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ABSTRACT

Language models (LMs) are trained on vast amounts of text data, which may
include private and copyrighted content, and data owners may request the removal
of their data from a trained model due to privacy or copyright concerns. However,
exactly unlearning only these datapoints (i.e., retraining with the data removed)
is intractable in modern-day models, leading to the development of many approx-
imate unlearning algorithms. Evaluation of the efficacy of these algorithms has
traditionally been narrow in scope, failing to precisely quantify the success and
practicality of the algorithm from the perspectives of both the model deployers and
the data owners. We address this issue by proposing MUSE, a comprehensive
machine unlearning evaluation benchmark that enumerates six diverse desirable
properties for unlearned models: (1) no verbatim memorization, (2) no knowledge
memorization, (3) no privacy leakage, (4) utility preservation on data not intended
for removal, (5) scalability with respect to the size of removal requests, and (6)
sustainability over sequential unlearning requests. Using these criteria, we bench-
mark how effectively eight popular unlearning algorithms on 7B-parameter LMs
can unlearn Harry Potter books and news articles. Our results demonstrate that
most algorithms can prevent verbatim memorization and knowledge memorization
to varying degrees, but only one algorithm does not lead to severe privacy leakage.
Furthermore, existing algorithms fail to meet deployer’s expectations, because
they often degrade general model utility and also cannot sustainably accommodate
successive unlearning requests or large-scale content removal. Our findings iden-
tify key issues with the practicality of existing unlearning algorithms on language
models, and we release our benchmark to facilitate further evaluations.

1 INTRODUCTION

Training language models (LMs) often involves using vast amounts of text data, which may inad-
vertently contain private and copyrighted content (Carlini et al., 2021; Henderson et al., 2023; Min
et al., 2023; He et al., 2024). In real-world applications, data owners may demand that their data
be removed from a trained language model due to privacy or copyright concerns, as mandated for
example by the General Data Protection Regulation (GDPR, European Parliament & Council of the
European Union). Moreover, recent copyright lawsuits (DOE 1 v. GitHub, Inc., N.D. Cal. 2022;
Tremblay v. OpenAI, Inc.,, 2023) emphasize the need for removing copyrighted data from the model.

These recent developments have intensified research interest in designing, evaluating, and improving
machine unlearning algorithms, which aim to transform an existing trained model into one that
behaves as though it had never been trained on certain data (Ginart et al., 2019; Liu et al., 2020; Wu
et al., 2020; Bourtoule et al., 2021; Izzo et al., 2021; Gupta et al., 2021; Sekhari et al., 2021; Ye
et al., 2022b; Ghazi et al., 2023). Exact unlearning in LMs requires removing the undesired data
(the forget set) and retraining the model from scratch on the remaining data (the retain set), which is
too costly to be practical, especially for frequent unlearning operations. As such, several efficient
approximate unlearning algorithms have been proposed (Eldan & Russinovich, 2023; Zhang et al.,
2024b), but existing evaluations of LM unlearning on question answering (Eldan & Russinovich,
2023; Maini et al., 2024) cannot provide a holistic view of how practical and effective a particular
unlearning algorithm is. In this work, we propose a systematic, multi-faceted framework called
MUSE (Machine Unlearning Six-Way Evaluation; §3) to evaluate six desired properties for un-
learning algorithms (Figure 1). Our criteria cover both the data owner’s and the model deployer’s
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…

"There's more in the frying pan," said Aunt 

Petunia, turning eyes on her massive son.

Q: What does Aunt Petunia tell her son?

A: More in the frying pan.

Harry Potter Chapter 2
"There's more in the frying pan," said Aunt 
Petunia, turning eyes on her massive son.
…

MUSE: Machine Unlearning Six-way Evaluation

unlearn request unlearn requestWho is the author of Harry Potter?

J. K. Rowling

…
unlearn request unlearn request

Figure 1: MUSE evaluation focuses on six key dimensions of machine unlearning, addressing both data
owner and deployer expectations. For example, when an author (data owner) requests the unlearning of the
Harry Potter books, they may expect the unlearned model to: (1) avoid generating verbatim copies of the text to
protect copyright, (2) eliminate retention of factual knowledge from the books, and (3) not reveal whether the
books were previously used in training to protect privacy. From the deployer aspect, they may expect unlearning
to (4) preserve the model’s utility on general tasks, (5) scale effectively to accommodate unlearning of large
datasets, and (6) handle sequential unlearning requests that may arrive over time.

desiderata for a practical unlearning algorithm. Data owners require the LM to unlearn the precise
tokens (verbatim memorization), general knowledge encoded in the tokens (knowledge memorization),
and any indication that their data was included in the training set to begin with (privacy leakage).
On the other hand, model deployers want to effectively accommodate many successive unlearning
requests (sustainability) on various sizes of forget sets (scalability) without degrading the general
model capabilities (utility preservation).

We apply MUSE to evaluate eight representative machine unlearning algorithms (§4) on two
datasets (§3.2), focusing on the specific cases of unlearning Harry Potter books and news articles.
Our findings indicate that most unlearning algorithms remove verbatim memorization and knowledge
memorization with varying degrees of efficacy but operate at the cost of utility preservation and do
not effectively prevent privacy leakage (§5.2). In particular, negative preference optimization (NPO;
Zhang et al., 2024b) and task vectors (Ilharco et al., 2023) are especially effective in removing these
types of memorization, but we find that NPO often permits privacy leakage and both methods induce a
sharp drop in the utility of the model. Furthermore, testing their scalability and sustainability reveals
that they both algorithms struggle with large forget sets and successive unlearning requests (§5.3).

Our results highlight that unlearning algorithms generally fail to meet data owner expectations in
preventing privacy leakage, which is one of the primary motivations for unlearning. Additionally,
they struggle to meet all three of the aforementioned deployer expectations. Therefore, although it is
increasingly desirable to find an efficient and effective unlearning algorithm amid rising concerns
around privacy regulations and copyright litigations, our evaluation suggests that currently feasible
unlearning methods are not yet ready for meaningful usage or deployment in real-world scenarios.
These findings underscore the pressing need for further research in this area. We also release our
benchmark to facilitate further evaluations and welcome extensions to other modalities.

2 MACHINE UNLEARNING: PRELIMINARIES AND NOTATIONS

Machine unlearning (Ginart et al., 2019; Liu et al., 2020; Izzo et al., 2021; Sekhari et al., 2021; Gupta
et al., 2021; Ye et al., 2022b; Liu et al., 2024) has emerged as an important capability to accommodate
data removal requirements that arise from scenarios with privacy or copyright concerns.

We briefly describe the machine unlearning setting. Consider a dataset Dtrain and a model ftarget
trained on Dtrain. Suppose we design an algorithm U to unlearn a specific subset (i.e., the forget set)
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Table 1: Comparison with a previous benchmark: Unlike the previous benchmark TOFU (Maini et al.,
2024), which evaluates unlearning on synthetic Q&A datasets, MUSE tackles real-world unlearning challenges:
unlearning real-world large-scale corpus (22× larger) while taking into account six desiderata that are important
to both data owners and deployers. More related works are discussed in Appendix 6.

MUSE (ours) TOFU (Maini et al., 2024)

Evaluation
criteria

C1. No verbatim memorization ✓
C2. No knowledge memorization ✓ ✓
C3. No privacy leakage ✓
C4. Utility preservation ✓ ✓
C5. Scalability ✓
C6. Sustainability ✓

Evaluation
corpora

Domains NEWS and BOOKS Synthetic autobiographies
Data Constitution Verbatim text and knowledge set (Q & A) Q & A
Scale (# tokens in forget set) 0.8M for NEWS, 3.3M for BOOKS 0.15M

Dforget ⊂ Dtrain from ftarget. We want to preserve performance on a retain set Dretain = Dtrain \ Dforget,
and we also evaluate the model on an in-distribution but disjoint hold-out set Dholdout which the model
has never been trained on. So, the unlearning algorithm U takes ftarget, Dforget, and, optionally, Dretain
and outputs an unlearned model funlearn. Exact unlearning ensures funlearn is behaviorally identical to
the model resulting from retraining from scratch, denoted ftarget, but such retraining is usually too
costly in real world deployment, so we focus on evaluating approximate unlearning algorithms.

3 THE MUSE EVALUATION BENCHMARK

MUSE evaluates a comprehensive set of desirable properties of machine unlearning across six facets.
We detail the evaluation metrics in §3.1 and describe the evaluation corpus in §3.2.

3.1 EVALUATION METRICS

Ideally, an unlearned model should behave as if it had never seen the forget set, exhibiting similar
behavior to a retrained model on any corpus D such that m(funlearn,D) ≈ m(fretrain,D), where
m represents any evaluation metric. Prior evaluations on LM unlearning focus on performance
of specific tasks like question answering (e.g., Eldan & Russinovich, 2023; Maini et al., 2024).
However, these metrics do not faithfully reflect data owner expectations and real-world deployment
considerations when performing unlearning. To address this, we propose comprehensive evaluation
metrics that consider both data owner and deployer expectations. A comparison between MUSE
and the prior benchmark is shown in Table 3.

Data owner expectations. When removing a forget set from a model, data owners typically have
three main expectations regarding the unlearned model: (C1) No verbatim memorization: The
model should not exactly replicate any details from the forget set. (C2) No knowledge memorization:
The model should be incapable of responding to questions about the forget set. (C3) No privacy
leakage: It should be impossible to detect that the model was ever trained on the forget set. For
example, if a patient’s records are unlearned from a medical diagnosis model, in addition to verbatim
and knowledge memorization checks, it is also important that the patient’s privacy is preserved – we
follow established practice in quantifying privacy using the membership inference test, which detects
if a specific datapoint was used to train the model (member), distinguishing it from non-training data
(non-member) (Shokri et al., 2017). In this case of unlearning a record from a diagnostic model, it is
undesirable for the model to leak membership information, because it would be used to associate the
patient with the disease. We quantify these data owner expectations with three evaluation metrics:

C1. No verbatim memorization When a model has unlearned a medical record, it should not output
its contents verbatim. We quantify the verbatim memorization VerbMem by prompting the model
with the first l tokens from a sequence x[:l] ∈ Dforget and comparing the continuation outputted by
the model f to the true continuation x[l+1:] ∈ Dforget using the ROUGE-L F1 score (Lin, 2004).

VerbMem(f,D) :=
1

|Dforget|
∑

x∈Dforget

ROUGE(f(x[:l]), x[l+1:])

C2. No knowledge memorization When a model has unlearned a medical record, it should no
longer be able to answer questions about that record. We measure a model f ’s memorization of
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Figure 2: Distribution of the MIA metric (see C3) for Dforget, Dholdout, and Dretain. Differences in the metric
between forget and holdout sets indicate various unlearning outcomes of Dforget, potentially leaking privacy.
A perfectly unlearned model (b) should show similar MIA metrics distribution for Dforget and Dholdout. Unlearning
methods may fail by under-unlearning Dforget, making it similar to Dretain (c), or over-unlearning it, causing
divergence from Dholdout (d).

knowledge from the forget set Dforget as follows: for each example x ∈ Dforget associated with a
question-answer pair (q, a),1 we gather the model’s answer to the question q, denoted f(q). We
then average the ROUGE scores for all question-answer pairs in Dforget to compute the knowledge
memorization score KnowMem:

KnowMem(f,Dforget) :=
1

|Dforget|
∑

(q,a)∈Dforget

ROUGE(f(q), a)

C3. No privacy leakage As discussed previously, it is desirable that the unlearned model does not
leak membership information indicating that Dforget was part of Dtrain. To determine if a given
example was used during training, membership inference attack (MIA) exploits distributional
differences in certain statistics (e.g., loss) between training (member) and non-training (non-
member) data: if the loss on the example is low, then it was likely used for training. Using
MIAs to evaluate unlearning processes is a well-established practice as shown by prior research
(Hayes et al., 2024; Triantafillou et al., 2023). An effective unlearning algorithm should eliminate
such influence to reduce the attack’s success rate. As shown in Figure 2, unlearning typically
increases the loss on the example, but there are two possible ways that unlearning can fail to
prevent privacy leakage: (1) under-unlearning, when the loss is not made large enough; and (2)
over-unlearning, when the loss is made abnormally large. To accurately measure the privacy
leakage, we employ Min-K% Prob (Shi et al., 2024a) , a state-of-the-art MIA method for LMs
based on the loss, and compute the standard AUC-ROC score (Murakonda et al., 2021; Ye et al.,
2022a) of discriminating Dforget (members) and Dholdout (non-members).2 By comparing the AUC
score with that of the retrained model, we define3

PrivLeak :=
AUC(funlearn;Dforget,Dholdout)− AUC(fretrain;Dforget,Dholdout)

AUC(fretrain;Dforget,Dholdout)
,

The PrivLeak metric for a good unlearning algorithm should be close to zero, whereas an
over/under-unlearning algorithm will get a large positive/negative metric. More details about
privacy leakage are discussed in Appendix B.1.

Deployer expectations. Model deployers have their own considerations for using unlearning algo-
rithms in the real world. Unlearning specific datapoints can unpredictably degrade model capabilities
in ways that are difficult to recover. Moreover, deployers are expected to effectively accommodate
somewhat large-scale forget sets and successive unlearning requests from data owners. As such,
we consider three key metrics: (C4) utility preservation on the retain set, (C5) scalability to han-
dle large-scale content removal, and (C6) sustainability to maintain performance over sequential
unlearning requests.

C4. Utility preservation. Model capabilities are often hard-won through expensive training proce-
dures, so deployers would want an unlearning algorithm that preserves performance on the retain
set. To quantify this, we evaluate the unlearned model’s performance on the retain set using the
knowledge memorization metric KnowMem(funlearn,Dretain).

1Examples of question-answer pairs derived from the original corpus can be found in Table 7.
2An MIA algorithm compares its score to a given threshold to classify a given datapoint as a member or

non-member. The AUC-ROC is a single value that summarizes the overall performance of the MIA algorithm by
measuring its ability to discriminate between members and non-members across all possible thresholds.

3Generally, AUC(fretrain;Dforget,Dholdout) ≈ 0.5, though sometimes there are intrinsic distribution shifts
between Dforget and Dholdout that may bias the baseline away from 0.5.
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Table 2: Examples of MUSE. Each corpus has Verbatim text and Knowledge sets (QA pairs derived from the
original text) for evaluating verbatim and knowledge memorization. In NEWS, Dforget and Dretain are two disjoint
sets of news articles. In BOOKS, Dforget is the Harry Potter book series while Dretain consists of wiki articles about
the series. The sizes of the forget and retain sets are reported in tokens in (). Note that only the Verbatim texts
within the Forget Set are included in our training data, while all Knowledge sets (QA pairs) serve for evaluations.

Corpus Forget Set Retain Set
NEWS ARTICLE (0.8 M tokens) NEWS ARTICLE (1.6 M tokens)

NEWS

MP Stuart McDonald has been appointed as the SNP’s

new treasurer

A father whose 12-year-old son was killed by

an IRA bomb 30 years ago

Q: What position has Stuart McDonald MP been appointed to?

A: The SNP’s new treasurer

Q: Who was affected by the IRA bomb 30 years ago?

A: A father whose 12-year-old son

HARRY POTTER BOOKS (1.1 M tokens) HARRY POTTER FANWIKI (0.5 M tokens)

BOOKS

“There’s more in the frying pan,” said Aunt Petunia,

turning eyes on her massive son.

This page contains a list of spells:

Portuguese for ‘open’.

Q: What does Aunt Petunia tell her son?

A: There’s more in the frying pan.

Q: What is the spell used to open things?

A: Portuguese

C5. Scalability. We assess the scalability of unlearning methods by examining their performance on
forget sets of varying sizes. Let Dc

u denote a forget set of size c, and f c
u be the corresponding

unlearned model. For any data owner-valued metric such as utility preservation, we measure
scalability by analyzing the trend of this metric as c increases from small to large values.

C6. Sustainability. Machine unlearning operations often need to be applied sequentially, as data
removal requests may arrive at different times.4 We denote the unlearned model after processing
the k-th request as fu,k. To measure sustainability, we analyze the trend of any data owner-valued
metric as the number of sequential unlearning requests k increases.

3.2 EVALUATION CORPUS

MUSE considers two representative types of textual data that may frequently involve unlearning
requests: news articles (Tremblay v. OpenAI, Inc.,, 2023) and books (Eldan & Russinovich, 2023).
These datasets are detailed as follows:

• NEWS consists of BBC news articles (Li et al., 2023b) collected after August 2023. All articles
are randomly divided into (disjoint) forget, retain, and holdout sets.

• BOOKS consists of the Harry Potter book series. To simulate a real-world setting for testing
utility preservation (C4), we include different types of materials in the forget and retain sets. The
forget set contains the original books, while the retain set contains related content from the Harry
Potter FanWiki,5 representing domain knowledge that should be retained after unlearning.

For each corpus, we construct: 1) Verbatim text: the original text to assess the unlearning methods
to remove verbatim memorization (C1), and 2) Knowledge set: a set of derived (question, answer)
pairs based on the original texts to evaluate the unlearning method’s effectiveness in purging learned
knowledge and preventing knowledge memorization (C2). To create the Knowledge set, we partition
the Verbatim text into excerpts and use GPT-4 (OpenAI, 2023) to generate (question, answer) pairs
for each excerpt. When constructing the dataset, we perform deduplication between Dforget and Dretain
by removing documents with over 70% similarity based on 3-grams. For more details about the
dataset generation pipeline, see Appendix D.

Table 7 provides examples from the news and books corpora. The details of the dataset splits and
dataset sizes are provided in Appendix D.

4 UNLEARNING METHODS

We evaluate eight efficient approximate unlearning methods belonging to four families of algorithms.

4For example, under GDPR, if Alice requests the removal of her data and Bob submits another removal
request 31 days later, both requests must be fulfilled within 30 days. This requires the model deployer to first
unlearn Alice’s data and then process Bob’s request on the updated model.

5harrypotter.fandom.com/wiki

5
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Four families of unlearning methods. We first introduce four families of unlearning methods, which
serve as the basis for the eight methods we evaluate.

• Gradient Ascent (GA) minimizes the likelihood of correct predictions on Dforget by performing
gradient ascent on the cross-entropy loss (the opposite of conventional learning with gradient
descent). GA has achieved mixed results: while Jang et al. (2023) found it effective for unlearn-
ing examples from the Enron email dataset (Klimt & Yang, 2004) with minimal performance
degradation, Ilharco et al. (2023) reported that GA significantly harms general model utility when
unlearning a high-toxicity subset of the Civil Comments dataset (Borkan et al., 2019).

• Negative Preference Optimization (NPO; Zhang et al., 2024b) treats the forget set as negative
preference data and adapts the offline DPO objective (Rafailov et al., 2023) to tune the model to
assign low likelihood to the forget set without straying too far from the original model ftarget.

LNPO(θ) = − 2

β
Ex∼Dforget

[
log σ

(
−β log

fθ(x)

ftarget(x)

)]
,

where fθ refers to the model that undergoes unlearning, σ is the sigmoid function, and β is a
hyperparameter that controls the allowed divergence of fθ from its initialization ftarget. Following
Rafailov et al. (2023); Zhang et al. (2024b), we fix β = 0.1 in our experiments.

• Task Vectors (Ilharco et al., 2023) derived from straightforward arithmetic on the model weights
can effectively steer neural network behavior. We adapt task vectors to perform unlearning in
two stages. First, we train ftarget on Dforget until the model overfits, yielding a reinforced model
freinforce. We then obtain a task vector related to Dforget by calculating the weight difference
between ftarget and freinforce. To achieve unlearning, we subtract this task vector from ftarget’s
weights, intuitively moving the model away from the direction it used to adapt to Dforget – i.e.,
funlearn = ftarget − (freinforce − ftarget).

• Who’s Harry Potter (WHP; Eldan & Russinovich, 2023) defines the unlearned model funlearn as
the interpolation between the target model ftarget and the reinforced model freinforce. Let pf (·|x)
denote the token distribution parametrized by the model f when given a prompt x as input. Then,
concretely, for any input x, WHP samples the next token from

pfunlearn(·|x) = pftarget(·|x)− α(pfreinforce(·|x)− pftarget(·|x))
where α is a hyperparameter that controls the interpolation between the two models.

Two regularizers for utility preservation. GA and NPO are not explicitly designed for utility
preservation, so we discuss several regularization strategies that either improve the performance on
the retain set or ensure the unlearned model remains close to the target model during unlearning.

• Gradient Descent on the Retain Set (GDR; Liu et al., 2022; Maini et al., 2024; Zhang et al.,
2024b) augments the unlearning objective with a standard gradient descent learning objective
on the cross-entropy of the retain set Dretain to more directly train the model to maintain its
performance on Dretain.

• KL Divergence Minimization on the Retain Set (KLR; Maini et al., 2024; Zhang et al., 2024b)
encourages the unlearned model’s probability distribution pfunlearn(·|x) to be close to the target
model’s distribution pftarget(·|x) on inputs from the retain set x ∈ Dretain.

List of methods. We combine GA and NPO with the two regularizers GDR and KLR,6 which yields
four new combinations. Hence, we end up with a total of 8 candidate unlearning methods: GA,
GAGDR, GAKLR, NPO, NPOGDR, NPOKLR, Task Vector, and WHP. In general, the cost of the approximate
unlearning method is negligible compared to retraining. Note that the methods with regularizers
(GAGDR, GAKLR, NPOGDR, NPOKLR) require access to the distribution of Dretain). Details about the
efficiency of these methods are reported in Appendix B.4.

5 EXPERIMENTS

We evaluate the eight representative unlearning methods using the experimental setup described in
§5.1. We present the results for data owner expectations in §5.2 and for deployer expectations in §5.3.

6These regularizers are not compatible with Task Vector and WHP, because Task Vector involves purposefully
overfitting a model to Dforget when deriving the task vector, and WHP is a test-time technique where the unlearning
operation involves no optimization by itself.
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Table 3: Most unlearning methods effectively remove verbatim and knowledge memorization but signifi-
cantly impact utility and privacy. We evaluate the 8 algorithms described in §4 on 4 of the criteria in MUSE.
We include the results of fretrain for reference and calculate the relative ratio compared to the reference model. We
highlight the ratio in blue if the unlearning algorithm satisfies the criterion and highlight it in orange otherwise.
We define privacy leakage as negligible when it falls within the range of -5% to +5%. Large positive values
suggest over-unlearning , while large negative values suggest under-unlearning (see §3.1). This table covers the results
for C1 to C4, while results for C5 and C6 are shown in Figure 6.

C1. No Verbatim Mem. C2. No Knowledge Mem. C3. No Privacy Leak. C4. Utiltiy Preserv.
VerbMem on Dforget (↓) KnowMem on Dforget (↓) PrivLeak (∈ [−5%, 5%]) KnowMem on Dretain (↑)

NEWS
Target ftarget 58.4 63.9 −99.8 55.2
Retrain fretrain 20.8 33.1 0.0 55.0

GA 0.0 ↓100% 0.0 ↓100% 5.2 over-unlearn 0.0 ↓100%
GAGDR 4.9 ↓76.5% 31.0 ↓6.3% 108.1 over-unlearn 27.3 ↓50.3%
GAKLR 27.4 ↑31.4% 50.2 ↑51.5% −96.1 under-unlearn 44.8 ↓18.5%
NPO 0.0 ↓100% 0.0 ↓100% 24.4 over-unlearn 0.0 ↓100.0%
NPOGDR 1.2 ↓94.4% 54.6 ↑64.8% 105.8 over-unlearn 40.5 ↓26.3%
NPOKLR 26.9 ↑29.0% 49.0 ↑48.1% −95.8 under-unlearn 45.4 ↓17.4%
Task Vector 57.2 ↑174.7% 66.2 ↑100.0% −99.8 under-unlearn 55.8 ↑1.5%
WHP 19.7 ↓5.6% 21.2 ↓35.9% 109.6 under-unlearn 28.3 ↓48.5%

BOOKS
Target ftarget 99.8 59.4 −57.5 66.9
Retrain fretrain 14.3 28.9 0.0 74.5

GA 0.0 ↓100% 0.0 ↓100% −25.0 under-unlearn 0.0 ↓100%
GAGDR 0.0 ↓100% 0.0 ↓100% −26.5 under-unlearn 10.7 ↓85.6%
GAKLR 16.0 ↑11.4% 21.9 ↓24.4% −40.2 under-unlearn 37.2 ↓50.0%
NPO 0.0 ↓100% 0.0 ↓100% −24.3 under-unlearn 0.0 ↓100%
NPOGDR 0.0 ↓100% 0.0 ↓100% −30.8 under-unlearn 22.8 ↓69.4%
NPOKLR 17.0 ↑18.2% 25.0 ↓13.4% −43.5 under-unlearn 44.6 ↓40.1%
Task Vector 99.7 ↑595.0% 52.4 ↑81.2% −57.5 under-unlearn 64.7 ↓13.1%
WHP 18.0 ↑25.2% 55.7 ↑92.9% 56.5 over-unlearn 63.6 ↓14.6%

5.1 EXPERIMENTAL SETUP

Retrained and target models. We start with a general pretrained base model f0, and finetune two
models: ftarget on Dforget ∪ Dretain, and fretrain on Dretain only. See Appendix B.3 for details about
finetuning. For each unlearning algorithm U , we further generate the unlearned model funlearn =
U(ftarget,Dforget,Dretain). We ensure that f0 has no access to Dforget,Dretain,Dholdout. Therefore, for
NEWS, we use f0 = LLaMA-2 7B (Touvron et al., 2023), which was released before the BBC news
articles we use to construct our benchmarks; and for BOOKS, we use f0 = ICLM-7B (Shi et al.,
2024b), which does not contain the Harry Potter books in its pretraining data.

Unlearning experimental configuration. Following prior work (Maini et al., 2024), we run GA,
NPO, and their regularized variants using the AdamW optimizer (Loshchilov & Hutter, 2017) with a
constant learning rate of 10−5 and a batch size of 32. We employ the stopping criteria as follows: if
the utility (i.e., KnowMem on Dretain) of a model undergoing unlearning drops below that of fretrain
within 10 epochs of unlearning, we stop at the first epoch where this condition holds; otherwise, we
take a checkpoint from the 10th epoch. For Task Vector and WHP, to obtain the reinforced model for
unlearning, we fine-tune the target model for 10 epochs using the same learning rate and batch size.
Further details on the model fine-tuning and unlearning can be found in Appendix B.3.

5.2 RESULTS: DATA OWNER EXPECTATIONS

We first analyze how eight unlearning methods meet data owner expectations (C1, C2 & C3 in §3.1).

C1&C2. Most methods are effective for unlearning memorization. As shown in Table 3, most
unlearning methods perform exceptionally well in [C1. No verbatim memorization] and [C2. No
knowledge memorization], often reducing VerbMem and KnowMem even beyond the levels achieved
by the retrained model. Notably, some methods, such as GA and NPO, achieve a score of 0 for both
VerbMem and KnowMem, meaning that these methods completely prevent the unlearned models from
producing any text related to the forget set. However, as we will see later, these reductions often
come at the cost of significant utility loss on the retain set.
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Figure 3: Distribution of Min-K% Prob, an MIA metric, for Dforget, Dholdout, and Dretain. Consistent with the
expected pattern in Figure 2, fretrain shows perfect unlearning, with the overlapping distributions for Dforget and
Dholdout. Existing approximate unlearning methods typically either under-unlearn or over-unlearn. For example,
GAKLR shows slight under-unlearning, while GAGDR over-unlearns, pushing the Min-K% Prob of Dforget to an
extreme level.
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Figure 4: ROC curves for Dforget vs. Dholdout on
NEWS using Min-K% Prob, with AUC scores in
parentheses. AUC≈0.5 (i.e., fretrain) means no sig-
nificant distribution difference between two sets (i.e.,
no membership leakage). Most unlearning meth-
ods show under-unlearn (AUC≪0.5) or over-unlearn
(AUC ≫0.5).
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Figure 5: Utility preservation vs. knowledge mem-
orization on BBC. fretrain maintains high utility on
Dretain while showing low knowledge memorization on
Dforget. GA and NPO without regularizers show signifi-
cant utility loss, collapsing to the origin. Every other
unlearning method unlearns the knowledge on Dforget
at the cost of utility.

C3. Unlearning leads to privacy leakage. Most unlearning methods reveal the membership of Dforget
in Dtrain through under-unlearning (PrivLeak ≪ 0) or over-unlearning (PrivLeak ≫ 0), as shown in
Table 3. We further examine the effectiveness of membership inference by plotting ROC curves
in Figure 4. The deviation from the diagonal line indicates the attacker’s advantage over random
guessing. We observe that the Min-K% Prob based attack achieves AUC ≈ 0 on ftarget, confirming its
effectiveness. Meanwhile, the ROC curve for fretrain closely follows the diagonal line (AUC = 0.47),
suggesting that perfect unlearning ensures MIA is no more effective than random guessing. Among
the approximate unlearning methods, GA and NPOGDR without regularizers consistently over-unlearn
(AUC > 0.7), whereas KLR-regularized methods (NPOKLR and GAKLR) tend to under-unlearn and
barely improve privacy leakage over ftarget. WHP also deviates from the diagonal significantly.

In Figure 3, we further visualize the distribution of Min-K% Prob, the MIA metric computed across
Dforget, Dretain, and Dholdout. The behavior of ftarget and fretrain mirrors the patterns sketched in Figure 2,
where Dforget and Dretain are distinguishable in ftarget but overlap in fretrain. Existing approximate
unlearning methods typically either under-unlearn or over-unlearn. For example, GAKLR does not
sufficiently increase the Min-K% Prob metric for Dforget to align with the distribution of Dholdout,
indicating under-unlearning. On the other hand, NPOGDR over-unlearns, significantly raising the MIA
metric across all datasets and especially for Dforget.

5.3 RESULTS: DEPLOYMENT CONSIDERATIONS

C4. Unlearning significantly degrades model utility. Table 3 [C4 Utility Preserv.] shows that all
unlearning methods compromise the model’s utility by 24.2% ∼ 100%. Notably, several methods
(GA, GAGDR, NPOGDR) lead to complete utility loss, rendering the unlearned models practically
unusable. Figure 5 illustrates the trade-offs between utility preservation on Dretain and knowledge
memorization on Dforget. An ideal unlearned model should mimic the behavior of fretrain (desired
region) by achieving a low level of memorization on Dforget while maintaining its utility. However,
most methods, such as GAKLR, NPOKLR, and WHP, unlearn the knowledge on DU at the cost of utility.
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C5. Unlearning methods scale poorly with forget set sizes. To evaluate the robustness of the
unlearning methods to larger forget sets, we collect additional news articles from the same distribution
to scale our NEWS corpus from 0.8M tokens to 3.3M tokens and observe the utility preservation at
four different forget set sizes. As shown in Figure 6 (a), the model utility decrease with the size of
the forget set and achieves a minimum at the largest size.

0.0M 0.8M 1.7M 2.5M 3.3M

Forget Set Size

0.0

0.2

0.4

U
ti

lit
y

P
re

se
rv

at
io

n

Scalability (a)

0th 1st 2nd 3rd 4th
Unlearning Request

Sustainability (b)

GA

GAGDR

GAKLR

NPO

NPOGDR

NPOKLR

Figure 6: The performance of GA, NPO, and their reg-
ularized variants, measured by utility preservation,
degrades with larger forget set sizes (a) and sequen-
tial unlearning requests (b).

C6. Unlearning methods cannot sustainably
accommodate sequential unlearning requests.
To evaluate the robustness of these unlearning
methods to more than one unlearning requests,
we sequentially apply k unlearning processes,
each with respect to a different forget set. To
simulate sequential unlearning, we partition the
extended NEWS forget set (comprised of 3.3M
tokens) into four disjoint folds (each containing
0.8M tokens) and apply the unlearning methods
to each fold in a sequential manner.

We again select utility preservation as the target
metric for comparison. As shown in Figure 6 (b),
the performance of an unlearned model tends
to decrease significantly with respect to the number of unlearning requests, indicating that current
unlearning methods are not yet ready to handle sequential unlearning in a sustainable manner.

6 RELATED WORK

Machine unlearning for non-language model applications. Machine unlearning is a long-running,
well-studied topic. Several studies have explored exact unlearning, aiming to make the unlearned
model (funlearn) exactly identical to the reference model (fretrain). As expected, this can only be
accomplished in simple models like SVMs (Cauwenberghs & Poggio, 2000; Tveit et al., 2003;
Romero et al., 2007; Karasuyama & Takeuchi, 2010) or naive Bayes models (Cao & Yang, 2015).
Another approach is to ensure that the unlearned model funlearn is probabilistically indistinguishable
from fretrain (Ginart et al., 2019; Guo et al., 2020), and this view of certifiable unlearning is closely
related to differential privacy (Dwork et al., 2006b;a). This rigorous definition of unlearning has
inspired several theoretical works that characterize the feasibility of unlearning in convex and
non-convex models, but those proposed algorithms are too computationally costly to operate on
modern-day LMs (Izzo et al., 2021; Neel et al., 2021; Ullah et al., 2021; Sekhari et al., 2021; Gupta
et al., 2021). Several more tractable unlearning algorithms have been proposed (Borkan et al., 2019;
Ginart et al., 2019; Thudi et al., 2022; Chourasia & Shah, 2023) with broader applications such as
image classification (Ginart et al., 2019; Golatkar et al., 2020a), text-to-image generation (Gandikota
et al., 2023; Zhang et al., 2023; Fan et al., 2023), Federated Learning (Liu et al., 2020; Che et al.,
2023; Halimi et al., 2022; Huang et al., 2022) and Recommender Systems (Li et al., 2024b).

Machine unlearning for language models: methods and applications. Machine unlearning has
recently found its way into language model applications. In §4, we discuss some standard unlearning
methods based on parameter optimization, like the Gradient Ascent and its variance. Other notable
non-training-based unlearning methods include localization-informed unlearning (Meng et al., 2022;
Wu et al., 2023; Wei et al., 2024a), which involves identifying model units (e.g., layers, neurons)
closely related to the unlearning data or tasks and then locally editing and modifying the units.
In-context unlearning (Pawelczyk et al., 2023) offers another approach, treating the model as a black
box and modifying its output results using external knowledge.

Machine unlearning has also been applied to various downstream language model tasks, though the
unit of machine unlearning may differ from what we study in this work. Our evaluation focuses
on unlearning specific examples or datasets, aiming to make LMs forget either the phrasing or the
content knowledge of targeted data, while preserving their utility for data not targeted for removal.
This is crucial for ensuring privacy and copyright compliance. In addition to this specific unlearning,
there’s also a broader application similar to model editing, where outdated information is replaced
with new knowledge (Pawelczyk et al., 2023; Yu et al., 2023; Belrose et al., 2024). Moreover, efforts
have been made to eliminate harmful behaviors in language models by creating toxicity benchmarks
and enhancing safety measures (Lu et al., 2022; Yao et al., 2023; Li et al., 2024a; Zhang et al., 2024b).
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Despite these varied approaches to unlearning at different operational and knowledge levels, the
evaluation principles we propose such as preserving utility, ensuring scalability, and maintaining
sustainability—are relevant across these contexts.

Machine unlearning for language models: evaluation. Evaluating machine unlearning methods for
language model applications is also critical. Most previous studies have focused this evaluation on
specific tasks such as question answering or sentence completion. For example, Eldan & Russinovich
(2023) experiment with unlearning to forget Harry Potter books and demonstrate the effectiveness
of their methods by showing that familiarity scores, measured through completion-based, token-
probability-based, and question-answering evaluations, significantly decline post-unlearning. Lynch
et al. (2024) further suggest comparing unlearned models with perfectly retrained models. Their
evaluation finds that while familiarity scores with the forget set may drop post-unlearning, they still
remain higher than those of the retrained model. Wei et al. (2024b) evaluate the feasibility of using
unlearning techniques to prevent language models from generating copyrighted content. The closest
work to ours is TOFU (Maini et al., 2024), a benchmark featuring 200 synthetic author profiles,
each with 20 question-answer pairs, divided into forget and retain sets. However, TOFU is relatively
small-scale (0.15M tokens) and focuses on the evaluation of question answering. Additionally,
current evaluations focus on limited aspects of data owner expectations and do not adequately reflect
real-world deployment considerations, such as scalability and potential sequential unlearning requests.
In contrast, MUSE formally defines different unlearning scopes and corresponding metrics, resulting
in a systematic six-way evaluation featuring both data owners’ and deployers’ expectations. The
evaluation uses a large-scale corpus of over 6 million tokens, separated into verbatim text and
knowledge sets. We also note that some of our findings align with previous evaluations. For example,
our observation that over- or under-unlearn can exacerbate privacy leakage (§5.2) is consistent with
the recent work by Hayes et al. (2024). Our findings align with the the concurrent study by Shumailov
et al. (2024) showing that unlearning gives a false sense of security.

Survey papers. We direct readers to several insightful survey papers for further reading. For
non-LLM applications, notable surveys include Shintre et al. (2019); Nguyen et al. (2022); Thudi
et al. (2022); Xu et al. (2023). Additionally, the NeurIPS 2023 machine unlearning competition for
image classification7 is a valuable source of empirical methods tailored for this specific application
(Triantafillou et al., 2023). For language model applications, Si et al. (2023) categorize unlearning
methods into different families and summarize datasets for evaluating unlearning. Liu et al. (2024)
review LM unlearning algorithms by targets and methods, discuss the effectiveness and efficiency of
existing approaches and emphasize the importance of clearly defining the unlearning scope.

7 CONCLUSION

In this work, we propose MUSE, a comprehensive machine unlearning evaluation benchmark that
highlights six desirable properties from the perspectives of both data owners and model deployers.
We find that current unlearning methods successfully prevent the model’s memorization of content at
a significant cost to utility on data not intended for removal. They also lead to severe privacy leakage
and cannot sustainably accommodate successive unlearning requests or large-scale content removal.
These findings highlight the need for future research into more robust unlearning methods.

Limitations. While MUSE provides a systematic benchmark for evaluating unlearning algorithms,
it does not consider all possible considerations. For example, data owners may have additional
expectations, such as ensuring their information cannot be probed from intermediate activations (Song
& Raghunathan, 2020) or receiving formal guarantees of unlearning success (Sekhari et al., 2021;
Gupta et al., 2021; Ghazi et al., 2023). Similarly, deployers may expect other capabilities, like
fine-tuning and in-context learning, to be preserved, and may prefer unlearning algorithms that are
both computationally efficient and storage-wise cheap (e.g. does not need to keep a copy of the
retain set). MUSE currently evaluates unlearning for language models using books and news articles,
but it could be extended to other corpora, such as medical notes (Johnson et al., 2016; 2020) and
emails (Klimt & Yang, 2004), which often involve privacy concerns (Li et al., 2023a; Huang et al.,
2023). We also plan to evaluate different-sized LMs in the future. Finally, our approach can be
generalized to construct multi-faceted benchmarks for multimodal models (Golatkar et al., 2020b;
Cheng & Amiri, 2023; Zhang et al., 2024c). Further discussion on broader impact are in Appendix A.

7https://unlearning-challenge.github.io
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REPRODUCIBILITY STATEMENT

We are committed to making all aspects of our work fully open-source, providing comprehensive
instructions to guarantee reproducibility.

Models The weights for our original models, ftarget and funlearn, will be released under the Apache
2.0 open-source license.

Data Our benchmark datasets will be made available under open-source licenses.

Code We will provide the code for all baseline methods, evaluation scripts used for benchmarking,
as well as the code for visualizations and analysis presented in this paper. Detailed instructions will
accompany our code to ensure precise reproducibility.
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A BROADER IMPACT

As LMs are deployed broadly and publicly, there is mounting legal and social pressure on deployers to
release models that permit effective unlearning when requested by data owners (European Parliament
& Council of the European Union; DOE 1 v. GitHub, Inc., N.D. Cal. 2022; Tremblay v. OpenAI,
Inc.,, 2023). These incentives have prompted a flurry of new unlearning algorithms stemming from
different technical perspectives. As such, systematic evaluation of the strengths and weaknesses of
these methods when executing realistic unlearning requests on popular models is essential. MUSE
disentangles several desirable properties of unlearning algorithms and finds that no existing algorithm
is able to satisfy all of the data owner and deployer considerations. We hope that our fine-grained,
multi-faceted framework facilitates the improvement of unlearning algorithms. Moreover, we expect
that the general approach of designing metrics to balance the considerations of various stakeholders
is flexible and can adapt to the rapidly shifting legal, social, and economic landscape.

We also acknowledge the potential negative impacts of our study. One limitation of our evaluation
benchmark is that we do not have comprehensive study of how unlearning would impact the model
performance for different user bases, especially underrepresented groups. However, we note proper
handling and evaluation of fairness issues in unlearning is still an active ongoing research area (Zhang
et al., 2024a; Oesterling et al., 2024), therefore we leave it as future work. Additionally, our work
may be misinterpreted towards skepticism regarding the broader use of machine unlearning, as our
current evaluation reveals that existing unlearning methods are not yet ready for effective real-world
deployment. However, machine unlearning, especially for large language models, is a young and
active research area and new algorithms are constantly being proposed. We emphasize that our results
is not a criticism of the paradigm of machine unlearning, but a study of the potential downsides
of existing methods and a call for better algorithms. We believe our benchmark is an important
step towards guiding future algorithm design of machine unlearning research towards more realistic
deployment scenarios.
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B EXPERIMENTAL DETAILS

B.1 THREAT MODEL FOR PRIVACY LEAKAGE

We provide further clarification on the threat model considered for our C3: no privacy leakage. We
assume an attacker with access to a trained model aims to determine whether a specific example
(belonging to a particular data owner) was part of the training set. Prior work on membership
inference attacks (MIA) demonstrates that these attacks can detect a training sample’s influence on
the trained model, and use that to distinguish between training and non-training samples. Therefore,
an effective unlearning algorithm should eliminate such influence to reduce the attack’s success rate,
making the model unable to distinguish between a true non-training example and one that was trained
and subsequently unlearned.

Note that in this threat model, we assume the attacker only have access to the final unlearned model,
because if both the target model and the unlearned models are available at the same time, then there
is no point to perform unlearning.

B.2 COMPUTE CONFIGURATIONS

All experiments are conducted on 8 NVIDIA A40 GPU cards in a single node.

B.3 EXPERIMENTAL SETUP

Finetuning details. As described in §5.1, for NEWS, we start from f0 = LLaMA-2 7B (Touvron
et al., 2023) and finetune the model on the BBC news articles for 5 epochs with a constant learning
rate of 10−5 and a batch size of 32 . For BOOKS, we start from f0 = ICLM 7B (Touvron et al., 2023)
and finetune the model on the Harry Potter books with same set of hyperparameters.

Unlearning details. For all the unlearning methods in Table 3, we use a constant learning rate of
10−5 and a batch size of 32. For freinforced used in WHP and Task Vector, we fine-tune ftarget for 10
epochs.

Before evaluation, for each unlearning method, we select its optimal epoch or α (both of which are
parameters that control a degree of unlearning) by using our unlearning stopping criteria based on the
unlearned model’s utility on Dretain compared to that of fretrain. The chosen epochs or α’s for each
method are listed below.

Table 4: Optimal epochs or α’s for each unlearning method.

Unlearning Method NEWS BOOKS

GA epoch 1 epoch 1
GAGDR epoch 7 epoch 1
GAKLR epoch 10 epoch 5
NPO epoch 1 epoch 1

NPOGDR epoch10 epoch 1
NPOKLR epoch 10 epoch 4

Task Vector α = 29 α = 29

WHP α = 22 α = 28

B.4 EFFICIENCY OF UNLEARNING METHODS

We report the efficiency of unlearning methods in Table 5, measured by the wall-clock time for a
single gradient update step of unlearning. The time measurements were conducted using 8 NVIDIA
A40 GPUs on a single node, with a batch size of 32 and an input length of 2048 tokens. Each step
corresponds to one gradient update processing a total of 65,536 tokens (32 × 2048 tokens). For Task
Vector and WHP, each step represents one iteration of fine-tuning to create the reinforced model.
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Table 5: Wall-clock time and total GPU hours required for each unlearning method.

Unlearning Method Time (Seconds/Step) Total Time (GPU Hours)

Retrain - 184320
GA 4.14 0.56

GAGDR 6.05 0.82
GAKLR 7.58 1.03
NPO 5.68 0.77

NPOGDR 7.59 1.03
NPOKLR 9.11 1.24

Task Vector 4.14 1.12
WHP 4.14 1.12

C MORE EXPERIMENTAL RESULTS

C.1 CONFIDENCE INTERVALS FOR C1, C2 AND C4 IN TABLE 3

We compute confidence intervals for C1, C2, and C4 (Mean ROUGE-L F1) using bootstrapping8. For
each mean ROUGE-L score reported in Table 3, we draw 9,999 bootstrap resamples and calculate a
two-tailed 95% confidence interval using the “percentage” method.

Table 6: 95% confidence intervals computed for mean Rouge-L scores used in C1, C2, and C4.

C1. No Verbatim Mem. C2. No Knowledge Mem. C4. Utiltiy Preserv.
VerbMem on Dforget (↓) KnowMem on Dforget (↓) KnowMem on Dretain (↑)

NEWS
Target ftarget 58.4 [54.1, 62.9] 63.9 [58.7, 69.0] 55.2 [50.7, 59.9]
Retrain fretrain 20.8 [18.5, 23.7] 33.1 [26.8, 39.5] 55.0 [50.3, 59.8]

GA 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
GAGDR 4.9 [4.5, 5.2] 31.0 [24.2, 38.0] 27.3 [21.9, 33.0]
GAKLR 27.4 [25.1, 29.9] 50.2 [43.1, 56.9] 44.8 [39.2, 50.5]
NPO 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
NPOGDR 1.2 [0.3, 2.3] 54.6 [47.5, 61.5] 40.5 [34.7, 46.2]
NPOKLR 26.9 [24.7, 29.3] 49.0 [41.8, 61.5] 45.4 [39.8, 51.1]
Task Vector 57.2 [52.6, 62.0] 66.2 [61.3, 71.2] 55.8 [51.0, 60.6]
WHP 19.7 [17.8, 21.6] 21.2 [16.0, 26.7] 28.3 [23.3, 33.4]

BOOKS
Target ftarget 99.8 [99.8, 99.9] 59.4 [52.7, 66.0] 66.9 [59.6, 73.8]
Retrain fretrain 14.3 [13.6, 15.1] 28.9 [22.1, 35.7] 74.5 [68.4, 80.0]

GA 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
GAGDR 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 10.7 [6.2, 15.7]
GAKLR 16.0 [14.8, 17.2] 21.9 [16.4, 27.7] 37.2 [29.5, 45.0]
NPO 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]
NPOGDR 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 22.8 [16.1, 30.1]
NPOKLR 17.0 [15.7, 18.2] 25.0 [19.0, 31.5] 44.6 [36.5, 52.8]
Task Vector 99.7 [99.6, 99.8] 52.4 [45.0, 59.7] 64.7 [57.1, 71.8]
WHP 18.0 [16.4, 19.7] 55.7 [48.6, 62.8] 63.6 [56.3, 70.9]

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html
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D DATASET DETAILS

D.1 GPT-GENERATED QA PAIRS

We begin the generation by partitioning the Verbatim text of each corpus into a set of 2048-token
excerpts using LLaMA-2’s tokenizer. For each QA pair to generate, we randomly sample an excerpt
from this set and prompt GPT-4 (gpt-4o-2024-05-13) to create a JSON object with two fields:
“question” (a question that can only be answered using specific information from the excerpt) and
“answer” (an answer to the “question” extracted verbatim from the excerpt). We validate and exclude
any pairs whose answers cannot be found verbatim in their corresponding excerpts. This verbatim
requirement ensures that our Knowledge set is used precisely to evaluate the model’s ability to correctly
associate questions with relevant portions of the training data.

For each QA pair to generate, we initiate a new conversation with GPT-4 with its corresponding
excerpt. The instruction begins with a system prompt that specifies the desired format of generated
QA pairs as follows:

System Prompt for Generating QAs with GPT-4

You will be provided with an excerpt of text. Your goal is to create a question-answer pair that assesses
reading comprehension and memorization, ensuring that the question can only be answered using details
from the excerpt.

Please submit your response in a JSON format with the following fields:
- “question”: A single question related to the excerpt. The question should be specific enough that it
does not allow for an answer other than the one you provide. In particular, it should not be answerable
based on common knowledge alone. Also, a few words extracted from the excerpt must suffice in
answering this question.
- “answer”: A precise answer extracted verbatim, character-by-character from the excerpt. The answer
to this question must be short, phrase-level at most. The length of the extraction should be minimal,
providing the smallest span of the excerpt that completely and efficiently answers the question.

We then present the excerpt as a user prompt to the model and collect the generated QA pairs. Here
are two example generated QA pairs from the Knowledge set of NEWS:

QA Pair Generated by GPT-4: Example #1

Excerpt (User prompt): ...According to the Stockholm International Peace Research Institute (SIPRI),
the US accounted for 69% of Israel’s arms imports between 2019 and 2023...
Question: According to the Stockholm International Peace Research Institute (SIPRI), what percentage
of Israel’s arms imports between 2019 and 2023 came from the US?
Answer: 69%

QA Pair Generated by GPT-4: Example #2

Excerpt (User prompt): ...Wednesday’s event will be moderated by tech entrepreneur David Sacks, a
close ally of the Tesla founder and a supporter of Mr DeSantis...
Question: Who will moderate Wednesday’s Twitter Spaces event featuring Mr DeSantis?
Answer: tech entrepreneur David Sacks

D.2 DATASET SEGMENTATION

Table 7 shows examples from MUSE and Table 8 presents detailed statistics for MUSE. For both
the NEWS and BOOKS datasets, we include the type of documents along with the number of tokens
in each dataset. Additionally, MUSE incorporates D(reg)

retain, a distinct retain set which is seen by ftarget
but not included in Dforget. This set is used exclusively with the GDR and KLR regularizers discussed.
To ensure that regularized methods do not directly optimize towards the evaluation set Dretain , D(reg)

retain
is kept disjoint from Dretain.
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Table 7: Examples of MUSE. Each corpus has Verbatim text and Knowledge sets (QA pairs derived from the
original text) for evaluating verbatim and knowledge memorization. In NEWS, Dforget and Dretain are two disjoint
sets of news articles. In BOOKS, Dforget is the Harry Potter book series while Dretain consists of wiki articles about
the series. The sizes of the forget and retain sets are reported in tokens in (). Note that only the Verbatim texts
within the Forget Set are included in our training data, while all Knowledge sets (QA pairs) serve for evaluations.

Corpus Forget Set Retain Set
NEWS ARTICLE (0.8 M tokens) NEWS ARTICLE (1.6 M tokens)

NEWS

MP Stuart McDonald has been appointed as the SNP’s

new treasurer

A father whose 12-year-old son was killed by

an IRA bomb 30 years ago

Q: What position has Stuart McDonald MP been appointed to?

A: The SNP’s new treasurer

Q: Who was affected by the IRA bomb 30 years ago?

A: A father whose 12-year-old son

HARRY POTTER BOOKS (1.1 M tokens) HARRY POTTER FANWIKI (0.5 M tokens)

BOOKS

“There’s more in the frying pan,” said Aunt Petunia,

turning eyes on her massive son.

This page contains a list of spells:

Portuguese for ‘open’.

Q: What does Aunt Petunia tell her son?

A: There’s more in the frying pan.

Q: What is the spell used to open things?

A: Portuguese

Table 8: Statistics of the MUSE dataset. Corpus sizes are reported in tokens, shown in (). Retain Setreg. is
disjoint from the standard Retain Set used in evaluation and is employed in unlearning training to preserve utility
through regularizers.

Corpus Forget Set Retain Set Retain Setreg. Holdout Set
NEWS News Articles (3.3M) News Articles (1.6M) News Articles (1.6M) News Articles (2.0M)
BOOKS Harry Potter Books (1.1M) Harry Potter FanWiki (0.5M) Harry Potter FanWiki (0.2M) Harry Potter Books (0.6M)
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