.1-8B-Base-ARIES (iter1, Direct) 8B 32.7 33.5
Mistral Large (24/02) 123B 32.7 21.4
Gemini Pro - 24.4 18.2
Llama-3.1-8B-Instruct 8B 20.9 21.8

Table 1: Results on AlpacaEval 2 leaderboard.
LC and WR represent length-controlled and raw
win rate, respectively. "Direct" refers to the di-
rect response generation strategy, while "SR"
denotes the self-refinement generation strategy.

self-evaluation mechanisms to curate high-quality datasets for downstream tasks (Yuan et al., 2024;
Wu et al., 2024).

In this work, we propose an alternative approach to dataset generation inspired by the human problem-
solving process, which starts with an initial draft and is refined iteratively. In this iterative process,
self-refinement plays a critical role in progressively enhancing the quality of the answer. This prompts
us to consider whether the self-refinement capability of LLMs can be harnessed specifically to
generate higher-quality datasets. Unlike methods that rely on parallel sampling, sequential generation
allows models to build on previous responses, fostering deeper reflection and resulting in datasets
with greater intellectual depth (Snell et al., 2024; Qu et al., 2024; Kumar et al., 2024).

However, preliminary results reveal that smaller models often exhibit weak self-refinement, which can
even degrade performance. This suggests that models aligned exclusively through RLHF like DPO,
struggle with this generation strategy, as shown in Figure 3. To address this, we introduce a novel
algorithm that gradually instills the self-refinement capability in the model. Afterward, we leverage
the model’s activated self-refinement ability to collect higher-quality datasets, thereby enabling such
iterative training.

In conclusion, we present the Adaptive Refinement and Iterative Enhancement Structure (ARIES),
a novel framework for iterative preference training. ARIES introduces a plug-in algorithm that
complements existing DPO-like methods, fostering the development of self-refinement capability in
LLMs. Building upon this, we leverage the self-refinement ability of LLMs to autonomously generate
high-quality preference datasets, enabling an iterative training process that harmonizes both training
and inference. Through rigorous empirical evaluations, ARIES demonstrates remarkable efficacy,
achieving state-of-the-art performance across a variety of benchmark datasets, including AlpacaEval
2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023). As shown
in Table 1, ARIES employs the self-refinement generation strategy to achieve a length-controlled
win rate of 62.3% and a raw win rate of 63.3% on AlpacaEval 2, alongside a win rate of 50.3% on
Arena-Hard, underscoring the significant impact of our approach in boosting the performance of
LLMs.

2 RELATED WORKS

Reinforcement Learning from Human Feedback (RLHF) RLHF has proven effective in aligning
LLMs with human values Christiano et al. (2017); Ouyang et al. (2022); Bai et al. (2022a); Song et al.
(2023); Touvron et al. (2023). This approach uses human-annotated preference datasets to train a
Reward Model, guiding LLM optimization through reinforcement learning. However, due to the high
cost of human annotations, AI-generated feedback has been proposed to automate this process (Bai
et al., 2022b; Lee et al., 2023). Additionally, to reduce training costs, Direct Preference Optimization
(DPO) Rafailov et al. (2023) bypasses the reward modeling process and directly aligns LLMs using
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preference datasets. However, the effectiveness of these methods heavily depends on the quality of
the preference dataset, making the acquisition of high-quality preference data a critical challenge.

Improving LLMs via Data Augmentation As high-quality human-labeled datasets become scarcer,
methods leveraging LLMs to generate training data have emerged. Some approaches use powerful
LLMs to generate datasets, which are then distilled into smaller models, enabling weaker LLMs to
perform better with high-quality data (Chen et al., 2023). Other methods focus on self-generating
problems or responses to expand datasets (Wang et al., 2022). Additionally, LLM-as-a-Judge
prompting has become a standard technique for evaluating model outputs and optimizing datasets
(Dubois et al., 2024b; Bai et al., 2024; Saha et al., 2023; Yuan et al., 2024). These advancements
offer valuable strategies for efficient data augmentation and optimization.

In-Context Learning (ICL) ICL has become a fundamental capability of LLMs, enabling them to
perform tasks by conditioning on a few input examples without requiring parameter updates (Brown
et al., 2020). Recent studies, such as OPRO (Yang et al., 2024), show that LLMs can leverage their
ICL abilities to function as implicit optimizers, progressively improving performance on complex
problems. LLMs can also act as in-context reinforcement learners, optimizing behavior via reward
feedback (Monea et al., 2024). The SELF-REFINE (Madaan et al., 2024) is a special form of ICL.
It significantly enhances model performance through the FEEDBACK and REFINE mechanisms,
achieving remarkable results across multiple benchmarks. These findings indicate that integrating
ICL with model training presents a compelling strategy for constructing self-optimizing frameworks.

3 PRELIMINARIES

DPO The standard DPO algorithm usually involves two stages: (1) Supervised Fine-Tuning (SFT)
and (2) DPO training.

In the SFT stage, the DPO algorithm fine-tunes a pre-trained language model πθ with the loss function
defined as:

LSFT(πθ;πref) = − E
(x,y)∼D

[log πθ(y|x)], (1)

which yields a fine-tuned model, denoted as πref = πSFT, to be used as the reference model in
subsequent stages. If given a preference dataset D = {x(i), y

(i)
w , y

(i)
l }Ni=1 for fine-tuning, the chosen

response yw is typically selected as the target for SFT. In this case, the loss becomes:
LSFT(πθ;πref) = − E

(x,yw,yl)∼D
[log πθ(yw|x)]. (2)

In the DPO preference training stage, DPO uses the fine-tuned model as initialization, i.e., πθ = πSFT,
and directly optimizes the policy model using the following negative log-likelihood loss:

LDPO(πθ;πref) = E
(x,yw,yl)∼D

[
log σ

(
βDPO log

πθ(yw | x)
πref(yw | x)

− βDPO log
πθ(yl | x)
πref(yl | x)

)]
. (3)

Self-Refinement In language generation, given a question input x, the model typically generates a
response y ∼ π(·|x). We refer to this approach as direct response generation in this paper. Building
on this, our work advances further by assuming that we are given both a question input x and an
existing response y1. Our goal is to generate a better response y2 ∼ π(·|x, y1), where this generation
method is termed as Self-Refinement in our work.

4 METHODOLOGY

How to enable large models to correct their responses when provided with additional information is
both an intriguing and valuable challenge. However, existing research indicates that even the most
advanced models struggle with self-improvement, often failing to refine prior outputs effectively
(Huang et al., 2023). In some cases, repeated correction attempts can even diminish the models’
confidence in their responses, resulting in progressively worse revisions, as shown in Figure 3. In
this section, we investigate how to stimulate the model’s self-refinement capability within the RLHF
framework, and how leveraging the self-refinement capability can, in turn, enhance overall model
training performance. We will elaborate on our approach, ARIES, covering both the training methods
and the inference framework. Finally, we will summarize the complete workflow of the proposed
framework.
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human's QUESTION without including irrelevant sentences.

Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also 

demonstrate expert-level insight, engaging the reader with the most relevant information.

QUESTION:

{Question}
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2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the 
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RESPONSE:

𝑆2 = (𝑥, 𝑦2 , 𝑧) 𝑆𝑁 = (𝑥, 𝑦𝑁 , 𝑧)𝑆0 = (𝑥)

ℒARIES = 1 − 𝛼 ℒDPO + 𝛼ℒrefine

𝝅(𝒚𝒍|𝒙, 𝒚𝒍, 𝒛) 𝝅(𝒚𝒘|𝒙, 𝒚𝒍, 𝒛)

𝝅(𝒚𝒍|𝒙, 𝒚𝒘, 𝒛) 𝝅(𝒚𝒘|𝒙, 𝒚𝒘, 𝒛)

𝝅(𝒚𝒍|𝒙)

𝑦𝑙
≻

𝑦𝑤 maximum

likelihood

Training Method

{𝑥(𝑖), 𝑦𝑤
(𝑖)

, 𝑦𝑙
(𝑖)

}

Preference 

Pairs

𝑀𝑡+1

Next Iteration

Model

𝒙, 𝒚𝒏−𝟏 → 𝒚𝒏

Preference Optimization

𝒙 → 𝒚select

rule-based/RM

𝝅(𝒚𝒘|𝒙)

𝑧

Figure 2: ARIES: Adaptive Refinement and Iterative Enhancement Structure. Our method
iteratively alternates between inference and training processes. In the inference phase, we utilize
the model Mt from the previous training round to generate a series of self-refined responses to the
prompt dataset through the self-refinement strategy. These responses are then filtered using either
Rule-Based Selection or Reward Model Scoring mechanism to construct a preference dataset for
training. In the training phase, we apply a novel preference-based training algorithm to train the
model Mt using the collected preference dataset. This algorithm primarily focuses on activating and
strengthening the model’s self-refinement ability to assist in generation during the inference phase.
The top-left template is our self-refinement template, used in both the training and inference stages.

4.1 TRAINING: PLUG-IN EXTENSION FOR DPO FRAMEWORK

Considering that existing models generally struggle to achieve self-improvement, the primary chal-
lenge we aim to address is how to enable models to undergo effective self-refinement. Conventional
RLHF algorithms, such as DPO, do not inherently provide this capability. Therefore, we extend
the DPO framework, incorporating both Supervised Fine-Tuning (SFT) and preference training, to
empower models with the self-refinement ability.

Supervised Fine-Tuning (SFT) During the SFT stage, in addition to the standard Negative Log-
Likelihood Loss, we seek to enhance the model’s ability to refine suboptimal responses. Specifically,
we aim to improve the model’s ability to assign a higher probability to a good response yw given
the input x, the existing suboptimal response yl and a special refinement template z. Thus, the loss
function at the SFT stage is defined as follows:

LARIES−SFT(πθ;πref) = − E
(x,yw,yl)∼D

[log πθ(yw|x) + log πθ(yw|x, yl, z)]. (4)

Preference Training In the preference training stage, we begin by presenting the following scenario:
Given a prompt x, assume we have already sampled an initial response y1. How can we utilize the
prompt x and the response y1 to generate a more refined response y2 guided by a refinement template
z? To achieve this, we define the following objective function:

max
π

E
y2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− βDKL(π||πref |x, y1, z)

]
. (5)
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Here, p(y2 ≻ y1|x) represents the human preference probability, indicating the likelihood that y2 is
preferred over y1 given x:

p(y2 ≻ y1 | x) = Eh[I{h prefers y2 over y1 given x}], (6)

where the expectation is taken over the distribution of humans h. The optimization process of the
objective function in Eq. 5 follows a similar approach to SRPO (Choi et al., 2024). Solving Eq. 5
yields the following equality:

p(y2 ≻ y1|x)−
1

2
= β log

π∗(y2|x, y1, z))
πref(y2|x, y1, z))

− β log
π∗(y1|x, y1, z))
πref(y1|x, y1, z))

. (7)

The derivation is presented in Appendix A.1. According to Eq. 7, we adopt the mean squared error as
the loss function and parametrize the policy model as πθ, iterating over all prompts x and responses
y1, y2, which leads to:

L(πθ;πref) =

E
(x,y1,y2)∼ρ

[
p(y2 ≻ y1|x)−

1

2
− β

[
log

(
πθ(y2|x, y1, z)
πref(y2|x, y1, z)

)
− log

(
πθ(y1|x, y1, z)
πref(y1|x, y1, z)

)]]2
,

(8)

where ρ represents the true distribution. We substitute Eq. 6 into Eq. 8. For a well-curated preference
dataset D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1, we obtain the following loss function:

Lrefine(πθ;πref) = E
(x,yw,yl)∼D

[
1

2
− β

[
log

(
πθ(yw|x, yl, z)
πref(yw|x, yl, z))

)
− log

(
πθ(yl|x, yl, z)
πref(yl|x, yl, z)

)]]2

+ E
(x,yw,yl)∼D

[
1

2
− β

[
log

(
πθ(yw|x, yw, z)
πref(yw|x, yw, z))

)
− log

(
πθ(yl|x, yw, z)
πref(yl|x, yw, z)

)]]2

.

(9)

Finally, we combine the DPO loss and the self-refinement loss to derive our final loss function:

LARIES(πθ;πref) = (1− α)LDPO(πθ;πref) + αLrefine(πθ;πref). (10)

Through this optimization, we not only enhance the direct conversational capabilities of LLMs but
also strengthen the models’ self-refinement ability. Notably, our approach does not impose any
restrictions on the choice of RLHF algorithm. In other words, any RLHF algorithm’s loss function
can be substituted into Eq. 10 to replace the DPO loss term.

It is essential to emphasize that the effectiveness of our approach, ARIES, does not stem from a
particular refinement algorithm, such as Eq. 9, but rather from the fundamental refinement
principle it encapsulates. In Appendix C, we introduce a new refinement loss function derived
from the perspective of the Bradley-Terry model, which we designate as BT_ARIES. Experimental
results show that both BT_ARIES and ARIES yield comparable effectiveness, driving substantial
improvements in model performance. For further details, please refer to Appendix C.

4.2 INFERENCE: SELF-REFINEMENT FOR DATA COLLECTION

Response Refinement During the inference phase, we exploit the self-refinement capability instilled
in the model during training to generate a sequence of progressively refined responses to the new
prompt dataset, as illustrated in Figure 2. This iterative process mirrors human-like problem-solving,
where the model revisits the same question multiple times, refining its understanding and improving
the quality of its responses. By using the response from the previous iteration as a prior, the model
incrementally enhances its performance, ensuring that each successive turn builds upon the insights
of the last.

Specifically, given a problem x, we first use the model to directly generate an answer y1. Next,
we apply a fixed refinement template z that concatenates the problem x and the answer y1, with
the objective of improving the answer’s quality. The model is then provided with two options for
refinement:

1. If the model believes that the existing answer is sufficient, it only needs to modify the given
answer to further enhance its quality.

2. If the model finds the existing answer lacking in clarity or relevance to the problem, it
disregards the previous answer and directly generates a more effective new response.
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This approach grants the model some degree of backtracking, preventing it from repeatedly getting
stuck in a dead-end that could lead to performance degradation. The refinement template is illustrated
in Figure 2. By applying the refinement template iteratively, we generate y2 from x and y1, then y3
from x and y2. This process continues for N rounds, where each answer yn is generated based on the
given problem x and the previous round’s answer yn−1:

yn ∼ π(·|x, yn−1) (11)
Through this iterative generation process, we obtain a progressively refined set of responses for the
problem x, denoted as {x, y1, y2, . . . , yN}.

Data Selection Given a new prompt dataset D = {x(i)}Ni=1, through the iterative self-
refinement process described above, we can obtain a self-refined prompt-responses dataset D =

{(x(i), y
(i)
1 , y

(i)
2 , . . . , y

(i)
N )}Ni=1. However, not every round of model generation improves the response

quality. Therefore, we must implement a selection mechanism to filter the data, enhancing the robust-
ness of the final preference dataset. We primarily explore two data filtering methods: Rule-Based
Selection and Reward Model Scoring. The Rule-Based Selection mechanism is an intriguing
approach that relies purely on the model’s self-refinement capability without any external supervision.
Specifically, we directly select the responses from round 0 (i.e., the initial answers to the questions) as
rejected responses, while empirically designating the responses from round N as chosen responses to
construct the preference dataset. This mechanism plays a crucial role in validating the effectiveness
of our proposed technique, highlighting the remarkable efficacy of ARIES.

4.3 WORKFLOW: STIMULATING MODEL SELF-REFINEMENT

The goal of our work is to activate the model’s self-refinement ability and leverage this capability to
assist the model in achieving improvement during the iterative training. Since current open-source
models face challenges in enhancing their own responses, our first task is to trigger the model’s
self-refinement ability using our proposed algorithm. Starting from a base model, we perform two
main steps in this phase:

1. Apply the ARIES-SFT loss function, as defined in Eq. 4, to Supervise Fine-Tuning the base
model, resulting in the fine-tuned model;

2. Perform preference training on the fine-tuned model with an offline preference dataset and
the loss function Eq. 10, obtaining the ARIES offline model.

The reason for conducting preference training on the ARIES-SFT model with the offline preference
dataset is that we observe this process further activates the model’s self-refinement capability, as
shown in Figure 3.

In subsequent phases, we iteratively perform data collection and preference training to continuously
improve the model’s performance. Specifically, we employ our inference framework and data filtering
mechanism to assemble a high-quality preference dataset, which is then utilized for the next round
of preference training. In each iteration, the model not only enhances its direct problem-solving
capabilities but also strengthens its self-refinement ability. The synergistic evolution of both aspects
ensures the efficient operation of our inference framework, while progressively improving the quality
of the collected datasets, leading to a continuous performance boost and ultimately achieving a
significant breakthrough in model performance.

5 EXPERIMENTS

In this section, we will demonstrate the effectiveness of ARIES in gradually instilling models to
self-improve their responses over turns. Specifically, we will primarily investigate the following
questions: (1) How significantly does ARIES improve model performance compared to prior methods
during the iterative process of data collection and training (§5.1)? (2) What components contribute to
the performance improvements of ARIES (§5.2)? (3) Can the self-refinement strategy induced by
ARIES generalize to problems out of the training domains (§5.3)? By answering these questions, we
aim to highlight the effectiveness, generality, and underlying mechanisms of ARIES.

Models and Training Settings We primarily focus on preference optimization and capability analysis
of Llama-3.1-8B Base (Dubey et al., 2024). During the SFT phase, we fine-tune Llama-3.1-8B Base
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Figure 3: Qualitative analysis of various methods on the UltraFeedback test set. We use the reward
model Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024) for scoring, which is a
relatively small model but demonstrates strong performance on the RewardBench leaderboard
(Lambert et al., 2024b). (a) shows the variation in model performance as the number of inference
turns increases. (b) illustrates the performance gains of different methods during the iterative training
process without external supervision signals. (c) depicts the performance improvement during the
iterative training process with Reward Model Scoring. (d) demonstrates the performance improvement
after 3 rounds of self-refinement.

on the llama-3.1-tulu-3-70b-preference-mixture dataset (Lambert et al., 2024a) using Eq. 4, yielding
the ARIES-SFT model. Subsequently, we use the first 30K preference data from the UltraFeedback
dataset (Cui et al., 2023) and apply preference training on top of the ARIES-SFT model, guided
by Eq. 10, resulting in the ARIES offline model. Next, we extract a new 5K prompt dataset from
the UltraFeedback dataset and generate responses by iterating 4 times per prompt using the ARIES
offline model and our inference framework, forming a dataset D = {x(i), y

(i)
1 , y

(i)
2 , y

(i)
3 , y

(i)
4 }. After

applying a data filtering mechanism, we construct a new preference dataset, which is used for the
next round of preference training to obtain the ARIES iter1 model. In the data filtering process, for
the Rule-Based Selection mechanism, we directly select the response y1 from round 0 as the rejected
response, while empirically treating the response after 3 rounds of self-refinement, i.e., y4, as the
chosen response. For the Reward Model Scoring mechanism, we employ Skywork/Skywork-Reward-
Llama-3.1-8B-v0.2 (Liu et al., 2024) to score the generated responses, selecting the highest-scoring
response as the chosen response and the lowest-scoring response as the rejected response. Finally,
we extract another 10K prompt dataset from the UltraFeedback dataset, repeat the data generation
and preference training process, producing the ARIES iter2 model. For convenience, we denote the
results trained with the Rule-Based Selection dataset filtering mechanism as ARIES, and the results
trained with the Reward Model Scoring mechanism as ARIES+RM in the following experiment.
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Table 2: Results on AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng
et al., 2023) under the Direct and SR settings. Here, Direct denotes direct response generation, while
SR indicates three rounds of self-refinement on the responses. LC and WR represent length-controlled
win rate and raw win rate, respectively.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%)

SFT 15.9 12.7 12.7 6.4 6.9 13.8 8.1 8.0
DPO offline 17.9 16.7 16.5 6.9 7.4 18.3 12.6 12.6
Self-Rewarding iter1 19.3 17.2 14.2 6.9 7.5 19.3 12.6 11.6
Self-Rewarding iter2 18.2 14.2 15.9 6.7 7.4 19.0 11.2 11.0
Iterative DPO iter1 24.6 22.3 22.4 6.9 7.6 25.1 16.9 17.1
Iterative DPO iter2 34.1 33.5 29.6 7.1 7.8 34.5 27.8 23.7

ARIES-SFT 15.9 15.5 16.5 6.4 7.0 20.0 18.6 18.0
ARIES offline 19.1 18.6 17.4 7.0 7.6 28.8 27.1 23.5
ARIES iter1 23.9 24.5 22.0 7.1 7.5 37.4 35.7 31.1
ARIES iter2 28.4 29.7 24.9 7.1 7.7 41.3 39.5 32.0
ARIES+RM iter1 32.7 33.5 31.9 7.3 7.7 50.2 49.9 37.5
ARIES+RM iter2 45.0 46.8 38.0 7.7 8.1 62.3 63.3 50.3

Baselines To evaluate the effectiveness of our proposed preference optimization approach, we
compare it with other preference optimization methods. Specifically, we replicate Self-Rewarding
(Yuan et al., 2024) and Iterative DPO (Snorkel, 2024; Xu et al., 2023; Xiong et al., 2023; Dong et al.,
2024) as the baseline. These methods leverage the parallel sampling mechanism to iteratively generate
data, followed by data filtering to construct a preference dataset, which is then used for the next round
of training. Self-Rewarding employs an LLM-as-a-Judge mechanism (Zheng et al., 2023) for data
filtering, while Iterative DPO relies on reward model scoring for selection. Similarly to our approach,
for the reward model scoring mechanism, we utilize Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
to score the generated responses and construct the preference dataset. For a fair comparison, we
follow the same training procedure as our method. Both Self-Rewarding and Iterative DPO conduct
two rounds of online preference training based on the DPO offline model.

Evaluation Benchmarks We evaluate our models using three most popular open-ended instruction-
following benchmarks: AlpacaEval 2 (Li et al., 2023), MT-Bench (Zheng et al., 2023), and Arena-
Hard (Li et al., 2024), along with two cross-domain mathematical reasoning tasks: GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021). For AlpacaEval 2, we provide the raw win rate
(WR) and length-controlled win rate (LC) (Dubois et al., 2024a). For MT-Bench, we report the
average score using GPT-4 and GPT-4-Preview-1106 as judges. For Arena-Hard, we report the win
rate relative to the baseline model. For GSM8K and MATH, we use the Step-DPO evaluation script.
Specifically, we evaluate the entire GSM8K test set, which contains 1319 math problems, and for
MATH, we evaluate the first 1024 samples of the test set. Since MT-Bench is a multi-turn dialogue
dataset, all evaluations, except for MT-Bench, assess both direct response generation (labeled as
"Direct") and responses refined through 3 rounds of self-refinement using our inference framework
(denoted as "SR").

5.1 BOOST IN MODEL PERFORMANCE WITH ARIES

We first evaluate the performance improvements on the UltraFeedback test set, focusing on both
the inference phase and the iterative training process, as shown in Figure 3. In Figure 3(a), we
observe that the models trained with ARIES consistently demonstrate gradual improvements during
inference, while models trained by self-rewarding and iterative DPO struggle to enhance response
quality. This highlights that ARIES effectively stimulates the self-refinement capability of LLMs.
In multi-round interactions, the models trained with ARIES achieve incremental performance gains.
Figure 3(b) and Figure 3(c) show that, compared to baseline methods, ARIES significantly enhances
the model’s ability to directly answer questions and self-refine previous responses, even without
external reward signals. This demonstrates the superior efficacy of ARIES in improving overall model
performance. Notably, while models trained with other methods exhibit a decline in self-refinement,
we find that the models’ self-refinement abilities positively correlate with their base performance in
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Figure 4: Impact analysis of DPO Loss on ARIES Performance under the Reward Model Scoring
mechanism.
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Figure 5: Effect of Parallel Sampling (PS) vs. Self-Refinement in preference dataset construction on
ARIES Performance under the Reward Model Scoring mechanism.

direct question answering. As iterative training progresses, models trained with alternative methods
also show slow improvements in self-refinement. Finally, in Figure 3(d), we find that under the
Reward Model Scoring mechanism, ARIES’s self-refinement gain improves progressively during the
iterative training process, compared to direct response generation. This indicates that ARIES enables
the models to gradually master this cognitive mode. In contrast, under the Rule-Based Selection
mechanism, the self-refinement gains of ARIES iter2 are lower than those of ARIES iter1. This
decline can be attributed to the limitations of rule-based data filtering, which inevitably introduces
noise into the collected dataset, ultimately impacting the model’s performance.

Subsequently, we evaluate the model performance on AlpacaEval 2, Arena-Hard, and MT-Bench,
as demonstrated in Table 2. Our method not only significantly improves model performance under
the "Direct" setting but also achieves a qualitative leap in performance under the "SR" setting. In
contrast, other baseline methods exhibit varying degrees of performance degradation after applying
self-refinement. Under the "Direct" setting, ARIES+RM iter2 outperforms iterative DPO iter2
by 10.9% in LC win rate and 13.3% in raw win rate on AlpacaEval 2, while achieving an 8.4%
improvement on Arena-Hard. In the "SR" setting, ARIES+RM iter2 shows a 27.8% improvement
in LC win rate and a 35.5% improvement in raw win rate on AlpacaEval 2, with a 26.6% gain on
Arena-Hard. With self-refinement, ARIES+RM iter2 reaches performance levels comparable to
GPT-4 on these benchmarks.

5.2 ABLATION STUDIES OF ARIES

Here, we examine the impact of two key aspects on ARIES: (1) whether the training algorithm
includes DPO loss (i.e., α = 0), and (2) replacing the self-refinement sequential generation strategy
with Parallel Sampling (PS) for data collection during the preference dataset construction process.
These results are presented in Figure 4 and Figure 5.

In Figure 4, we observe that omitting DPO loss progressively affects the performance of ARIES. As
iterative training advances, the absence of DPO loss leads to a slower rate of improvement in both
"Direct" and "SR" results. For example, the performance of direct answers decreases by 6.7% LC win
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rate, while self-refined answers drop by 7.4% LC win rate in AlpacaEval 2. We attribute this decline
to the critical role of DPO loss in improving the model’s capacity to generate higher-quality answers
directly. Without DPO loss, the performance of direct response generation deteriorates, which in turn
negatively impacts the performance of self-refinement based on these suboptimal responses.

In Figure 5, we find that models trained on the dataset collected using the PS strategy exhibit lower
overall performance compared to those trained on datasets collected with the self-refinement strategy.
This suggests that, when coupled with the self-refinement strategy, ARIES is more effective in
collecting high-quality datasets. Further details can be found in Appendix F, where we demonstrate
that self-refinement enhances the model’s responses, improving logical coherence and resulting in
clearer, more concise expressions.

5.3 GENERALIZATION OF ARIES IN REASONING TASKS

Table 3: Accuracy of different methods on GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021) tasks using Direct and SR generation strate-
gies.

Method GSM8K(%) MATH(%)

Direct SR Direct SR
SFT 60.9 62.3 18.2 29.5
DPO offline 66.3 66.6 35.1 34.6
Self-Rewarding iter1 65.4 66.2 35.0 34.6
Self-Rewarding iter2 66.3 66.5 35.3 34.7
Iterative DPO iter1 68.5 67.9 36.6 35.6
Iterative DPO iter2 68.4 67.2 36.7 36.3

ARIES-SFT 64.3 70.9 32.8 45.5
ARIES offline 68.3 72.2 38.3 42.4
ARIES iter1 68.2 71.2 39.9 45.3
ARIES iter2 69.1 71.2 39.5 43.9
ARIES+RM iter1 70.2 71.7 46.1 47.8
ARIES+RM iter2 71.9 73.6 48.7 50.1

We further access the generalization of vari-
ous methods on the GSM8K and MATH, as
shown in Table 3. As iterative preference train-
ing progresses, although all methods gradu-
ally improve mathematical reasoning accuracy,
ARIES significantly outperforms the baseline
approaches. By employing the self-refinement
strategy, ARIES achieves 73.6% accuracy on
GSM8K, a 1.7% improvement over direct re-
sponse generation, and 50.1% on MATH, a 1.4%
improvement. These improvements stem from
the self-refinement strategy, which enhances rea-
soning depth and maintains logical consistency
during inference.

However, as the model’s accuracy on the
GSM8K and MATH tasks reaches a certain level,
the effect of self-refinement begins to plateau.
We attribute this to the lack of domain-specific training, preventing the model from mastering certain
problem-solving strategies. This observation has prompted us to plan further domain-specific training
for reasoning tasks, to gain deeper insights into the enhancement of the model’s reasoning capabilities.

6 CONCLUSION

In this paper, we introduce ARIES, an innovative framework for iterative preference training and
self-refinement-based inference. During the training phase, ARIES enhances the model’s ability to
directly answer questions while simultaneously stimulating and strengthening the self-refinement
capability. In the inference phase, ARIES leverages the self-refinement ability activated in the model
to perform multi-step sequential inference, generating a series of self-refined outputs. These outputs
are then filtered using either Rule-Based Selection or Reward Model Scoring mechanism to construct
a preference dataset, which is used for the next round of preference training. The training and
inference phases of ARIES are mutually reinforcing, collectively enhancing the performance of
LLMs. Experimental results demonstrate the exceptional performance of ARIES, surpassing even
GPT-4 on benchmarks such as AlpacaEval 2 and Arena-Hard. In the future, we will explore the
application of our approach to reasoning tasks and continue to extend the existing framework.
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A MATHEMATICAL DERIVATIONS

A.1 THE OPTIMAL SOLUTION TO THE SELF-REFINEMENT OBJECTIVE IN THE PREFERENCE
TRAINING PHASE

In this Appendix, we aim to derive the loss function corresponding to the following objective:

max
π

Ey2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− βDKL(π||πref |x, y1, z)

]
. (12)

The derivation process follows a structure similar to SRPO (Choi et al., 2024). First, we can obtain
the optimal solution of the objective:

max
π

Ey2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− βDKL(π||πref |x, y1, z)

]
(13)

=max
π

Ey2∼π(·|x,y1,z)

[
p(y2 ≻ y1|x)− β log

π(y2|x, y1, z)
πref(y2|x, y1, z)

]
(14)

=max
π

βEy2∼π(·|x,y1,z)

[
− log

π(y2|x, y1, z)

πref(y2|x, y1, z) exp
(

p(y2≻y1|x)
β

)] (15)

=max
π

−βEy2∼π(·|x,y1,z)

[
log

π(y2|x, y1, z)Z(x, y1, z)

πref(y2|x, y1, z) exp
(

p(y2≻y1|x)
β

)]+ β logZ(x, y1, z) (16)

=max
π

−βDKL

π(y2|x, y1, z)
∥∥∥∥πref(y2|x, y1, z) exp

(
p(y2≻y1|x)

β

)
Z(x, y1, z)

+ β logZ(x, y1, z) (17)

where Z(x, y1, z) is the partition function. Considering the non-negativity of the KL divergence, the
optimal solution is:

π∗(y2|x, y1, z) =
πref(y2|x, y1, z) exp

(
p(y2≻y1|x)

β

)
Z(x, y1, z)

, (18)

For convenience in subsequent derivations, we reorganize the representation of Eq. 18 as follows:

p(y2 ≻ y1|x) = β log
π∗(y2|x, y1, z)
πref(y2|x, y1, z)

+ β logZ(x, y1, z) (19)

Noting that p(y1 ≻ y1|x) = 1/2, we derive the following expression:

1

2
= β log

π∗(y1|x, y1, z)
πref(y1|x, y1, z)

+ β logZ(x, y1, z) (20)

Subtracting Eq. 20 from Eq. 19, we obtain the following expression:

p(y2 ≻ y1|x)−
1

2
= β log

π∗(y2|x, y1, z))
πref(y2|x, y1, z))

− β log
π∗(y1|x, y1, z))
πref(y1|x, y1, z))

(21)

According to Eq. 21, we adopt the mean squared error as the loss function and parametrize the policy
model as πθ, while iterating over all prompts x and responses y1, y2, which leads to:

L(πθ;πref) = E
(x,y1,y2)∼ρ

[
p(y2 ≻ y1|x)−

1

2
− β

[
log

(
πθ(y2|x, y1, z)
πref(y2|x, y1, z)

)
− log

(
πθ(y1|x, y1, z)
πref(y1|x, y1, z)

)]]2
,

(22)
where ρ represents the true distribution.
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B IMPLEMENTATION DETAILS

B.1 SELF-REFINEMENT TEMPLATE

The self-refinement template used in this paper is as follows:

Self-Refinement Template

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Do not include analysis-just give the improved RESPONSE.

RESPONSE:

B.2 TRAINING DETAILS

In the SFT phase, we set the learning rate to 5 × 10−6, with a batch size of 128 and a maximum
sequence length of 1024. We employed a cosine learning rate schedule with 3% warm-up steps for 1
epoch and used the AdamW optimizer.

In the preference training phase, the learning rate was reduced to 1 × 10−6. Additionally, we set
α = 0.8 and βDPO = 0.1. For training with the Reward Model Scoring dataset filtering mechanism,
we set βrefine = 0.01, while for the Rule-Based Selection mechanism, βrefine = 0.05. The higher
value of βrefine in the Rule-Based Selection process is due to the presence of noisy data in the filtered
preference dataset, which requires stronger regularization.

B.3 INFERENCE DETAILS

During the iterative training and dataset collection process, we employed a sampling decoding strategy
with a temperature of 0.7 for direct response generation and self-refinement. For AlpacaEval 2, we
set the temperature to 0.9 for generation, while for MT-Bench and Arena-Hard, we followed the
official decoding configuration. For GSM8K and MATH, we utilized a greedy decoding strategy.

B.4 EVALUATION BENCHMARKS DETAILS

AlpacaEval 2 (Li et al., 2023) consists of 805 questions from 5 datasets, MT-Bench (Zheng et al.,
2023) covers 80 questions across 8 categories in a multi-turn dialogue format, and Arena-Hard
(Li et al., 2024) is an enhanced version of MT-Bench with 500 well-defined technical questions.
GSM8K (Cobbe et al., 2021) includes elementary and middle school-level math problems, while
MATH (Hendrycks et al., 2021) contains more complex questions, spanning various mathematical
branches such as algebra, counting and probability, geometry, number theory, and calculus. For each
benchmark, we report scores according to their respective evaluation protocols.
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C ALTERNATIVE REFINEMENT LOSS

C.1 THE DERIVATION OF THE REFINEMENT LOSS FUNCTION FROM THE BRADLEY-TERRY
MODEL PERSPECTIVE

Alternatively, we can enhance the model’s self-refinement capability by leveraging insights from the
Bradley-Terry (BT) model theory. We define the objective function as follows:

max
π

Ey2∼π(·|x,y1,z)

[
r(y2|x, y1, z)− βDKL(π||πref |x, y1, z)

]
(23)

The solution process is analogous to that of Appendix A.1, allowing us to obtain the optimal solution:

π∗(y2|x, y1, z) =
πref(y2|x, y1, z) exp

(
r(y2|x,y1,z)

β

)
Z(x, y1, z)

, (24)

where Z(x, y1, z) is the partition function. Reorganizing the above equation, we obtain:

r(y2|x, y1, z) = β log
π(y2|x, y1, z)
πref(y2|x, y1, z)

+ β logZ(x, y1, z) (25)

The standard expression of the BT model is:

p∗BT(y2 ≻ y1|x) = σ(r∗(y2|x)− r∗(y1|x)) (26)

Here, to enhance the self-refinement capability of the language model, we make a slight modification.
Given the problem input x for the BT model, we also provide an arbitrary response yopt along with a
refinement template z, which serves as guidance for the model to generate better responses:

p∗BT(y2 ≻ y1|x, yopt, z) = σ(r∗(y2|x, yopt, z)− r∗(y1|x, yopt, z)). (27)

Then we define the refinement preference function:

p∗BT_refine(y2 ≻ y1|x, z) = p∗BT(y2 ≻ y1|x, y1, z)p∗BT(y2 ≻ y1|x, y2, z) (28)
= σ(r∗(y2|x, y1, z)− r∗(y1|x, y1, z))σ(r∗(y2|x, y2, z)− r∗(y1|x, y2, z))

(29)

= σ

(
β log

π∗(y2|x, y1, z)
πref(y2|x, y1, z)

− β log
π∗(y1|x, y1, z)
πref(y1|x, y1, z)

)
× σ

(
β log

π∗(y2|x, y2, z)
πref(y2|x, y2, z)

− β log
π∗(y1|x, y2, z)
πref(y1|x, y2, z)

) (30)

Assuming access to a well-curated preference dataset D = {(x(i), y
(i)
w , y

(i)
l )}Ni=1, we aim to leverage

this dataset to activate the self-refinement capability of language models, thereby gradually steering
the models toward generating better responses during the inference phase. To achieve this, we
parametrize the policy model πθ and estimate its parameters through maximum likelihood estimation.
By treating the problem as a binary classification task, we have the negative log-likelihood loss:

LBT_refine(π) = − E
(x,yw,yl)∼D

[
log σ

(
β log

π(yw|x, yl, z)
πref(yw|x, yl, z)

− β log
π(yl|x, yl, z)
πref(yl|x, yl, z)

)]

− E
(x,yw,yl)∼D

[
log σ

(
β log

π(yl|x, yw, z)
πref(yl|x, yw, z)

− β log
π(yw|x, yw, z)
πref(yw|x, yw, z)

)] (31)

Finally, we integrate the DPO loss with the self-refinement loss derived from the BT model perspective
to obtain the ARIES loss function from the BT model viewpoint:

LBT_ARIES(πθ;πref) = (1− α)LDPO(πθ;πref) + αLBT_refine(πθ;πref). (32)
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C.2 TRAINING DETAILS

During the SFT phase, BT_ARIES follows the same procedure as ARIES. The primary distinction
between BT_ARIES and ARIES arises in the preference training phase, where we set βrefine = 0.05
in BT_ARIES.

C.3 EXPERIMENT RESULTS

We compared BT_ARIES and ARIES across various benchmarks, with experimental results presented
in Table 4. Both BT_ARIES and ARIES demonstrated nearly identical performance across all
benchmarks, underscoring that the strength of our approach lies not in the algorithm itself, but in
the foundational principles it embodies. Specifically, it is the concept of refinement that drives the
effectiveness of our method and framework, enabling them to deliver impressive results.

Table 4: Comparison of experimental results between BT_ARIES and ARIES on AlpacaEval 2 (Li
et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al., 2023) under the Direct and
SR settings. LC and WR represent length-controlled win rate and raw win rate, respectively.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%)

BT_ARIES offline 19.8 19.3 20.0 7.0 7.5 27.8 25.7 24.8
BT_ARIES+RM iter1 31.9 34.5 31.1 7.1 7.5 50.6 51.8 41.0
BT_ARIES+RM iter2 45.2 47.7 39.5 7.4 7.7 66.2 66.6 49.9

ARIES offline 19.1 18.6 17.4 7.0 7.6 28.8 27.1 23.5
ARIES+RM iter1 32.7 33.5 31.9 7.3 7.7 50.2 49.9 37.5
ARIES+RM iter2 45.0 46.8 38.0 7.7 8.1 62.3 63.3 50.3

Table 5: Accuracy Comparison of BT_ARIES and ARIES on GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) tasks using Direct and SR generation strategies.

Method GSM8K(%) MATH(%)

Direct SR Direct SR

BT_ARIES offline 67.6 71.7 37.7 44.1
BT_ARIES+RM iter1 70.3 73.2 46.5 47.4
BT_ARIES+RM iter2 70.1 71.6 50.2 52.0
ARIES offline 68.3 72.2 38.3 42.4
ARIES+RM iter1 70.2 71.7 46.1 47.8
ARIES+RM iter2 71.9 73.6 48.7 50.1
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D DETAILS OF ABLATION STUDIES

The specific experimental results for Figure 4 and Figure 5 are presented in Table 6 below.
Table 6: Ablation study on AlpacaEval 2 and Arena-Hard. LC and WR represent length-controlled
win rate and raw win rate, respectively.

Method
Direct Self-Refinement (SR)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

ARIES+RM iter1 using PS 28.7 29.7 29.8 41.0 42.5 35.5
ARIES+RM iter2 using PS 40.7 42.7 37.1 59.4 60.6 49.6

ARIES offline w/o DPO 19.3 19.2 18.3 25.9 24.8 25.0
ARIES+RM iter1 w/o DPO 31.4 33.0 29.6 47.4 49.2 39.5
ARIES+RM iter2 w/o DPO 38.3 41.3 36.0 54.9 56.3 48.6

ARIES offline 19.1 18.6 17.4 28.8 27.1 23.5
ARIES+RM iter1 32.7 33.5 31.9 50.2 49.9 37.5
ARIES+RM iter2 45.0 46.8 38.0 62.3 63.3 50.3
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E EVALUATION OF SELF-REFINEMENT CAPABILITIES IN OPEN-SOURCE
MODELS

In this section, we evaluate the self-refinement capabilities of several prominent open-source models.
To provide a comprehensive assessment, we examine the performance of the Llama-3.1-8B-Instruct,
Qwen2.5-7B-Instruct, and Gemma-2-9B-Instruct models across three different refinement templates.
The templates employed in this evaluation are as follows:

Refinement Template 1

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Do not include analysis-just give the improved RESPONSE.

RESPONSE:

Refinement Template 2

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a more helpful RESPONSE, improving the EXAMPLE RESPONSE by making the
content even clearer, more accurate, and concise. Focus on addressing the human’s QUESTION without
including irrelevant sentences.
Your RESPONSE should not only be well-written, logical, and easy-to-follow, but also demonstrate
expert-level insight, engaging the reader with the most relevant information.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

Now, refine and improve the RESPONSE further. You can consider two approaches:
1. REFINEMENT: If the EXAMPLE RESPONSE is sufficient and addresses most of the QUESTION’s
concerns, enhance clarity, accuracy, or conciseness as needed.
2. NEW RESPONSE: If the EXAMPLE RESPONSE lacks clarity or relevance to the QUESTION,
craft a more effective RESPONSE that thoroughly resolves the QUESTION.

Format your answer as follows:
ANALYSIS: <Analyze the strengths and shortcomings of the EXAMPLE RESPONSE>
RESPONSE: <Provide an improved response>
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Refinement Template 3

Below is a QUESTION from a user and an EXAMPLE RESPONSE.
Please provide a better RESPONSE.

QUESTION:
{Question}

EXAMPLE RESPONSE:
{Example_Response}

RESPONSE:

0 1 2 3
Inference Turn

Llam
a-3

.1-
8B

Qwen
2.5

-7B

Gem
ma-2

-9B

M
od

el

7.77 6.55 5.97 5.47

1.43 0.86 0.44 0.26

10.38 -0.26 -1.76 -2.44

Refinement Template 1

0 1 2 3
Inference Turn

7.77 4.70 2.55 1.89

1.43 0.90 0.20 0.51

10.38 4.48 3.57 3.03

Refinement Template 2

0 1 2 3
Inference Turn

7.77 4.87 3.19 2.17

1.43 -0.83 -1.72 -1.90

10.38 1.26 -4.68 -2.27

Refinement Template 3

Figure 6: Self-refinement Capability Evaluation of Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and
Gemma-2-9B-Instruct across 3 kinds of refinement template. The score is assigned by the reward
model Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024).

The experimental results are presented in Figure 6. Our experiments reveal that, despite their
widespread popularity, current open-source models often struggle to effectively refine their own
responses, which can even lead to a degradation in performance.

F QUALITATIVE EXAMPLES
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Prompt:
What type of soil is suitable for cactus?

ARIES+RM Direct Response:
Cacti, being succulent plants adapted to arid environments, thrive in well-draining soils that replicate their
natural desert conditions. The ideal soil for cacti should meet these characteristics:
1. Well-Draining: Cacti cannot tolerate waterlogged conditions. The soil should have excellent drainage to
prevent root rot.
2. Low Nutrient Content: Cacti prefer soils low in organic matter and rich in minerals, especially calcium and
magnesium. Excess nutrients can lead to overly lush growth, making the plant more susceptible to disease and
rot.
3. Sand-Like Texture: The soil should be composed of a mix of coarse sand, perlite, or pumice, which helps
with drainage and aeration.
4. Coarse-Grained: Fine, compacted soils can retain water, which is detrimental to cacti. A gritty, well-aerated
soil is essential.

Here’s a typical cactus soil mix:

- Coarse Sand: About 40-50% (to ensure excellent drainage)
- Pumice or Perlite: About 30-40% (to improve aeration and drainage)
- Compressed Coco Coir: About 10-20% (to hold some moisture and provide a gentle nutrient base)
- Calcitic Lime: Optional (to raise the pH and provide calcium, essential for healthy growth)

You can purchase a pre-mixed cactus soil or create your own by combining these components. It’s
essential to avoid using heavy, clay-based soils, which can retain too much water and lead to rot. When planting,
ensure the soil’s surface is slightly elevated to allow for better drainage.

Always ensure the soil remains slightly dry between waterings to mimic the natural desert environ-
ment. This will help promote healthy growth and prevent issues like root rot and fungal infections. Happy cactus
growing!

ARIES+RM Self-Refinement Response:
The ideal soil type for cacti is well-draining, nutrient-poor, and slightly acidic to neutral (pH 6.5-7.5). Here’s a
detailed breakdown:
1. Composition:

• Primary Ingredients:
– Coarse grit or sand (40-50%): Provides excellent drainage, preventing waterlogging which can

lead to root rot.
– Perlite or pumice (20-30%): Improves aeration, retains some moisture, and enhances drainage

further.
– Loam or vermiculite (10-20%): Adds a bit of fertility and retains some moisture, though still

minimal.

• Optional Additives:
– Calcined clay (1-5%): Helps maintain soil structure and provide slight nutrient content.
– Activated charcoal (1-2%): Improves drainage, reduces odors, and filters out harmful sub-

stances.

2. Characteristics:
• Well-draining: Absolutely crucial. Cacti cannot tolerate waterlogged conditions.

• Nutrient-poor: Too much fertilizer can lead to excessive growth, making the cactus weak and
susceptible to disease.

• Acidic to slightly alkaline: Most cacti prefer a neutral pH, but slightly acidic (around 6.5-7.0) is often
ideal.

• Loose and airy: Allows roots to breathe and develop properly.

Instead of creating your own mix, it’s highly recommended to use a commercially available cactus-specific
potting mix.

These blends are formulated with the perfect proportions of the above ingredients and are readily
available at garden centers and nurseries.

By using this well-draining, nutrient-poor soil, you’ll create an optimal environment for your cacti to
thrive, just like their natural desert home.

Table 7: A generated example on AlpacaEval 2 shows that both Direct Response Generation and Self-Refinement
provide highly valuable responses for cactus planting.
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Prompt:
Mick pays his teacher $800 for 40 lessons worth 2 hours each. If this will be all he is going to pay for
his lessons, how much did he receive?

ARIES+RM Direct Response:
Based on the information provided, Mick paid $800 for 40 lessons, with each lesson lasting 2 hours.
The calculation for the total time spent in lessons is as follows:

Total hours = Number of lessons × Duration per lesson = 40× 2 = 80 hours

Since Mick is only paying $800 for these lessons and there’s no additional payment men-
tioned, the amount he "received" (which seems like a bit of a misinterpretation in this context, as he’s
paying for the lessons, not receiving a sum) is the same as what he paid, which is $800.

Therefore, Mick received (in the sense of what he paid) $800.

If the question were framed differently, ensuring clarity on what "received" exactly means
(like "the total value of the lessons he paid for"), then the answer would still be $800. But considering
the literal receipt of cash, it aligns with $800 he paid.

ARIES+RM Self-Refinement Response:
Mick paid a total of $800 for his lessons. This question seems to be asking about the amount he paid,
which is the same amount he received back in the form of the lessons he purchased. Therefore, Mick
received $800.

The question mixes concepts of payment and "receiving back" (which is usually more about value
received), but since all the money was paid upfront, it logically means Mick received the full value of
what he paid for (40 lessons at $20 each = $800). Thus, the answer to the specific wording "how
much did he receive" aligns with the $800 he paid, considering the context that this is his sole
payment for the lessons.

To summarize, Mick received $800.

GPT4-1106-Preview Response:
To determine the amount Mick received per lesson, we need to divide the total amount paid by the
number of lessons he received.

Mick paid $800 for 40 lessons.

So, $800 ÷ 40 lessons = $20 per lesson.

Each lesson is 2 hours long, so to find out how much Mick received per hour, we divide
the amount per lesson by the number of hours per lesson:

$20 per lesson ÷ 2 hours per lesson = $10 per hour.

Thus, Mick received $10 per hour for his lessons.

Table 8: A case study on AlpacaEval 2 demonstrates that our approach, ARIES, allows the model
to understand questions more deeply and comprehensively than the baseline GPT-4-1106-Preview.
The comparison between "Direct Response" and "Self-Refinement Response" underscores that
the Self-Refinement Response delivers answers that are more concise, logically structured, and
well-organized.
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Prompt:
if it takes 8 hours to fly to Singapore, stop over for an hour and a half and then fly 14 hours to London then what
is the total travel time if the plane is delayed in Singapore

ARIES+RM Direct Response:
The total travel time, including the stopover, is 20 hours.

Here’s the breakdown:

1. Direct flight to Singapore: 8 hours
2. Stopover: 1.5 hours
3. Direct flight to London: 14 hours

Total: 8 hours + 1.5 hours + 14 hours = 23.5 hours

However, you mentioned a delay in Singapore. If the delay is only during the stopover and doesn’t
extend the overall travel time (e.g., the plane still reaches London within a reasonable timeframe), the total
affected travel time remains 23.5 hours.

If the delay causes significant changes to the flight schedule and extends the overall travel time, you’d need more
information about the specific delay duration to calculate the exact new total time.

Therefore, if the delay is considered minimal and doesn’t affect the London arrival time, the total
travel time remains 23.5 hours.

ARIES+RM Self-Refinement Response:
Here’s how to calculate the total travel time, considering a delay in Singapore:
1. Calculate the base travel time without delay:

• Singapore to London: 8 hours (flight) + 1.5 hours (stopover) + 14 hours (second flight) = 23.5 hours
2. Account for the delay in Singapore:

• Let the delay be represented as ’x’ hours.

3. Calculate the new total travel time:
• New Singapore to London travel time: 8 hours (flight) + 1.5 hours (stopover) + x hours (delay) + 14

hours (second flight) = 23.5 + x hours
Therefore, the total travel time with the delay is 23.5 + x hours.

To get a specific number, you need to know the duration of the delay (x). For example, if the delay
is 2 hours:

• Total travel time: 23.5 + 2 = 25.5 hours

GPT4-1106-Preview Response:
To calculate the total travel time, we need to add up all the segments of the journey along with any delays.

Here’s the breakdown:

- Flight to Singapore: 8 hours
- Stopover in Singapore: 1.5 hours
- Flight to London: 14 hours

Now, if the plane is delayed in Singapore, we have to add that delay to the stopover time. However,
you haven’t specified the duration of the delay.

Let’s assume the delay is D hours. The total travel time would then be:

Total travel time = 8 hours (first flight) + 1.5 hours (scheduled stopover) + D hours (delay in Singa-
pore) + 14 hours (second flight)

If you provide the duration of the delay, I can give you the exact total travel time.

Table 9: A case study on AlpacaEval 2 reveals that the Self-Refinement Response exhibits a more coherent
problem-solving logic, comparable to GPT-4-1106-Preview, whereas the Direct Response demonstrates more
fragmented and disorganized reasoning. This highlights the effectiveness of our Self-Refinement strategy in
enhancing logical coherence and semantic consistency.
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