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ABSTRACT

We study test-time scaling, where a model improves its answer through multi-round
self-reflection at inference. We introduce In-Context Policy Optimization (ICPO),
in which an agent optimizes its response in context using self-assessed or externally
observed rewards without modifying its parameters. To explain this ICPO process,
we theoretically show that with sufficient pretraining under a novel Fisher-weighted
logit-matching objective, a single-layer linear self-attention model can provably
imitate policy-optimization algorithm for linear bandits. Building on this theory, we
propose Minimum-Entropy ICPO (ME-ICPO), a practical algorithm that iteratively
uses its response and self-assessed reward to refine its response in-context at
inference time. By selecting the responses and their rewards with minimum entropy,
ME-ICPO ensures the robustness of the self-assessed rewards via majority voting.
Across standard mathematical reasoning tasks, ME-ICPO attains competitive, top-
tier performance while keeping inference costs affordable compared with other
inference-time algorithms. Overall, ICPO provides a principled understanding
of self-reflection in LLMs and yields practical benefits for test-time scaling for
mathematical reasoning.

1 INTRODUCTION

Recent years have witnessed a growing capacity for large language models (LLMs) with rising
abilities in mathematical reasoning (Yang et al., 2024a; Wei et al., 2022), problem solving (Rein et al.,
2024; Zhou et al., 2024) and tool use (Yao et al., 2023b). Among these new abilities, the emergence
of test-time scaling has been playing an important role, where the LLMs progressively improve their
response through multi-round self-reflection without parameter updates. This test-time scaling has
demonstrated a strong ability to enable LLMs to perform post-training search (Yao et al., 2023a; Besta
et al., 2024), self-reflection and self-rewarding (Madaan et al., 2023; Shinn et al., 2023; Lightman
et al., 2023) and Chain-of-Thoughts (CoT, Wei et al. 2022). The key part of this process hinges on
the model’s ability to digest the in-context information to improve its response. Such in-context
information can be the previous response with users’ finetuning instructions, or the CoT process with
self-assessed rewards. However, despite repeated empirical validation, the mechanism underlying
such in-context self-improvement remains under-explored in the literature. Existing works (Park
et al., 2024) usually assume this ability for conducting the posterior sampling or policy optimization
intrinsically within LLMs without answering why this ability emerges during the pretraining process.

On the other hand, recent works have attempted to understand the in-context learning for supervised
learning (e.g., linear regression Zhang et al. 2024b; Garg et al. 2022) and reinforcement learning (e.g.,
TD learning Wang et al. 2024) that shows that some carefully designed transformers can learn these
algorithms with sufficient pretraining. Yet, most of these works consider empowering the LLMs to
predict the output based on the input, while it is vacant in literature understanding how transformers
learn to optimize its behavior x by optimizing its policy towards maximizing the response y. In
addition, there is a huge gap between the current theoretical understanding of the in-context learning
and the empirical implementation of the in-context test-time scaling. Witnessing these lacks of the-
oretical understanding of the in-context policy optimization and the missing of how to leverage these
in-context information iteratively in the test-time scaling for reasoning tasks, we would like to ask:

Can we understand the self-reflection process of LLM from the in-context learning that inspires a
test-time scaling for reasoning?

In this paper, we answer this question affirmatively by providing the In-Context Policy Optimization
(ICPO) framework which considers how LLMs leverage the in-context actions and response to
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Figure 1: The In-Context Policy Optimization (ICPO) framework. At each round ¢, the agent
leverages its history of past attempts with bandit feedback {(x1,71), ..., (X¢,7¢)} to improve its
response X;41 in order to maximize the received reward 7.

improve their response x instead of predicting some certain outcomes. As illustrated in Figure 1, the
ICPO process considers the transformer (LLMs) generating its response x; and receives the reward
given by user or self-assessment y; and then improve its response by generating x;;. Theoretically,
we show that with sufficient pretraining, a one-layer transformer is sufficient to execute a policy-
optimization framework that gradually improves its response x using the observed rewards r. When
applying the ICPO framework into the practical mathematical reasoning, we empirically show that the
ICPO framework is robust enough to take the self-accessed reward into its policy optimization process
and to gradually improve its response. Together with solid theoretical results on the ICPO process and
a carefully designed practical algorithm ME-ICPO, we provide a provable and practical in-context
learning framework for test-time scaling for mathematical reasoning. Together, our contributions are:

* We formulate the multi-round self-reflection mechanism as in-context policy optimization (ICPO)
framework where the agent generates and improves its response with the received feedback. The
ICPO framework extends the current in-context learning framework from supervised learning to
policy optimization with bandit feedback. ICPO builds a theoretical foundation to understand the
self-reflection and self-improvement for LLM reasoning.

* We prove that, under an explicit design of the Linear Self-Attention (LSA) transformer, when
the LSA is sufficiently pre-trained on trajectories generated by a special policy-optimization
framework, it provably mimics the underlying policy optimization even under previously unseen
reward functions. To the best of our knowledge, this is the first directly derived mechanistic account
of in-context policy optimization that provides detailed structural characterization.

* Empirically, we propose ME-ICPO, a practical algorithm grounded in our theory that yields sub-
stantial improvements over base models on mathematical reasoning tasks. ME-ICPO demonstrates
that the ICPO framework can leverage self-assessed feedback, using entropy-regularized response
selection to ensure robust policy updates.

Together, our work shows the first in-context optimization mechanism to help understand how
LLMs can improve their response with self-reflection, with strong empirical performance in various
mathematical reasoning tasks.

Notation. In this paper, we use plain letters such as = to denote scalars, lowercase bold letters such as
x to denote vectors, and uppercase bold letters such as A to denote matrices. Functions are denoted
by bold symbols such as f. Sets and classes are denoted by the calligraphic font such as F. For
a vector X, ||x||2 denotes its /-norm. For a matrix A, ||A ||, denotes its operator (spectral) norm,
i.e., [|Allop == sup|y,=1 [[AX[|2 = omax(A). F(p) := Diag(p) — pp". For a vector x € R,
Diag(x) € RE*K denotes the diagonal matrix with [Diag(x)];; = z; and off-diagonals zero. For a
positive integer N, we use [N] to denote {1,2,..., N

2 RELATED WORK

We introduce the works on test-time scaling, self-reflection and in-context learning in this section.

Test-Time Scaling. Test-time scaling (or inference-time scaling) refers to the phenomenon where
allocating more resources during test-time can improve the LLM’s ability in reasoning and have



Under review as a conference paper at ICLR 2026

been widely adopted in practice (Jaech et al., 2024; Guo et al., 2025a). The earliest test-time scaling
can be dated back to the few-shot Chain-of-Thought (Wei et al., 2022) where the provided few-shot
demonstrations can improve the LLM reasoning ability. Other test-time scaling works focus on the
post-training search algorithms, including the Monte-Carlo Tree Search (Zhang et al., 2024a), Best-
of-N (Wang et al., 2022; Huang et al., 2025), Tree of Thoughts (Yao et al., 2023a). Following up with
these works, TTRL (Zuo et al., 2025) provides a gradient-based update based on the self-assessment
during the test-time and improves the LLM’s response by updating its parameters.

Self-reflection and self-assessment. At the core of the test-time scaling lies the self-reflection
and self-assessment where the LLM evaluates its own response via the self-rewarding (Madaan
et al., 2023; Shinn et al., 2023). In particular, LLM-as-a-Judge and Majority-Judgment (MJ) provide
inexpensive but noisy preference signals, and self-consistency can be converted into preferences or
rankings (Prasad et al., 2024). However, self-evaluation suffers from prompt/position sensitivity and
stylistic bias, calling for calibration (symmetric prompting, position shuffling, executability/format
checks) (Wang et al., 2025). In parallel, process supervision (PRMs (Wang et al., 2023a; Chen et al.,
2024b), step-wise verifiers (Lightman et al., 2023)) shifts supervision from outcomes to intermediate
steps, reliably filtering errors across rounds (Lightman et al., 2023). Recent analysis of the generation—
verification (GV) gap shows iterative improvement succeeds when verification is substantially easier
than generation, motivating robust filtering and feedback (Song et al., 2024). Beyond these empirical
works, recent theoretical works focus on the posterior sampling of LLM (Bai et al., 2023; Von Oswald
et al., 2023) by directly assuming the LLM’s ability for estimating the posterior distribution.

In-Context Learning and In-Context Reinforcement Learning. Besides the empirical advances,
a line of theory clarifies regression as a core sandbox for ICL. For ridge linear regression, trained
linear self-attention can implement preconditioned gradient descent in context, with model depth
matching the number of implicit update steps and geometric convergence under standard assump-
tions (Von Oswald et al., 2023). From a training-dynamics perspective, prior work shows that, after
training, a single-head linear attention layer effectively performs one step of gradient descent on the
contextual least-squares objective (Zhang et al., 2024b). In sparse settings, multi-head constructions
can recover sparse signals and carry out sparse linear regression in context (Chen et al., 2024a);
recent work further identifies a layered mechanism in which first-layer heads preprocess the context
and later layers carry out simple iterative optimization, together yielding excess risk guarantees that
improve over naive gradient descent and ridge baselines (Chen et al., 2024a). Besides these works in
understanding the regressions, more recent work has pushed forward the understanding of in-context
learning to a meta-reinforcement learning process. In particular, (Lin et al., 2023) proved that a
multi-layer transformer structure can imitate bandit/RL-style updates by pretraining on trajectories,
and (Wang et al., 2024) shows that the linear regression for the in-context learning can be extended to
the TD learning used in RL. Despite these, rare recent literature has covered the policy optimization
which directly optimized the output x given the historical information.

3 PRELIMINARIES

We consider a multi-arm bandit abstraction which is a standard theoretical framework for sequential
decision making. We consider a K-armed bandit and at each round ¢ € [T, the agent selects an
action A; € [K] and plays the corresponding action written as the one-hot vector x; = e4, € R,
The agent then receives a scalar reward r; generated from a linear model with an unknown task vector
w e RE by r, = (W, x;) + €, where ¢, is a zero-mean o¢-sub-Gaussian random variable. The agent
overall goal is to optimize its policy x; by maximizing the expected return (w, x;).

Policy Optimization Framework. We consider the pretrained dataset is generated from the policy
optimization process in meta reinforcement learning. In particular, we start with the mirror descent
that is similar to the Follow-the-Regularized Leader (FTRL, Shalev-Shwartz 2007; McMahan 201 1a)
framework given by

Pri1 = argmaXpear Yoy <p:7;sxm p> - R(p),

in the ICPO framework, we consider a practical solution in optimizing the log-likelihood of the policy
defined by s  log p. In the following of this paper, we consider the policy optimization written by

Sti1 = ArgMaXgcpr Yooy (FeXs,St) — A b (Xs,8¢) — ﬁsTHs, 3.1

where we implement the entropy regularizer R(p) ~ s' Hs and replace the unbiased estimator
Ts/Ds, 4, used in FTRL with a Lagrange multiplier A 22:1 (x5, 8¢) to penalize the frequently visited
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arms. The closed form solution for equation 3.1 yields a linear structure on s written by
St4+1 = nt(Ugt + Vnt)v where U = Hilav = _>‘H71a gt = Zizl TsXs, Il = Zizl xs (3.2)

where we set 1, = ¢/t and the optimized policy is then given by a softmax policy mixed with a
~-greedy random exploration

Pt41 = softmax(s¢41), Pfﬂ =1 =7)Pt41+ ’7%7 v €[0,1). (3.3)

Supervised Pretraining Data Generation. We generate a pretraining dataset by running the expert
policy optimization algorithm. We sample B independent trajectories. For each trajectory T € [B],
a task vector w, ~ N(0,721x) is sampled from the prior. The teacher is then executed for N
steps to generate a complete history of interactions #, v = {(X+1,771); .., (Xr n,7- ~)} and the
corresponding sequence of expert logit vectors {sf’?},{il is updated in equation 3.2. From these
trajectories, we construct a supervised training dataset, D consisting of pairs of history prefixes and the

teacher’s next-step logits. The final dataset is the set of all such pairs D = {(H, 4, sf?“)}tfe[g]_l],

where H . ; is the history prefix of trajectory 7 up to and including round ¢.

The following assumption is made on the data coverage on the supervised pretraining data D, which is
a standard diversity assumption in linear bandits (Papini et al., 2021; Hao et al., 2020; Wu et al., 2020).
Assumption 3.1 (Data Coverage and Signal Dominance). We assume that in the pretrained dataset,

the coverage of the task 72 and the FTRL exploration parameter - is wide enough to cover the reward
noise. In particular, define the learning rate 7; = ¢/t, we assume the coverage rate is strictly positive

ex = TwY/K = (1 = 7)c||U|lopo /2 > 0.

Linear Self-Attention (LSA). The Linear Self-Attention (LSA) is a simplified variant of the standard
self-attention mechanism, which has been established as a useful model for the theoretical analysis of
transformers and in-context learning (Von Oswald et al., 2023; Zhang et al., 2024b). An LSA layer
takes a sequence of input embeddings, represented as a matrix E € R¥*N | where d is the embedding
dimension and N is the sequence length. It produces an output matrix of the same dimension through
the following computational form:

fa(E;0) = E+ WPVE - (ETWECE/)p) (3.4)

where 8 = (WX WPV are learnable parameters (matrices) and p is a normalization factor for the
attention matrix. This operation allows for interactions between all elements in the input sequence,
mediated by the Gram matrix term ET WX®E, to update the initial embeddings.

4 THEORETICAL FRAMEWORK FOR ICPO

In this section, we provide a theoretical justification for in-context policy optimization based on
an inspirational analysis in a Linear Self-Attention (LSA) network. Through this minimal LSA
model, we theoretically demonstrate that a pretrained LSA can imitate an expert policy optimization
algorithm using in-context data. We then present our main theoretical guarantees, which establish
that this learning is not only possible in principle but also efficient with a finite amount of data, and
robust to perturbations at test time.

The ICPO Forward Pass. We start with introducing the forward pass of ICPO framework. The LSA
model parameterized by 8 starts with an empty embedding E© = (qz,q) " whereq, = 1, ¢, =0
are the placeholder for next-token generation. For each time step ¢ € [T'], the LSA model updates its
policy according to the logits updates from the next-token generation of LSA described by

sy = [fLSA(E(t_1)§ 9)}1:]@5; p: = (1 — ) softmax(s;) + %1,

where [ fLs A(E(tfl); 0*)] 1., Stands for the corresponding K* dimensions of the newly generated

token indexed with ¢. + is the same exploration factor in the implementation of FTRL. With this
policy p; € R¥, the LSA model selects its action A; and receives the reward by

A ~pe, Xe=ey,, 7= (W,X¢)+ €.

Finally the sequence of token is updated by inserting the observed reward r; and embedding x; by

E® — X1 o Xt gy
. o Tt Qr
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and update the normalizing factor in LSA as p = ¢ to ensure the attention matrix is upper bounded
by 1. The forward pass of ICPO then move to the next round ¢ <— ¢ + 1.

Training Objective. The supervised pretraining is conducted on the dataset D by matching the
logits from the model output 8; = fisa (E(¢~1), @) with the logits from policy optimization s} © by
minimizing the projected weighted loss by

_ o 2
L£(0) = IE.ep [Zi\;ll (|Proj(8-441 — sTP,?H)HF} ) 4.1)

where projection Proj is defined as IT| =1 — %11—r which removes the constant bias 1 "'s from
the logits, since such shifts do not affect the policy p o exp(s). The expected matrix I" is inspired by
the design of Natural Policy Optimization (Kakade, 2001) defined by

I'=++— TED [Et 1 Dlag(pr t) p7_7tp;—r7t:| ’

The Fisher-weighted loss provides a new loss for the supervised pretralnlng. We show by the
followmg theorem that the common KL loss between the pretrained data p} +1 and the LSA’s output
Di+1 is sandwiched by the loss £(8) up to constants.

Theorem 4.1 (mixed-policy KL is controlled by the Fisher-projected quadratic loss). Assume both
teacher and student use y-mixture exploration with vy € (0, 1) as described in equation 3.3, and let
N denote the trajectory length of the sample inside the expectation. Then,

(177,

4 6) < ]E[ -1 t 1 DKL(pt+1 ||Pt+1)} < 5/.3(0).

4y

Theorem 4.1 suggests that the widely used KL loss is a good surrogate to the Fisher-weighted loss
and explains that even in a linear self-attention layer, using the KL loss enables the transformers to
learn self-reflection and improve it’s response.

4.1 THEORETICAL GUARANTEES FOR ICPO

We now present our theoretical results considering the empirical Fisher-weighted loss defined by

~ te[T s 2 = te[T .
L(0) := 2B(N 1)ZfeeD] [Proj (8741 =872 |5 T = B(Nl—l)ETEE[D] (Dlag(p”)_p”plt)'

We denote the population optimizer as 8* = argming £(0) and it’s empirical solution 0 =
arg min £(0). Then the first theorem suggests that the population optimizer 6* is exactly imitating
the policy optimization algorithm we described in equation 3.3.

Theorem 4.2 (Population Equivalence). Under Assumption 3.1, consider a one-layer LSA with
parameter * minimizing the population loss £(0) will 1m1tate the policy optimization behavior for
all possible history trajectory Hy:, i.e. Pys1(He; 0%) = proy (He).

Theorem 4.2 suggests that the population loss £(8) is precise and informational enough to guarantee
that the parameter 8* will drive the LSA exact imitate the policy optimization framework leveraging
any in-context data. Then a simple concentration analysis suggests that the empirical estimation will
also yield a similar result with high probability:

Theorem 4.3 (Finite sample result). Under Assumption 3.1, let the one-layer LSA be trained on B
i.i.d. trajectories {H, v }2_; generated by the policy optimization process in equation 3.3. Define
M := B(N —1). Using all prefixes t € {1,..., N — 1} from each trajectory (allowing within-

tra]ectory dependence) form the empirical Flsher—welghted loss E(G) and let the global optimizer be
6 = arg ming L(6). Forany § € (0,1), with probability at least 1— §,if M 2 1% (2K +log(1/6))/c3,

then for any fixed test history #; we have P11 (H¢; 0) = p! 7O (H:). In addition, the expected
behavioral mismatch is bounded by

Etrain|: Hﬁt+1 (Ht, 0) pt+1 Ht H :| S 2(1 - '7)265
where [E;,.i, 1s taken over the randomness of the B trajectories.

We would like to summarize the theoretical results by the following remark.
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Remark 4.4. Theorem 4.3 suggests an O(N?K/c3) sample complexity for the supervised pretrained
data to guarantee the LSA is well imitating the pretrained policy optimization trajectory. Such an
constant sample complexity is because of the Assumption 3.1 which is similar with the diversity
assumption used in Papini et al. (2021); Hao et al. (2020); Wu et al. (2020) which suggests that
v-greedy exploration suffices for a constant regret in linear bandits.

Our analysis and framework share commons and significant difficulties compared with Lin et al.
(2023); Park et al. (2024)

Remark 4.5. Park et al. (2024) analyze the regret of the LLMs assuming the LLM can conduct
the posterior sampling without the structural analysis. In contrast, our analysis is built on a slightly
modified policy optimization framework inspired by inserting an Lagrangian to solve the FTRL mirror
descent. With a newly designed supervised learning loss, we show that an linear self attention trans-
former can structurally imitate the policy optimization framework. Compared with the unsupervised
loss proposed in Park et al. (2024), we show by Theorem 4.1 that the newly proposed Fisher-weighted
loss is a nice surrogate of the practical KL loss, which better justices that the transformers can learn
policy optimization with sufficient pretraining.

Remark 4.6. We note that Lin et al. (2023) studies algorithm distillation and proves that O(v/T)
layers of ReL.U-activated transformers can mimic (soft) Linear UCB and Linear Thompson Sampling.
In contrast, we target understanding policy optimization instead of its value-based counterpart, which
is more suitable for analyzing the behavior of LLMs in improving their responses. In addition, our
analysis is built for a one-layer linear self-attention framework so that the network does not need
to change as the context grows larger, and is more aligned with practical long-context scenarios,
whereas Lin et al. (2023) requires the number of network layers to grow on the order of v/T', where
T is the length of the in-context sequence.

In addition, as frequently discussed in previous literature (McMahan, 201 1b; Shani et al., 2020),
policy optimization methods such as FTRL are known to be robust to adversarial or misspecified
rewards, which highlights their applicability to ICPO with self-assessed, noisy, or perturbed rewards.
A crucial property for practical self-refinement is that the learned policy is also stable. We analyze
the robustness of the learned ICPO loop at test time by examining its response to a single-shot reward
shock, which we present in the next theorem. We will start with the definition of the CRN-coupled
setup (Glasserman & Yao, 1992).

Definition 4.7 (s-CRN coupled trajectories). We say two trajectories are s-CRN coupled when they
share a common random number (CRN) and they are identical up to round s — 1 in trajectory H;

and ﬁt. We denote F; as the filtration that includes all events happen before observing the reward at
round s. At s-th round, the reward is shifted by 9,.. We define the drift cause by this reward shift by

Ap;1(0) == ﬁt+1(ﬁt§ 0*) — Dir1(He; 6%) € RE.

Then we are ready to present the following theorem indicating that the impact from any one-time
reward perturbations will be decreasing with a well-designed learning rate n; = c/t.

Theorem 4.8 (Stability to One-step Reward Perturbations). Under Assumption 3.1, assume the test-
time ICPO loop runs with fixed, population-optimal parameters 8* in the s-CRN-coupled trajectories
with task w, define

c(l—7) c(l—v) |K .
0= S Uop, b= S [ (IV + UDiag(w)llop + /206 [Ulloy )

that does not grow with s or ¢, let C, = f(b) as another absolute constant, for any 1 < s < ¢,
=~s a C, b—1
E[|AB 1]|2]Fe—1] < # (L) 16,

In particular, let the learning rate 1, = ¢/t be sufficiently small such that b < 1, the one-time reward
shift in the s-CRN-coupled trajectories is decreasing to 0, i.e., lim; oo E [ ||ADt41]l2 | Fs—1] = 0.

5 MINIMUM-ENTROPY IN-CONTEXT POLICY OPTIMIZATION

Based on the theoretical understanding of the ICPO framework, we now present a practical algorithm
leveraging the in-context policy optimization and the self-accessed reward to improve its reasoning
ability via test-time scaling. To begin with, we adopt the ICPO notation presented in our theoretical
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Algorithm 1 ME-ICPO: Minimum-Entropy In-Context Policy Optimization

Input: Question (); number of rounds V; candidates per round k;
Input: System prompt SysPrompt; Summarizer (prompt) Summ
1: Ho < {SysPrompt, Q}
2: fort =1tondo

3: Sample response Aﬁc ~ pi(- | H¢—1) with their answer ag.t) for all j € [K]

4 Assess 4y < MajorityVote{a§k)}§(:1, let r§t) — ]l[agt) =ay} forall j € [k]

5: Summarize x§t) = Summ(Agt)) and 7-[§-t) =M1 U (xj(.t), ?"J(i)) forall j € [k]
6 Select the minimum entropy response j* < arg min ¢ H (H§t))

7: Update in-context list H; < H;—1 U (mg?, r§i))
8: end for
Output: Response sampled from p,, 1 (- | Hy)

analysis. The agent starts with the historical prompt o = {Q} that only contains the question Q.
For each time ¢ € [T, the model outputs it response x; ~ p(-|H:—1) and then observe the reward r;
via self-accessed rewards. Then the agent updates its history H; = {Q, (x1,71), -+, (X¢,7¢)} and
move on to the next time step ¢ <— ¢ + 1. However, directly applying the ICPO framework presents
two significant challenges. The first challenge is related to the length of the contexts preventing the
agents from cumulate and conduct effective reasoning process based on a prolonged context through
the in-context policy optimization process. The second is the trustworthiness of the self-assessed
rewards, since the self-evaluation can be noisy and inaccurate. To tackle these two challenges, we
present our test-time in-context scaling algorithm: Minimum-Entropy In-Context Policy Optimization
(ME-ICPO). The ME-ICPO algorithm works in the following three major procedures.

Response Generation and Self-Assessment. In Line 3, the agent samples k responses A,(f) using

the historical in-context data H;_; with their final answer ag) appearing in the final boxed{}

block (Hendrycks et al., 2021). Then the majority voting as conducted in Wang et al. (2022) is
conducted over the answers in Line 4 for assessing the accuracy of the responses.

Chain-of-Thought Summarization. In order to compress the information from the output response
and condense the in-context texts, we summarize the responses according to their Chain-of-Thoughts

(CoTs) xg-t) and ignore the detailed problem-solving process in Line 5. The motivation is that the
detailed numerical processing is expected to be easier than the global CoTs.

Minimum Entropy Response Selection. Similar to the tree-search-style algorithms Yao et al.
(2023a), we select a response 2" and put it and its response into the in-context history H;y in
Line 7. Specifically, unlike the tree-search Yao et al. (2023a), or Best-of-N Huang et al. (2025)
algorithms that are designed for multi-step reasoning where x; is the one-step response, we consider
the z; to be a CoT description of solving the whole problem. Therefore, instead of selecting the x

with the highest reward, we instead follow a “pessimism” in offline reinforcement learning by selecting

the x, that leads to the minimum entropy in the future response, i.e., j* < argmin;cp, H (’H;t))
as conducted in Line 6. Intuitively, this minimum entropy selection will avoid the agent selecting
the corrupted response x that may drive the agent to produce a random answer. In addition, this
procedure will also encourage the agent to select the diversified responses j« that would help further
reduce the entropy.

It is important to distinguish our test-time approach from methods that train a student model on
trajectories from a fixed teacher algorithm. Since ME-ICPO performs no parameter updates at
test time, we do not claim that the deployed LLM is uniquely equivalent to any specific policy-
optimization algorithm. Rather, our theoretical analysis shows that the LSA architecture possesses
a strong inductive bias for performing such updates. ME-ICPO is designed to provide a usable
interface-via reward-aware prompting and principled feedback selection-that effectively leverages this
inherent computational capability of the model at test time without requiring gradients (Madaan et al.,
2023; Shinn et al., 2023). For complexity derivations and prefactor discussions, see Appendix C.

6 EXPERIMENTS

We present the experiment results to validate our theoretical claims in Section 4 and the performance
of ME-ICPO in this section.
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6.1 VALIDATION EXPERIMENTS

To verify the Theorem 4.2 and Theorem 4.8 results, we run two controlled checks on a single LSA.
Figure 2 shows, respectively, the teacher-student policy matching error (Top) and the stability of the
mixed policy under a one-time reward shock together with the instantiated analytical bound (Bottom).

Teacher-student policy matching. We fix the meta configu- 1076 Policy gap over time
ration K = 10, N = 30, B = 100, v = 0.2, stepsize n; = ¢/t T
with ¢ = 1.0, task prior w ~ N(0, 72 I) with 7,, = 1.0, and re- ar
ward noise €; ~ N (0, 07) with o¢ = 0.5. At test time we draw I
Biest = 64 fresh tasks from the same generative process. At
each round we hold the realized history H; fixed, compute the
teacher mixed policy ptpfl and the model’s mixed policy Py 1

3

A

Ellpe = pfl2

as defined in Section 4, and then continue the closed loop using TR T T
the model’s policy. Aggregating over tasks, we report the mean t
and one-standard-deviation band of E||p; — p} ©||2. As shown %1077 (or:=1.0at5=2)

— Empirical £ [Ap§]l2
Theory bound (mean-b)
~-- shockats=2

in Figure 2, the gap rapidly drops to numerical precision and
decreases with ¢, consistent with the population equivalence
and finite-sample guarantees.

ENApzll2

Stability under a single reward shock. We use an LSA trained

via supervised imitation on PO rollouts with K = 5, N = 5,

v =038,¢c=0.5, 7, = 0.5, and o¢ = 0.1. At test time we

keep the data model and v unchanged, extend the horizon to 23 4 5 6 7 8 9 10
_ _ t

N = 10, and evaluate on B‘“‘ = 2?6 tasks: For each task we Figure 2: Validation of ICPO the-

run two s-CRN-coupled trajectories: a baseline and a perturbed o .

. . o _ ory. (Top): Policy Matching. (Bot-
path that injects a single reward shock ér; = 1.0 at s = 2. tom): Reward-Shock Stabilit
Following Def. 4.7, we record Ap; and plot the mean and ’ Y-
one-standard-deviation band of E||Ap$|2. We can compute b € [0.1236, 0.2127] and thus the
non-amplification condition. Figure 2 shows a brief post-shock bump followed by a steady decline
without amplification over time, with the analytical curve providing a conservative upper bound.

6
5
4
3K
2
1
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6.2 LLM EXPERIMENTAL SETUP

We evaluate ME-ICPO on standard mathematical QA benchmarks (AIME 2024, AMC, and MATH-
500, split into five difficulty levels following TTRL) (aop, 2024; Mathematical Association of
America, 2025; Li et al., 2024; Hendrycks et al., 2021) using representative backbones (Qwen2.5-
Math-1.5B and Qwen2.5-Math-7B) (Yang et al., 2025). For reference, we also report the perfor-
mance of Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and DeepSeek-R1-Distill-Llama-8B (Guo
et al., 2025b) on AIME 2024. Full hyperparameters, baseline specifications, hardware/software
environment, and prompt details are provided in Appendices B.2, B.3, and D. Following Guo et al.
(2025b), we generate k=16 responses per question (7'=0.6, top-p=0.95). We report Mean@k

= I%\ > geD 3 Zle ¢i(q), where ¢;(q) = 1[a;(q) = a*(q)], and Accuracy, the probability of
answering correctly with one attempt.

6.3 MAIN RESULTS

Our main results are presented in Table 1, reporting the mean and standard deviation (over 5 seeds)
of Mean@ 16 (%) and Accuracy (%) across all tasks and models. The results show that ME-ICPO
consistently improves performance through its gradient-free, in-context optimization process. These
improvements hold for both the larger model (Qwen2.5-Math-7B) and the smaller model (Qwen2.5-
Math-1.5B), demonstrating that ME-ICPO is effective across different model scales. Qualitatively
curated prompt examples are provided in Appendix D. We also evaluate an oracle-reward variant,
with results summarized in Table 2.

We further report the performance of additional models Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) and DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025b) on AIME 2024 in Figure 3.

We also consider the Maj@k metric (Wang et al., 2023b), which aggregates k responses by
majority vote a(q) = mode(ai(q),...,axr(q)) (ties broken uniformly) and computes Maj@k
= ﬁ >_qep Halg) = a*(g)}. As shown in Figure 3, our experiments indicate that ME-ICPO’s
average performance (Mean@16) can surpass the anticipated upper bound given by the base model’s
majority voting, similar to observations in TTRL. Furthermore, applying majority voting on top
of ME-ICPO’s outputs leads to additional gains.
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Maj@16
40 mw/ ME-ICPO Mean@16
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20
| l = N
0 —
DeepSeek-R1-Distill-Llama-8B Qwen-2.5-Math-7B Llama-3.1-8B-Instruct

Figure 3: Performance comparison of backbone models before and after ME-ICPO.
Table 1: Performance comparison on different models with Mean@ 16 and standard Accuracy (%).

Model \ Benchmark | AIME 2024 AMC MATH-L1 MATH-L2 MATH-L3 MATH-L4 MATH-L5
Mean@16 (%)

Qwen2.5-Math-7B 11.04 +1.65 41.424+0.99 52.62+1.38 50.76 +£0.95 49.88+0.88 43.60+0.80 30.58 +0.78
w/ ME-ICPO 30.42+£1.81 47.06+0.84 62.35+1.27 64.31 +£1.23 58.87+0.78 49.31 £0.97 38.71+0.86
A +19.38 +5.64 +9.73 +13.55 +8.99 +5.71 +8.13
Qwen2.5-Math-1.5B 6.46+0.96 30.42+0.58 49.27+0.81 48.54+0.67 4542+0.86 40.28+0.57 25.23 £0.45
w/ ME-ICPO 9.79+£1.11 33.58+0.63 61.19+0.77 54.93+0.71 52.08+0.69 46.44+0.64 29.85+0.70
A +3.33 +3.16 +11.92 +6.39 +6.66 +6.16 +4.62

Accuracy (%)
Qwen2.5-Math-7B 11.134+3.27 41.33+1.97 46.98+2.71 42.67+1.86 43.71+1.75 37.79+1.65 26.13+1.54

w/ ME-ICPO 30.05£3.02 47.204+£2.26 57.32+£2.37 54.74+£2.04 51.90+1.67 40.84£1.78 31.71+1.40
A +18.92 +5.87 +10.34 +12.07 +8.19 +3.05 +5.58
Qwen2.5-Math-1.5B 6.51+1.94 30.25+1.07 44.68+1.83 39.95+1.32 39.77+0.99 34.97+0.68 20.89+1.35
w/ ME-ICPO 9.82+£215 33.73£0.96 57.06+£1.70 47.60£1.00 47.81+£1.17 41.55+0.72 24.83+1.29
A +3.31 +3.48 +12.38 +7.65 +8.04 +6.58 +3.94

6.4 ANALYSIS AND ABLATION STUDIES

We further analyze the AIME 2024 benchmark using Qwen2.5-Math-7B to assess the contributions
of ME-ICPO’s core components and its sensitivity to hyperparameters, as detailed in Appendix B.1,
along with the computational cost analysis in Appendix C.

Ablation Study. To isolate Table 2: Ablation study of ME-ICPO. (Oracle results use
the contributions of our core groundtruth labels for reward and are shown for reference only.)

components—entropy-based se- Ty g, g Accuracy (%) | Mean@16 (%)
lection and explicit reward sig- /o Revward 1930 1917
nals—we conduct an ablation ; )
: . w/o Entropy 5.77 5.83

study, with results presented in
Table 2. Th lts clear] w/o Entropy & Reward 6.21 6.46
da © ot the trtehsu S Ay ME-ICPO (full) 30.05 30.42

emonstraie Flat the MMum™  ME-ICPO Oracle 38.19 38.12

entropy selection criterion is the
most critical component of our algorithm. Removing this greedy selection mechanism (w/o Entropy)
causes a dramatic performance collapse. The explicit reward signal, made legible by our system
prompt, also plays a crucial role. While keeping entropy selection active, removing the reward tags
(w/o Reward) still results in a significant drop.

7 CONCLUSION

In this work, we studied the test-time scaling and self-reflection phenomenology in LLM reasoning
by introducing a theoretically grounded In-Context Policy Optimization (ICPO) framework. We have
shown that, under the ICPO framework, a single-layer linear self-attention transformer can provably
imitate a policy-optimization algorithm, which provides a theoretical proof-of-concept for how self-
reflection can be implemented within LLMs. Based on the ICPO framework, we propose a practical
and effective algorithm, Minimum Entropy In-Context Policy Optimization (ME-ICPO), which
provides a test time scaling pipeline with self-assessed rewards and in-context response selection.
Extensive empirical studies demonstrate that our improved performance across diverse benchmarks.

Limitations and future works. Our work opens several avenues for future research, which include
an extended theoretical analysis of training dynamics for multi-layer, nonlinear transformer structures
and formulating the multi-round reasoning process as a Markov Decision Processes (MDPs) instead of
K-arm bandits. Empirically, it also calls for the consistency regularization of the reward assessment.
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In this subsection, we establish the minimal set of tools and lemmas required for the subsequent

proofs. We adopt all notation and settings from the main text.

Lemma A.1 (Mixture curvature and Fisher bounds on 1-). If the teacher uses mixture exploration

= (1 —7)p + v1/K, then the Fisher matrix F(p) := Diag(p) — pp ' is bounded on 1-+:

%I < F(p)| | = %I.
Proof. Using linearity of Diag(-) and expanding pp ',
F(p) = Diag((1- 1B +7%) — (1 =B+ %) (1-1D+7%)"
=(1=9F®) + 7F(%) + (1-NB-%E-%)"

The last rank-one term and F(p) are PSD, hence
F(p) = 7F(%).
On 1+, F(%) = Diag($) — (3)(§) " acts as (1), so the lower bound follows:

Y
F(p) L = ?I-

For the upper bound, for any x € 11 with ||x||s = 1,

. e )2 2 2
XTF(p)x = Var,p[z;] < (max; x; 4m1nzxz) < (\g) _ %’

where we used Popoviciu’s inequality and that among vectors with x ' 1 = 0 and ||x||s = 1, the
range is maximized by placing mass 41/1/2 on two coordinates. Taking the supremum over such x

: 1
yields F(p)|,, =< 3L

14
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Lemma A.2 (Softmax is 1/2-Lipschitz on 1+). For any u,v € R¥ withu —v € 1+,

[[softmax(u) — softmax(v)[2 < % [u—vls.

Proof. By the mean value theorem for vector maps, there exists £ on the segment [v, u] such that
softmax(u) — softmax(b) = J(&) (u—v),

where J (&) is the Jacobian of softmax. It is well known that J(¢) = F(p) with p = softmax(¢),
and J(£)1 = 0. Since u — v € 1+, we can restrict to 1+ and apply Lemma A.1:

[softmax(u) — softmax(v)[2 = [|7(§)(u=V)l2 < [[J(E)];llop [lu =]z < 5 [lu—v].
O
Lemma A.3 (Query-column closed form for one-layer LSA). The next-step logit vector admits the
closed form

~ 1
St+1 = Qg + ERGf b, (Al)

where R := [WV]; ¢ . is the row-selector matrix, b := WX @q is the transformed query vector,

q = (‘;ﬂ”> € RE+! with q, € RX and ¢, € R, and G; := EW(E®)T is the history Gram
™

matrix.
Proof. By the LSA definition in equation 3.4,

i1 = [fia(BY;0)] LK, 141

_ {Em L wrvge  (EY)TWEED

t :|1:K, t+1

1
— [E® - {VVPVE(t) EONTWERE®) }
[ L;K,H-l + n (( ) ) LK, t+1

—
S]

Naid
—_

D4 + - {WPVE“)((E“))TWKQE(%M)}LK

[WPVE(t) ((E(t))TWKQ(E(t)et+1))} L

| =k =

[WPV (EO(ED)T) (WKQq)} e

1
Justifications: (a) column slicing equals right-multiplying by the standard basis e;; € R‘*!, and
[EM]1.k 111 = qu; (b) associativity isolates E(Ve;1; (c) substitute EMe, 1 = q = (q,, ¢,)"

and regroup E® (E®)T; (d) apply the concise definitions R = [W?V],.ic., G, = EO(E®)T,
and b = WKQq. O

Lemma A.4 (Two-channel projected logits: exact equality). Assume the architectural normal form:
gr = 0, q, € span{1}, and the final column of the action—logit projection is parallel to 1 (i.e.,
wiV || 1). Let the historical statistics up to round ¢ be the count vector

t t
n; ;.= E Xg = E €4,,
s=1 s=1

t t

8t ::§ TsXs = § Ts€A,.

and the reward vector

s=1 s=1
Let W'V WEQ ¢ RIK+HD)x(K+1) pe plock-partitioned as
K K
wr = (i v wee= (WA V).
(w2,") W32 (W) wyy
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with WEV WP € REXK and whY wlV, wit? wi? e R¥. For the transformed query

b = WKC@q = ((;bl) , ¢1 €RX ¢y € R,

P2
the projected LSA logits satisfy, for any nonzero ¢, ¢2,
o~ 1
Proj (Sy4+1) = ¥<Wn n, + W, gt>, (A.2)
with effective operators

W, = PrOJ(W11 Dlag(qbl)) W, = Proj(ngWﬁV).

Proof. Using Lemma A3 wehave 8,41 = q, + 1 RG,bwith R = [WPV] .. = [WY wiYV]
and

T
Gt = E(t) (E(t))T = <Ct —"_g—(lllqw TthT‘) y Ct = Diag(nt), — (7"17 e ,’I“t)T.
t

Projecting onto 1+ and expanding block multiplications,

~ a . 1
Proj(si+1) @ Proj (qx + n RG; b)

—~
=
=

1
n Proj(R G b)

1 . C;+a.q,
2 Lo iy w1 [ %) [2])

—
3]
-~

—
=

= %Proj(WﬁV((Ct + Q29,1 + g ¢2) + Wiy (gt o1+ (r 7“)@))

A
e

1.
; Proj(W1{" Ci 1 + W1 g 62)

(PrO_] (W1 Diag(¢1)) n, + Proj(¢2 Wi7") gt)

= ;(Wnnt + ngt).

Explanation of steps: (a) apply Proj to the closed form; (b) Projq, = 0 since q, € span{1}; (c)
block multlphcation with R, Gy, b; (d) evaluate the product explicitly; (e) both Proj (Wﬁv a:9, ¢1)
and Proj(w1,”) vanish because q,., wi,” || 1; (f) use (4 Diag(u))v = (A Diag(v))u with u = ny,
v = ¢1; (g) identify W,,, W, as stated. O]

Lemma A.5 (Fisher-weighted quadratic in the two-channel operator). Let the normalized historical
statistics be n, := n;/t and g, := g;/t. Define the concatenated operator W := [W,, W ]| €

RE>2K and the concatenated normalized statistic z; := (n, , g, )" € R*%. Let the population
second-moment matrices be
S = =T Enn Eng . =T .
Y :=Elzz, | = 5 SRR %,: = Elyi112, |, with yii1 := Proj (sfQ).
gn 99

With T := E[F(p} )], the Fisher-weighted loss from Eq. equation 4.1 admits the quadratic form
1 — - = - 1
£O) =5 tr(CWEW'") — tr(TE,;W') + 5 (T 2yy),
where 2, := Ely;11y,4].
Proof. By Eq. equation 4.1, averaging uniformly over training pairs (7, t),

£(68) = 5 E[[[Proj (1 — 5212

By Lemma A 4, the projected student logits admit the two-channel form

.- 1 _ _ = _
Proj (StJrl) = ; (Wnnt + ngt) = W,n; + ngt =Wiz,.

16
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Let y¢+1 := Proj (st3,). Using ||b||3 = b I'b, linearity of expectation, and tr(ABC) = tr(CAB),
we obtain

£(0) = SE|[Wz, - yiil|p)

E[(Wz; - yi11) ' T(Wz; — yiq1)]

E[z; W TWz, — E[z/ W Ty,..] + %E[yz+lryt+1]
tr(CWE[Zz, |W'") — tr(TE[y12, |W') + %tr(FE[YtHytTHD

NI RN N RND~DN -

1
=~ tr(I'3,,).

tr(CTWEW') - t1(T2,; W) + 5

O

Lemma A.6 (Empirical Fisher-weighted quadratic form). Let M := B(NN — 1) be the number of
training pairs and index them by (7,¢) with 7 € [B] and ¢ € [N — 1]. Define the empirical Fisher
weight and empirical second moments by

~

1 . N
L= > (Dlag(pf,?) - pf,?(pi?)T), S o= 07 D Bt
T,t T,t

S 1 =T S 1 T
Yz = M;yﬂ“rlzﬂt’ Yy = MZyT,tJrlyT,Hp

T,t

where z,¢ := (0] ,,8],) . 0ry = 0o/t 8t = 8re/t, and yr 141 = Proj(sQ, ). Let W =
[W,, W, ]beasinLemma A.5. Then the empirical Fisher-weighted loss from Eq. equation 4.1
admits the quadratic form

~ 1 ~ = ~~ 1 ~
L) = 5 tCTWEW') — r(TZ,: W) + o tr(Ty,),
and in particular the last term is independent of 6.

Proof. By the definition in the main text,

~

1 R 2
£O) = 531 2 [Proi(3re1 = s7214)|

f.

By Lemma A4, Proj(S;.14+1) = W Z,;, hence

~

1 . TA e
L(6) = B ; (WZT,t — Y¢,t+1) r (WZT,t - yT,t+1)'
Expanding the quadratic and using linearity of trace with b” Ab = tr(Abb"),

L(6) :% tr(f‘W % > z.2], V‘VT) - tr(f‘ % > yrisz), VVT)
T,t

) Tt

1 ~ 1
+ 3 tT(F i thynt+1yzt+1)

= tEWEWT) — u(FS,. W)+ u(TS,).
O

Lemma A.7 (Population second moment is positive definite on S). Let z; := (g:) € R2K with

n; = % Zizl xsand g, = + ZZ=1 rsXs, Wwhere 7, = W' x, + ¢,. Assume w ~ N (0,72 ) and
is independent of {x,} and fes}, and {e,} is a conditionally zero-mean o.-sub-Gaussian martingale
difference sequence. The agent uses y-mixture exploration. Define the population second-moment

> = E[z:z, .

17
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Suppose the teacher’s parameters (step size cgy, reward preconditioner U) and problem parameters
satisfy

-y Y
( 5 )coHUHOpaf < Tw o (A3)
Then for any ¢ > 2, the restriction 3| is strictly positive definite on S := 1 @ 1+ in particular,

Amin(E[g) > 0

and f}| s is invertible on S.

Proof. We work on S := 1+ @ 1+, Write

Set
a = )\min(znn|1i)7 Ci= Amin(zgg|1l)7 b:= H27’L9|1L ||op

Decompose X, = ps + e, with p, := E[x, | Fs_1] and E[ese, | Fs_1] = F(ps). Forany u € 1+,

E[(uTﬁt)ﬂ > %ZE[UTF(pS)u]

t
1
azgz%:l. (A4)

(s

Spllt gt _ gt ig) + (sig)

— (nolse)

with g;*® =1 S (w'x,)x, = Diag(fi;) w. Forany v € 11,

K
E[(v"g™)?] = 2 E[| Diag(n)vll3] = 72 > E[#7 ] v
i=1

Let N;; := >\, 1{A, = i}. Since NZ; > Ny, E[a? ] = E[N2]/t? > B[Ny 3] /t* = Eliig ] /t.
Mixture exploration yields E[n; ;] > /K, so
2 7

c > T, ah (AS)
Adding the PSD noise covariance only increases X, thus equation A.5 holds.
We have

Sy = Bl | = Bln(g™) "] + Bln(g™™)"].
=0

The first term vanishes because w is independent of (i, {e,}) and E[w] = 0. For the second term,

Eln(g""™) ] = 5 Z ZIE xu€x!] = 5 Z Z [xu € %)),

u=1 s=1 s=1u=s+1

where we used E[e, | Fs—1] = 0 to eliminate u < s. Fix s < u. Consider “world 0” where ¢ is set
to 0, and “world 1” the true world. Then

Elx, s x| = E[(p") — p{?) s x/ ],

since E[pu €sx, | = 0. With 1, = co/u, the projected logits satisfy (one-step normal form)

Yu = (Vnu 1+ Ugu- 1) = AYu:ﬁU(ESXS)

u—l

when only ¢, is perturbed. By Lemma A.2 and the (1 — ) factor from equation 3.3,

Co
1D =P le < (1=9)-3lIAYLlle < (1=7)-§- 2

18
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Hence
HE[XU €s X;r]Hop SE[HP’E}) _pSLO)”Q |€S|]
(1—7) o 2
< E
T [ Ulfop E[e;]
(1-7) < 2
< .
T U llop o2
Summingu =s+1,...,tands=1,...,t — 1 gives
t—1 ¢
1 (1-7) < 2
b= Zngliilley <20 2 5 g7 IUllep
s=1u=s+1
(1-7) t—1
< 5 o 1Ul|op o2 2
C
<=, (A.6)
t
with Gy, == U529 ¢ U op 02.
For any unit (u,v) € S,
ny U a b
_ s ) ' _
(4) =], () = alll® = 2ullol 4l > An( 4, 7)-
Thus
- a+c—+/(a—c)?+4b?
Min(Eg) > : . (A7)
By equation A .4, equation A.5, and equation A.6,
gl Ch
= Tw 7> > b < —.
vac = T 7 =5

The small cross-block condition equation A.3 implies b < y/ac (for all t > 2), hence the 2 x 2 matrix
( “ _Cb) is positive definite and the right-hand side of equation A.7 is strictly positive. Therefore
g - 0. O

Lemma A.8 (Sample second-moment concentration for z;). Under Assumption 3.1 and w ~
N (0, 721), the normalized statistic z; := (n, , g, )" € R2X is sub-Gaussian with a dimension-
free yo—norm L := ||Z; ||, depending only on (7, o¢,y) (and not on K). Let

M
S 1 — —(m)T = _
¥ = M,;Zﬁm)zﬁ )T S = Elag]),

where {Z,Em)}%zl are i.i.d. copies of z; generated by independent rollouts of the same population
process (fixed 7). Let ¢ > 0 be the population lower bound from Lemma A.7, i.e., )\min(E} S) >0

on S := 1+ @ 1+. Then there is a universal constant C' > 0 such that, for any 0 € (0,1), with
probability at least 1 — 6,

5-5|, < cﬁ( 2R+ 01/ 2K+}\‘;g(1/5)>. (A8)
In particular, if
M > Cune w with  Ce 1= 16 C% LA,
then ||§) — SHOP < %g, and consequently
an(E[ ) = e (A9)
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Proof. The sub-Gaussianity of z; follows from: (i) ny = %22:1 X is an average of one-hot
vectors from a y-mixture policy, hence coordinate-wise sub-Gaussian with ¥ys—norm bounded by a
constant depending only on v; (ii) g = % 22:1 reXs wWith ry = W' x, + €5, where w is Gaussian
independent of {xs} and {¢s}, and {e,} is conditionally sub-Gaussian. Thus g; is a sum of sub-
Gaussian vectors with ¢s—norm controlled by (7, ., v); concatenation preserves sub-Gaussianity
with L = [|Z¢]|y, = O(1) in (7, 0, 7).

For i.i.d. sub-Gaussian samples in R? with d = 2K, the standard sample covariance operator-norm
deviation bound (e.g., matrix Bernstein / sub-Gaussian covariance concentration) yields equation A.8:

d + log(1/4) n d+10g(1/6)>.

s 5 2
5 -5, < o}/ o8

If M > Che(2K +log(1/6))/a?, then H§3 — 3|lop < a/2. By Weyl’s inequality on the restriction
to S,

Amin(i‘s) > )\min<2’s) - H§*2||0p > Q*%Q = %Q
which is equation A.9. O

Lemma A.9 (Fisher two-channel quadratic: gradient and Hessian). Consider the population Fisher-
weighted quadratic from Eq. equation 4.1 written in the two-channel parameterization

- 1 - = -
L(W) = 5 trTWEW') — t1(T'S,: W') + const, (A.10)
where W € REX2K |5 — ]E[‘ z; |, 3,z = Ely:11Z/ |, and T' = E[F(pL'3)]. Then
Vwﬁ( ) = T(WE-3%,;) = E(W) e RF*?K (A.11)
ZLW)A] = TAS (A € REXZK), (A.12)

Proof. Write L = L1 + Lo + const with
Li(W) = tr(TWIWT), Lo(W):=—tr(T2,WT).
Using the Frobenius inner product (4, B) = tr(A"B) and dWEXW') = (dW)EWT +
WS (dW)T with ST ==, T =T,
dfy =(TWX, dW), dly =(—T'%,;, dW),
s0 dL = (D(WX — X,7), dW), which proves equation A.11. For the Hessian, with W (e) =
W + €A,
d

T VwL(W(e)=TAX,

establishing equation A.12. Equivalently, d?L[A, A] = tr(ATT A ) = |[TY/2AZY?|2. > 0. O
Lemma A.10 (PL inequality on 1+). Under mixture exploration (Lemma A.1) so that Lemma A.7
holds, the population Fisher—weighted quadratic

LW) = 3 trCTWEWT) — tr(T %,z WT) + const
satisfies, for any global minimizer W*,

£(W) ‘C<W*) = 7HVW£ HF’ K= mln(r‘ll) mm( ’ ) (A.13)

where S := 11 ¢ 1+, Moreover by Lemma A.1 and Lemma A.7,

g
Aain(T]12) = 7 win(Zlg) 2 e>0, = p>

min

% g (A.14)

Proof. Let A := W — W* and define X := I'/2 A X1/2, By Lemma A.9,

VwL(W) = TAS = T'2X5Y2 L(W)-L(W*) = L (TASAT) = 1X|3.
For any PSD A,B and any matrix X, | Al/ZXBl/2 ||2 = tr(XTAXB) >
Amin (A)Amin (B )HXHF , we obtain

Fw W)~ [FXE 2 = Af () A(E]) X — 25 (£0W) — (W),
which is equivalent to the PL inequality equation A.13. The bound equation A.14 follows from
Lemma A.1 (giving I"lL = (v/K)I)and Lemma A.7 (giving Z|S = al). O
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A.2 REWARD-SHOCK ROBUSTNESS

Proof of Theorem 4.8. Under the s-CRN coupling (Def. 4.7), the baseline and perturbed runs share
the same task w, the same uniforms {U; } for sampling, and the same noise sequence {¢; }; they differ
only by feeding a shocked reward 75 = r; + §,- at round s. Define

Apit1 i=Pi+1 — Pit1, Ang:=ny—ny, Ag =g — g, a1 = E[|Apesal | Feoil,
and the normalized accumulators 1 := n;/t, g; := g/t (and their deltas analogously).
Pathwise relations for counts and rewards. With x; = e, and 1, = (W, x¢) + €4,

t t t
n; = E Xu, g = E ry X, = Diag(ny) w + E €u Xy
u=1 u=1 u=1

Let hy := 22:1 €4 Xy, and Et = 22:1 €4 Xy For the perturbed run, only round s changes in the
fed reward, hence B

Et = Dlag(ﬁt) w + h,t + l{t Z 5} 6r is.
Therefore, for ¢t > s,

1 1 1. =~
Agt = ; Dlag(w) Ant + E Aht + E 57’ Xsy Aht = ht — ht. (AIS)

Two-channel linearization of projected logits. Using the (population-optimal) one-step normal form
aligned with equation 3.2 and projecting away the softmax gauge,

Ay = Proj(§§fft) - §§'ffe>) = % (V An; + U Agt) - c(v Af, + U Agt) . (A16)

Softmax is 1/2-Lipschitz on 1+, and the y-mixture equation 3.3 scales the sensitivity by (1 — 7),
hence

1
APl < (1 =) 5 1Ay el (A.17)

Combining equation A.l5—equation A.17 and conditioning on F;_; yields
1 - Op ~
- s% E { |(V + UDiag(w)) AR, + U AR, + U~ %,| \ fs_l]

c(1-7)
2t

+ 1 op ElIAR | Fom] + [Ullop 16:1)- (A18)

< (IV + U Diag(w)l|op E[|An | | F,1]

CRN coupling controls E||An, || and E|Ah;||. By inverse-CDF coupling,
(A, # Ay | Fucr) = 3l1ARuJL < % (1A

2 —
Since ||Ax, || < V2,
E[|Axy]| | Fumr] < /5 APl (A.19)
Summing equation A.19 from v = s to ¢ and conditioning on F,_1,

t

E[|An|| | Foor] < @Zau (A.20)

=s
For the noise accumulator, using the zero-mean o.-sub-Gaussian assumption (hence E[|¢, | | Fy—1] <

Ce :=+/2/m0o.) gives
t
B[R | Foo] < G5 a. (A21)

A Gronwall-type recursion and its solution. Plugging equation A.20—equation A.21 into equa-
tion A.18, define

c(l—~ c(l—~ K )
o= Do, b= D (v 4 UDiag(w) oy + C ULy ).
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and obtain, for ¢ > s,

t
a b

a1 < <o + - > au. (A.22)

U=s

Let Sy := Z';:S a, with S;_; = 0. Then
b a
< — — . .

S < (1+7) 8 + S1o0] (A.23)

Unrolling equation A.23 and using the standard Gamma-ratio bound yields a constant Cj, > 0
(depending only on b) such that

t—1 b
1/t aCly /t\b
S < aGylsly (u) < T2 (2) 1o

Returning to equation A.22,

a b a
< U5 + =8 < =15,
Qi1 t| |+tt_t| | +

S

aCy (t\b a(l+Cp) (!
t (E) ol = = ( ) [9v]-
Therefore, forany 1 < s <¢,
~s a(l+ Cy t b=t

E[ AP} 1llz | Fer] < al+G) y ) (S) |6, (A.24)
In particular, if the learning-rate constant c is small enough so that b < 1, then (ﬁ)b_1 —0ast — oo,
and the one-shot impact decays to zero:

Jim E[|AP;y4 2 | Fooa] =0.

This completes the proof. O

A.3 KL DIVERGENCE VS. FISHER-WEIGHTED DUADRATIC

Proof of Theorem 4.1. Recall that N denotes the trajectory length in the dataset construction of
Sec. 4, and expectations below average over (7,t) with ¢t € {1,...,N — 1} and 7 € D. Let
p(s) := softmax(s) and define the projected logit error

Api1 = Proj(Sig1 — sf_f_)l) €1t Proj :=1-— %11?
Write the (softmax) Fisher matrix as F(p) := Diag(p) — pp ' and recall from Eq. equation 4.1 that

Nz_:l F(pfo)] )

t=1

1
' = ——FE

N-1
1 T
L) = E| 57— ;:1: AT A, = T

By Lemma A.l (mixture curvature), along the teacher’s ~-mixture policy we have the spectral
sandwich on 1-:

Y PO 1
J1<w < o1 A2
g2 ERO)L 25 (A-25)

By convexity of the PSD cone, the same bounds transfer to I" on 1-+.

Upper bound. Mixing with the uniform distribution is a Markov kernel; by data processing for
f-divergences,

Dxu(pi) [ Pev1) < Dru(P(st) [PGer1)) = Dxn(P(st) [ B(sE + Aer)).
Let ¢(s) := log >, €*i; then V¢ = softmax and V2¢(s) = F(p(s)). The Bregman integral form
of KL yields, for any A € 1+,
1
Dki(p(s) || (s + A)) = / (1-7)ATF(p(s + 7A)) Adr. (A.26)
0

1 1
Using |[F(-)|,. llop < & and [, (1 — 7)dr = 3,

Dxu(pro) | Pes1) < 5 1AGlf3-
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From equation A.25, AL T Apyr > [ Ay 3, hence [|Ar 3 < £ AL T Ayyr. Averaging
over t and taking expectation,

1 N-—1 K
]E[Nl > Dxu(pi IIﬁm)] < L),

t=1

Lower bound. Pinsker’s inequality implies Dk, (p[la) > $[lp — al|? > 3|lp — ql[3. Let f(s) :=
(1—7)p(s) +v1/K sothat p{ 3, = f(si ) and Py1 = f(Si41). By the mean-value integral,

1 1
Pi o — Pri1 = / Vst + TA1) Mg dr = (1 — ’7)/ F(p(siy) + TAv1)) Apgr dr,
0 0
whence [|py2 — Pryilla < (1—7) - 5 [|As41]l2 and thus

4 ~
)2 ||pff1 - pt+1||§-

Apqll2 > ———
|| t+1||2— (1_7

Using the upper side of equation A.25, A/ ;T A1 < 1 [|Ay41]3, we obtain

1 N-1
o 3 IS - Bl
t=1

1 1 = 2
< —E|—— A 2l < E

Finally, combining with Pinsker yields

Ly lp| L ¥~ (t-7?

PO || & PO~ ) _
E N1 tzzl Dxi(pi1 |pt+1)] > 2ElN—1 75:21 Ipiy — pt+12‘| > TE(O).
This proves the two-sided bound. O

A.4 CLOSED-LOOP IMITATION OF POLICY OPTIMIZATION

Proof of Theorem 4.2. By Lemma A .4, the projected student logits are linear in the normalized
statistics:

Projsiy1 = Wz, W:i=[W, W,]eRE2F 7, = @t) € R?X,
t

For the teacher generated by equation 3.2 with 7, = ¢/t, we likewise have
Vi1 :=ProjsfO = gProj(V n,+Ug) = W,z, W, :=Proj[V U] e RKK

so the labels are realizable by the same two-channel structure.
Lemma A.5 gives the population Fisher—weighted quadratic form

L£(0) = % tr(CWEWT) —tr(I'S,; W) + const, = E[F(pffl)], 3 = E[z:z, ).

Using realizability y; 1 = W,Z;, we have 3,; = E[y; 112, | = E[W,z:Z, ] = W, X. Substitut-
ing gives the completed-square form
1 _ o _
£o) = tr(I‘ (W - W,)S (W — W*)T) + const.

By Lemma A.1 (mixture curvature), 1‘|1L > (v/K) I; by Lemma A.7, Z_J|S =clonS:=1+t@1+

under Assumption 3.1. Hence the quadratic is strongly convex in W on S and has the unique
minimizer W = W,.. Therefore, for any history prefix H,,

ProjS;41(Hy; 0%) = W, 2, = Projs; 3 (Hy).
Since softmax is invariant to additive constants (the projected logits remove exactly the span{1}

gauge), the induced policies coincide: ;i1 (He; 0*) = pry (He).
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Proof of Theorem 4.3. By Lemma A .4, the projected student loglts are linear in the normalized
statistics: ProjS;;1 = Wz, with W = [W,, W] and z, = (0] ,g; ) ". Let y¢1 := Proj (sf ).
Lemma A.5 and Lemma A.6 give the population and empirical Fisher—weighted quadratic forms, and
Theorem 4.2 (under Assumption 3.1) guarantees realizability: there exists a unique W, such that
yVir1 = W,z for all prefixes. Moreover, Lemma A.1 implies I"lL = (v/K)I, and Lemma A.7

implies 33| ; = o with o < ¢5/t on S := 1+ & 1+, so the population quadratic in W is strongly
convex on S with unique minimizer W, . For the empirical problem, Lemma A.8 yields (for i.i.d.

rollouts)
IZ = Zop < ClL2(\/m+ 2K+ljo§(1/6)>'

Takmg M > Ct*(2K +log(1/6))/c3 (for alarge enough absolute C depending on C, L) guarantees

E = 1 ol, while I"lL = (v/K)I by mixture curvature. Plugging the realizable labels y;1 =
W +Zt 1nto Lemma A.6 gives

L(W) =1 &(f(W-W,) S (W-W,)T) + const,

so the empirical minimizer satisfies W = W, whenever §I| 5 = 0 (which holds with probability

> 1 —6). Thus ProjS;41 = Projsf2 and consequently ;1 (He; 6) = pH_l(’Ht) for the fixed
test history H.. For the expected mismatch, on the high-probability event the error is 0, and on its
complement a crude bound together with the (1—~) mixture factor yields ||p;1—p} 1113 < 2(1—7)2,
hence

Eteain [[Per1 = praall3) < 0-(1=0)+2(1-7)%-6=2(1-7)%.
This proves the theorem. O

A.5 CONVERGENCE OF THE FISHER-TRAINED TWO-CHANNEL LSA

We analyze the continuous-time gradient flow on the two-channel operator W for the Fisher-weighted
quadratic objective in equation A.10.
Theorem A.11 (Exponential convergence of the W—flow). Assume mixture exploration and that

Assumption 3.1, Lemma A.1, and Lemma A.7 hold. Consider the gradient flow for the population
Fisher-weighted quadratic £:

W(t) = —VwL(W(t) = —T(W(H) = - 5,:), (A27)

initialized at any W (0). Let W* be a global minimizer of £. Then £(W (t)) is strictly decreasing
along the flow and

LW (1)) — LIW*) < exp(—2ut) (L(W(0)) — LIWY)), (A.28)

with
= M@ ALu(Zlg), S=1te1t,
and, by Lemma A.1 and Lemma A.7,

mln(]‘-‘|1L) — %7 mln( ’ ) Z g > 0’ = H

\%
==

IS

Proof of Theorem A.11. By Lemma A.9, we have
VwL(W)=T(WX - 2,;),
so the gradient flow W(t) = — VwL(W(t)) is well-defined. Along the trajectory,
— = — 2
L L(W) = (Twe (W), W) =~ [V (W2 < o

hence £(W (t)) is nonincreasing and strictly decreasing whenever V., L(W (t)) # 0.
Next, apply the Polyak—F.ojasiewicz (PL) inequality on the restricted subspace S := 1+ @ 1+

(Lemma A.10). Let
= )‘I-ir_un(]‘-‘|1L) mln(2| )
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Then for any global minimizer W*,

_ - 1 9
LOW) = £(W") < o [Vw (W) ;.
Combining this with the energy decay identity gives, for all ¢ > 0,
i
dt
By Gronwall’s inequality,
LW()) — LOW*) < exp(—2ut) (C(W(0)) — L(W*)).

LOW(E) = LW*) = — |[VwLW®)|% < -2 (LW (D)) — LIWH)).

Finally, by mixture exploration (Lemma A.1) and the lower bound on the population second moment
on S (Lemma A.7),
+ v + (5
Amin(r|1i) 2 ?7 )‘min(2|s) 2
which implies ¢ > (v/K)o. Strict decrease of the loss holds except at stationary points; by
Lemma A.9 together with the restricted positive definiteness, these coincide with the global minimiz-
erson 1+, O

a >0,

B EXPERIMENTAL DETAILS

This section provides additional details regarding the experimental setup, including specific hyperpa-
rameters for our method and the baselines, as well as the hardware and software environment used for
all experiments. We also present supplementary experimental results that complement the main text.

B.1 HYPERPARAMETER SENSITIVITY.

Figure 4 shows the impact of varying the number of in-context optimization rounds (n) and candidates
per round (k) on AIME 2024. As shown in Figure 4a, performance improves substantially as the
number of candidates (k) increases from 2 to 64, with Maj@ 16 accuracy more than doubling, then
saturates beyond this point. Increasing the number of rounds (n) is broadly beneficial up to a peak
near n = 5. A complementary grid and the corresponding latency/VRAM measures are reported in
Appendix C.2 (Tables 8).

Qwen2.5-Math-7B (AIME): Sensitivity to k Qwen2.5-Math-7B (AIME): Sensitivity to n
—e— Mean@16
404 404 Maj@16
330 3301
z z
e e
3207 3 20+
¥ ¥
< <
10 10
—e— Mean@16
Maj@16
0+—r— T r - 04— . , r - -
24 8 16 32 64 1 2 3 4 5 6
Candidates k (fixed n = 5) Rounds n (fixed k = 16)
(a) Varying candidates k (fixed n = 5) (b) Varying rounds n (fixed k = 16)

Figure 4: Hyperparameter sensitivity of ME-ICPO on AIME 2024 with Qwen2.5-Math-7B.

B.2 HYPERPARAMETER AND IMPLEMENTATION DETAILS

ME-ICPO (Our Method). For our method, we use the primary settings described in the main text
(n = 5 rounds of optimization, ¥ = 16 candidates per round). Candidate chains-of-thought are
sampled using a temperature of 0.6 and a top-p value of 0.95. The summarization step, which is a
crucial component for managing context length, uses greedy decoding and is prompted to produce
a concise summary of approximately 100 tokens, with a hard limit of 500 tokens, focusing on the
reasoning strategy. The predictive answer distribution, used for the entropy calculation, is also
estimated with a temperature of 0.6. The full text for all system and summarization prompts is
provided in Appendix D.
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B.3 HARDWARE AND ENVIRONMENT CONFIGURATION

All experiments were conducted on a single server node equipped with 8 NVIDIA L40S GPUs,
each with 48GB of HBM2e memory. Our implementation uses PyTorch 2.2, vLLM 0.10.0, and
Transformers 4.55.0. The operating system is Red Hat Enterprise Linux 9.6, and the environment is
managed via Conda with Python 3.11.7 and CUDA 12.9.

B.4 SUPPLEMENTARY EXPERIMENTAL RESULTS

This section contains supplementary results and comparisons added during the rebuttal phase to
address specific computational and scalability questions.

B.4.1 COMPUTATIONAL COST AND BASELINE COMPARISON

To assess efficiency, we compare ME-ICPO against standard prompt-style test-time search base-
lines—Tree of Thoughts (ToT) (Yao et al., 2023a) and Monte-Carlo Tree Refinement (MCTR) (Zhang
et al., 2024a)—and the training-based test-time scaling method TTRL (Zuo et al., 2025). For fair-
ness, ME-ICPO uses a fixed configuration of N=5 refinement rounds and k=16 samples per round,
averaged over 5 seeds. We report average inference time (seconds per question) on AIME 2024.
Because ToT/MCTR employ different search depths and branching factors, their runs are not strictly
time-matched; for TTRL, we control the experiment to use a similar GPU hours as ME-ICPO. As
shown in Table 3 and Table 4, ME-ICPO achieves top-tier accuracy and Mean@ 16 at a competitive
compute budget, reflecting principled gains from the underlying Policy Optimization mechanism.
Shallow-search prompt methods (ToT/MCTR) can be faster when search depth is limited but lag
notably in accuracy, while under matched wall-clock budgets ME-ICPO attains higher Acc/Mean@16
than TTRL, demonstrating more efficient scaling; importantly, ICPO provides a mechanistic account
of test-time self-refinement as policy optimization rather than a heuristic leaderboard tweak.

B.4.2 FRONTIER MODEL SCALABILITY

To demonstrate the versatility of our framework, we evaluate ME-ICPO on recent frontier models,
including Qwen3-4B-Instruct (Yang et al., 2024b) (a long-CoT specialized model), and the Gemini-
2.5 series (Pro and Flash) (Comanici et al., 2025). Tables 5 show that ME-ICPO consistently enhances
performance across these diverse architectures, confirming its scalability.

B.4.3 HARDER TASK GENERALIZATION
We further evaluate performance on exceptionally difficult, high-school/collegiate level math com-
petition tasks, specifically the Harvard-MIT Mathematics Tournament (HMMT) (Balunovic¢ et al.,

2025) and the APEX-shortlist dataset (Balunovic et al., 2025). Results in Table 6 and Table 7 indicate
that ME-ICPO provides robustness even on tasks with low baseline solve rates.

Table 3: Computational Cost and Performance Comparison (Mean@ 16, Qwen2.5-Math-7B) against
Inference and Training Baselines.

Method \ AIME-2024 AMC MATH(Avg) Time(s/question)
ToT (self eval) 4.38 16.19 12.51 708

ToT (Maj vote) 19.58 29.37 35.63 363
MCTR 4.60 1.20 17.20 1758
TTRL 27.20 45.18 46.83 1253
ME-ICPO (ours) 30.42 47.06 54.71 1152

Table 4: Computational Performance Comparison (Accuracy, Qwen2.5-Math-7B).

Method | AIME-2024 AMC MATH(Avg)
ToT (self-eval) 4.40 18.10 10.74
ToT (Maj-vote) 19.30 29.40 3591
MCTR 23.30 2.40 33.82
TTRL 30.00 43.37 45.11

ME-ICPO (ours) 30.05 47.20 47.30
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Table 5: Results on frontier/long-CoT models on AIME 2024.

Model | Method | Mean@16 (%)  Acc (%)
Qwen3-4B-Instruct | Base 20.62 20.59
Qwen3-4B-Instruct | ME-ICPO (ours) 57.71 57.67
Gemini-2.5-Pro Base 58.54 56.60
Gemini-2.5-Pro ME-ICPO (ours) 79.17 80.00
Gemini-2.5-Flash Base 35.21 35.42
Gemini-2.5-Flash ME-ICPO (ours) 76.46 76.47

Table 6: Results on Harder Benchmarks (HMMT / APEX) using Qwen2.5-Math-7B.

Method HMMT HMMT APEX APEX
Mean@16 (%) Acc(%) Mean@16 (%) Acc(%)

Base 1.04 0.67 2.55 2.61

ME-ICPO (ours) 0.42 1.33 4.59 4.57

Table 7: Results on Harder Benchmarks (HMMT / APEX) using Gemini-2.5-Flash.

Method HMMT HMMT APEX APEX
Mean@16 (%) Acc(%) Mean@16 (%) Acc(%)

Base 14.79 14.76 14.68 18.33

ME-ICPO (ours) 43.12 43.14 17.18 20.00

C DETAILED COMPLEXITY ANALYSIS

C.1 THEORETICAL TIME AND VRAM COMPLEXITY DERIVATIONS

We formalize the compute model for a decoder-only Transformer and provide exact asymptotic
derivations for ME-ICPO (forward-only, summary-aware history) and TTRL (Zuo et al., 2025)
(backprop-based test-time RL). The statements and proofs below match the main text analyses
verbatim; we only add brief connective narration.

Setup and primitive costs. We analyze a decoder-only transformer with L layers and width d
(parameter count |f| =< Ld?). For a single test instance, the initial prompt length (problem statement
+ template) is sg. Each sampled chain-of-thought (CoT) has average length ¢. Per round we sample &
candidates; the total number of rounds is n. Let 5 := ¢+ r denote the number of tokens appended per
(x,r) pair (the reward stub 7 is O(1), so § = £). The prompt at the beginning of round ¢ therefore
has length T} := sg + S(t — 1). We use k € [2, 3] for the backward/forward FLOPs ratio (one
backward costs x times one forward) and g for the number of policy-optimization steps per round in
TTRL. Primitive costs (suppressing constants) are:

full-sequence forward at length T : ~ Cgwa(T) = O(L(T?d + Td?)),
autoregressive decoding of ¢ tokens from prefix T :  Caec(T, €) = O(L((TC + €%) d + ¢d?)),
one training step (teacher-forcing fwd + bwd) atlength T :  Ciyain(T) = (1 + &) Cewa (T).

For ME-ICPO, the one-step lookahead score is computed on the just-generated branch by appending
a constant number of tokens, so its cost is an incremental forward

Cotore(T0) = O(L((T + £) d + d%)),
rather than a full recomputation at length 7" + /.

C.1.1 ME-ICPO

Theorem C.1 (Time Complexity of ME-ICPO). With one shared prefill at length T;_; per round, k&
candidate decodes from that prefix, and incremental on-branch scoring for each candidate, the total
time over n rounds satisfies

TME:@(Ld52n3 + kLdB?n® + Ld®Bn? + de26n>,
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and, using 3 < ¢,
TvE = @(Ld Pn®+kLd €2n2) + @(Ld2 (€n2 + an)).

Proof. The total time complexity, Tyg, is the sum of the costs for prefilling the context (Styq),
decoding the candidates (Sqec), and scoring each candidate (Sscore) Over all n rounds.

TME - Z Cde Tt 1 + Z k Cdcc :rt 1’ + Z k C;rclgrc thlv E) = wad + Sdcc + Sscorc~

t=1 t=1 t=1

We analyze each component by first summing over the rounds and then identifying the leading-order
terms in n. The prompt length at round ¢ is T;—1 = so + (¢t — 1), and we use the standard sums

n—1 n(n— n—1 n—1)n(2n—1
Do T = nn-b 5 D = ©(n?) and Yoo p2 = (n=Un@n=1) 6( ) = O(n?).
The prefill cost, Sgyq, is given by:

wad = Z wad(thl)

t=1

0N (LdZTE |+ Ld? ZTt 1)

®g (Ld <nsg + soBn(n — 1) 4 g2 nn = 1>> + Ld? <nso + ﬂ”(”_l)»

6 2
©o(Ld5n®) + O (Ld® fn?).

where (a) substitutes the definition of Ctyq(T) = O(L(T?d + T'd?)) and pulls constants out of
the sum; (b) substitutes the exact formulas for the sum of linear and quadratic sequences; and (c)
identifies the highest-order terms in n for each part of the expression.

The decoding cost, Sqec, is given by:

Sdec = Z k Cdec(Tt—lv é)

t=1

Do (de (zz Ti1+ n€2> + kLd? W))

t=1

©g (de (f (nso + 5"(”2_1)) + an) n de%e)

D o (kLd Btn?) + O (kLd? tn).

where (d) substitutes the definition of Cyec (T, ¢) = O(L((TL + £2)d + ¢d?)); (e) substitutes the

sum for 7;_;; and (f) identifies the dominant term in n for the Ld component as the quadratic term
O(kLd Btn?).

The incremental scoring cost, Sscore, 18 given by:

Sscore Z k chre Tt—17 g)

®g (de (ZTt - n£> + kLd?n )

t=1
Y o (kLd 8n?) + O (kLd’n).

where (g) substitutes the definition of CI2¢ (T, ¢) = O(L((T + £)d + d?)); and (h) identifies the
dominant term as ©(kLd 3n?).

Combining the leading-order terms for the three components, we have:
Tve = wad + Sdec + Sscore
= ©O(Ld #*n® + Ld® Bn®) + ©(kLd B¢n* + kLd” ¢n) + © (kLd fn* + kLd’n).
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Grouping the terms by their dependence on d and d?, and noting that the scoring cost terms are
dominated by or are asymptotically equal to the decoding cost terms (since £ > 1), the total complexity
simplifies to:

Tve = ©(Ld 8°n*) + ©(kLd Btn®) + © (Ld® fn*) + ©(kLd” (n) .

from Stwa from Sqec from Stwq from Sqec

Using the approximation 8 = ©({), we arrive at the final expression stated in the theorem. This
completes the proof. O

Theorem C.2 (VRAM Complexity of ME-ICPO). If candidates are decoded sequentially (no k-way
parallelism), the peak memory over n rounds satisfies

If b < k candidates are decoded concurrently, the second term is multiplied by b.

Proof. The peak VRAM complexity is the sum of the static memory for model parameters and the
maximum dynamic memory for the attention KV cache. As ME-ICPO is a forward-only method,
it requires no memory for gradients or optimizer states. The model weights occupy O(|6]|) space.
For a decoder-only transformer with L layers and width d, the KV cache for a sequence of length T'
requires Mk (T) = ©(LdT) memory.

The context length at the beginning of round ¢ is 7;—1 = so + S(t — 1). During the decoding
of a candidate of length ¢, the sequence grows to a maximum of 731 + . Since this length is
monotonically increasing with ¢, the global peak occurs during the final round (f = n), giving a
maximum sequence length of T, 1 + ¢ =so + S(n — 1) + £ = O(sp + Bn).

Therefore, the total peak memory for sequential decoding is the sum of the static and maximum
dynamic components:

M = ©(16]) + Micv (O(s0 + fn)) = O(16]) + O (Ld(so + fn).

Using the approximation 5 = O(¥) yields the equivalent form. If b < k candidates are processed
concurrently, each parallel branch maintains its own KV cache, so the activation memory term scales
linearly with b. O

C.1.2 TTRL

Theorem C.3 (Time Complexity of TTRL). In each round, TTRL (i) samples k candidates from
prefix sg, and (ii) performs g policy-optimization steps using teacher-forcing on sequences of length
S0 + £. The total time over n rounds is

TTTRL = @(ngk (1 + Ii) L((S() + €)2d + (S() + é)d2)>

and the per-round prefill and sampling costs, ©(L(s3d + sod?)) and ©(kL((sol + (*)d + (d?)), are
lower-order whenever g > 1.

Proof. The total time complexity, TrrgrL, is the sum of costs over n rounds. In each round, the
process performs one shared prefill of the prefix sq, followed by k candidate sampling operations, and
finally g training steps for each of the k candidates. The cost for a single round is thus Chyq(s0) +
k Caec(50,£) + gk Cirain(so + £). The total cost over n rounds is:

TrrRL =1 - (wad(so) + k Caec(50, £) + gk Cirain(s0 + 5))

We substitute the standard complexity formulas for a decoder-only Transformer, using Ciyain (1) =
(1 4+ k)Ctwa(T), where & is the backward/forward FLOPs ratio. This yields three terms:

Trrrr = O (nL(sgd + sod2)) +0 (nkL((soe %)+ de))

Prefill Cost Sampling Cost

+ ®<ngk(1 + 1) L((s0 +€)%d + (s0 + z)d2)) .

Training Cost
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To determine the tight asymptotic bound, we identify the dominant term. The training cost term
scales with the number of optimization steps g and the backpropagation factor (1 + ). Furthermore,
its self-attention cost is quadratic in the longer sequence length, sg + ¢. In contrast, the sampling
cost’s attention component is only linear in the prefix length, ©(s¢¢), and the prefill cost is computed
on the shorter prefix sy and lacks the multiplicative factors of g and k.

Consequently, for any g > 1, the training cost term is of a higher order than both the prefill and
sampling costs. Therefore, the lower-order terms are absorbed into the ©-notation, giving the final
tight bound:

TrTRL :@(ngk(1+H)L((So+€)2d+(80+£)d2)>. O
Theorem C.4 (Vram Complexity of TTRL). During training at sequence length 7" = sg + ¢, a TTRL
step must hold (at least) model weights, gradients, optimizer states (e.g., SGD momentum or Adam’s

first/second moments), and backward activations. Consequently, for effective batch size batch, the
peak memory obeys

Mrrrr, = ©(10]) +©(10]) + ©(10])-0(2/8]) + (L d T - batch)
—_—— ——

weights gradients optimizer states backward activations

=0(|0]) + O(Ld(so+ ) - batch).

Proof. The peak VRAM complexity of a TTRL training step is the sum of two primary components:
parameter-resident memory and activation-resident memory. The parameter-resident portion consists
of the model weights, their corresponding gradients, and the optimizer states (e.g., first and second
moments for Adam). Since each of these scales linearly with the number of parameters, ||, their
combined memory requirement is compactly expressed as Mparam = ©(|6]).

The activation-resident memory is required for the backward pass. For a training sequence of length
T = s¢ + ¢ and a decoder-only Transformer with L layers and width d, a standard (non-checkpointed)
backpropagation pass must cache activations (such as hidden states and MLP intermediates) of size
©(d) for every token in the sequence. Aggregating this over L layers and an effective batch size of
batch, the activation memory scales as M., = O(L - d - T - batch).

The total peak memory is the sum of these two components, M1Tr1, = Mparam + Mact. Substituting
the derived complexities yields the final expression stated in the theorem:

Mryrre = O(|0]) + ©(L d (so + £) - batch). O

C.1.3 COMPARISON WITH TTRL (ZUO ET AL., 2025)

Proposition C.5 (Time Complexity Threshold). ME-ICPO is computationally faster than TTRL
when the number of in-context optimization rounds, n, is below a threshold n*. This threshold is
given by:

g(1+ k) (5%2)2 ifk>n

In practical settings with a small number of rounds (e.g., n < 10), this condition is typically met,
making ME-ICPO the more time-efficient approach.

. {j gk(1+r) ifk<n

Proof. The threshold n* is found by equating the leading-order terms of the time complexities derived
in Theorem C.1 and Theorem C.3. We consider two regimes based on the dominant term in the
complexity of ME-ICPO.

Case 1 (k < n): The dominant term for ME-ICPO is the prefill cost, Ty =< Ld¢?n3. The TTRL
costis Trrrr, < ngk(1 + k) L(sg + £)?d. Equating them and solving for n yields:

o gk(1+rK)(so+0)?
n® = 7 )

Ld*n® = ngk(1 + k) L(so + 0)°d —

n* = SOTTZ\/gk:(l + k).

Case 2 (k > n): The dominant term for ME-ICPO is the decoding cost, Ti\yg =< kLd 2n2. Equating
this with the TTRL cost gives:

kLd(*n? = ngk(1+ k) L(so +0)?’d = *n=g(1+ k)(so + )%,
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* (50 + 6)2
n*=g(l+ I{)T
In both cases, for n < n*, the complexity of ME-ICPO is lower. O

Proposition C.6 (Memory Complexity Comparison). Let byig be the number of concurrently decoded
candidates in ME-ICPO, and b be the TTRL training batch size. ME-ICPO achieves a lower peak
VRAM than TTRL if the number of rounds n is below a threshold. A sufficient condition is:

b(So + Z) — bME S0 Aparam |9|
bMEf bME Ckdef’

where Apgrqm > 0 represents the additional parameter-resident memory (gradients, optimizer states)
required by TTRL, and ¢y is a constant. Given that TTRL requires strictly more parameter-side
memory and typically uses a larger batch size b, this condition holds for all practical values of n.

Proof. We establish the condition by comparing the upper bound on ME-ICPO memory from
Theorem C.2 with the lower bound on TTRL memory from Theorem C.4. We seek the condition on
n for which Myig < MrrR1:

MENG| + e bur Ld (so 4+ In) < (cX + cg + c;rpt) 0] + ciy DL d (50 + £) .

Mne MrTRL

Let Apgram = (c‘?v + cg + COTpt — cvl\fE) > 0 be the constant factor for the additional parameter-sized
tensors (gradients, optimizer states) that TTRL requires. Rearranging the inequality to solve for n:
v bve Ldfn < e bLd (80 + 6) — Cry bvg Ld sg + Apa'r‘am |6“

< b(SO + e) - bMESO + Aparam ‘9‘
bMEg Ckv bME L d[

Since Aparam > 0, the second term is strictly positive, providing a further margin. For typical
use-cases like sequential decoding (byyg = 1) and b > 1, the first term is large and positive, making
the condition true for any practical number of rounds n. [

C.2 EMPIRICAL COST

We complement our derivations with a controlled latency and memory study on AIME 2024 using
Qwen2.5-Math-7B. We vary the number of rounds n and the number of candidates per round k
for ME-ICPO to examine its computational characteristics and to validate the asymptotic trends
predicted by Theorem C.1. We sweep n € {1,3,5,7} and k € {4,8,16,32}. Unless otherwise
noted, ME-ICPO uses our main protocol: temperature 0.6, top-p = 0.95, summary cap of 500 tokens,
and entropy lookahead with m=16 short samples. All runs are performed on 2x1.40S (48GB) GPUs
using bf16 precision, with candidates decoded sequentially (byig=1).

metrics. (1) wall time per question (s), averaged over the test set; (2) token usage per question
(generated tokens, in thousands); (3) peak vram (GB) from v11m memory statistics.

results. Table 8 reports wall time, token usage, and peak VRAM across the (n, k) grid. Two trends
emerge. (i) For fixed k, wall time increases superlinearly with n and is well described by a prefill-
dominated scaling close to O(n3), consistent with Theorem C.1. (ii) For large k, the cost transitions
toward O(k n?) as candidate evaluation/selection becomes the bottleneck. Token usage grows with
both n and k (longer multi-round traces and more candidates), and peak VRAM remains stable in the
81-82.3 GB range across settings, indicating that memory is primarily governed by the base model
residency and KV-cache size under sequential decoding.

D PROMPT TEMPLATES AND QUALITATIVE EXAMPLES

D.1 DATASET-SPECIFIC SYSTEM PROMPTS

These system prompts define the semantics of the reward tag and are placed once at the beginning of
the context.
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Table 8: Empirical cost vs. (n, k) on AIME 2024 with Qwen2.5-Math-7B.

n k  Wall Time (s/question) Tokens (k/question) Peak VRAM (GB)
1 4 197.52 99.59 81.50
1 8 228.89 112.25 81.43
1 16 286.74 379.82 82.24
1 32 468.36 852.47 82.27
3 4 406.65 247.76 81.43
3 8 469.79 272.56 81.43
3 16 715.85 1070.98 82.18
3 32 1163.51 2111.85 82.30
5 4 609.75 372.18 81.42
5 8 713.25 506.68 81.43
5 16 1152.67 1613.49 82.24
5 32 1726.70 3412.94 82.30
7 4 820.60 559.20 81.43
7 8 1156.62 566.82 82.30
7 16 1371.78 1753.71 82.27
7 32 2643.74 5123.67 82.29

System Prompt: AIME / AMC (Numeric Answer)

You are an Al mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or
reward O (incorrect). Use the question and these ideas to deduce the correct numeric answer.

Finish all your reasoning, then on a NEW line output exactly one number (the answer) and nothing
else.

Your final output MUST be in the format boxed{<number>}, where <number>> is the final numeric
answer only (no expressions, variables, or additional text). The content inside boxed{<number>} must
be a decimal number, not a fraction or any other form.

\ J

System Prompt: GPQA (Multiple Choice)

You are an Al mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or
reward O (incorrect). Use the question and these ideas to deduce the correct choice.

Finish all your reasoning, then on a NEW line output exactly one letter (the answer) and nothing else.
Your final output MUST be in the format boxed{<letter>}, where <letter>> is exactly one of A, B,
C,D.

\ J

System Prompt: MATH (Free-form Answer)

You are an Al mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or
reward O (incorrect). Use the question and these ideas to deduce the correct answer.

Finish all your reasoning, then on a NEW line output exactly one answer (the answer) and nothing else.
Your final output MUST be in the format boxed{<answer>}.

L J

It gives an explicit, task-level meaning to the reward tags (r € {0, 1}), telling the model to learn
from high-reward ideas and discount low-reward ones—so the model can use feedback without any
gradient updates in test time.

D.2 SUMMARIZATION PROMPTS
These prompts compress a full CoT into a short summary that retains the high-level strategy.

Summarization Prompt: AIME / AMC

Provide a concise summary of the reasoning in the answer below. Do NOT add any introductory phrases or
extra explanations. Omit all numerical calculations. The summary must be self-contained, no more than 100
tokens.
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If there is a final numeric result, include it at the end in the format boxed{<number>} (decimal only, no
fractions, variables, or extra text). If there is no numeric answer, do not output boxed{}.

[Answer start] {... raw model answer ... } [Answer end]

Summary:

J

Summarization Prompt: GPQA

Provide a concise summary of the reasoning in the answer below. Do NOT add any introductory phrases or
extra explanations. Omit all numerical calculations. The summary must be self-contained, no more than 100
tokens.

If there is a final answer choice, include it at the end in the format boxed{<letter>} (must be exactly
one of A, B, C, D, no extra text). If there is no final answer, do not output boxed{}.

[Answer start] {... raw model answer ... } [Answer end]

Summary:

\ J

Summarization Prompt: MATH

Provide a concise summary of the reasoning in the answer below. Do NOT add any introductory phrases
or extra explanations. Omit all calculations unless essential to understanding. The summary must be
self-contained, no more than 100 tokens.

If there is a final answer, include it at the end in the format boxed{<answer>}.

[Answer start] {... raw model answer ... } [Answer end]

Summary:

They replace long CoTs with short strategy summaries, keeping only decision-relevant logic while
dropping arithmetic details, so the history fits in-context and remains useful across rounds.

D.3 QUALITATIVE CASE STUDIES

Total Prompt

You are an Al mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or
reward O (incorrect). Use the question and these ideas to deduce the correct numeric answer.

Finish all your reasoning, then on a NEW line output exactly one number (the answer) and nothing
else.

Your final output MUST be in the format boxed{<number>}, where <number> is the final numeric
answer only (no expressions, variables, or additional text). The content inside boxed{<number>} must
be a decimal number, not a fraction or any other form.

Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she walks
at a constant speed of s kilometers per hour, the walk takes her 4 hours, including ¢ minutes spent in the
coffee shop. When she walks s + 2 kilometers per hour, the walk takes her 2 hours and 24 minutes, including
t minutes spent in the coffee shop. Suppose Aya walks at s + é kilometers per hour. Find the number of
minutes the walk takes her, including the ¢ minutes spent in the coffee shop.

bad ideas (reward 0):

[0]- When Aya walks at s + % kilometers per hour, the total time taken, including the ¢ minutes spent in the
coffee shop, is approximately 348 minutes.

Thus, the answer is | 348.0

good ideas (reward 1):

[0]- To determine how long it would take Aya to walk from her house to the park and back, including the time
spent in the coffee shop, we set up two equations based on the given information. By solving these equations,
we found the speed s and the time ¢ spent in the coffee shop. Then, we calculated the time required when
Aya walks at s + % km/h, which turned out to be 204 minutes.

Thus, the answer is | 204.0
3

[1]- By analyzing the given conditions and using algebraic manipulation, we deduced that the value of z is %,
which when multiplied by 340 gives us the final answer of 204.

Thus, the answer is | 204.0

[2]- We solved the system of equations to find the walking speed s and the time ¢ spent in the coffee shop.
Then, we calculated the total time required when Aya walks at a speed of s + % km/h, including the time

spent in the coffee shop. The final answer is | 204.0 | minutes.

Thus, the answer is | 204.0

\ J
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Blue marks the system instructions that enforce output schema and reward semantics. marks
the problem statement. Red marks reward-0 (incorrect) ideas retained as counterexamples. Green
marks reward-1 (correct) ideas that ICPO prioritizes during selection.

How ICPO appears in this example. ICPO samples multiple CoTs, summarizes them, and assigns
rewards based on self-consistency. The green items represent low-entropy agreement on the solution

path that eliminates the fixed coffee time ¢ and yields the evaluation at s + % as | 204.0 | minutes.
Entropy-based filtering downweights the red outlier (= 348 minutes) that improperly scales total
time and ignores the fixed offset. The final evaluator, conditioned on the schema and the curated

ideas, outputs the correct numeric answer, | 204.0 |.
USE OF LARGE LANGUAGE MODELS

We used LLMs solely as a writing assistant for minor grammar and phrasing corrections during
manuscript preparation. LLMs were not involved in research ideation, experiment design, data
analysis, or result interpretation.
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