
Under review as a conference paper at ICLR 2024

MEMORIA: HEBBIAN MEMORY ARCHITECTURE
FOR HUMAN-LIKE SEQUENTIAL PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have demonstrated their success in various domains and tasks. How-
ever, Transformers struggle with long input sequences due to their limited capacity.
While one solution is to increase input length, endlessly stretching the length is
unrealistic. Furthermore, humans selectively remember and use only relevant
information from inputs, unlike Transformers which process all raw data from start
to end. We introduce Memoria, a general memory network that applies Hebbian
theory which is a theory of neuroplasticity and believed to be involved in the forma-
tion of long-term memory. Memoria stores and retrieves information called engram
at multiple memory levels of working memory, short-term memory, and long-term
memory, using connection weights that change reflecting the long-term potentiation
of the Hebbian mechanism. Through experiments with popular Transformer-based
models like BERT and GPT, we present that Memoria significantly improves the
ability to consider long-term dependencies in various tasks. Results show that
Memoria outperformed existing methodologies in sorting, language modeling, and
long-text classification.

1 INTRODUCTION

Humans possess an incredible ability to retain relevant details over extended periods. Humans
extract major information from the flood of data, classify this information into long-term and
short-term memory based on importance and utility, retrieve helpful information when needed,
and gradually forget useless and unemployed information (Nairne & Pandeirada, 2008; Craik &
Lockhart, 1972; Atkinson & Shiffrin, 1968; Waugh & Norman, 1965; Brown, 1958; Underwood &
Postman, 1960). This memorization is a fundamental skill for humans that is essential for learning
and completing various tasks. Even when reading a book, we can form a condensed understanding of
prior occurrences, such as the characters and plot progresses, despite passing many pages or chapters.
Memorization is also associated with problem-solving or language skills since it permits individuals
to apply previously learned information to solve novel issues.

Hebbian theory is a prominent neural plasticity theory that postulates how connections between two
neurons change and is widely believed to be relevant to the formation of human memory. One of
the key concepts of Hebbian theory is long-term potentiation that when two neurons are repeatedly
activated at the same time, the connections between them become strengthened. This phenomenon is
commonly referred to as the “fire together, wire together” principle. The more frequently the neurons
fire together, the stronger the connection becomes, which results in more robust and stable memory
formation.

Memorization is critical for neural networks to perform well on a wide range of tasks, such as language
modeling and long-document classification. To solve these problems successfully, models must
remember long-term dependencies in the data, such as the context of a sentence or the relationships
between pronouns in text. Transformer (Vaswani et al., 2017) has found extensive use in diverse
domains and tasks (Devlin et al., 2019; Radford et al., 2018; Brown et al., 2020; Lewis et al., 2020).
Self-attention mechanism, which is the key component of Transformer, facilitates the fusion of
information from all sequence elements into the comprehensive contextual representation of the
whole sequence.

1

Under review as a conference paper at ICLR 2024

However, the downside of Transformer model is that, unlike recurrent neural networks (Rumelhart
& McClelland, 1987; Hochreiter & Schmidhuber, 1997; Chung et al., 2014), it requires the entire
sequential data at the same time. Most publicly available Transformer-based models are pre-trained
with a limited context length, and dealing with long-length data is generally difficult due to the time
and space complexity of O(L2) where L is the input length (Vaswani et al., 2017). Moreover, it is
significantly different from the mechanisms of human memory.

We propose a Hebbian memory architecture, Memoria, which grants memory management capabilities
to deep neural networks. Memoria is a separate module that can be used with various sequence
processing models. It stores the information processed by the neural network as three-level memories
according to the Multi-Store model (Atkinson & Shiffrin, 1968): working memory, short-term
memory, and long-term memory, and retrieves it as necessary. This process is quite similar to the
way of humans. Each piece of information called an engram, is connected to one another, and
The alteration of these connection weights satisfies various properties of Hebb’s rule (Hebb, 1949),
including long-term potentiation. We evaluated Memoria with the most widely used Transformer-
based encoder and decoder models, such as BERT and GPT (Devlin et al., 2019; Brown et al., 2020).
As a result, we confirmed that Memoria enhances the ability to consider long-term dependencies
in sorting, language modeling, and text classification tasks. The implementation of Memoria and
experiment code are available on Github.1

Contributions

1. We designed Memoria, an independent memory module that reflects various attributes of the
core neuroplastic theory Hebbian learning rule, incorporating various theories of memorization and
forgetfulness.

2. We developed effective strategies to integrate Memoria with diverse Transformer-based models,
including BERT and GPT while taking into account the properties of their architectures.

3. We show that Memoria outperforms other existing methodologies in language modeling, sorting,
and text classification for long sequences through extensive experiments.

2 RELATED WORK

Memory-augmented neural networks have a rich history in the field of machine learning. Recurrent
Neural Networks (RNNs) (Rumelhart & McClelland, 1987; Hochreiter & Schmidhuber, 1997; Chung
et al., 2014) were introduced as a neural network architecture capable of processing sequential data
with memory. Neural Turing Machines (NTMs) (Graves et al., 2014) have a storage system for vector
representations that can be accessed using an attention mechanism. NTMs were further developed
into Differentiable Neural Computer (DNC) (Graves et al., 2016) and Sparse DNC (Rae et al., 2016).
Transformer model (Vaswani et al., 2017) has gained popularity for its ability to achieve state-of-
the-art results in various domains, especially natural language processing. However, Transformer
suffers from a limitation in processing long sequences due to its quadratic time and space complexity
(Vaswani et al., 2017).

To address this limitation, two major approaches have been proposed. Firstly, the sparse attention
approach uses various techniques such as local attention, reversible layers, and hashing to reduce the
computational cost of attention while maintaining the ability to model long-range dependencies. The
models like Longformer (Beltagy et al., 2020), BigBird (Zaheer et al., 2020), and Reformer (Kitaev
et al., 2020) adopted the approach. However, this approach still has the limitation of processing only
a restricted size of consecutive inputs, even though it has the capability to handle longer lengths with
the same amount of resources. The second approach is segmentation and recurrent processing, which
includes models such as Transformer-XL (Dai et al., 2019), Compressive Transformer (Rae et al.,
2020), ∞-Transformer (Martins et al., 2021), Memory Transformer (Burtsev & Sapunov, 2020).
Recurrent Memory Transformer (Bulatov et al., 2022) focused on using the small number of memory
tokens for efficiency, and Memorizing Transformers (Wu et al., 2022) attempted to use k-NN cache
as memory. These models split inputs into multiple segments and incorporate them to better maintain
long-term dependencies in sequential data. However, these methods have a drawback in that, no
matter how significant the past information may be, it inevitably becomes diluted gradually. While

1Please see the supplementary material. Github link will be provided after review.

2

Under review as a conference paper at ICLR 2024

Memoria follows the second approach, Memoria preserves crucial past information ensuring that
the information remains unchanged, just as it was initially accessed if the information is important
enough.

In recent years, there has been growing interest in applying Hebbian learning to deep learning
(Movellan, 1991; Kuriscak et al., 2015; Journé et al., 2023). Some studies (Rae et al., 2018;
Limbacher & Legenstein, 2020; Le et al., 2020) modeled associative memory using neural networks.
In particular, Hopfield network (Hopfield, 1982; Krotov & Hopfield, 2016), which is based on Hebbian
mechanisms for modeling associative memory, became integrable into deep learning as Ramsauer et al.
(2021) proposed a differentiable structure. These works have shown promising results and highlight
the potential for Hebbian learning for deep neural networks. Hebbian learning rule (Caporale &
Dan, 2008; Gerstner & Kistler, 2002; Song et al., 2000), a specific mathematical formulation of a
fundamental principle in neuroscience, describes how synapses between neurons can be modified.
Gerstner & Kistler (2002) suggested six important aspects, which are locality, cooperativity, synaptic
depression, boundedness, competition, and long-term stability, for the formulation of a useful
plasticity model. We manifest that Memoria satisfies all the six attributes. (See Appendix A for
details.)

Memoria categorizes memories into three levels according to the Multi-Store model (Atkinson &
Shiffrin, 1968), using the term working memory instead of sensory memory. Furthermore, to account
for forgetting in short-term memory, we applied the displacement mechanism (Waugh & Norman,
1965), which replaces old information with new information when the short-term memory is full.
For forgetting in both short-term and long-term memory, we incorporated the concept of trace decay
theory (Brown, 1958; Peterson & Peterson, 1959), which suggested that memories that are not actively
recalled gradually fade away.

3 MEMORIA

There are three stages of utilizing Memoria. According to Hebb (1949), an engram is a representation
of a memory in the brain, consisting of a group of neurons and their connections that are activated
together during the encoding of a memory. We adopted the concept of Hebbian engrams for Memoria.
The first stage is remind stage, in which it uses working memory to remind the engrams from short-
term memory and long-term memory. The second stage is exploit stage, where a model uses the
reminded engrams to solve the task. Last stage is memorize & forget. In this stage, all reminded
engrams get more lifespan depending on the usefulness of each engram, and all the engrams will lose
their lifespan by one. We provided the visualizations of changes of connection in Appendix G to help
understand these processes.

3.1 COMPONENT

Memoria has three types of memory; working memory (WM), short-term memory (STM), and
long-term memory (LTM). Engram, which is the smallest unit of memory information, constitutes
each memory. These engrams have their own lifespan and are eliminated when their lifespan reaches
zero. Figure 1 shows the structure of the three types of memory.

Memory Encoder A memory encoder fe is needed to transform the input Xt at a particular time
step. The design of the memory encoder can vary, and Xt could be defined as the input for a
task-solving model, model hidden states of the previous time step, or other values. The output of fe
is a set of engrams M = {e1, e2, . . . , eN}.

Working Memory Working memory Mwm corresponds to human sensory memory. It represents
the most recent memory and serves as a reference to retrieve associated engrams from short-term and
long-term memory. Working memory uses a queue structure with a fixed size, which is equivalent to
the memory length of a single time step. After every time step, the working memory is updated.

Short-term Memory Short-term memory Mstm, like human short-term memory, holds recent
information. Engrams that were previously in working memory are transferred to short-term memory
after a time step. Similar to working memory, short-term memory employs a queue data structure
with a fixed size, which can be defined as a parameter.

3

Under review as a conference paper at ICLR 2024

Figure 1: Working memory retains the most recent information, while short-term memory also holds
a fixed number of recent engrams but its size can be adjusted. The number of engrams in long-term
memory is not predetermined. The arrows in the diagram represent the connections between each
engram.

Long-term Memory Long-term memory Mltm is equivalent to human long-term memory and has
the capacity to store an indefinite number of engrams. Engrams that were dequeued from short-term
memory are transferred to long-term memory.

Memory Graph Engrams in any memory can be linked together, represented as a directed weighted
graph data structure, where each vertex corresponds to an engram. A directed edge weight Ei→j

denotes the empirical conditional probability that the engram ej will be reminded when the engram
ei is reminded, with Mrem representing the set of all reminded engrams. This empirical probability
can be calculated by dividing the number of times ei and ej were reminded together by the number of
times ei was reminded. Counti,j represents the number of times ei and ej were reminded together.
The edge is utilized to search for engrams in the long-term memory and its weight is adjusted based
on the “fire together, wire together” principle.

Ei→j = P (ej ∈Mrem | ei ∈Mrem)

=
Counti,j
Counti,i

3.2 REMIND

Remind is the process of reminding engrams from short-term and long-term memory. Figure 2 shows
entire reminding process.

1. Using the encoder function fe with input X , create engrams Mwm and put into the working
memory. All the engrams in the working memory will have the same initial lifespan.

Mwm = fe(X) = {ewm,1, ewm,2, . . . , ewm,Nwm}
2. By utilizing the correlation function fc, calculate the correlation weight Cstm for each

estm,i within the short-term memory Mstm by averaging all the correlation weights for the
engram. The distance function fd used is L2 distance. Here, i represents the index of Mstm

and j represents the index of Mwm.

fc(ei, ej) = exp(−(fd(ei, ej))2)

Cstm,i =
1

Nwm

Nwm∑
j=1

fc(estm,i, ewm,j)

3. Select only the top Nrem
stm number of engrams with Cstm values to remind. Denote the

selected engrams as Mrem
stm .

4

Under review as a conference paper at ICLR 2024

Figure 2: Remind process. Memoria utilizes working memory to identify associated engrams in both
short-term memory (STM) and long-term memory (LTM). The calculated weight values in steps 1
and 4 signify the degree of association between the engrams and working memory, with larger values
leading to the final selection of the engram. Engrams in the gray area represent reminded engrams.

4. For each ei ∈Mrem
stm , select an engram in Mltm having highest edge weight from ei. Denote

the selected engrams as M init
ltm .

M init
ltm = argmax

ej∈Mltm

Ei→j , where ei ∈Mrem
stm

5. Using the engrams M init
ltm as a starting point, traverse the Mltm graph using the depth-first

search (DFS) algorithm with a search depth of Ndepth. The exploration direction should be
based on the edge weight, toward the highest edge weight. Gather all the unique engrams
that were encountered during the search, including M init

ltm , and refer to them as Mfound
ltm .

M0
ltm = M init

ltm

Mk
ltm = argmax

ej∈Mltm

Ei→j , where ei ∈Mk−1
ltm , ej /∈Mfound,k−1

ltm

Mfound,k
ltm =

k⋃
l=0

M l
ltm

Mfound
ltm = M

found,Ndepth

ltm

6. Calculate correlation weight Cltm from Mwm for Mfound
ltm and select top Nrem

ltm number of
engrams like STM. Denote the engrams as Mrem

ltm .
7. Use Mwm,Mrem

stm ,Mrem
ltm as activated memory.

Mrem = Mrem
stm ∪Mrem

ltm

Mact = Mwm ∪Mrem

3.3 EXPLOIT

Exploit all the engrams reminded to aid in solving the task and evaluate each engram’s contribution
towards the solving. A cross-attention mechanism is applied to use information from the engrams.
After the self-attention layer, the working memory engrams are attended to first, followed by the
short-term and long-term memory engrams, using the exact same cross-attention layer. The average
attention weight wi for each engram ei is regarded as its contribution towards the solution.

5

Under review as a conference paper at ICLR 2024

Figure 3: All the engrams in working memory and reminded engrams are connected more. The
reminded engrams gain lifespan depending on the contribution. End-of-life engrams are removed
like eltm,7. The engrams in the gray area refer to activated engrams Mact.

3.4 MEMORIZE & FORGET

There are two important principles for memorizing. First, useful engrams should be long-lived.
Second, related engrams should be strongly connected together. These principles are applied in the
memorize stage as follows. Figure 3 shows the overall process in this stage.

1. Increase Counti,j by one for all engrams in Mact, which is the number of times ei and ej
reminded together.

N = {1, 2, . . . , |Mact|}
Counti,j := Counti,j + 1,∀i, j ∈ N

2. Increase lifespan of reminded engrams by the increment Inci for the engram ei. Inci is
calculated as follows where α is hyperparameter meaning lifespan extend scale. If α is 1.0,
each engram e ∈Mrem gets lifespan 1.0 on average.

Inci =
wi∑|Mrem|

k=1 wk

× |Mrem| × α

3. Decrease lifespan of all engrams by 1.0.

4. Remove engrams having a lifespan of 0 or less.

5. Move ewm into STM.

6. Move oldest engrams from STM by the number exceeding capacity into LTM.

4 EXPERIMENTS

We experimented with how well Memoria maintains long-term connections in various tasks using
Transformer (Vaswani et al., 2017) architecture. We integrated Memoria with Transformer by
appending encoder-decoder attention over memory engrams, but the method to create engrams is
a little different depending on the architecture. We provide figures with descriptions representing
how to apply Memoria to Transformer in Appendix F. The first task is sorting. Martins et al. (2021)
evaluated the model’s ability to remember long-term information about the occurrence of numbers by
generating a sorted sequence of numbers based on their frequency of occurrence. In the second group
of experiments, we focused on language modeling task for token-level on WikiText-103 (Merity
et al., 2017) and PG-19 (Rae et al., 2020), and character-level on enwik8 (Mahoney, 2006). For the
Wikitext-103 dataset, since the word-level dataset contains <unk> in the texts, the raw dataset was
used. Similar to Martins et al. (2021), only the first 2,000 books of the training dataset were used
for PG-19. We compared Memoria with other models such as Transformer (Brown et al., 2020),
Transformer-XL (Dai et al., 2019), Compressive Transformer (Rae et al., 2020), and ∞-former
(Martins et al., 2021). Lastly, we conducted a classification task on the long document classification
dataset, Hyperpartisan (Kiesel et al., 2019).

6

Under review as a conference paper at ICLR 2024

Figure 4: Results of sorting task. Memoria shows more robust performances than other baselines as
the input sequence length increases. The entire raw scores are specified in Table 4.

4.1 SORTING

As Memoria is an independent module that enhances long-term dependencies, in order to apply
Memoria to Transformer, we needed to define the memory encoder fe and a method that utilizes the
reminded engram data. We used the attention-based abstractor as fe and the last hidden state of the
previous time step of the model as Xt. The hidden states ht−1 of the previous time step are used as
Xt. The three values of Q, Wk, and Wv are trainable parameters. FFN is a feed-forward network
as same in Transformer (Vaswani et al., 2017). The number of working memory engrams Nwm is
determined by the number of queries Q, so the number of queries is a hyperparameter.

Xt = ht−1

fe(Xt) = Abstract(Xt)

= FFN(Attention(Q,WkX,WvX))

= FFN(Attention(Q,Wkht−1,Wvht−1))

= FFN(softmax(QWkht−1)Wvht−1)

= Mwm

This task is about taking a sequence of numbers and outputting the numbers in descending order of
their frequency of occurrence (Martins et al., 2021). The vocabulary consists of 20 number tokens, and
we experimented with sequences of various lengths ranging from 1K to 32K,2 with segment lengths
of 256, 512, and 1024. We compared the Transformer-XL, Compressive Transformer,∞-former, and
Memoria Transformer.

Figure 4 demonstrates the performance in the sorting task as sequence length increases for each
segment length. The memory length was set to the same value as the segment length. Generally, as the
sequence length increased, the performance tended to decrease because longer context information
needs to be maintained. Compared to the other two models, Memoria exhibited the least performance
degradation as the sequence length increased, showcasing its ability to maintain long-term memory
for preserving extended context. (See Appendix B.1 for details on hyperparameters.)

4.2 LANGUAGE MODELING

In language modeling as well, Memoria was applied to the Transformer architecture using the
same approach as in the sorting task. We trained various models of Transformer, Transformer-XL,
Compressive Transformer,∞-former, and Memoria Transformer from scratch. As publicly available
pre-trained models were trained on different datasets and parameters, we conducted this experiment
by training the model from scratch. We experimented with pre-trained language models equipped
with Memoria and showed the results in Appendix B.2. We utilized GPT-2 architecture for the

2We used the script of ∞-former at https://github.com/deep-spin/infinite-former/
blob/main/sorting/generate_data.py to generate dataset.

7

https://github.com/deep-spin/infinite-former/blob/main/sorting/generate_data.py
https://github.com/deep-spin/infinite-former/blob/main/sorting/generate_data.py

Under review as a conference paper at ICLR 2024

Table 1: Language Modeling Performance. Perplexity (PPL) is shown for Wikitext-103 and PG-19,
while bits-per-character (BPC) is shown for Enwik8. All of them had the same memory length
as the segment length, and Wikitext-103 and PG-19 used 150 while Enwik8 used 512. Memoria
outperformed Transformer and other baselines that consider long-term dependency.

Model Wikitext-103 (PPL) PG-19 (PPL) Enwik8 (BPC)

Transformer 26.755 31.631 1.28
Transformer-XL 24.543 29.945 1.19
Compressive Transformer 24.794 29.603 1.16
∞-former 24.685 29.154 1.21
Memoria Transformer 23.471 29.149 1.16

implementation of Transformer. We chose hyperparameters of 12 layers and 768 dimensions. The
pre-trained GPT-2 tokenizer was used for all token-level experiments. We set the segment length as
150 tokens for token-level experiments and 512 for character-level experiments following the Bulatov
et al. (2022). (See Appendix B.2 for details on hyperparameters.)

Table 1 shows the results. All other models demonstrated improved performance compared to
Transformer. Among them, Memoria Transformer achieved the best performance on all three datasets.
This result demonstrates that Memoria has better performance not only compared to Transformer
but also to existing competitors that model long-term dependency. Moreover, since Memoria is an
independent module, it can be used in conjunction with other techniques if desired.

Table 2: Perplexity with a smaller segment length
of 50. Memoria outperformed other baselines in
the shorter context and memory setting.

Model [Memory Length] Wikitext-103

Transformer 39.287
Transformer-XL [50] 31.459
Compressive Transf. [50] 31.644
∞-former [50] 31.790
Memoria Transformer [48] 30.007

Table 2 presents the performance measurement
in a case where the length of each segment was
decreased to 50 tokens, aiming to handle longer
long-term dependencies by increasing the num-
ber of segments. When comparing the results
in Table 1, it is evident that there is a signif-
icantly larger performance gap between plain
Transformer and the memory utilization mod-
els. Even in situations where longer long-term
dependencies need to be considered, Memoria
demonstrated the best performance.

We validated whether Memoria effectively utilizes long-term memory. Figure 5 shows the average
age of reminded engrams in long-term memory at each step on the test dataset. The age represents
the number of steps that have passed since the engram was created. If the model only refers to
the most recent engram in long-term memory, it would not correctly serve as a long-term memory,
and the age of reminded engrams remains constant on the graph. On the contrary, if the model can
refer to past information continuously, the past information will gradually age more, leading to an
increase in the average age of reminded engrams over time. The graph indicates that as the step
increases, the average age also increases, demonstrating the ability of Memoria to refer to important
past information even after a significant number of time steps.

Figure 5: The average age of engrams in LTM per step. The age of engrams in the long-term memory
being recalled gradually increased as steps passed by.

8

Under review as a conference paper at ICLR 2024

Table 3: Text classification performance on Hyperpartisan. The metrics are average macro F1-score
and accuracy of five runs. We reported validation and test set results because of data distribution
discrepancy. Memoria RoBERTa achieves the highest performance in the models.

Model [Sequence Length]
Validation Test

F1±STD Acc±STD F1±STD Acc±STD

BERT [512] 76.61±0.04 78.75±0.03 91.67±0.01 93.05±0.01

RoBERTa [512] 82.96±0.02 84.06±0.02 95.24±0.02 95.38±0.02

Bigbird [4096] 81.22±0.02 82.81±0.02 93.24±0.01 93.54±0.01

Longformer [4096] 78.33±0.03 79.69±0.03 94.56±0.01 94.77±0.01

Memoria BERT [512] 78.24±0.04 80.00±0.04 94.59±0.02 94.77±0.02

Memoria RoBERTa [512] 86.39±0.01 87.19±0.01 96.51±0.02 96.62±0.02

4.3 CLASSIFICATION

Utilizing the information from the current time step could lead to causal leakage in language modeling
so previous time steps were used as working memory instead. However, with masked language models
such as BERT, it is possible to use the information from the current time step as working memory
without causing causal leakage. The memory encoder fe utilized the hidden states hl

t memory
representation. Here, t denotes the current time step, and l represents the memory layer index.
Memory is obtained from the hidden state of the BERT layer l with abstractor, and then working
memory engrams and reminded engrams are utilized in the subsequent layers using cross-attention.

Hyperpartisan has been a widely used news classification dataset for the long document classification
task. To validate the effectiveness of Memoria in encoder-based architectures, we applied Memoria
to BERT and roBERTa and we compared its performance on the Hyperpartisan dataset. Already
pretrained models were used to be finetuned for all the classification experiments. The size of the
models was 12-layer base-sized. Memoria BERT and Memoria RoBERTa utilized 192 memories.

Table 3 presents the classification performance of models. It is evident that Memoria applied models
show meaningful performance gains compared to the plain models, although it is not easy to compare
the performance of different base pre-trained models directly. Memoria RoBERTa achieved the
highest score of all metrics. When conducting a one-tailed t-test, the performance of Memoria
RoBERTa was statistically significantly higher than Longformer and Bigbird, with p-values of 0.045
and 0.005, respectively. (See Appendix B.3 for details on hyperparameters.)

5 CONCLUSION AND FUTURE WORK

We propose Memoria as a general memory network that follows Hebbian theory, which attempts
to explain the long-term potentiation of memory. Memoria is a separate module that learns the
strength of the connection between different engrams according to the utility of the connections.
Memoria serves functions such as encoding information, selectively remembering, and forgetting.
We applied Memoria to the widely used Transformer-based neural network and demonstrated its
strong performance compared to other methodologies in tasks of sorting, language modeling, and
classification. Memoria demonstrates the potential to revolutionize the way deep neural networks
process and retain information, opening avenues for improved performance in a wide range of tasks
that rely on long-term dependencies.

While Memoria strives to actively incorporate the structure and mechanisms of human memory,
there are still discrepancies in many aspects. We categorized memories into three types using the
Multi-store model (Atkinson & Shiffrin, 1968), but the Levels of Processing theory (Craik & Lockhart,
1972) proposed a more continuous structure of memory based on the depth of processing rather than
discrete categories. Additionally, we only utilized trace decay (Brown, 1958; Peterson & Peterson,
1959) and displacement (Waugh & Norman, 1965) as mechanisms of forgetting, but Interference
theory (Underwood & Postman, 1960) suggests that interference effect between existing memories
and new information are significant forgetting mechanisms in long-term memory. Our future research
will incorporate these mechanisms enabling neural networks to better reflect the ways human memory
operates.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY

The structure of Memoria is described in detail in the main text Section 3. We provided the archi-
tectural details of Memoria Transformer and Memoria BERT in Appendix F. Additionally, all the
code used for the experiments will be made publicly available (now available in the supplementary
material).

The core module, Memoria, has been implemented as an independent Python package, allowing
future researchers to install Memoria using pip and utilize it for their research. The model settings
can be found in the main text of the paper Section 4.2 for language modeling, Section 4.1 for sorting,
and Section 4.3 for classification.

The hyperparameters used during training are all specified in Appendix B. To ensure reproducibility,
we fixed random seeds for all the experiments. The datasets were also loaded through libraries in the
code and were preprocessed, so except for the sorting task that requires data generation, this paper
and source code will be enough to reproduce our experimental results.

REFERENCES

R.C. Atkinson and R.M. Shiffrin. Human memory: A proposed system and its control processes.
volume 2 of Psychology of Learning and Motivation, pp. 89–195. Academic Press, 1968. doi: https:
//doi.org/10.1016/S0079-7421(08)60422-3. URL https://www.sciencedirect.com/
science/article/pii/S0079742108604223.

Alan D. Baddeley and Graham Hitch. The recency effect: Implicit learning with explicit retrieval?
Memory & Cognition, 21(2):146–155, 1993. doi: 10.3758/BF03202726. URL https://doi.
org/10.3758/BF03202726.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

Robert A. Bjork and William B. Whitten. Recency-sensitive retrieval processes in long-term free
recall. Cognitive Psychology, 6(2):173–189, 1974. ISSN 0010-0285. doi: https://doi.org/
10.1016/0010-0285(74)90009-7. URL https://www.sciencedirect.com/science/
article/pii/0010028574900097.

John Brown. Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental
Psychology, 10(1):12–21, 1958. doi: 10.1080/17470215808416249. URL https://doi.org/
10.1080/17470215808416249.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 11079–11091. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf.

Mikhail S. Burtsev and Grigory V. Sapunov. Memory transformer. CoRR, abs/2006.11527, 2020.
URL https://arxiv.org/abs/2006.11527.

Natalia Caporale and Yang Dan. Spike timing-dependent plasticity: a hebbian learning rule. Annu
Rev Neurosci, 31:25–46, 2008.

10

https://www.sciencedirect.com/science/article/pii/S0079742108604223
https://www.sciencedirect.com/science/article/pii/S0079742108604223
https://doi.org/10.3758/BF03202726
https://doi.org/10.3758/BF03202726
https://arxiv.org/abs/2004.05150
https://www.sciencedirect.com/science/article/pii/0010028574900097
https://www.sciencedirect.com/science/article/pii/0010028574900097
https://doi.org/10.1080/17470215808416249
https://doi.org/10.1080/17470215808416249
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://arxiv.org/abs/2006.11527

Under review as a conference paper at ICLR 2024

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL
http://arxiv.org/abs/1412.3555.

Fergus I.M. Craik and Robert S. Lockhart. Levels of processing: A framework for memory research.
Journal of Verbal Learning and Verbal Behavior, 11(6):671–684, 1972. ISSN 0022-5371. doi: https:
//doi.org/10.1016/S0022-5371(72)80001-X. URL https://www.sciencedirect.com/
science/article/pii/S002253717280001X.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. ACL 2019 - 57th
Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference,
pp. 2978–2988, 1 2019. doi: 10.48550/arxiv.1901.02860. URL https://arxiv.org/abs/
1901.02860v3.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Wulfram Gerstner and Werner M. Kistler. Mathematical formulations of hebbian learning. Biological
Cybernetics, 87(5):404–415, 2002. doi: 10.1007/s00422-002-0353-y. URL https://doi.
org/10.1007/s00422-002-0353-y.

Paul Ginns. Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity
effects. Learning and Instruction, 16(6):511–525, 2006. ISSN 0959-4752. doi: https://doi.org/10.
1016/j.learninstruc.2006.10.001. URL https://www.sciencedirect.com/science/
article/pii/S0959475206000806.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.
URL http://arxiv.org/abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, He-
len King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hy-
brid computing using a neural network with dynamic external memory. Nature, 538(7626):471–476,
October 2016. ISSN 00280836. URL http://dx.doi.org/10.1038/nature20101.

D O Hebb. The organization of behavior. 1949.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 11 1997. ISSN 08997667. doi: 10.1162/NECO.1997.9.8.1735. URL https://www.
researchgate.net/publication/13853244_Long_Short-term_Memory.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. doi: 10.1073/pnas.79.
8.2554. URL https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
learning without feedback. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=8gd4M-_Rj1.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. SemEval-2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 829–839, Minneapolis,
Minnesota, USA, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
S19-2145. URL https://aclanthology.org/S19-2145.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. CoRR,
abs/2001.04451, 2020. URL https://arxiv.org/abs/2001.04451.

11

http://arxiv.org/abs/1412.3555
https://www.sciencedirect.com/science/article/pii/S002253717280001X
https://www.sciencedirect.com/science/article/pii/S002253717280001X
https://arxiv.org/abs/1901.02860v3
https://arxiv.org/abs/1901.02860v3
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1007/s00422-002-0353-y
https://doi.org/10.1007/s00422-002-0353-y
https://www.sciencedirect.com/science/article/pii/S0959475206000806
https://www.sciencedirect.com/science/article/pii/S0959475206000806
http://arxiv.org/abs/1410.5401
http://dx.doi.org/10.1038/nature20101
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://openreview.net/forum?id=8gd4M-_Rj1
https://aclanthology.org/S19-2145
https://arxiv.org/abs/2001.04451

Under review as a conference paper at ICLR 2024

Dmitry Krotov and John J. Hopfield. Dense associative memory for pattern recogni-
tion. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/eaae339c4d89fc102edd9dbdb6a28915-Paper.pdf.

Eduard Kuriscak, Petr Marsalek, Julius Stroffek, and Peter G. Toth. Biological context of hebb learn-
ing in artificial neural networks, a review. Neurocomputing, 152:27–35, 2015. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2014.11.022. URL https://www.sciencedirect.
com/science/article/pii/S0925231214015239.

Hung Le, Truyen Tran, and Svetha Venkatesh. Self-attentive associative memory. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 5682–5691. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/le20b.html.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://aclanthology.org/2020.acl-main.703.

Thomas Limbacher and Robert Legenstein. H-mem: Harnessing synaptic plasticity with hebbian
memory networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 21627–21637. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/f6876a9f998f6472cc26708e27444456-Paper.pdf.

Matt Mahoney. Large text compression benchmark, 2006. URL http://www.mattmahoney.
net/dc/text.html.

Pedro Henrique Martins, Zita Marinho, and André F. T. Martins. ∞-former: Infinite memory
transformer. 9 2021. doi: 10.48550/arxiv.2109.00301. URL https://arxiv.org/abs/
2109.00301v3.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Javier R. Movellan. Contrastive hebbian learning in the continuous hopfield model. In David S.
Touretzky, Jeffrey L. Elman, Terrence J. Sejnowski, and Geoffrey E. Hinton (eds.), Connec-
tionist Models, pp. 10–17. Morgan Kaufmann, 1991. ISBN 978-1-4832-1448-1. doi: https:
//doi.org/10.1016/B978-1-4832-1448-1.50007-X. URL https://www.sciencedirect.
com/science/article/pii/B978148321448150007X.

James S. Nairne and Josefa N.S. Pandeirada. Adaptive memory: Remembering with a stone-age brain.
Current Directions in Psychological Science, 17(4):239–243, 2008. doi: 10.1111/j.1467-8721.
2008.00582.x. URL https://doi.org/10.1111/j.1467-8721.2008.00582.x.

L R Peterson and M J Peterson. Short-term retention of individual verbal items. J Exp Psychol, 58:
193–198, September 1959.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. URL https://www.cs.ubc.ca/˜amuham01/
LING530/papers/radford2018improving.pdf.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne,
Alex Graves, and Timothy Lillicrap. Scaling memory-augmented neural networks with
sparse reads and writes. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/3fab5890d8113d0b5a4178201dc842ad-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2016/file/eaae339c4d89fc102edd9dbdb6a28915-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/eaae339c4d89fc102edd9dbdb6a28915-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0925231214015239
https://www.sciencedirect.com/science/article/pii/S0925231214015239
https://proceedings.mlr.press/v119/le20b.html
https://aclanthology.org/2020.acl-main.703
https://proceedings.neurips.cc/paper_files/paper/2020/file/f6876a9f998f6472cc26708e27444456-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f6876a9f998f6472cc26708e27444456-Paper.pdf
http://www.mattmahoney.net/dc/text.html
http://www.mattmahoney.net/dc/text.html
https://arxiv.org/abs/2109.00301v3
https://arxiv.org/abs/2109.00301v3
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://www.sciencedirect.com/science/article/pii/B978148321448150007X
https://www.sciencedirect.com/science/article/pii/B978148321448150007X
https://doi.org/10.1111/j.1467-8721.2008.00582.x
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3fab5890d8113d0b5a4178201dc842ad-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3fab5890d8113d0b5a4178201dc842ad-Paper.pdf

Under review as a conference paper at ICLR 2024

Jack Rae, Chris Dyer, Peter Dayan, and Timothy Lillicrap. Fast parametric learning with activation
memorization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 4228–4237. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
rae18a.html.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lillicrap. Com-
pressive transformers for long-range sequence modelling. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SylKikSYDH.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gruber,
Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Johannes
Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
tL89RnzIiCd.

David E. Rumelhart and James L. McClelland. Learning Internal Representations by Error Propaga-
tion, pp. 318–362. 1987.

Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926, 2000. doi: 10.1038/78829.
URL https://doi.org/10.1038/78829.

B J Underwood and L Postman. Extraexperimental sources of interference in forgeting. Psychol Rev,
67:73–95, March 1960.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Nancy C. Waugh and Donald A. Norman. Primary memory. Psychological Review, 72(2):89–104,
1965. doi: 10.1037/h0021797.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing
transformers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=TrjbxzRcnf-.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17283–17297. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf.

13

https://proceedings.mlr.press/v80/rae18a.html
https://proceedings.mlr.press/v80/rae18a.html
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://doi.org/10.1038/78829
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

Under review as a conference paper at ICLR 2024

A HEBBIAN ATTRIBUTES FOR MEMORIA

Gerstner & Kistler (2002) suggested six attributes of a useful plasticity model for Hebbian learning
as follows. Memoria meets these attributes.

Locality The learning rule for the synapse Ei→j connecting neuron j to neuron i should depend
only on the activity of j and i and not on the state of other neurons k ̸= i, j.

Ei→j =
Counti,j
Counti,i

By definition, Memoria meets locality because it depends on only the count of i, j.

Cooperativity Hebb’s formulation ‘takes part in firing it’ implies that an increase in weight requires
both the presynaptic and the postsynaptic neuron to be active.

Ei→j ∝ Counti,j

Since Ei→j is proportional to Counti,j and Counti,i never decreases, it only increases when ei and
ej fire (reminded) together.

Synaptic depression A mechanism for decreasing weights is a necessary requirement for any
useful learning rule. There are three engrams ei, ej , ek. Ei→j decreased when ei and ek fire together
while ej does not. The superscript pre means the value before firing of ei and ej and post means the
value after firing.

Epre
i→j =

Countprei,j

Countprei,i

Countposti,k = Countprei,k + 1

Countposti,i = Countprei,i + 1

Epost
i→j =

Countposti,j

Countposti,i

=
Countprei,j

Countprei,i + 1

< Epre
i→j

Boundedness In realistic rules, weights should remain bounded in a specific range. Ei→j must be
between 0 and 1 because it is probability.

Ei→j = P (ej ∈Mrem | ei ∈Mrem)

0 ≤ P (ej ∈Mrem | ei ∈Mrem) ≤ 1

Competition The growth of some weights comes at the cost of a decrease in others. The increase
of Ei→j requires the increase of Counti,j and Counti,i. The increase of Counti,i reduces all the
weight Ei→k, for k ̸= j.

Long-term stability In adaptive systems, it is important to ensure that previously acquired knowl-
edge is not forgotten. In Memoria, Ei→j is always the result of learning from all past examples
because Count is cumulative.

14

Under review as a conference paper at ICLR 2024

B TRAINING DETAILS AND ADDITIONAL RESULTS

For all experiments, the Adam optimizer and linear scheduler with warm-up were used, and the
gradient clipping was set to a norm of 1.0. One or more NVIDIA A100 or A6000 GPUs were used
for training.

B.1 SORTING

For all sorting experiments, a batch size of 32, a warmup rate of 0.06, a learning rate of 2e-4, and
an epoch of 5 were used for 80,000 train examples. A memory length was configured to match the
segment length. The experiments were conducted on datasets with lengths ranging from 1000 to
32,000. Each example on the datasets was divided into segments of lengths 256, 512, and 1024. For
each segment length, combinations of sequence lengths and segment lengths were constructed by
varying the number of segments, which were set to 4, 8, 16, and 32. The model configuration used
was 5 layers, 4 heads, embedding dimension of 512 Transformer. The compression rate is 4 and the
ratio of normal memory and compressed memory is one-to-one for Compressive Transformer.

Memoria parameters used in the experiment were as follows: an initial lifespan of 5, a lifespan
extension scale α of 8, and a long-term memory search depth Ndepth of 10 in all cases. Other
parameters are adjusted proportionally to the segment length. the number of working memories Nwm

set to 1/8 of the segment length, the number of reminded engrams in short-term memory Nrem
stm set to

1/4 of the segment length, the number of remind engrams in long-term memory Nrem
ltm set to 5/8 of

the segment length, and a capacity of short-term memory set to half of the segment length. The sum
of Nwm, Nrem

stm , and Nrem
ltm is equal to the segment length.

Table 4 shows the all scores of models in the sorting task. The metric is accuracy. For the convenience
of comparison, we marked the number of segments instead of the total sequence length of each
dataset. The sequence length can be obtained by multiplying the number of segments by segment
length. Memoria Transformer proves its robustness for long-term dependency compared to the other
models, especially as the number of segments increases.

Table 4: Accuracy in the sorting task. When the segments increase, Memoria outperforms other
baselines.

Model Segments
Segment Length

256 512 1024

Transformer-XL 4 74.66 60.46 68.86
Compressive Transformer 4 64.38 64.57 79.51
∞-former 4 84.49 83.75 84.28
Memoria Transformer 4 80.42 80.99 82.27

Transformer-XL 8 36.24 37.41 40.09
Compressive Transformer 8 56.88 49.58 71.84
∞-former 8 70.21 75.55 74.34
Memoria Transformer 8 70.84 74.47 74.08

Transformer-XL 16 32.75 34.59 35.06
Compressive Transformer 16 35.57 37.69 44.03
∞-former 16 53.61 53.61 47.31
Memoria Transformer 16 63.99 64.50 66.58

Transformer-XL 32 32.24 32.76 33.87
Compressive Transformer 32 32.68 33.15 35.07
∞-former 32 34.36 36.41 39.71
Memoria Transformer 32 50.08 56.48 63.42

B.2 LANGUAGE MODELING

For all language modeling experiments, a batch size of 8 and a warmup rate of 0.06 were used.
The model configuration used the settings of GPT-2 small by default. The Wikitext-103 and PG-19

15

Under review as a conference paper at ICLR 2024

datasets were trained for 3 epochs, while the Enwik8 dataset was trained for 20 epochs. GPT-2
tokenizer was used for all datasets except Enwik8, which was trained at the character level using 204
characters. The default learning rate was 2e-4, but in cases where convergence was challenging, 1e-4
was used. However, for experiments fine-tuning pre-trained models, a learning rate of 5e-5 was used.
In the experiments conducted on the Wikitext-103 dataset using Transformer-XL and on the PG-19
dataset using∞-former, as well as the experiment with reduced segment length to 50, both Memoria
Transformer and Transformer-XL were trained with a learning rate of 1e-4. The memory length was
set to be the same or similar to the segment length. The compression rate is 4 and the ratio of normal
memory and compressed memory is one-to-one for Compressive Transformer.

Memoria parameters were set as follows: initial lifespan of 9, lifespan extend scale α of 8, and
long-term memory search depth Ndepth of 10. Furthermore, to prevent potential interference with the
learning process, we periodically reset all memory in Memoria every 500 steps during training (1500
steps for enwik8 dataset). This was done to avoid referencing memory generated at stages where
learning was insufficient, as it could impede the training progress. For the Wikitext-103 and PG-19
datasets, the number of working memories Nwm, the number of reminded engrams in short-term
memory Nrem

stm , and the number of remind engrams in long-term memory Nrem
ltm were all set to 50,

and a capacity of short-term memory was set to 400. For the Enwik8 dataset, Nwm, Nrem
stm and

Nrem
ltm were set to 170, and a capacity of short-term memory was set to 1360. When training on the

Wikitext-103 dataset with a reduced segment length of 50, Nwm, Nrem
stm , and Nrem

ltm were all set to 16,
and the short-term memory capacity was set to 128.

Table 5: Finetuning performance on Wikitext-103.

Model Wikitext-103

GPT-2 20.498
Memoria GPT-2 18.986

GPT-2 Large 15.332
Memoria GPT-2 Large 13.227

GPT-2 XL 15.254
Memoria GPT-2 XL 13.241

To verify whether Memoria can consider long-term context even when finetuning a pre-trained model,
we measured performance on Wikitext-103 dataset by finetuning Memoria GPT-2. The architecture
of Memoria GPT-2 is the same as Memoria Transformer. The results are Table 5. Memoria GPT-2
showed significantly better performance than GPT-2. This result suggests that Memoria can be
combined with various pre-trained models to increase long-term dependencies. Furthermore, as the
use of pre-trained large language models (LLMs) has become prevalent, we conducted experiments to
verify whether Memoria can be applied in conjunction with LLMs. We performed experiments using
large and xl sized models, and successfully achieved performance improvements when applying
Memoria to even larger pre-trained models. This demonstrates the potential for LLMs to benefit from
considering longer contexts with the help of Memoria.

B.3 CLASSIFICATION

All hyperpartisan text classification experiments were conducted with a batch size of 16, a learning
rate of 5e-5, and a warmup rate of 0.1. The models were trained for 20 epochs. For BERT, the
experiment utilized the pre-trained bert-base-uncased model. As for Longformer, the base model was
used in the experiment.

Memoria parameters used in the experiment were as follows: an initial lifespan of 12, a lifespan
extension scale α of 8, a long-term memory search depth Ndepth of 10, the number of working
memories Nwm set to 64, the number of reminded engrams in short-term memory Nrem

stm , and the
number of remind engrams in long-term memory Nrem

ltm both set to 64, a capacity of short-term
memory of 128, and the memory layer index set to 9. This means that the output of the 10th layer is
used as memory, and it is referenced in the remaining 2 layers of the model.

16

Under review as a conference paper at ICLR 2024

C ABLATION STUDY

Table 6: Performance and performance gain of each memory module according to the length of the
dataset. Memoria demonstrates excellent performance maintenance as the sequence length increases,
thanks to the complementary functions of each memory module. This observation indicates that while
the performance gain of working memory decreases with longer sequence lengths, the performance
gain of short-term memory and long-term memory increases.

4K 8K 16K 32K 48K

Number of Segments 4 8 16 32 47

Accuracy
Transformer 36.19 33.79 31.69 29.94 19.04
+ Working Memory 79.69 70.85 62.21 52.01 34.32
+ Short-term Memory 82.66 76.20 66.37 58.75 54.87
+ Long-term Memory 82.27 74.08 66.58 63.42 63.26

Performance Gain
+ Working Memory +43.50 +37.06 +30.52 +22.07 +15.28
+ Short-term Memory +2.79 +5.35 +4.16 +6.74 +20.55
+ Long-term Memory -0.39 -2.12 +0.21 +4.67 +8.39

We conducted an ablation study to analyze the impact of each type of memory in Memoria on
performance. The ablation study was conducted on a sorting task with a segment length of 1024
for each dataset, allowing us to capture tendencies based on the length of the data. Additionally,
to further investigate the impact on a longer dataset not covered in the main text, we conducted
additional experiments with a 48K dataset. Since the segment length is fixed as 1024, an increase in
the dataset length leads to an increase in the number of segments.

The analysis results indicate that each type of memory module contributes to overall performance to
some extent. An interesting observation is that as the number of segments increases, the influence
of each type of memory on performance changes. Examining the results of the 4K dataset, with a
segment length of only 4, it is obvious that the majority of performance improvement is practically
facilitated by working memory. However, as the dataset length extends to 8K, 16K, and more, the
performance gain through working memory diminishes rapidly. Conversely, with longer sequence
lengths, it is observable that the impact of short-term memory and long-term memory on performance
gradually becomes more significant.

This trend indicates that the model does not uniformly utilize all types of memory but selectively
employs memory information based on the characteristics of the task or dataset. If the task can
be adequately addressed with an understanding of short contexts, the model primarily utilizes
working memory. However, when faced with longer contexts that are challenging to solve with
working memory alone, the model seems to develop the ability to leverage short-term or long-
term memory. Particularly, observing the transition from 32K to 48K, it is evident that the final
performance difference between 32K and 48K is minimal when all memories are utilized, thanks to the
complementary roles of short-term and long-term memory compensating for the further exacerbated
performance deficiencies in Transformer or working memory. These findings suggest that in order to
effectively validate the long-term memory capabilities of the model in the future, tasks and datasets
should sufficiently demand dependency on long-term context. Memoria demonstrates consistently
robust performance across datasets of varying lengths through the complementary roles of three types
of memory.

17

Under review as a conference paper at ICLR 2024

D AUTOCORRELATION ANALYSIS

Table 7: Autocorrelation coefficients of short-term memory and long-term memory engrams.

Lag Short-term Memory ACF Long-term Memory ACF

1 0.900 0.575
2 0.893 0.529
3 0.889 0.501
4 0.888 0.475
5 0.888 0.461
6 0.890 0.442
7 0.893 0.426
8 - 0.413
9 - 0.395
10 - 0.381
11 - 0.370
12 - 0.356
13 - 0.344
14 - 0.333
15 - 0.321

In order to identify patterns of reminded engrams, we conducted autocorrelation analysis using the
Wikitext-103 dataset. Table 7 presents the autocorrelation coefficients for short-term and long-term
memory. We encoded reminded engrams as one and others as zero. Lag represents the timestep
difference for correlation calculation. For instance, the lag of one signifies the autocorrelation
between the event of engram ei being reminded at time t and being reminded at time t + 1. For
short-lived engrams, with a tendency to be always reminded or always not, most of those engrams
have variances of 0. We regarded the coefficient of these cases as one because it actually means very
strong autocorrelations. In addition, for long-term memory, we calculated the weighted average of
the correlation coefficients in proportion to the lifespan of each engram, as the total lifespan varies
for each engram.

First, looking at short-term memory, the capacity of short-term memory is 400, so each memory stays
in short-term memory for 8 times. Therefore, the maximum observable lag is 7. Each engram in short-
term memory has a significantly high autocorrelation. This implies that once an engram is reminded,
it is easy for it to be reminded again, indicating that a specific memory is more frequently associated
with others. Long-term memory also shows significant autocorrelation, with high correlation in close
timesteps decreasing over time. Theoretically, once an engram in long-term memory is reminded, the
association with more recent memories strengthens, making the old memory easier to be reached
through the pathway of those recent memories. This trend is analogous to the psychological concept
of the recency effect (Bjork & Whitten, 1974; Baddeley & Hitch, 1993), where recently encountered
information remains more salient. The high autocorrelation in Memoria’s near timesteps aligns with
this phenomenon. Figure 6 illustrates the changes in autocorrelation based on the lag in long-term
memory.

Figure 6: Autocorrelation coefficient plot of long-term memory.

18

Under review as a conference paper at ICLR 2024

E ALGORITHM & COMPUTATIONAL COMPLEXITY

E.1 THEORETICAL ANALYSIS

Each stage of Memoria is represented by an algorithm. These are the algorithms of decoder models
in our experiments, so some details might be slightly different from the encoder model’s formula.
Additionally, each algorithm provides time complexity to help estimate how many resources are
needed.

Algorithm 1: Remind Stage
Input :short-term memory STM , long-term memory LTM , memory encoder E, co-reminded

conditional probabilies P , previous hidden states hp, long-term memory search depth
Ndepth

Output :working memory WM , reminded engrams reminded
Result: Encode hp into working memory. Find relevant engrams in the short-term/long-term

memories.

WM ← E(hp);
Wstm ← CalculateDistance(STM , WM) ; // distance from stm to wm
stmrem ← FindShortestK(Wstm) ; // select nearest stms
p← GetCondProb(LTM , stmrem, P);
ltm1 ← SelectMostProbableEngrams(p);
ltmfound ← (ltm1,);
for i← 1 to Ndepth do

p← GetCondProb(LTM , ltmi, P);
ltmi+1 ← SelectMostProbableEngrams(p);
Append(ltmfound, ltmi+1);

end for
Wltm ← CalculateDistance(ltmfound, WM);
ltmrem ← FindShortestK(Wltm);
reminded← Merge(stmrem, ltmrem);

The complexity of the calculate distance function is equal to the product of the number of engrams
in each memory, as it involves the computation of all weights between them. The function is used
twice, first in the STM with a time complexity of O(Nwm × Cstm), where Nwm is the number of
engrams in working memory and Cstm is the capacity of STM. Secondly, when applied to the found
LTM, the complexity is O(Nwm × Nfound

ltm), where Nfound
ltm = Nrem

stm × (Ndepth + 1). The part
of the function that retrieves the conditional probability of reminding the connected LTM engrams
given reminded STM engrams has a complexity of O(Nrem

stm × d), where Nrem
stm is the number of

reminded engrams in STM and d is the degree. The maximum value for degree d is the total number
of edges from the engram, resulting in a maximum complexity of O(Nrem

stm × Nltm). Within the
loop that executes Ndepth times, the complexity is O(Nrem

stm ×Nltm ×Ndepth). Generally, since the
size of LTM is expected to be larger than Nwm, the overall time complexity of the remind stage is
O(Nrem

stm ×Nltm ×Ndepth).

Here, Nrem
stm and Ndepth are hyperparameters that can be set directly, but the total number of long-term

memory units, Nltm, is a dynamically changing value during execution. While it is not possible
to precisely determine the size of LTM, the maximum size of LTM over time can demonstrate
convergence through lifespan, given a sufficient duration. The increase in lifespan for all engrams
during a single execution of the entire memory operations is α ∗ (Nrem

stm + Nrem
ltm) when alpha

represents the lifespan extend scale parameter. Additionally, the decrease in lifespan is the number
of all engrams of Nltm +Nstm +Nwm. In a scenario where Nltm is maximized, lifespan is evenly
distributed across all engrams, preventing their removal. If the sum of lifespans for all engrams after
the nth execution is denoted as l, then Nltm can be considered a constant multiple, l × c. However,
since the total number of engrams cannot exceed the total lifespan sum, c takes on values between 0
and 1. When memory operations are executed n times, and the total lifespan sum of all engrams is ln,
ln can be expressed as follows.

19

Under review as a conference paper at ICLR 2024

ln+1 = ln + α ∗ (Nrem
stm +Nrem

ltm)−Nltm

= ln + α ∗ (Nrem
stm +Nrem

ltm)− ln × c

= (1− c)× ln +K

K = α ∗ (Nrem
stm +Nrem

ltm)

ln+1 −
K

c
= (1− c)× (ln −

K

c
)

bn+1 = (1− c)× bn

bn = b0 × (1− c)n

ln = b0 × (1− c)n +
K

c

= b0 × (1− c)n +
α ∗ (Nrem

stm +Nrem
ltm)

c

lim
n→∞

ln =
α ∗ (Nrem

stm +Nrem
ltm)

c
lim

n→∞
Nltm = α ∗ (Nrem

stm +Nrem
ltm)

Ultimately, when a sufficient amount of time elapses, the overall sum of the lifespan will be pro-
portionate to α ∗ (Nrem

stm +Nrem
ltm). Therefore, in the worst-case scenario of remind stage, the time

complexity is as follows.

O(Nrem
stm ×Nltm ×Ndepth) = O(Nrem

stm × (α ∗ (Nrem
stm +Nrem

ltm))×Ndepth)

= O(αNrem
stm Ndepth(N

rem
stm +Nrem

ltm))

Algorithm 2: Exploit Stage
Input :model M , input segment s, reminded
Output :segment result r, hidden states hp

Result: Conduct inference with reminded memories. Return the segment result, hidden states,
attention weight for each engrams.

r, hp, a←M(s, reminded) ; // "a" means memory attention weights

The time complexity of the exploit stage depends upon the way of model’s utilization of reminded
engrams. In our implementation, we have employed a cross-attention method, wherein input data
is used as a query for engrams serving as key and value. Consequently, the time complexity aligns
with that of cross-attention. The time complexity, given an input length of L and the number of
reminded engrams Ne, is O(L × Ne). Ne is equal to Nrem

stm + Nrem
ltm , so the time complexity is

O(L× (Nrem
stm +Nrem

ltm)). We configured the total number of engrams used in our experiments to be
equal to the sequence length. In this scenario, the time complexity becomes O(L2), equivalent to
that of self-attention, thereby not exerting an additional impact on the overall time complexity from a
Big-O perspective.

Algorithm 3: Memorize & Forget Stage
Input :WM , STM , LTM , P .
Result: Updated memories and condition tables.

P ← AdjustConditionalProbs(P , reminded);
IncreaseLifespans (reminded, a);
STM ← MoveWMtoSTM (WM , STM);
DecreaseLifespanAndRemove (STM , LTM);
LTM ← MoveSTMtoLTM (STM , LTM);

20

Under review as a conference paper at ICLR 2024

Table 8: Time and space complexities on each stage.

Stage Time Complexity Space Complexity

Remind O(Nrem
stm NltmNdepth) O((Nwm + Cstm +Nltm)2)

Exploit O(L(Nrem
stm +Nrem

ltm)) O((Nwm + Cstm +Nltm)2)
Memorize & Forget O((Nrem

stm +Nrem
ltm)2) O((Nwm + Cstm +Nltm)2)

The logic governing conditional probability adjustment increases the value for each pair of the
reminded engrams, resulting in a time complexity of O(N2

e). The logic regulating lifespan, being an
operation for each engram, entails a complexity of O(Ne). Changing the type of memory requires
operations proportional to the number of engrams, limiting the complexity to O(Ne). Consequently,
the overall time complexity at this stage is O(N2

e) = O((Nrem
stm +Nrem

ltm)2).

In Memoria, space complexity is essentially the cost of maintaining a conditional probability table
representing the connectivity between each engram. The space complexity is dependent on the
implementation of the graph. For the sake of convenient implementation, we have employed the
adjacency matrix representation. When using an adjacency matrix, the spatial complexity becomes
quadratic in the number of nodes, specifically, the square of the total number of engrams in Memoria,
calculated as O((Nwm + Cstm +Nltm)2). Alternative implementations such as adjacency lists can
further reduce spatial complexity.

Table 8 shows the time complexity and space complexity for each stage using Big-O notation.

E.2 EMPIRICAL ANALYSIS

Table 9: Sorting task training time and GPU memory usage

Model Execution Time Memory Usage

Transformer-XL 32h 45m 01s 8.848 GB
Compressive Transformer 21h 08m 20s 15.624 GB
∞-former 21h 17m 16s 9.088 GB
Memoria Transformer 20h 58m 39s 45.368 GB

In addition to the theoretical analysis, we have empirically compared the resources required for actual
Memoria usage. Table 9 presented correspond to training on sequences length 32K with a segment
length of 1024 in the sorting task. When compared to other models utilizing memory, Memoria
exhibited the least amount of time consumption. However, it recorded the highest memory usage.
Upon our analysis, approximately 30% of the memory utilized was attributed to maintaining the
graph for the conditional probability table in Memoria. This graph, in essence, is a straightforward
graph data structure. Therefore, optimizing its implementation, such as loading the graph on the CPU,
utilizing adjacency lists instead of adjacency matrices, or even implementing it in a more efficient
programming language, can reduce the overall memory usage.

21

Under review as a conference paper at ICLR 2024

F MEMORIA APPLIED TRANSFORMERS

F.1 MEMORIA TRANSFORMER

Figure 7: Architecture of Memoria Transformer. t represents the current time step, and x is the
input embedding. The residual network and layer normalization are omitted for clarity. Memoria
Transformer creates engrams from the previous time step output ht−1 and reminds engrams from
short-term and long-term memory. Memoria Transformer exploits the engrams with cross attention.
Memory Attention, depicted as two blocks in the diagram, is actually a single layer that shares the
same weights.

22

Under review as a conference paper at ICLR 2024

F.2 BERT WITH MEMORIA

Figure 8: Architecture of BERT with Memoria. t represents the current time step, and x is the input
embedding. The residual network and layer normalization are omitted for clarity. In BERT, unlike in
GPT-2, engrams are created using information from the current time step. l represents the memory
layer index, and from layer 1 to layer l, each layer is identical to a regular BERT layer. Using the
output hl

t from layer l, engrams are created and reminded from short-term and long-term memory.
These engrams are then utilized in the subsequent layers (after layer l) through cross-attention.
Memory Attention blocks, depicted as two blocks in the diagram, actually share the same weights.

23

Under review as a conference paper at ICLR 2024

G VISUALIZATION OF MEMORIA

(a) t = 20

(b) t = 60

(c) t = 130

Figure 9: Changes in engrams of Memoria over time. The dots represent engrams, and the lines
represent connections between engrams. t is the time step. The more engrams on the right, the later it
was created. Only the connections with high weights are shown for clarity. The engrams gradually
fade away but some important engrams still remain for a longer duration. The nearby connections
are similar to the temporal contiguity effect (Ginns, 2006) of humans. This demonstrates Memoria’s
ability to preserve information, even if it has been a long time, as long as it remains useful.

24

Under review as a conference paper at ICLR 2024

(a) t = 87

(b) t = 105

(c) t = 122

Figure 10: Changes in engrams of Memoria over time when Memoria sees the same data twice.
The lower half of each image represents the engrams generated when observing at first, while the
upper half represents the engrams generated when observing at second. Thus, the dots in the same
vertical column represent engrams created from the same data. Engrams from the same data exhibit
a generally stronger connectivity. This means that Memoria can form connections between similar
information even if they are temporally distant.

25

	Introduction
	Related Work
	Memoria
	Component
	Remind
	Exploit
	Memorize & Forget

	Experiments
	Sorting
	Language Modeling
	Classification

	Conclusion and Future Work
	Hebbian attributes for Memoria
	Training details and additional results
	Sorting
	Language Modeling
	Classification

	Ablation Study
	Autocorrelation Analysis
	Algorithm & Computational Complexity
	Theoretical Analysis
	Empirical Analysis

	Memoria applied Transformers
	Memoria Transformer
	BERT with Memoria

	Visualization of Memoria

