

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ICPO: PROVABLE AND PRACTICAL IN-CONTEXT POLICY OPTIMIZATION FOR TEST-TIME SCALING

Anonymous authors

Paper under double-blind review

ABSTRACT

We study test-time scaling, where a model improves its answer through multi-round self-reflection at inference. We introduce In-Context Policy Optimization (ICPO), in which an agent optimizes its response in context using self-assessed or externally observed rewards without modifying its parameters. To explain this ICPO process, we theoretically show that with sufficient pretraining under a novel Fisher-weighted logit-matching objective, a single-layer linear self-attention model can provably imitate policy-optimization algorithm for linear bandits. Building on this theory, we propose Minimum-Entropy ICPO (ME-ICPO), a practical algorithm that iteratively uses its response and self-assessed reward to refine its response in-context at inference time. By selecting the responses and their rewards with minimum entropy, ME-ICPO ensures the robustness of the self-assessed rewards via majority voting. Across standard mathematical reasoning tasks, ME-ICPO attains competitive, top-tier performance while keeping inference costs affordable compared with other inference-time algorithms. Overall, ICPO provides a principled understanding of self-reflection in LLMs and yields practical benefits for test-time scaling for mathematical reasoning.

1 INTRODUCTION

Recent years have witnessed a growing capacity for large language models (LLMs) with rising abilities in mathematical reasoning (Yang et al., 2024a; Wei et al., 2022), problem solving (Rein et al., 2024; Zhou et al., 2024) and tool use (Yao et al., 2023b). Among these new abilities, the emergence of test-time scaling has been playing an important role, where the LLMs progressively improve their response through multi-round self-reflection without parameter updates. This test-time scaling has demonstrated a strong ability to enable LLMs to perform post-training search (Yao et al., 2023a; Besta et al., 2024), self-reflection and self-rewarding (Madaan et al., 2023; Shinn et al., 2023; Lightman et al., 2023) and Chain-of-Thoughts (CoT, Wei et al. 2022). The key part of this process hinges on the model’s ability to digest the in-context information to improve its response. Such in-context information can be the previous response with users’ finetuning instructions, or the CoT process with self-assessed rewards. However, despite repeated empirical validation, the mechanism underlying such in-context self-improvement remains under-explored in the literature. Existing works (Park et al., 2024) usually assume this ability for conducting the posterior sampling or policy optimization *intrinsically* within LLMs without answering why this ability emerges during the pretraining process.

On the other hand, recent works have attempted to understand the in-context learning for supervised learning (e.g., linear regression Zhang et al. 2024b; Garg et al. 2022) and reinforcement learning (e.g., TD learning Wang et al. 2024) that shows that some carefully designed transformers can learn these algorithms with sufficient pretraining. Yet, most of these works consider empowering the LLMs to predict the output based on the input, while it is vacant in literature understanding how transformers learn to optimize its behavior x by optimizing its policy towards maximizing the response y . In addition, there is a huge gap between the current theoretical understanding of the in-context learning and the empirical implementation of the in-context test-time scaling. Witnessing these lacks of theoretical understanding of the in-context policy optimization and the missing of how to leverage these in-context information iteratively in the test-time scaling for reasoning tasks, we would like to ask:

Can we understand the self-reflection process of LLM from the in-context learning that inspires a test-time scaling for reasoning?

In this paper, we answer this question affirmatively by providing the In-Context Policy Optimization (ICPO) framework which considers how LLMs leverage the in-context actions and response to

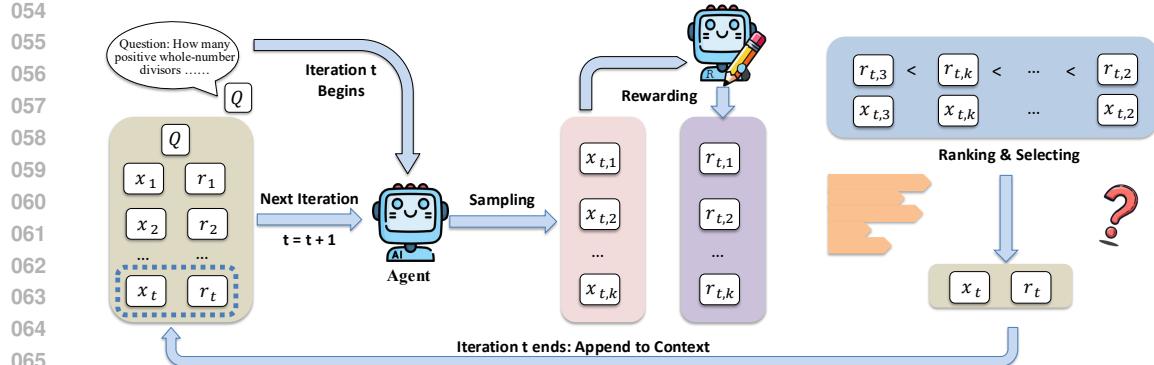


Figure 1: The In-Context Policy Optimization (ICPO) framework. At each round t , the agent leverages its history of past attempts with bandit feedback $\{(x_1, r_1), \dots, (x_t, r_t)\}$ to improve its response x_{t+1} in order to maximize the received reward r_t .

improve their response x instead of predicting some certain outcomes. As illustrated in Figure 1, the ICPO process considers the transformer (LLMs) generating its response x_t and receives the reward given by user or self-assessment y_t and then improve its response by generating x_{t+1} . Theoretically, we show that with sufficient pretraining, a one-layer transformer is sufficient to execute a policy-optimization framework that gradually improves its response x using the observed rewards r . When applying the ICPO framework into the practical mathematical reasoning, we empirically show that the ICPO framework is robust enough to take the self-accessed reward into its policy optimization process and to gradually improve its response. Together with solid theoretical results on the ICPO process and a carefully designed practical algorithm ME-ICPO, we provide a provable and practical in-context learning framework for test-time scaling for mathematical reasoning. Together, our contributions are:

- We formulate the multi-round self-reflection mechanism as in-context policy optimization (ICPO) framework where the agent generates and improves its response with the received feedback. The ICPO framework extends the current in-context learning framework from supervised learning to policy optimization with bandit feedback. ICPO builds a theoretical foundation to understand the self-reflection and self-improvement for LLM reasoning.
- We prove that, under an explicit design of the Linear Self-Attention (LSA) transformer, when the LSA is sufficiently pre-trained on trajectories generated by a special policy-optimization framework, it provably mimics the underlying policy optimization even under previously unseen reward functions. To the best of our knowledge, this is the first directly derived mechanistic account of in-context policy optimization that provides detailed structural characterization.
- Empirically, we propose ME-ICPO, a practical algorithm grounded in our theory that yields substantial improvements over base models on mathematical reasoning tasks. ME-ICPO demonstrates that the ICPO framework can leverage self-assessed feedback, using entropy-regularized response selection to ensure robust policy updates.

Together, our work shows the first in-context optimization mechanism to help understand how LLMs can improve their response with self-reflection, with strong empirical performance in various mathematical reasoning tasks.

Notation. In this paper, we use plain letters such as x to denote scalars, lowercase bold letters such as \mathbf{x} to denote vectors, and uppercase bold letters such as \mathbf{A} to denote matrices. Functions are denoted by bold symbols such as \mathbf{f} . Sets and classes are denoted by the calligraphic font such as \mathcal{F} . For a vector \mathbf{x} , $\|\mathbf{x}\|_2$ denotes its ℓ_2 -norm. For a matrix \mathbf{A} , $\|\mathbf{A}\|_{\text{op}}$ denotes its operator (spectral) norm, i.e., $\|\mathbf{A}\|_{\text{op}} := \sup_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2 = \sigma_{\max}(\mathbf{A})$. $\mathbf{F}(\mathbf{p}) := \text{Diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^\top$. For a vector $\mathbf{x} \in \mathbb{R}^K$, $\text{Diag}(\mathbf{x}) \in \mathbb{R}^{K \times K}$ denotes the diagonal matrix with $[\text{Diag}(\mathbf{x})]_{ii} = x_i$ and off-diagonals zero. For a positive integer N , we use $[N]$ to denote $\{1, 2, \dots, N\}$.

2 RELATED WORK

We introduce the works on test-time scaling, self-reflection and in-context learning in this section.

Test-Time Scaling. Test-time scaling (or inference-time scaling) refers to the phenomenon where allocating more resources during test-time can improve the LLM's ability in reasoning and have

been widely adopted in practice (Jaech et al., 2024; Guo et al., 2025a). The earliest test-time scaling can be dated back to the few-shot Chain-of-Thought (Wei et al., 2022) where the provided few-shot demonstrations can improve the LLM reasoning ability. Other test-time scaling works focus on the post-training search algorithms, including the Monte-Carlo Tree Search (Zhang et al., 2024a), Best-of-N (Wang et al., 2022; Huang et al., 2025), Tree of Thoughts (Yao et al., 2023a). Following up with these works, TTTR (Zuo et al., 2025) provides a gradient-based update based on the self-assessment during the test-time and improves the LLM’s response by updating its parameters.

Self-reflection and self-assessment. At the core of the test-time scaling lies the self-reflection and self-assessment where the LLM evaluates its own response via the self-rewarding (Madaan et al., 2023; Shinn et al., 2023). In particular, LLM-as-a-Judge and Majority-Judgment (MJ) provide inexpensive but noisy preference signals, and self-consistency can be converted into preferences or rankings (Prasad et al., 2024). However, self-evaluation suffers from prompt/position sensitivity and stylistic bias, calling for calibration (symmetric prompting, position shuffling, executability/format checks) (Wang et al., 2025). In parallel, process supervision (PRMs (Wang et al., 2023a; Chen et al., 2024b), step-wise verifiers (Lightman et al., 2023)) shifts supervision from outcomes to intermediate steps, reliably filtering errors across rounds (Lightman et al., 2023). Recent analysis of the *generation-verification (GV) gap* shows iterative improvement succeeds when verification is substantially easier than generation, motivating robust filtering and feedback (Song et al., 2024). Beyond these empirical works, recent theoretical works focus on the posterior sampling of LLM (Bai et al., 2023; Von Oswald et al., 2023) by directly assuming the LLM’s ability for estimating the posterior distribution.

In-Context Learning and In-Context Reinforcement Learning. Besides the empirical advances, a line of theory clarifies regression as a core sandbox for ICL. For ridge linear regression, trained linear self-attention can implement preconditioned gradient descent in context, with model depth matching the number of implicit update steps and geometric convergence under standard assumptions (Von Oswald et al., 2023). From a training-dynamics perspective, prior work shows that, after training, a single-head linear attention layer effectively performs one step of gradient descent on the contextual least-squares objective (Zhang et al., 2024b). In sparse settings, multi-head constructions can recover sparse signals and carry out sparse linear regression in context (Chen et al., 2024a); recent work further identifies a layered mechanism in which first-layer heads preprocess the context and later layers carry out simple iterative optimization, together yielding excess risk guarantees that improve over naive gradient descent and ridge baselines (Chen et al., 2024a). Besides these works in understanding the regressions, more recent work has pushed forward the understanding of in-context learning to a meta-reinforcement learning process. In particular, (Lin et al., 2023) proved that a multi-layer transformer structure can imitate bandit/RL-style updates by pretraining on trajectories, and (Wang et al., 2024) shows that the linear regression for the in-context learning can be extended to the TD learning used in RL. Despite these, rare recent literature has covered the policy optimization which directly optimized the output \mathbf{x} given the historical information.

3 PRELIMINARIES

We consider a multi-arm bandit abstraction which is a standard theoretical framework for sequential decision making. We consider a K -armed bandit and at each round $t \in [T]$, the agent selects an action $A_t \in [K]$ and plays the corresponding action written as the one-hot vector $\mathbf{x}_t = \mathbf{e}_{A_t} \in \mathbb{R}^K$. The agent then receives a scalar reward r_t generated from a linear model with an unknown task vector $\mathbf{w} \in \mathbb{R}^K$ by $r_t = \langle \mathbf{w}, \mathbf{x}_t \rangle + \epsilon_t$, where ϵ_t is a zero-mean σ_ξ -sub-Gaussian random variable. The agent overall goal is to optimize its policy \mathbf{x}_t by maximizing the expected return $\langle \mathbf{w}, \mathbf{x}_t \rangle$.

Policy Optimization Framework. We consider the pretrained dataset is generated from the policy optimization process in meta reinforcement learning. In particular, we start with the mirror descent that is similar to the Follow-the-Regularized Leader (FTRL, Shalev-Shwartz 2007; McMahan 2011a) framework given by

$$\mathbf{p}_{t+1} = \arg \max_{\mathbf{p} \in \Delta^K} \sum_{s=1}^t \left\langle \frac{r_s}{p_{s, A_s}} \mathbf{x}_s, \mathbf{p} \right\rangle - R(\mathbf{p}),$$

in the ICPO framework, we consider a practical solution in optimizing the log-likelihood of the policy defined by $\mathbf{s} \propto \log \mathbf{p}$. In the following of this paper, we consider the policy optimization written by

$$\mathbf{s}_{t+1} = \arg \max_{\mathbf{s} \in \mathbb{R}^K} \sum_{s=1}^t \langle r_s \mathbf{x}_s, \mathbf{s}_t \rangle - \lambda \sum_{s=1}^t \langle \mathbf{x}_s, \mathbf{s}_t \rangle - \frac{1}{2\eta_t} \mathbf{s}^\top \mathbf{H} \mathbf{s}, \quad (3.1)$$

where we implement the entropy regularizer $R(\mathbf{p}) \approx \mathbf{s}^\top \mathbf{H} \mathbf{s}$ and replace the unbiased estimator $r_s / p_{s, A_s}$ used in FTRL with a Lagrange multiplier $\lambda \sum_{s=1}^t \langle \mathbf{x}_s, \mathbf{s}_t \rangle$ to penalize the frequently visited

162 arms. The closed form solution for equation 3.1 yields a linear structure on \mathbf{s} written by
 163
 164 $\mathbf{s}_{t+1} = \eta_t(\mathbf{U}\mathbf{g}_t + \mathbf{V}\mathbf{n}_t)$, where $\mathbf{U} = \mathbf{H}^{-1}$, $\mathbf{V} = -\lambda\mathbf{H}^{-1}$, $\mathbf{g}_t = \sum_{s=1}^t r_s \mathbf{x}_s$, $\mathbf{n} = \sum_{s=1}^t \mathbf{x}_s$ (3.2)
 165 where we set $\eta_t = c/t$ and the optimized policy is then given by a softmax policy mixed with a
 166 γ -greedy random exploration

$$167 \quad \mathbf{p}_{t+1} = \text{softmax}(\mathbf{s}_{t+1}), \quad \mathbf{p}_{t+1}^{\text{PO}} = (1 - \gamma)\mathbf{p}_{t+1} + \gamma \frac{1}{K}, \quad \gamma \in [0, 1]. \quad (3.3)$$

169 **Supervised Pretraining Data Generation.** We generate a pretraining dataset by running the expert
 170 policy optimization algorithm. We sample B independent trajectories. For each trajectory $\tau \in [B]$,
 171 a task vector $\mathbf{w}_\tau \sim \mathcal{N}(0, \tau_w^2 \mathbf{I}_K)$ is sampled from the prior. The teacher is then executed for N
 172 steps to generate a complete history of interactions $\mathcal{H}_{\tau, N} = \{(\mathbf{x}_{\tau, 1}, r_{\tau, 1}), \dots, (\mathbf{x}_{\tau, N}, r_{\tau, N})\}$ and the
 173 corresponding sequence of expert logit vectors $\{\mathbf{s}_{\tau, t}^{\text{PO}}\}_{t=1}^N$ is updated in equation 3.2. From these
 174 trajectories, we construct a supervised training dataset, \mathcal{D} consisting of pairs of history prefixes and the
 175 teacher's next-step logits. The final dataset is the set of all such pairs $\mathcal{D} = \{(\mathcal{H}_{\tau, t}, \mathbf{s}_{\tau, t+1}^{\text{PO}})\}_{\tau \in [B]}^{t \in [N-1]}$,
 176 where $\mathcal{H}_{\tau, t}$ is the history prefix of trajectory τ up to and including round t .

177 The following assumption is made on the data coverage on the supervised pretraining data \mathcal{D} , which is
 178 a standard *diversity* assumption in linear bandits (Papini et al., 2021; Hao et al., 2020; Wu et al., 2020).

179 **Assumption 3.1** (Data Coverage and Signal Dominance). We assume that in the pretrained dataset,
 180 the coverage of the task τ_w^2 and the FTRL exploration parameter γ is wide enough to cover the reward
 181 noise. In particular, define the learning rate $\eta_t = c/t$, we assume the coverage rate is strictly positive

$$183 \quad c_\lambda := \tau_w \gamma / K - (1 - \gamma) c \|\mathbf{U}\|_{\text{op}} \sigma_\xi^2 / 2 > 0.$$

184 **Linear Self-Attention (LSA).** The Linear Self-Attention (LSA) is a simplified variant of the standard
 185 self-attention mechanism, which has been established as a useful model for the theoretical analysis of
 186 transformers and in-context learning (Von Oswald et al., 2023; Zhang et al., 2024b). An LSA layer
 187 takes a sequence of input embeddings, represented as a matrix $\mathbf{E} \in \mathbb{R}^{d \times N}$, where d is the embedding
 188 dimension and N is the sequence length. It produces an output matrix of the same dimension through
 189 the following computational form:

$$190 \quad f_{\text{lsa}}(\mathbf{E}; \boldsymbol{\theta}) = \mathbf{E} + \mathbf{W}^{PV} \mathbf{E} \cdot (\mathbf{E}^\top \mathbf{W}^{KQ} \mathbf{E} / \rho), \quad (3.4)$$

192 where $\boldsymbol{\theta} = (\mathbf{W}^{KQ}, \mathbf{W}^{PV})$ are learnable parameters (matrices) and ρ is a normalization factor for the
 193 attention matrix. This operation allows for interactions between all elements in the input sequence,
 194 mediated by the Gram matrix term $\mathbf{E}^\top \mathbf{W}^{KQ} \mathbf{E}$, to update the initial embeddings.

4 THEORETICAL FRAMEWORK FOR ICPO

197 In this section, we provide a theoretical justification for in-context policy optimization based on
 198 an inspirational analysis in a Linear Self-Attention (LSA) network. Through this minimal LSA
 199 model, we theoretically demonstrate that a pretrained LSA can imitate an expert policy optimization
 200 algorithm using in-context data. We then present our main theoretical guarantees, which establish
 201 that this learning is not only possible in principle but also efficient with a finite amount of data, and
 202 robust to perturbations at test time.

202 **The ICPO Forward Pass.** We start with introducing the forward pass of ICPO framework. The LSA
 203 model parameterized by $\boldsymbol{\theta}$ starts with an empty embedding $\mathbf{E}^{(0)} = (\mathbf{q}_x, q_r)^\top$ where $\mathbf{q}_x = \mathbf{1}_K$, $q_r = 0$
 204 are the placeholder for next-token generation. For each time step $t \in [T]$, the LSA model updates its
 205 policy according to the logits updates from the next-token generation of LSA described by

$$206 \quad \hat{\mathbf{s}}_t := [f_{\text{lsa}}(\mathbf{E}^{(t-1)}; \boldsymbol{\theta})]_{1:K, t}, \quad \mathbf{p}_t = (1 - \gamma) \text{softmax}(\hat{\mathbf{s}}_t) + \frac{\gamma}{K} \mathbf{1},$$

208 where $[f_{\text{lsa}}(\mathbf{E}^{(t-1)}; \boldsymbol{\theta}^*)]_{1:K, t}$ stands for the corresponding K dimensions of the newly generated
 209 token indexed with t . γ is the same exploration factor in the implementation of FTRL. With this
 210 policy $\mathbf{p}_t \in \mathbb{R}^K$, the LSA model selects its action A_t and receives the reward by

$$212 \quad A_t \sim \mathbf{p}_t, \quad \mathbf{x}_t = \mathbf{e}_{A_t}, \quad r_t = \langle \mathbf{w}, \mathbf{x}_t \rangle + \epsilon_t.$$

213 Finally the sequence of token is updated by inserting the observed reward r_t and embedding \mathbf{x}_t by

$$215 \quad \mathbf{E}^{(t)} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_t & \mathbf{q}_x \\ r_1 & \cdots & r_t & q_r \end{pmatrix}$$

216 and update the normalizing factor in LSA as $\rho = t$ to ensure the attention matrix is upper bounded
 217 by 1. The forward pass of ICPO then move to the next round $t \leftarrow t + 1$.

218 **Training Objective.** The supervised pretraining is conducted on the dataset \mathcal{D} by matching the
 219 logits from the model output $\hat{s}_t = f_{\text{LSA}}(\mathbf{E}^{(t-1)}, \theta)$ with the logits from policy optimization s_t^{PO} by
 220 minimizing the projected weighted loss by
 221

$$\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}_{\tau \in \mathcal{D}} \left[\sum_{t=1}^{N-1} \|\text{Proj}(\hat{s}_{\tau, t+1} - s_{\tau, t+1}^{\text{PO}})\|_{\Gamma}^2 \right], \quad (4.1)$$

224 where projection Proj is defined as $\Pi_{\perp} := \mathbf{I} - \frac{1}{K} \mathbf{1} \mathbf{1}^T$ which removes the constant bias $\mathbf{1}^T \mathbf{s}$ from
 225 the logits, since such shifts do not affect the policy $\mathbf{p} \propto \exp(\mathbf{s})$. The expected matrix Γ is inspired by
 226 the design of Natural Policy Optimization (Kakade, 2001) defined by
 227

$$\Gamma = \frac{1}{N-1} \mathbb{E}_{\tau \in \mathcal{D}} \left[\sum_{t=1}^{N-1} \text{Diag}(\mathbf{p}_{\tau, t}) - \mathbf{p}_{\tau, t} \mathbf{p}_{\tau, t}^T \right].$$

230 The Fisher-weighted loss provides a new loss for the supervised pretraining. We show by the
 231 following theorem that the common KL loss between the pretrained data $\mathbf{p}_{t+1}^{\text{PO}}$ and the LSA's output
 232 $\hat{\mathbf{p}}_{t+1}$ is sandwiched by the loss $\mathcal{L}(\theta)$ up to constants.

233 **Theorem 4.1** (mixed-policy KL is controlled by the Fisher-projected quadratic loss). Assume both
 234 teacher and student use γ -mixture exploration with $\gamma \in (0, 1)$ as described in equation 3.3, and let
 235 N denote the trajectory length of the sample inside the expectation. Then,

$$\frac{(1-\gamma)^2}{4} \mathcal{L}(\theta) \leq \mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} D_{\text{KL}}(\mathbf{p}_{t+1}^{\text{PO}} \| \hat{\mathbf{p}}_{t+1}) \right] \leq \frac{K}{4\gamma} \mathcal{L}(\theta).$$

239 Theorem 4.1 suggests that the widely used KL loss is a good surrogate to the Fisher-weighted loss
 240 and explains that even in a linear self-attention layer, using the KL loss enables the transformers to
 241 learn self-reflection and improve it's response.

242 4.1 THEORETICAL GUARANTEES FOR ICPO

243 We now present our theoretical results considering the empirical Fisher-weighted loss defined by
 244

$$\hat{\mathcal{L}}(\theta) := \frac{1}{2B(N-1)} \sum_{\tau \in \mathcal{D}} \|\text{Proj}(\hat{s}_{\tau, t+1} - s_{\tau, t+1}^{\text{PO}})\|_{\hat{\Gamma}}^2, \quad \hat{\Gamma} := \frac{1}{B(N-1)} \sum_{\tau \in \mathcal{D}} \left(\text{Diag}(\mathbf{p}_{\tau, t}) - \mathbf{p}_{\tau, t} \mathbf{p}_{\tau, t}^T \right).$$

247 We denote the *population* optimizer as $\theta^* = \arg \min_{\theta} \mathcal{L}(\theta)$ and it's *empirical* solution $\hat{\theta} =$
 248 $\arg \min \hat{\mathcal{L}}(\theta)$. Then the first theorem suggests that the population optimizer θ^* is exactly imitating
 249 the policy optimization algorithm we described in equation 3.3.

251 **Theorem 4.2** (Population Equivalence). Under Assumption 3.1, consider a one-layer LSA with
 252 parameter θ^* minimizing the population loss $\mathcal{L}(\theta)$ will imitate the policy optimization behavior for
 253 all possible history trajectory \mathcal{H}_t , i.e. $\hat{\mathbf{p}}_{t+1}(\mathcal{H}_t; \theta^*) = \mathbf{p}_{t+1}^{\text{PO}}(\mathcal{H}_t)$.

254 Theorem 4.2 suggests that the population loss $\mathcal{L}(\theta)$ is precise and informational enough to guarantee
 255 that the parameter θ^* will drive the LSA exact imitate the policy optimization framework leveraging
 256 any in-context data. Then a simple concentration analysis suggests that the empirical estimation will
 257 also yield a similar result with high probability:

258 **Theorem 4.3** (Finite sample result). Under Assumption 3.1, let the one-layer LSA be trained on B
 259 i.i.d. trajectories $\{\mathcal{H}_{\tau, N}\}_{\tau=1}^B$ generated by the policy optimization process in equation 3.3. Define
 260 $M := B(N-1)$. Using all prefixes $t \in \{1, \dots, N-1\}$ from each trajectory (allowing within-
 261 trajectory dependence), form the empirical Fisher-weighted loss $\hat{\mathcal{L}}(\theta)$ and let the global optimizer be
 262 $\hat{\theta} = \arg \min_{\theta} \hat{\mathcal{L}}(\theta)$. For any $\delta \in (0, 1)$, with probability at least $1-\delta$, if $M \gtrsim t^2 (2K + \log(1/\delta))/c_{\lambda}^2$,
 263 then for any fixed test history \mathcal{H}_t we have $\hat{\mathbf{p}}_{t+1}(\mathcal{H}_t; \hat{\theta}) = \mathbf{p}_{t+1}^{\text{PO}}(\mathcal{H}_t)$. In addition, the expected
 264 behavioral mismatch is bounded by
 265

$$\mathbb{E}_{\text{train}} \left[\|\hat{\mathbf{p}}_{t+1}(\mathcal{H}_t; \hat{\theta}) - \mathbf{p}_{t+1}^{\text{PO}}(\mathcal{H}_t)\|_2^2 \right] \leq 2(1-\gamma)^2 \delta,$$

268 where $\mathbb{E}_{\text{train}}$ is taken over the randomness of the B trajectories.

269 We would like to summarize the theoretical results by the following remark.

270 **Remark 4.4.** Theorem 4.3 suggests an $\tilde{\mathcal{O}}(N^2 K / c_\lambda^2)$ sample complexity for the supervised pretrained
 271 data to guarantee the LSA is well imitating the pretrained policy optimization trajectory. Such an
 272 constant sample complexity is because of the Assumption 3.1 which is similar with the diversity
 273 assumption used in Papini et al. (2021); Hao et al. (2020); Wu et al. (2020) which suggests that
 274 γ -greedy exploration suffices for a constant regret in linear bandits.

275 Our analysis and framework share commons and significant difficulties compared with Lin et al.
 276 (2023); Park et al. (2024)

278 **Remark 4.5.** Park et al. (2024) analyze the regret of the LLMs assuming the LLM can conduct
 279 the posterior sampling without the structural analysis. In contrast, our analysis is built on a slightly
 280 modified policy optimization framework inspired by inserting an Lagrangian to solve the FTRL mirror
 281 descent. With a newly designed *supervised* learning loss, we show that an linear self attention trans-
 282 former can structurally imitate the policy optimization framework. Compared with the unsupervised
 283 loss proposed in Park et al. (2024), we show by Theorem 4.1 that the newly proposed Fisher-weighted
 284 loss is a nice surrogate of the practical KL loss, which better justices that the transformers can learn
 285 policy optimization with sufficient pretraining.

286 **Remark 4.6.** We note that Lin et al. (2023) studies algorithm distillation and proves that $\tilde{\mathcal{O}}(\sqrt{T})$
 287 layers of ReLU-activated transformers can mimic (soft) Linear UCB and Linear Thompson Sampling.
 288 In contrast, we target understanding policy optimization instead of its value-based counterpart, which
 289 is more suitable for analyzing the behavior of LLMs in improving their responses. In addition, our
 290 analysis is built for a one-layer linear self-attention framework so that the network does not need
 291 to change as the context grows larger, and is more aligned with practical long-context scenarios,
 292 whereas Lin et al. (2023) requires the number of network layers to grow on the order of \sqrt{T} , where
 293 T is the length of the in-context sequence.

294 In addition, as frequently discussed in previous literature (McMahan, 2011b; Shani et al., 2020),
 295 policy optimization methods such as FTRL are known to be robust to adversarial or misspecified
 296 rewards, which highlights their applicability to ICPO with self-assessed, noisy, or perturbed rewards.
 297 A crucial property for practical self-refinement is that the learned policy is also stable. We analyze
 298 the robustness of the learned ICPO loop at test time by examining its response to a single-shot reward
 299 shock, which we present in the next theorem. We will start with the definition of the CRN-coupled
 300 setup (Glasserman & Yao, 1992).

301 **Definition 4.7** (*s*-CRN coupled trajectories). We say two trajectories are *s*-CRN coupled when they
 302 share a *common random number* (CRN) and they are identical up to round $s - 1$ in trajectory \mathcal{H}_t
 303 and $\tilde{\mathcal{H}}_t$. We denote \mathcal{F}_s as the filtration that includes all events happen before observing the reward at
 304 round s . At s -th round, the reward is shifted by δ_r . We define the drift cause by this reward shift by

$$\Delta \mathbf{p}_{t+1}^s(\boldsymbol{\theta}) := \hat{\mathbf{p}}_{t+1}(\tilde{\mathcal{H}}_t; \boldsymbol{\theta}^*) - \hat{\mathbf{p}}_{t+1}(\mathcal{H}_t; \boldsymbol{\theta}^*) \in \mathbb{R}^K.$$

306 Then we are ready to present the following theorem indicating that the impact from any one-time
 307 reward perturbations will be decreasing with a well-designed learning rate $\eta_t = c/t$.

308 **Theorem 4.8** (Stability to One-step Reward Perturbations). Under Assumption 3.1, assume the test-
 309 time ICPO loop runs with fixed, population-optimal parameters $\boldsymbol{\theta}^*$ in the *s*-CRN-coupled trajectories
 310 with task \mathbf{w} , define

$$312 a := \frac{c(1 - \gamma)}{2} \|\mathbf{U}\|_{\text{op}}, \quad b := \frac{c(1 - \gamma)}{2} \sqrt{\frac{K}{2}} \left(\|\mathbf{V} + \mathbf{U} \text{Diag}(\mathbf{w})\|_{\text{op}} + \sqrt{\frac{2}{\pi}} \sigma_\xi \|\mathbf{U}\|_{\text{op}} \right),$$

313 that does not grow with s or t , let $C_b = f(b)$ as another absolute constant, for any $1 \leq s \leq t$,

$$316 \mathbb{E} [\|\Delta \hat{\mathbf{p}}_{t+1}^s\|_2 | \mathcal{F}_{s-1}] \leq \frac{a(1+C_b)}{s} \left(\frac{t}{s} \right)^{b-1} |\delta_r|.$$

318 In particular, let the learning rate $\eta_t = c/t$ be sufficiently small such that $b < 1$, the one-time reward
 319 shift in the *s*-CRN-coupled trajectories is decreasing to 0, i.e., $\lim_{t \rightarrow \infty} \mathbb{E} [\|\Delta \hat{\mathbf{p}}_{t+1}\|_2 | \mathcal{F}_{s-1}] = 0$.

320 5 MINIMUM-ENTROPY IN-CONTEXT POLICY OPTIMIZATION

322 Based on the theoretical understanding of the ICPO framework, we now present a practical algorithm
 323 leveraging the in-context policy optimization and the self-accessed reward to improve its reasoning
 324 ability via test-time scaling. To begin with, we adopt the ICPO notation presented in our theoretical

324 **Algorithm 1** ME-ICPO: Minimum-Entropy In-Context Policy Optimization

325
 326 **Input:** Question Q ; number of rounds N ; candidates per round k ;
 327 **Input:** System prompt **SysPrompt**; Summarizer (prompt) **Summ**
 328 1: $\mathcal{H}_0 \leftarrow \{\text{SysPrompt}, Q\}$
 329 2: **for** $t = 1$ **to** n **do**
 330 3: Sample response $A_{1:k}^{(t)} \sim p_t(\cdot | \mathcal{H}_{t-1})$ with their answer $a_j^{(t)}$ for all $j \in [k]$
 331 4: Assess $\hat{a}_t \leftarrow \text{MajorityVote}\{a_j^{(k)}\}_{j=1}^K$, let $r_j^{(t)} \leftarrow \mathbb{1}[a_j^{(t)} = \hat{a}_t]$ for all $j \in [k]$
 332 5: Summarize $x_j^{(t)} = \text{Summ}(A_j^{(t)})$ and $\tilde{\mathcal{H}}_j^{(t)} = \mathcal{H}_{t-1} \cup (x_j^{(t)}, r_j^{(t)})$ for all $j \in [k]$
 333 6: Select the minimum entropy response $j^* \leftarrow \arg \min_{j \in [k]} H(\tilde{\mathcal{H}}_j^{(t)})$
 334 7: Update in-context list $\mathcal{H}_t \leftarrow \mathcal{H}_{t-1} \cup (x_{j^*}^{(t)}, r_{j^*}^{(t)})$
 335 8: **end for**
 336 **Output:** Response sampled from $p_{n+1}(\cdot | H_n)$

338
 339 analysis. The agent starts with the historical prompt $\mathcal{H}_0 = \{Q\}$ that only contains the question **Q**.
 340 For each time $t \in [T]$, the model outputs its response $\mathbf{x}_t \sim p(\cdot | \mathcal{H}_{t-1})$ and then observe the reward r_t
 341 via self-accessed rewards. Then the agent updates its history $\mathcal{H}_t = \{\mathbf{Q}, (\mathbf{x}_1, r_1), \dots, (\mathbf{x}_t, r_t)\}$ and
 342 move on to the next time step $t \leftarrow t + 1$. However, directly applying the ICPO framework presents
 343 two significant challenges. The first challenge is related to the length of the contexts preventing the
 344 agents from cumulate and conduct effective reasoning process based on a prolonged context through
 345 the in-context policy optimization process. The second is the trustworthiness of the self-assessed
 346 rewards, since the self-evaluation can be noisy and inaccurate. To tackle these two challenges, we
 347 present our test-time in-context scaling algorithm: Minimum-Entropy In-Context Policy Optimization
 (ME-ICPO). The ME-ICPO algorithm works in the following three major procedures.

348 **Response Generation and Self-Assessment.** In Line 3, the agent samples k responses $A_k^{(t)}$ using
 349 the historical in-context data \mathcal{H}_{t-1} with their final answer $a_k^{(t)}$ appearing in the final boxed{}
 350 block (Hendrycks et al., 2021). Then the majority voting as conducted in Wang et al. (2022) is
 351 conducted over the answers in Line 4 for assessing the accuracy of the responses.

352 **Chain-of-Thought Summarization.** In order to compress the information from the output response
 353 and condense the in-context texts, we summarize the responses according to their Chain-of-Thoughts
 354 (CoTs) $x_j^{(t)}$ and ignore the detailed problem-solving process in Line 5. The motivation is that the
 355 detailed numerical processing is expected to be easier than the global CoTs.

356 **Minimum Entropy Response Selection.** Similar to the tree-search-style algorithms Yao et al.
 357 (2023a), we select a response $x_{j^*}^{(t)}$ and put it and its response into the in-context history \mathcal{H}_{t+1} in
 358 Line 7. Specifically, unlike the tree-search Yao et al. (2023a), or Best-of-N Huang et al. (2025)
 359 algorithms that are designed for multi-step reasoning where x_t is the one-step response, we consider
 360 the x_t to be a CoT description of solving the whole problem. Therefore, instead of selecting the x_t
 361 with the highest reward, we instead follow a “pessimism” in offline reinforcement learning by selecting
 362 the x_t that leads to the *minimum entropy* in the future response, i.e., $j^* \leftarrow \arg \min_{j \in [k]} H(\tilde{\mathcal{H}}_j^{(t)})$
 363 as conducted in Line 6. Intuitively, this *minimum entropy* selection will avoid the agent selecting
 364 the corrupted response x that may drive the agent to produce a random answer. In addition, this
 365 procedure will also encourage the agent to select the diversified responses x_{j^*} that would help further
 366 reduce the entropy.

367 It is important to distinguish our test-time approach from methods that train a student model on
 368 trajectories from a fixed teacher algorithm. Since ME-ICPO performs no parameter updates at
 369 test time, we do not claim that the deployed LLM is uniquely equivalent to any specific policy-
 370 optimization algorithm. Rather, our theoretical analysis shows that the LSA architecture possesses
 371 a strong inductive bias for performing such updates. ME-ICPO is designed to provide a usable
 372 interface-via reward-aware prompting and principled feedback selection-that effectively leverages this
 373 inherent computational capability of the model at test time without requiring gradients (Madaan et al.,
 374 2023; Shinn et al., 2023). For complexity derivations and prefactor discussions, see Appendix C.

375 **6 EXPERIMENTS**
 376

377 We present the experiment results to validate our theoretical claims in Section 4 and the performance
 of ME-ICPO in this section.

378

379
6.1 VALIDATION EXPERIMENTS

380

381 To verify the Theorem 4.2 and Theorem 4.8 results, we run two controlled checks on a *single* LSA. 382 Figure 2 shows, respectively, the teacher-student *policy matching* error (Top) and the *stability* of the 383 mixed policy under a one-time reward shock together with the instantiated analytical bound (Bottom). 384

385

386 **Teacher-student policy matching.** We fix the meta configuration $K = 10$, $N = 30$, $B = 100$, $\gamma = 0.2$, stepsize $\eta_t = c/t$ 387 with $c = 1.0$, task prior $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \tau_w^2 I)$ with $\tau_w = 1.0$, and reward noise $\epsilon_t \sim \mathcal{N}(0, \sigma_\xi^2)$ with $\sigma_\xi = 0.5$. At test time we draw 388 $B_{\text{test}} = 64$ fresh tasks from the same generative process. At 389 each round we hold the realized history \mathcal{H}_t fixed, compute the 390 teacher mixed policy $\mathbf{p}_{t+1}^{\text{PO}}$ and the model’s mixed policy $\hat{\mathbf{p}}_{t+1}$ 391 as defined in Section 4, and then continue the closed loop using 392 the model’s policy. Aggregating over tasks, we report the mean 393 and one-standard-deviation band of $\mathbb{E}\|\hat{\mathbf{p}}_t - \mathbf{p}_t^{\text{PO}}\|_2$. As shown 394 in Figure 2, the gap rapidly drops to numerical precision and 395 decreases with t , consistent with the population equivalence 396 and finite-sample guarantees.

397

398 **Stability under a single reward shock.** We use an LSA trained 399 via supervised imitation on PO rollouts with $K = 5$, $N = 5$, 400 $\gamma = 0.8$, $c = 0.5$, $\tau_w = 0.5$, and $\sigma_\xi = 0.1$. At test time we 401 keep the data model and γ unchanged, extend the horizon to 402 $N = 10$, and evaluate on $B_{\text{test}} = 256$ tasks. For each task we 403 run two s -CRN-coupled trajectories: a baseline and a perturbed 404 path that injects a single reward shock $\delta r_s = 1.0$ at $s = 2$. 405 Following Def. 4.7, we record $\Delta \hat{\mathbf{p}}_t^s$ and plot the mean and 406 one-standard-deviation band of $\mathbb{E}\|\Delta \hat{\mathbf{p}}_t^s\|_2$. We can compute 407 $b \in [0.1236, 0.2127]$ and thus the 408 non-amplification condition. Figure 2 shows a brief post-shock bump 409 followed by a steady decline without amplification over time, with the 410 analytical curve providing a conservative upper bound.

411

412 6.2 LLM EXPERIMENTAL SETUP

413

414 We evaluate ME-ICPO on standard mathematical QA benchmarks (AIME 2024, AMC, and MATH- 415 500, split into five difficulty levels following TTRL) (aop, 2024; Mathematical Association of 416 America, 2025; Li et al., 2024; Hendrycks et al., 2021) using representative backbones (Qwen2.5- 417 Math-1.5B and Qwen2.5-Math-7B) (Yang et al., 2025). For reference, we also report the 418 performance of Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and DeepSeek-R1-Distill-Llama-8B (Guo 419 et al., 2025b) on AIME 2024. Full hyperparameters, baseline specifications, hardware/software 420 environment, and prompt details are provided in Appendices B.2, B.3, and D. Following Guo et al. 421 (2025b), we generate $k=16$ responses per question ($T=0.6$, top- $p=0.95$). We report *Mean@ k* 422 $= \frac{1}{|\mathcal{D}|} \sum_{q \in \mathcal{D}} \frac{1}{k} \sum_{i=1}^k c_i(q)$, where $c_i(q) = \mathbf{1}[a_i(q) = a^*(q)]$, and *Accuracy*, the probability of 423 answering correctly with one attempt.

424

425 6.3 MAIN RESULTS

426

427 Our main results are presented in Table 1, reporting the mean and standard deviation (over 5 seeds) 428 of *Mean@16* (%) and *Accuracy* (%) across all tasks and models. The results show that ME-ICPO 429 consistently improves performance through its gradient-free, in-context optimization process. These 430 improvements hold for both the larger model (Qwen2.5-Math-7B) and the smaller model (Qwen2.5- 431 Math-1.5B), demonstrating that ME-ICPO is effective across different model scales. Qualitatively 432 curated prompt examples are provided in Appendix D. We also evaluate an oracle-reward variant, 433 with results summarized in Table 2.

434

435 We further report the performance of additional models Llama-3.1-8B-Instruct (Grattafiori et al., 436 2024) and DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025b) on AIME 2024 in Figure 3.

437

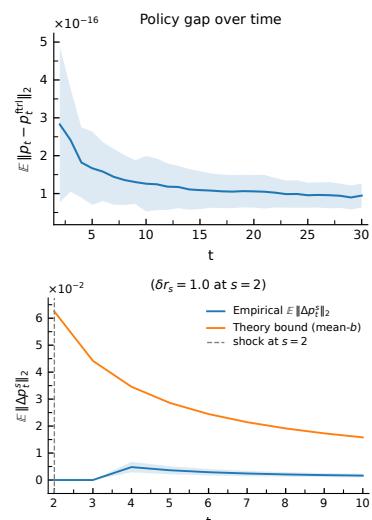
438 We also consider the *Maj@ k* metric (Wang et al., 2023b), which aggregates k responses by 439 majority vote $\hat{a}(q) = \text{mode}(a_1(q), \dots, a_k(q))$ (ties broken uniformly) and computes *Maj@ k* 440 $= \frac{1}{|\mathcal{D}|} \sum_{q \in \mathcal{D}} \mathbf{1}\{\hat{a}(q) = a^*(q)\}$. As shown in Figure 3, our experiments indicate that ME-ICPO’s 441 average performance (*Mean@16*) can surpass the anticipated upper bound given by the base model’s 442 majority voting, similar to observations in TTRL. Furthermore, applying majority voting on top 443 of ME-ICPO’s outputs leads to additional gains.

Figure 2: Validation of ICPO theory. (Top): Policy Matching. (Bottom): Reward-Shock Stability.

Figure 2 shows a brief post-shock bump followed by a steady decline without amplification over time, with the analytical curve providing a conservative upper bound.

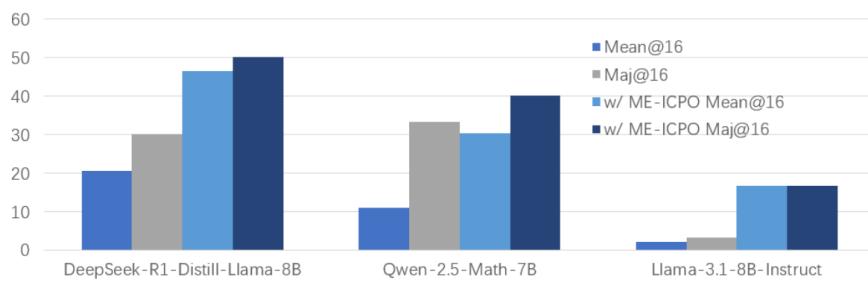


Figure 3: Performance comparison of backbone models before and after ME-ICPO.

Table 1: Performance comparison on different models with *Mean@16* and standard *Accuracy* (%).

Model \ Benchmark	AIME 2024	AMC	MATH-L1	MATH-L2	MATH-L3	MATH-L4	MATH-L5
<i>Mean@16 (%)</i>							
Qwen2.5-Math-7B	11.04 ± 1.65	41.42 ± 0.99	52.62 ± 1.38	50.76 ± 0.95	49.88 ± 0.88	43.60 ± 0.80	30.58 ± 0.78
w/ ME-ICPO	30.42 ± 1.81	47.06 ± 0.84	62.35 ± 1.27	64.31 ± 1.23	58.87 ± 0.78	49.31 ± 0.97	38.71 ± 0.86
Δ	+19.38	+5.64	+9.73	+13.55	+8.99	+5.71	+8.13
Qwen2.5-Math-1.5B	6.46 ± 0.96	30.42 ± 0.58	49.27 ± 0.81	48.54 ± 0.67	45.42 ± 0.86	40.28 ± 0.57	25.23 ± 0.45
w/ ME-ICPO	9.79 ± 1.11	33.58 ± 0.63	61.19 ± 0.77	54.93 ± 0.71	52.08 ± 0.69	46.44 ± 0.64	29.85 ± 0.70
Δ	+3.33	+3.16	+11.92	+6.39	+6.66	+6.16	+4.62
<i>Accuracy (%)</i>							
Qwen2.5-Math-7B	11.13 ± 3.27	41.33 ± 1.97	46.98 ± 2.71	42.67 ± 1.86	43.71 ± 1.75	37.79 ± 1.65	26.13 ± 1.54
w/ ME-ICPO	30.05 ± 3.02	47.20 ± 2.26	57.32 ± 2.37	54.74 ± 2.04	51.90 ± 1.67	40.84 ± 1.78	31.71 ± 1.40
Δ	+18.92	+5.87	+10.34	+12.07	+8.19	+3.05	+5.58
Qwen2.5-Math-1.5B	6.51 ± 1.94	30.25 ± 1.07	44.68 ± 1.83	39.95 ± 1.32	39.77 ± 0.99	34.97 ± 0.68	20.89 ± 1.35
w/ ME-ICPO	9.82 ± 2.15	33.73 ± 0.96	57.06 ± 1.70	47.60 ± 1.00	47.81 ± 1.17	41.55 ± 0.72	24.83 ± 1.29
Δ	+3.31	+3.48	+12.38	+7.65	+8.04	+6.58	+3.94

6.4 ANALYSIS AND ABLATION STUDIES

We further analyze the AIME 2024 benchmark using **Qwen2.5-Math-7B** to assess the contributions of ME-ICPO’s core components and its sensitivity to hyperparameters, as detailed in Appendix B.1, along with the computational cost analysis in Appendix C.

Ablation Study. To isolate the contributions of our core components—entropy-based selection and explicit reward signals—we conduct an ablation study, with results presented in Table 2. The results clearly demonstrate that the minimum-entropy selection criterion is the

Table 2: Ablation study of ME-ICPO. (Oracle results use groundtruth labels for reward and are shown for reference only.)

Method	Accuracy (%)	Mean@16 (%)
w/o Reward	19.30	19.17
w/o Entropy	5.77	5.83
w/o Entropy & Reward	6.21	6.46
ME-ICPO (full)	30.05	30.42
ME-ICPO Oracle	38.19	38.12

most critical component of our algorithm. Removing this greedy selection mechanism (*w/o Entropy*) causes a dramatic performance collapse. The explicit reward signal, made legible by our system prompt, also plays a crucial role. While keeping entropy selection active, removing the reward tags (*w/o Reward*) still results in a significant drop.

7 CONCLUSION

In this work, we studied the test-time scaling and self-reflection phenomenology in LLM reasoning by introducing a theoretically grounded In-Context Policy Optimization (ICPO) framework. We have shown that, under the ICPO framework, a single-layer linear self-attention transformer can provably imitate a policy-optimization algorithm, which provides a theoretical proof-of-concept for how self-reflection can be implemented within LLMs. Based on the ICPO framework, we propose a practical and effective algorithm, Minimum Entropy In-Context Policy Optimization (ME-ICPO), which provides a test time scaling pipeline with self-assessed rewards and in-context response selection. Extensive empirical studies demonstrate that our improved performance across diverse benchmarks.

Limitations and future works. Our work opens several avenues for future research, which include an extended theoretical analysis of training dynamics for multi-layer, nonlinear transformer structures and formulating the multi-round reasoning process as a Markov Decision Processes (MDPs) instead of K -arm bandits. Empirically, it also calls for the consistency regularization of the reward assessment.

486 REPRODUCIBILITY STATEMENT
487

488 We have made significant efforts to ensure the reproducibility of our results. We detail all datasets,
489 model configurations, hyperparameters, and training procedures in Appendix B. To enable faithful
490 reproduction, we release our full codebase, experiment scripts, and configuration files at
491 anonymous.4open.science/r/ICRL_anonymous-0705. The repository includes exact
492 seeds, environment specifications. Our source code is provided to facilitate faithful reproduction of
493 our experiments in the supplementary materials.

494 ETHICS STATEMENT
495

496 We have carefully reviewed the Code of Ethics and find that our work does not raise any significant
497 ethical concerns. Our research does not involve human subjects, sensitive data, or potentially
498 harmful applications. We believe our methodology and contributions align with principles of fairness,
499 transparency, and research integrity.

500 REFERENCES
501

502 Aime problems and solutions, 2024. Accessed: 2025-09-13.

503 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
504 Provable in-context learning with in-context algorithm selection. *Advances in neural information
505 processing systems*, 36:57125–57211, 2023.

506 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
507 Evaluating llms on uncontaminated math competitions. *arXiv preprint arXiv:2505.23281*, 2025.

508 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
509 Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, et al. Graph of thoughts:
510 Solving elaborate problems with large language models. In *Proceedings of the AAAI conference
511 on artificial intelligence*, volume 38, pp. 17682–17690, 2024.

512 Xingwu Chen, Lei Zhao, and Difan Zou. How transformers utilize multi-head attention in in-context
513 learning? a case study on sparse linear regression. *Advances in Neural Information Processing
514 Systems*, 37:119573–119613, 2024a.

515 Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao.
516 Autoprvm: Automating procedural supervision for multi-step reasoning via controllable question
517 decomposition. *arXiv preprint arXiv:2402.11452*, 2024b.

518 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
519 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
520 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
521 *arXiv preprint arXiv:2507.06261*, 2025.

522 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
523 in-context? a case study of simple function classes. *Advances in neural information processing
524 systems*, 35:30583–30598, 2022.

525 Paul Glasserman and David D Yao. Some guidelines and guarantees for common random numbers.
526 *Management Science*, 38(6):884–908, 1992.

527 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
528 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
529 models. *arXiv preprint arXiv:2407.21783*, 2024.

530 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
531 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
532 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

533 Y. Guo, Z. Zhang, J. Li, et al. Deepseek-r1: Incentivizing reasoning in language models via
534 reinforcement learning. *arXiv preprint arXiv:2501.00000*, 2025b.

535 Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual bandit.
536 In *International Conference on Artificial Intelligence and Statistics*, pp. 3536–3545. PMLR, 2020.

540 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 541 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 542 *preprint arXiv:2103.03874*, 2021.

543 Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
 544 Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. *arXiv*
 545 *preprint arXiv:2503.21878*, 2025.

546 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 547 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 548 *arXiv:2412.16720*, 2024.

549 Sham M Kakade. A natural policy gradient. *Advances in neural information processing systems*, 14,
 550 2001.

551 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 552 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 553 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 554 13(9):9, 2024.

555 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 556 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 557 *International Conference on Learning Representations*, 2023.

558 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
 559 ment learning via supervised pretraining. *arXiv preprint arXiv:2310.08566*, 2023.

560 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 561 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 562 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

563 Mathematical Association of America. American mathematics competitions, 2025. Accessed:
 564 2025-09-13.

565 Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems and ℓ_1
 566 regularization. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence*
 567 and *Statistics*, pp. 525–533. JMLR Workshop and Conference Proceedings, 2011a.

568 H. Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems and
 569 ℓ_1 regularization. In *AISTATS*, 2011b.

570 Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, and Matteo Pirotta. Lever-
 571 aging good representations in linear contextual bandits. In *International Conference on Machine*
 572 *Learning*, pp. 8371–8380. PMLR, 2021.

573 Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret? a
 574 case study in online learning and games. *arXiv preprint arXiv:2403.16843*, 2024.

575 Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal,
 576 Sainbayar Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference optimization. *arXiv*
 577 *preprint arXiv:2411.04109*, 2024.

578 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 579 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 580 *First Conference on Language Modeling*, 2024.

581 Shai Shalev-Shwartz. *Online learning: Theory, algorithms, and applications*. Hebrew University,
 582 2007.

583 Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization with
 584 bandit feedback. In *International Conference on Machine Learning*, pp. 8604–8613. PMLR, 2020.

585 Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
 586 Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL <https://arxiv.org/abs/2303.11366>, 1, 2023.

594 Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
 595 the gap: Examining the self-improvement capabilities of large language models. *arXiv preprint*
 596 *arXiv:2412.02674*, 2024.

597 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 598 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 599 *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

600

601 Jiuqi Wang, Ethan Blaser, Hadi Daneshmand, and Shangtong Zhang. Transformers can learn temporal
 602 difference methods for in-context reinforcement learning. *arXiv preprint arXiv:2405.13861*, 2024.

603

604 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
 605 Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv preprint*
 606 *arXiv:2312.08935*, 2023a.

607

608 Ruiqi Wang, Jiyu Guo, Cuiyun Gao, Guodong Fan, Chun Yong Chong, and Xin Xia. Can llms replace
 609 human evaluators? an empirical study of llm-as-a-judge in software engineering. *Proceedings of*
 610 *the ACM on Software Engineering*, 2(ISSTA):1955–1977, 2025.

611

612 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 613 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 614 *arXiv preprint arXiv:2203.11171*, 2022.

615

616 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 617 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 618 In *ICLR*, 2023b.

619

620 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 621 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 622 *neural information processing systems*, 35:24824–24837, 2022.

623

624 Weiqiang Wu, Jing Yang, and Cong Shen. Stochastic linear contextual bandits with diverse contexts.
 625 In *International Conference on Artificial Intelligence and Statistics*, pp. 2392–2401. PMLR, 2020.

626

627 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 628 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 629 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024a.

630

631 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 632 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 633 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

634

635 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 636 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 637 2025.

638

639 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 640 Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural*
 641 *information processing systems*, 36:11809–11822, 2023a.

642

643 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 644 React: Synergizing reasoning and acting in language models. In *International Conference on*
 645 *Learning Representations (ICLR)*, 2023b.

646

647 Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
 648 mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. *arXiv preprint*
 649 *arXiv:2406.07394*, 2024a.

650

651 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
 652 *Journal of Machine Learning Research*, 25(49):1–55, 2024b.

653

654 Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi, Denny Zhou,
 655 Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose
 656 reasoning structures. *Advances in Neural Information Processing Systems*, 37:126032–126058,
 657 2024.

648 Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
649 Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. *arXiv preprint*
650 *arXiv:2504.16084*, 2025.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

702	A Proofs and Technical Details for Section 4	14
703	A.1 Preliminaries and Key Lemmas	14
704	A.2 Reward-shock Robustness	21
705	A.3 KL Divergence vs. Fisher-weighted Duadratic	22
706	A.4 Closed-Loop Imitation of Policy Optimization	23
707	A.5 Convergence of the Fisher-trained Two-channel LSA	24
712	B Experimental Details	25
713	B.1 Hyperparameter Sensitivity	25
714	B.2 Hyperparameter and Implementation Details	25
715	B.3 Hardware and Environment Configuration	26
716	B.4 Supplementary Experimental Results	26
717		
718		
719	C Detailed Complexity Analysis	27
720	C.1 Theoretical Time and VRAM Complexity Derivations	27
721	C.2 Empirical Cost	31
722		
723	D Prompt Templates and Qualitative Examples	31
724	D.1 Dataset-Specific System Prompts	31
725	D.2 Summarization Prompts	32
726	D.3 Qualitative Case Studies	33
727		
728		
729		

A PROOFS AND TECHNICAL DETAILS FOR SECTION 4

A.1 PRELIMINARIES AND KEY LEMMAS

In this subsection, we establish the minimal set of tools and lemmas required for the subsequent proofs. We adopt all notation and settings from the main text.

Lemma A.1 (Mixture curvature and Fisher bounds on $\mathbf{1}^\perp$). If the teacher uses mixture exploration $\mathbf{p} = (1 - \gamma)\tilde{\mathbf{p}} + \gamma \mathbf{1}/K$, then the Fisher matrix $\mathbf{F}(\mathbf{p}) := \text{Diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^\top$ is bounded on $\mathbf{1}^\perp$:

$$\frac{\gamma}{K} \mathbf{I} \preceq \mathbf{F}(\mathbf{p}) \Big|_{\mathbf{1}^\perp} \preceq \frac{1}{2} \mathbf{I}.$$

Proof. Using linearity of $\text{Diag}(\cdot)$ and expanding $\mathbf{p}\mathbf{p}^\top$,

$$\begin{aligned} \mathbf{F}(\mathbf{p}) &= \text{Diag}\left((1 - \gamma)\tilde{\mathbf{p}} + \gamma \frac{\mathbf{1}}{K}\right) - \left((1 - \gamma)\tilde{\mathbf{p}} + \gamma \frac{\mathbf{1}}{K}\right)\left((1 - \gamma)\tilde{\mathbf{p}} + \gamma \frac{\mathbf{1}}{K}\right)^\top \\ &= (1 - \gamma)\mathbf{F}(\tilde{\mathbf{p}}) + \gamma \mathbf{F}\left(\frac{\mathbf{1}}{K}\right) + \gamma(1 - \gamma)(\tilde{\mathbf{p}} - \frac{\mathbf{1}}{K})(\tilde{\mathbf{p}} - \frac{\mathbf{1}}{K})^\top \end{aligned}$$

The last rank-one term and $\mathbf{F}(\tilde{\mathbf{p}})$ are PSD, hence

$$\mathbf{F}(\mathbf{p}) \succeq \gamma \mathbf{F}\left(\frac{\mathbf{1}}{K}\right).$$

On $\mathbf{1}^\perp$, $\mathbf{F}\left(\frac{\mathbf{1}}{K}\right) = \text{Diag}\left(\frac{\mathbf{1}}{K}\right) - \left(\frac{\mathbf{1}}{K}\right)\left(\frac{\mathbf{1}}{K}\right)^\top$ acts as $\left(\frac{\mathbf{1}}{K}\right)\mathbf{I}$, so the lower bound follows:

$$\mathbf{F}(\mathbf{p}) \Big|_{\mathbf{1}^\perp} \succeq \frac{\gamma}{K} \mathbf{I}.$$

For the upper bound, for any $\mathbf{x} \in \mathbf{1}^\perp$ with $\|\mathbf{x}\|_2 = 1$,

$$\mathbf{x}^\top \mathbf{F}(\mathbf{p}) \mathbf{x} = \text{Var}_{i \sim \mathbf{p}}[x_i] \leq \frac{(\max_i x_i - \min_i x_i)^2}{4} \leq \frac{(\sqrt{2})^2}{4} = \frac{1}{2},$$

where we used Popoviciu's inequality and that among vectors with $\mathbf{x}^\top \mathbf{1} = 0$ and $\|\mathbf{x}\|_2 = 1$, the range is maximized by placing mass $\pm 1/\sqrt{2}$ on two coordinates. Taking the supremum over such \mathbf{x} yields $\mathbf{F}(\mathbf{p}) \Big|_{\mathbf{1}^\perp} \preceq \frac{1}{2} \mathbf{I}$. \square

756 **Lemma A.2** (Softmax is 1/2-Lipschitz on $\mathbf{1}^\perp$). For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^K$ with $\mathbf{u} - \mathbf{v} \in \mathbf{1}^\perp$,

$$757 \quad \|\text{softmax}(\mathbf{u}) - \text{softmax}(\mathbf{v})\|_2 \leq \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|_2.$$

759 *Proof.* By the mean value theorem for vector maps, there exists ξ on the segment $[v, u]$ such that

$$761 \quad \text{softmax}(\mathbf{u}) - \text{softmax}(\mathbf{v}) = J(\xi)(\mathbf{u} - \mathbf{v}),$$

762 where $J(\xi)$ is the Jacobian of softmax. It is well known that $J(\xi) = \mathbf{F}(\mathbf{p})$ with $\mathbf{p} = \text{softmax}(\xi)$,
763 and $J(\xi)\mathbf{1} = \mathbf{0}$. Since $\mathbf{u} - \mathbf{v} \in \mathbf{1}^\perp$, we can restrict to $\mathbf{1}^\perp$ and apply Lemma A.1:

$$764 \quad \|\text{softmax}(\mathbf{u}) - \text{softmax}(\mathbf{v})\|_2 = \|J(\xi)(\mathbf{u} - \mathbf{v})\|_2 \leq \|J(\xi)\|_{\mathbf{1}^\perp \text{op}} \|\mathbf{u} - \mathbf{v}\|_2 \leq \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|_2.$$

□

767 **Lemma A.3** (Query-column closed form for one-layer LSA). The next-step logit **vector** admits the
768 closed form

$$770 \quad \hat{\mathbf{s}}_{t+1} = \mathbf{q}_x + \frac{1}{t} \mathbf{R} \mathbf{G}_t \mathbf{b}, \quad (\text{A.1})$$

772 where $\mathbf{R} := [\mathbf{W}^{PV}]_{1:K,:}$ is the row-selector **matrix**, $\mathbf{b} := \mathbf{W}^{KQ} \mathbf{q}$ is the transformed **query vector**,
773 $\mathbf{q} := \begin{pmatrix} \mathbf{q}_x \\ q_r \end{pmatrix} \in \mathbb{R}^{K+1}$ with $\mathbf{q}_x \in \mathbb{R}^K$ and $q_r \in \mathbb{R}$, and $\mathbf{G}_t := \mathbf{E}^{(t)}(\mathbf{E}^{(t)})^\top$ is the history **Gram**
774 **matrix**.

776 *Proof.* By the LSA definition in equation 3.4,

$$\begin{aligned} 778 \quad \hat{\mathbf{s}}_{t+1} &:= [f_{\text{lsa}}(\mathbf{E}^{(t)}; \theta)]_{1:K, t+1} \\ 779 &= \left[\mathbf{E}^{(t)} + \mathbf{W}^{PV} \mathbf{E}^{(t)} \cdot \frac{(\mathbf{E}^{(t)})^\top \mathbf{W}^{KQ} \mathbf{E}^{(t)}}{t} \right]_{1:K, t+1} \\ 780 &= [\mathbf{E}^{(t)}]_{1:K, t+1} + \frac{1}{t} \left[\mathbf{W}^{PV} \mathbf{E}^{(t)} ((\mathbf{E}^{(t)})^\top \mathbf{W}^{KQ} \mathbf{E}^{(t)}) \right]_{1:K, t+1} \\ 781 &\stackrel{(a)}{=} \mathbf{q}_x + \frac{1}{t} \left[\mathbf{W}^{PV} \mathbf{E}^{(t)} ((\mathbf{E}^{(t)})^\top \mathbf{W}^{KQ} \mathbf{E}^{(t)} \mathbf{e}_{t+1}) \right]_{1:K} \\ 782 &\stackrel{(b)}{=} \mathbf{q}_x + \frac{1}{t} \left[\mathbf{W}^{PV} \mathbf{E}^{(t)} ((\mathbf{E}^{(t)})^\top \mathbf{W}^{KQ} (\mathbf{E}^{(t)} \mathbf{e}_{t+1})) \right]_{1:K} \\ 783 &\stackrel{(c)}{=} \mathbf{q}_x + \frac{1}{t} \left[\mathbf{W}^{PV} (\mathbf{E}^{(t)} (\mathbf{E}^{(t)})^\top) (\mathbf{W}^{KQ} \mathbf{q}) \right]_{1:K} \\ 784 &\stackrel{(d)}{=} \mathbf{q}_x + \frac{1}{t} \mathbf{R} \mathbf{G}_t \mathbf{b}. \end{aligned}$$

792 Justifications: (a) column slicing equals right-multiplying by the standard basis $\mathbf{e}_{t+1} \in \mathbb{R}^{t+1}$, and
793 $[\mathbf{E}^{(t)}]_{1:K, t+1} = \mathbf{q}_x$; (b) associativity isolates $\mathbf{E}^{(t)} \mathbf{e}_{t+1}$; (c) substitute $\mathbf{E}^{(t)} \mathbf{e}_{t+1} = \mathbf{q} = (\mathbf{q}_x^\top, q_r)^\top$
794 and regroup $\mathbf{E}^{(t)} (\mathbf{E}^{(t)})^\top$; (d) apply the concise definitions $\mathbf{R} = [\mathbf{W}^{PV}]_{1:K,:}$, $\mathbf{G}_t = \mathbf{E}^{(t)} (\mathbf{E}^{(t)})^\top$,
795 and $\mathbf{b} = \mathbf{W}^{KQ} \mathbf{q}$. □

797 **Lemma A.4** (Two-channel projected logits: exact equality). Assume the architectural normal form:
798 $q_r = 0$, $\mathbf{q}_x \in \text{span}\{\mathbf{1}\}$, and the final column of the action–logit projection is parallel to $\mathbf{1}$ (i.e.,
799 $\mathbf{w}_{12}^{PV} \parallel \mathbf{1}$). Let the historical statistics up to round t be the **count vector**

$$800 \quad \mathbf{n}_t := \sum_{s=1}^t \mathbf{x}_s = \sum_{s=1}^t \mathbf{e}_{A_s},$$

803 and the **reward vector**

$$805 \quad \mathbf{g}_t := \sum_{s=1}^t r_s \mathbf{x}_s = \sum_{s=1}^t r_s \mathbf{e}_{A_s}.$$

807 Let $\mathbf{W}^{PV}, \mathbf{W}^{KQ} \in \mathbb{R}^{(K+1) \times (K+1)}$ be block-partitioned as

$$809 \quad \mathbf{W}^{PV} = \begin{pmatrix} \mathbf{W}_{11}^{PV} & \mathbf{w}_{12}^{PV} \\ (\mathbf{w}_{21}^{PV})^\top & w_{22} \end{pmatrix}, \quad \mathbf{W}^{KQ} = \begin{pmatrix} \mathbf{W}_{11}^{KQ} & \mathbf{w}_{12}^{KQ} \\ (\mathbf{w}_{21}^{KQ})^\top & w_{22} \end{pmatrix},$$

810 with $\mathbf{W}_{11}^{PV}, \mathbf{W}_{11}^{KQ} \in \mathbb{R}^{K \times K}$ and $\mathbf{w}_{12}^{PV}, \mathbf{w}_{21}^{PV}, \mathbf{w}_{12}^{KQ}, \mathbf{w}_{21}^{KQ} \in \mathbb{R}^K$. For the transformed query
811

$$812 \quad \mathbf{b} := \mathbf{W}^{KQ} \mathbf{q} = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad \phi_1 \in \mathbb{R}^K, \phi_2 \in \mathbb{R},$$

814 the projected LSA logits satisfy, for any nonzero ϕ_1, ϕ_2 ,
815

$$816 \quad \text{Proj}(\hat{\mathbf{s}}_{t+1}) = \frac{1}{t} (\mathbf{W}_n \mathbf{n}_t + \mathbf{W}_g \mathbf{g}_t), \quad (\text{A.2})$$

818 with effective operators

$$819 \quad \mathbf{W}_n := \text{Proj}(\mathbf{W}_{11}^{PV} \text{Diag}(\phi_1)), \quad \mathbf{W}_g := \text{Proj}(\phi_2 \mathbf{W}_{11}^{PV}).$$

821 *Proof.* Using Lemma A.3 we have $\hat{\mathbf{s}}_{t+1} = \mathbf{q}_x + \frac{1}{t} \mathbf{R} \mathbf{G}_t \mathbf{b}$ with $\mathbf{R} = [\mathbf{W}^{PV}]_{1:K,:} = [\mathbf{W}_{11}^{PV} \mathbf{w}_{12}^{PV}]$
822 and

$$823 \quad \mathbf{G}_t = \mathbf{E}^{(t)}(\mathbf{E}^{(t)})^\top = \begin{pmatrix} \mathbf{C}_t + \mathbf{q}_x \mathbf{q}_x^\top & \mathbf{g}_t \\ \mathbf{g}_t^\top & r^\top r \end{pmatrix}, \quad \mathbf{C}_t := \text{Diag}(\mathbf{n}_t), \quad r := (r_1, \dots, r_t)^\top.$$

826 Projecting onto $\mathbf{1}^\perp$ and expanding block multiplications,

$$\begin{aligned} 827 \quad \text{Proj}(\hat{\mathbf{s}}_{t+1}) &\stackrel{(a)}{=} \text{Proj}\left(\mathbf{q}_x + \frac{1}{t} \mathbf{R} \mathbf{G}_t \mathbf{b}\right) \\ 828 &\stackrel{(b)}{=} \frac{1}{t} \text{Proj}(\mathbf{R} \mathbf{G}_t \mathbf{b}) \\ 829 &\stackrel{(c)}{=} \frac{1}{t} \text{Proj}\left([\mathbf{W}_{11}^{PV} \mathbf{w}_{12}^{PV}] \begin{bmatrix} \mathbf{C}_t + \mathbf{q}_x \mathbf{q}_x^\top & \mathbf{g}_t \\ \mathbf{g}_t^\top & r^\top r \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}\right) \\ 830 &\stackrel{(d)}{=} \frac{1}{t} \text{Proj}(\mathbf{W}_{11}^{PV} ((\mathbf{C}_t + \mathbf{q}_x \mathbf{q}_x^\top) \phi_1 + \mathbf{g}_t \phi_2) + \mathbf{w}_{12}^{PV} (\mathbf{g}_t^\top \phi_1 + (r^\top r) \phi_2)) \\ 831 &\stackrel{(e)}{=} \frac{1}{t} \text{Proj}(\mathbf{W}_{11}^{PV} \mathbf{C}_t \phi_1 + \mathbf{W}_{11}^{PV} \mathbf{g}_t \phi_2) \\ 832 &\stackrel{(f)}{=} \frac{1}{t} (\text{Proj}(\mathbf{W}_{11}^{PV} \text{Diag}(\phi_1)) \mathbf{n}_t + \text{Proj}(\phi_2 \mathbf{W}_{11}^{PV}) \mathbf{g}_t) \\ 833 &\stackrel{(g)}{=} \frac{1}{t} (\mathbf{W}_n \mathbf{n}_t + \mathbf{W}_g \mathbf{g}_t). \end{aligned}$$

842 Explanation of steps: (a) apply Proj to the closed form; (b) $\text{Proj} \mathbf{q}_x = 0$ since $\mathbf{q}_x \in \text{span}\{\mathbf{1}\}$; (c)
843 block multiplication with $\mathbf{R}, \mathbf{G}_t, \mathbf{b}$; (d) evaluate the product explicitly; (e) both $\text{Proj}(\mathbf{W}_{11}^{PV} \mathbf{q}_x \mathbf{q}_x^\top \phi_1)$
844 and $\text{Proj}(\mathbf{w}_{12}^{PV})$ vanish because $\mathbf{q}_x, \mathbf{w}_{12}^{PV} \parallel \mathbf{1}$; (f) use $(A \text{Diag}(u))v = (A \text{Diag}(v))u$ with $u = \mathbf{n}_t$,
845 $v = \phi_1$; (g) identify $\mathbf{W}_n, \mathbf{W}_g$ as stated. \square

846 **Lemma A.5** (Fisher-weighted quadratic in the two-channel operator). Let the normalized historical
847 statistics be $\bar{\mathbf{n}}_t := \mathbf{n}_t/t$ and $\bar{\mathbf{g}}_t := \mathbf{g}_t/t$. Define the concatenated operator $\bar{\mathbf{W}} := [\mathbf{W}_n \ \mathbf{W}_g] \in$
848 $\mathbb{R}^{K \times 2K}$ and the concatenated normalized statistic $\bar{\mathbf{z}}_t := (\bar{\mathbf{n}}_t^\top, \bar{\mathbf{g}}_t^\top)^\top \in \mathbb{R}^{2K}$. Let the population
849 second-moment matrices be

$$850 \quad \bar{\Sigma} := \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top] = \begin{pmatrix} \Sigma_{nn} & \Sigma_{ng} \\ \Sigma_{gn} & \Sigma_{gg} \end{pmatrix}, \quad \Sigma_{y\bar{z}} := \mathbb{E}[\mathbf{y}_{t+1} \bar{\mathbf{z}}_t^\top], \text{ with } \mathbf{y}_{t+1} := \text{Proj}(\mathbf{s}_{t+1}^{\text{PO}}).$$

853 With $\Gamma := \mathbb{E}[\mathbf{F}(\mathbf{p}_{t+1}^{\text{PO}})]$, the Fisher-weighted loss from Eq. equation 4.1 admits the quadratic form

$$854 \quad \mathcal{L}(\theta) = \frac{1}{2} \text{tr}(\Gamma \bar{\mathbf{W}} \bar{\Sigma} \bar{\mathbf{W}}^\top) - \text{tr}(\Gamma \Sigma_{y\bar{z}} \bar{\mathbf{W}}^\top) + \frac{1}{2} \text{tr}(\Gamma \Sigma_{yy}),$$

856 where $\Sigma_{yy} := \mathbb{E}[\mathbf{y}_{t+1} \mathbf{y}_{t+1}^\top]$.
857

858 *Proof.* By Eq. equation 4.1, averaging uniformly over training pairs (τ, t) ,

$$860 \quad \mathcal{L}(\theta) = \frac{1}{2} \mathbb{E} \left[\left\| \text{Proj}(\hat{\mathbf{s}}_{t+1} - \mathbf{s}_{t+1}^{\text{PO}}) \right\|_\Gamma^2 \right].$$

862 By Lemma A.4, the projected student logits admit the two-channel form

$$863 \quad \text{Proj}(\hat{\mathbf{s}}_{t+1}) = \frac{1}{t} (\mathbf{W}_n \mathbf{n}_t + \mathbf{W}_g \mathbf{g}_t) = \mathbf{W}_n \bar{\mathbf{n}}_t + \mathbf{W}_g \bar{\mathbf{g}}_t = \bar{\mathbf{W}} \bar{\mathbf{z}}_t.$$

Let $\mathbf{y}_{t+1} := \text{Proj}(\mathbf{s}_{t+1}^{\text{PO}})$. Using $\|\mathbf{b}\|_{\mathbf{\Gamma}}^2 = \mathbf{b}^\top \mathbf{\Gamma} \mathbf{b}$, linearity of expectation, and $\text{tr}(ABC) = \text{tr}(CAB)$, we obtain

$$\begin{aligned}
 \mathcal{L}(\boldsymbol{\theta}) &= \frac{1}{2} \mathbb{E} \left[\|\bar{\mathbf{W}} \bar{\mathbf{z}}_t - \mathbf{y}_{t+1}\|_{\mathbf{\Gamma}}^2 \right] \\
 &= \frac{1}{2} \mathbb{E} [(\bar{\mathbf{W}} \bar{\mathbf{z}}_t - \mathbf{y}_{t+1})^\top \mathbf{\Gamma} (\bar{\mathbf{W}} \bar{\mathbf{z}}_t - \mathbf{y}_{t+1})] \\
 &= \frac{1}{2} \mathbb{E} [\bar{\mathbf{z}}_t^\top \bar{\mathbf{W}}^\top \mathbf{\Gamma} \bar{\mathbf{W}} \bar{\mathbf{z}}_t] - \mathbb{E} [\bar{\mathbf{z}}_t^\top \bar{\mathbf{W}}^\top \mathbf{\Gamma} \mathbf{y}_{t+1}] + \frac{1}{2} \mathbb{E} [\mathbf{y}_{t+1}^\top \mathbf{\Gamma} \mathbf{y}_{t+1}] \\
 &= \frac{1}{2} \text{tr}(\mathbf{\Gamma} \bar{\mathbf{W}} \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top] \bar{\mathbf{W}}^\top) - \text{tr}(\mathbf{\Gamma} \mathbb{E}[\mathbf{y}_{t+1} \bar{\mathbf{z}}_t^\top] \bar{\mathbf{W}}^\top) + \frac{1}{2} \text{tr}(\mathbf{\Gamma} \mathbb{E}[\mathbf{y}_{t+1} \mathbf{y}_{t+1}^\top]) \\
 &= \frac{1}{2} \text{tr}(\mathbf{\Gamma} \bar{\mathbf{W}} \bar{\Sigma} \bar{\mathbf{W}}^\top) - \text{tr}(\mathbf{\Gamma} \Sigma_{y\bar{z}} \bar{\mathbf{W}}^\top) + \frac{1}{2} \text{tr}(\mathbf{\Gamma} \Sigma_{yy}).
 \end{aligned}$$

□

Lemma A.6 (Empirical Fisher-weighted quadratic form). Let $M := B(N - 1)$ be the number of training pairs and index them by (τ, t) with $\tau \in [B]$ and $t \in [N - 1]$. Define the empirical Fisher weight and empirical second moments by

$$\begin{aligned}
 \hat{\mathbf{\Gamma}} &:= \frac{1}{M} \sum_{\tau, t} \left(\text{Diag}(\mathbf{p}_{\tau, t}^{\text{PO}}) - \mathbf{p}_{\tau, t}^{\text{PO}} (\mathbf{p}_{\tau, t}^{\text{PO}})^\top \right), \quad \hat{\Sigma} := \frac{1}{M} \sum_{\tau, t} \bar{\mathbf{z}}_{\tau, t} \bar{\mathbf{z}}_{\tau, t}^\top, \\
 \hat{\Sigma}_{y\bar{z}} &:= \frac{1}{M} \sum_{\tau, t} \mathbf{y}_{\tau, t+1} \bar{\mathbf{z}}_{\tau, t}^\top, \quad \hat{\Sigma}_{yy} := \frac{1}{M} \sum_{\tau, t} \mathbf{y}_{\tau, t+1} \mathbf{y}_{\tau, t+1}^\top,
 \end{aligned}$$

where $\bar{\mathbf{z}}_{\tau, t} := (\bar{\mathbf{n}}_{\tau, t}^\top, \bar{\mathbf{g}}_{\tau, t}^\top)^\top$, $\bar{\mathbf{n}}_{\tau, t} = \mathbf{n}_{\tau, t}/t$, $\bar{\mathbf{g}}_{\tau, t} = \mathbf{g}_{\tau, t}/t$, and $\mathbf{y}_{\tau, t+1} := \text{Proj}(\mathbf{s}_{\tau, t+1}^{\text{PO}})$. Let $\bar{\mathbf{W}} = [\mathbf{W}_n \ \mathbf{W}_g]$ be as in Lemma A.5. Then the empirical Fisher-weighted loss from Eq. equation 4.1 admits the quadratic form

$$\hat{\mathcal{L}}(\boldsymbol{\theta}) = \frac{1}{2} \text{tr}(\hat{\mathbf{\Gamma}} \bar{\mathbf{W}} \hat{\Sigma} \bar{\mathbf{W}}^\top) - \text{tr}(\hat{\mathbf{\Gamma}} \hat{\Sigma}_{y\bar{z}} \bar{\mathbf{W}}^\top) + \frac{1}{2} \text{tr}(\hat{\mathbf{\Gamma}} \hat{\Sigma}_{yy}),$$

and in particular the last term is independent of $\boldsymbol{\theta}$.

Proof. By the definition in the main text,

$$\hat{\mathcal{L}}(\boldsymbol{\theta}) = \frac{1}{2M} \sum_{\tau, t} \left\| \text{Proj}(\hat{\mathbf{s}}_{\tau, t+1} - \mathbf{s}_{\tau, t+1}^{\text{PO}}) \right\|_{\hat{\mathbf{\Gamma}}}^2.$$

By Lemma A.4, $\text{Proj}(\hat{\mathbf{s}}_{\tau, t+1}) = \bar{\mathbf{W}} \bar{\mathbf{z}}_{\tau, t}$, hence

$$\hat{\mathcal{L}}(\boldsymbol{\theta}) = \frac{1}{2M} \sum_{\tau, t} (\bar{\mathbf{W}} \bar{\mathbf{z}}_{\tau, t} - \mathbf{y}_{\tau, t+1})^\top \hat{\mathbf{\Gamma}} (\bar{\mathbf{W}} \bar{\mathbf{z}}_{\tau, t} - \mathbf{y}_{\tau, t+1}).$$

Expanding the quadratic and using linearity of trace with $\mathbf{b}^\top A \mathbf{b} = \text{tr}(A \mathbf{b} \mathbf{b}^\top)$,

$$\begin{aligned}
 \hat{\mathcal{L}}(\boldsymbol{\theta}) &= \frac{1}{2} \text{tr} \left(\hat{\mathbf{\Gamma}} \bar{\mathbf{W}} \frac{1}{M} \sum_{\tau, t} \bar{\mathbf{z}}_{\tau, t} \bar{\mathbf{z}}_{\tau, t}^\top \bar{\mathbf{W}}^\top \right) - \text{tr} \left(\hat{\mathbf{\Gamma}} \frac{1}{M} \sum_{\tau, t} \mathbf{y}_{\tau, t+1} \bar{\mathbf{z}}_{\tau, t}^\top \bar{\mathbf{W}}^\top \right) \\
 &\quad + \frac{1}{2} \text{tr} \left(\hat{\mathbf{\Gamma}} \frac{1}{M} \sum_{\tau, t} \mathbf{y}_{\tau, t+1} \mathbf{y}_{\tau, t+1}^\top \right) \\
 &= \frac{1}{2} \text{tr}(\hat{\mathbf{\Gamma}} \bar{\mathbf{W}} \hat{\Sigma} \bar{\mathbf{W}}^\top) - \text{tr}(\hat{\mathbf{\Gamma}} \hat{\Sigma}_{y\bar{z}} \bar{\mathbf{W}}^\top) + \frac{1}{2} \text{tr}(\hat{\mathbf{\Gamma}} \hat{\Sigma}_{yy}).
 \end{aligned}$$

□

Lemma A.7 (Population second moment is positive definite on S). Let $\bar{\mathbf{z}}_t := (\bar{\mathbf{n}}_t^\top, \bar{\mathbf{g}}_t^\top)^\top \in \mathbb{R}^{2K}$ with $\bar{\mathbf{n}}_t = \frac{1}{t} \sum_{s=1}^t \mathbf{x}_s$ and $\bar{\mathbf{g}}_t = \frac{1}{t} \sum_{s=1}^t r_s \mathbf{x}_s$, where $r_s = \mathbf{w}^\top \mathbf{x}_s + \epsilon_s$. Assume $\mathbf{w} \sim \mathcal{N}(0, \tau_w^2 I_K)$ and is independent of $\{\mathbf{x}_s\}$ and $\{\epsilon_s\}$, and $\{\epsilon_s\}$ is a conditionally zero-mean σ_ϵ -sub-Gaussian martingale difference sequence. The agent uses γ -mixture exploration. Define the population second-moment

$$\bar{\Sigma} := \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top].$$

918 Suppose the teacher's parameters (step size c_0 , reward preconditioner \mathbf{U}) and problem parameters
919 satisfy

$$920 \quad 921 \quad \frac{(1-\gamma)}{2} c_0 \|\mathbf{U}\|_{\text{op}} \sigma_\epsilon^2 < \tau_w \frac{\gamma}{K}. \quad (\text{A.3})$$

922 Then for any $t \geq 2$, the restriction $\bar{\Sigma}|_S$ is strictly positive definite on $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$; in particular,
923

$$924 \quad \lambda_{\min}(\bar{\Sigma}|_S) > 0,$$

925 and $\bar{\Sigma}|_S$ is invertible on S .

927 *Proof.* We work on $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$. Write

$$929 \quad 930 \quad \bar{\Sigma} = \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top] = \begin{pmatrix} \Sigma_{nn} & \Sigma_{ng} \\ \Sigma_{gn} & \Sigma_{gg} \end{pmatrix}.$$

931 Set

$$932 \quad a := \lambda_{\min}(\Sigma_{nn}|_{\mathbf{1}^\perp}), \quad c := \lambda_{\min}(\Sigma_{gg}|_{\mathbf{1}^\perp}), \quad b := \|\Sigma_{ng}|_{\mathbf{1}^\perp}\|_{\text{op}}.$$

934 Decompose $\mathbf{x}_s = \mathbf{p}_s + \mathbf{e}_s$ with $\mathbf{p}_s := \mathbb{E}[\mathbf{x}_s | \mathcal{F}_{s-1}]$ and $\mathbb{E}[\mathbf{e}_s \mathbf{e}_s^\top | \mathcal{F}_{s-1}] = \mathbf{F}(\mathbf{p}_s)$. For any $u \in \mathbf{1}^\perp$,

$$936 \quad 937 \quad \mathbb{E}[(u^\top \bar{\mathbf{n}}_t)^2] \geq \frac{1}{t^2} \sum_{s=1}^t \mathbb{E}[u^\top \mathbf{F}(\mathbf{p}_s) u].$$

938 By Lemma A.1 and mixture exploration, $\mathbf{F}(\mathbf{p}_s)|_{\mathbf{1}^\perp} \succeq (\gamma/K) I$, hence

$$940 \quad 941 \quad a \geq \frac{1}{t^2} \sum_{s=1}^t \frac{\gamma}{K} = \frac{\gamma}{Kt}. \quad (\text{A.4})$$

943 Split $\bar{\mathbf{g}}_t = \bar{\mathbf{g}}_t^{(\text{sig})} + \bar{\mathbf{g}}_t^{(\text{noise})}$ with $\bar{\mathbf{g}}_t^{(\text{sig})} = \frac{1}{t} \sum_{s=1}^t (\mathbf{w}^\top \mathbf{x}_s) \mathbf{x}_s = \text{Diag}(\bar{\mathbf{n}}_t) \mathbf{w}$. For any $v \in \mathbf{1}^\perp$,

$$946 \quad 947 \quad \mathbb{E}[(v^\top \bar{\mathbf{g}}_t^{(\text{sig})})^2] = \tau_w^2 \mathbb{E}[\|\text{Diag}(\bar{\mathbf{n}}_t) v\|_2^2] = \tau_w^2 \sum_{i=1}^K \mathbb{E}[\bar{n}_{t,i}^2] v_i^2.$$

948 Let $N_{t,i} := \sum_{s=1}^t \mathbf{1}\{A_s = i\}$. Since $N_{t,i}^2 \geq N_{t,i}$, $\mathbb{E}[\bar{n}_{t,i}^2] = \mathbb{E}[N_{t,i}^2]/t^2 \geq \mathbb{E}[N_{t,i}]/t^2 = \mathbb{E}[\bar{n}_{t,i}]/t$.
949 Mixture exploration yields $\mathbb{E}[\bar{n}_{t,i}] \geq \gamma/K$, so

$$951 \quad 952 \quad c \geq \tau_w^2 \frac{\gamma}{Kt}. \quad (\text{A.5})$$

953 Adding the PSD noise covariance only increases Σ_{gg} , thus equation A.5 holds.

954 We have

$$955 \quad 956 \quad \Sigma_{ng} = \mathbb{E}[\bar{\mathbf{n}}_t \bar{\mathbf{g}}_t^\top] = \underbrace{\mathbb{E}[\bar{\mathbf{n}}_t (\bar{\mathbf{g}}_t^{(\text{sig})})^\top]}_{=0} + \mathbb{E}[\bar{\mathbf{n}}_t (\bar{\mathbf{g}}_t^{(\text{noise})})^\top].$$

957 The first term vanishes because \mathbf{w} is independent of $(\bar{\mathbf{n}}_t, \{\epsilon_s\})$ and $\mathbb{E}[\mathbf{w}] = 0$. For the second term,

$$959 \quad 960 \quad \mathbb{E}[\bar{\mathbf{n}}_t (\bar{\mathbf{g}}_t^{(\text{noise})})^\top] = \frac{1}{t^2} \sum_{u=1}^t \sum_{s=1}^t \mathbb{E}[\mathbf{x}_u \epsilon_s \mathbf{x}_s^\top] = \frac{1}{t^2} \sum_{s=1}^{t-1} \sum_{u=s+1}^t \mathbb{E}[\mathbf{x}_u \epsilon_s \mathbf{x}_s^\top],$$

962 where we used $\mathbb{E}[\epsilon_s | \mathcal{F}_{s-1}] = 0$ to eliminate $u \leq s$. Fix $s < u$. Consider “world 0” where ϵ_s is set
963 to 0, and “world 1” the true world. Then

$$964 \quad 965 \quad \mathbb{E}[\mathbf{x}_u \epsilon_s \mathbf{x}_s^\top] = \mathbb{E}[(\mathbf{p}_u^{(1)} - \mathbf{p}_u^{(0)}) \epsilon_s \mathbf{x}_s^\top],$$

966 since $\mathbb{E}[\mathbf{p}_u^{(0)} \epsilon_s \mathbf{x}_s^\top] = 0$. With $\eta_u = c_0/u$, the projected logits satisfy (one-step normal form)

$$968 \quad 969 \quad \mathbf{y}_u = \frac{c_0}{u-1} (\mathbf{V} \mathbf{n}_{u-1} + \mathbf{U} \mathbf{g}_{u-1}) \Rightarrow \Delta \mathbf{y}_u = \frac{c_0}{u-1} \mathbf{U} (\epsilon_s \mathbf{x}_s)$$

970 when only ϵ_s is perturbed. By Lemma A.2 and the $(1-\gamma)$ factor from equation 3.3,

$$971 \quad \|\mathbf{p}_u^{(1)} - \mathbf{p}_u^{(0)}\|_2 \leq (1-\gamma) \cdot \frac{1}{2} \|\Delta \mathbf{y}_u\|_2 \leq (1-\gamma) \cdot \frac{1}{2} \cdot \frac{c_0}{u-1} \|\mathbf{U}\|_{\text{op}} |\epsilon_s|.$$

972 Hence

$$\begin{aligned}
 974 \quad \|\mathbb{E}[\mathbf{x}_u \epsilon_s \mathbf{x}_s^\top]\|_{\text{op}} &\leq \mathbb{E}[\|\mathbf{p}_u^{(1)} - \mathbf{p}_u^{(0)}\|_2 | \epsilon_s] \\
 975 \quad &\leq \frac{(1-\gamma)}{2} \frac{c_0}{u-1} \|\mathbf{U}\|_{\text{op}} \mathbb{E}[\epsilon_s^2] \\
 976 \quad &\leq \frac{(1-\gamma)}{2} \frac{c_0}{u-1} \|\mathbf{U}\|_{\text{op}} \sigma_\epsilon^2.
 \end{aligned}$$

979 Summing $u = s+1, \dots, t$ and $s = 1, \dots, t-1$ gives

$$\begin{aligned}
 981 \quad b &= \|\Sigma_{ng}|_{\mathbf{1}^\perp}\|_{\text{op}} \leq \frac{1}{t^2} \sum_{s=1}^{t-1} \sum_{u=s+1}^t \frac{(1-\gamma)}{2} \frac{c_0}{u-1} \|\mathbf{U}\|_{\text{op}} \sigma_\epsilon^2 \\
 982 \quad &\leq \frac{(1-\gamma)}{2} c_0 \|\mathbf{U}\|_{\text{op}} \sigma_\epsilon^2 \cdot \frac{t-1}{t^2} \\
 983 \quad &\leq \frac{C_b}{t}, \\
 984 \quad &\dots \\
 985 \quad &\dots \\
 986 \quad &\dots \\
 987 \quad &\dots \\
 988 \quad \text{with } C_b := \frac{(1-\gamma)}{2} c_0 \|\mathbf{U}\|_{\text{op}} \sigma_\epsilon^2.
 \end{aligned} \tag{A.6}$$

989 For any unit $(u, v) \in S$,

$$\begin{pmatrix} u \\ v \end{pmatrix}^\top \bar{\Sigma}|_S \begin{pmatrix} u \\ v \end{pmatrix} \geq a\|u\|^2 - 2b\|u\|\|v\| + c\|v\|^2 \geq \lambda_{\min} \begin{pmatrix} a & -b \\ -b & c \end{pmatrix}.$$

990 Thus

$$\lambda_{\min}(\bar{\Sigma}|_S) \geq \frac{a+c-\sqrt{(a-c)^2+4b^2}}{2}. \tag{A.7}$$

991 By equation A.4, equation A.5, and equation A.6,

$$\sqrt{ac} = \tau_w \frac{\gamma}{Kt}, \quad b \leq \frac{C_b}{t}.$$

1001 The small cross-block condition equation A.3 implies $b < \sqrt{ac}$ (for all $t \geq 2$), hence the 2×2 matrix
 1002 $\begin{pmatrix} a & -b \\ -b & c \end{pmatrix}$ is positive definite and the right-hand side of equation A.7 is strictly positive. Therefore
 1003 $\bar{\Sigma}|_S \succ 0$. \square

1004 **Lemma A.8** (Sample second-moment concentration for $\bar{\mathbf{z}}_t$). Under Assumption 3.1 and $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \tau_w^2 \mathbf{I}_K)$, the normalized statistic $\bar{\mathbf{z}}_t := (\bar{\mathbf{n}}_t^\top, \bar{\mathbf{g}}_t^\top)^\top \in \mathbb{R}^{2K}$ is sub-Gaussian with a dimension-free ψ_2 -norm $L := \|\bar{\mathbf{z}}_t\|_{\psi_2}$ depending only on $(\tau_w, \sigma_\epsilon, \gamma)$ (and not on K). Let

$$\hat{\bar{\Sigma}} := \frac{1}{M} \sum_{m=1}^M \bar{\mathbf{z}}_t^{(m)} \bar{\mathbf{z}}_t^{(m)\top}, \quad \bar{\Sigma} := \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top],$$

1011 where $\{\bar{\mathbf{z}}_t^{(m)}\}_{m=1}^M$ are i.i.d. copies of $\bar{\mathbf{z}}_t$ generated by independent rollouts of the same population
 1012 process (fixed γ). Let $\underline{\sigma} > 0$ be the population lower bound from Lemma A.7, i.e., $\lambda_{\min}(\bar{\Sigma}|_S) \geq \underline{\sigma}$
 1013 on $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$. Then there is a universal constant $C > 0$ such that, for any $\delta \in (0, 1)$, with
 1014 probability at least $1 - \delta$,

$$\|\hat{\bar{\Sigma}} - \bar{\Sigma}\|_{\text{op}} \leq CL^2 \left(\sqrt{\frac{2K + \log(1/\delta)}{M}} + \frac{2K + \log(1/\delta)}{M} \right). \tag{A.8}$$

1015 In particular, if

$$M \geq C_{\text{mc}} \frac{2K + \log(1/\delta)}{\underline{\sigma}^2} \quad \text{with} \quad C_{\text{mc}} := 16C^2L^4,$$

1023 then $\|\hat{\bar{\Sigma}} - \bar{\Sigma}\|_{\text{op}} \leq \frac{1}{2} \underline{\sigma}$, and consequently

$$\lambda_{\min}(\hat{\bar{\Sigma}}|_S) \geq \frac{1}{2} \underline{\sigma}. \tag{A.9}$$

1026 *Proof.* The sub-Gaussianity of $\bar{\mathbf{z}}_t$ follows from: (i) $\bar{\mathbf{n}}_t = \frac{1}{t} \sum_{s=1}^t \mathbf{x}_s$ is an average of one-hot
 1027 vectors from a γ -mixture policy, hence coordinate-wise sub-Gaussian with ψ_2 -norm bounded by a
 1028 constant depending only on γ ; (ii) $\bar{\mathbf{g}}_t = \frac{1}{t} \sum_{s=1}^t r_s \mathbf{x}_s$ with $r_s = \mathbf{w}^\top \mathbf{x}_s + \epsilon_s$, where \mathbf{w} is Gaussian
 1029 independent of $\{\mathbf{x}_s\}$ and $\{\epsilon_s\}$, and $\{\epsilon_s\}$ is conditionally sub-Gaussian. Thus $\bar{\mathbf{g}}_t$ is a sum of sub-
 1030 Gaussian vectors with ψ_2 -norm controlled by $(\tau_w, \sigma_\epsilon, \gamma)$; concatenation preserves sub-Gaussianity
 1031 with $L = \|\bar{\mathbf{z}}_t\|_{\psi_2} = O(1)$ in $(\tau_w, \sigma_\epsilon, \gamma)$.

1032 For i.i.d. sub-Gaussian samples in \mathbb{R}^d with $d = 2K$, the standard sample covariance operator-norm
 1033 deviation bound (e.g., matrix Bernstein / sub-Gaussian covariance concentration) yields equation A.8:
 1034

$$1035 \|\widehat{\bar{\Sigma}} - \bar{\Sigma}\|_{\text{op}} \leq C L^2 \left(\sqrt{\frac{d + \log(1/\delta)}{M}} + \frac{d + \log(1/\delta)}{M} \right).$$

1037 If $M \geq C_{\text{mc}}(2K + \log(1/\delta))/\underline{\sigma}^2$, then $\|\widehat{\bar{\Sigma}} - \bar{\Sigma}\|_{\text{op}} \leq \underline{\sigma}/2$. By Weyl's inequality on the restriction
 1038 to S ,

$$1040 \lambda_{\min}(\widehat{\bar{\Sigma}}|_S) \geq \lambda_{\min}(\bar{\Sigma}|_S) - \|\widehat{\bar{\Sigma}} - \bar{\Sigma}\|_{\text{op}} \geq \underline{\sigma} - \frac{1}{2}\sigma = \frac{1}{2}\sigma,$$

1041 which is equation A.9. \square

1042 **Lemma A.9** (Fisher two-channel quadratic: gradient and Hessian). Consider the *population* Fisher-
 1043 weighted quadratic from Eq. equation 4.1 written in the two-channel parameterization

$$1045 \mathcal{L}(\bar{\mathbf{W}}) := \frac{1}{2} \text{tr}(\Gamma \bar{\mathbf{W}} \bar{\Sigma} \bar{\mathbf{W}}^\top) - \text{tr}(\Gamma \Sigma_{y\bar{z}} \bar{\mathbf{W}}^\top) + \text{const}, \quad (\text{A.10})$$

1046 where $\bar{\mathbf{W}} \in \mathbb{R}^{K \times 2K}$, $\bar{\Sigma} = \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top]$, $\Sigma_{y\bar{z}} = \mathbb{E}[\mathbf{y}_{t+1} \bar{\mathbf{z}}_t^\top]$, and $\Gamma = \mathbb{E}[\mathbf{F}(\mathbf{p}_{t+1}^{\text{PO}})]$. Then

$$1047 \nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}) = \Gamma(\bar{\mathbf{W}} \bar{\Sigma} - \Sigma_{y\bar{z}}) =: \mathbf{E}(\bar{\mathbf{W}}) \in \mathbb{R}^{K \times 2K}, \quad (\text{A.11})$$

$$1049 \nabla^2 \mathcal{L}(\bar{\mathbf{W}})[\Delta] = \Gamma \Delta \bar{\Sigma} \quad (\Delta \in \mathbb{R}^{K \times 2K}). \quad (\text{A.12})$$

1050 *Proof.* Write $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \text{const}$ with

$$1052 \mathcal{L}_1(\bar{\mathbf{W}}) := \frac{1}{2} \text{tr}(\Gamma \bar{\mathbf{W}} \bar{\Sigma} \bar{\mathbf{W}}^\top), \quad \mathcal{L}_2(\bar{\mathbf{W}}) := -\text{tr}(\Gamma \Sigma_{y\bar{z}} \bar{\mathbf{W}}^\top).$$

1053 Using the Frobenius inner product $\langle A, B \rangle = \text{tr}(A^\top B)$ and $d(\bar{\mathbf{W}} \bar{\Sigma} \bar{\mathbf{W}}^\top) = (d\bar{\mathbf{W}}) \bar{\Sigma} \bar{\mathbf{W}}^\top +$
 1054 $\bar{\mathbf{W}} \bar{\Sigma} (d\bar{\mathbf{W}})^\top$ with $\bar{\Sigma}^\top = \bar{\Sigma}$, $\Gamma^\top = \Gamma$,

$$1055 d\mathcal{L}_1 = \langle \Gamma \bar{\mathbf{W}} \bar{\Sigma}, d\bar{\mathbf{W}} \rangle, \quad d\mathcal{L}_2 = \langle -\Gamma \Sigma_{y\bar{z}}, d\bar{\mathbf{W}} \rangle,$$

1056 so $d\mathcal{L} = \langle \Gamma(\bar{\mathbf{W}} \bar{\Sigma} - \Sigma_{y\bar{z}}), d\bar{\mathbf{W}} \rangle$, which proves equation A.11. For the Hessian, with $\bar{\mathbf{W}}(\epsilon) =$
 1057 $\bar{\mathbf{W}} + \epsilon \Delta$,

$$1059 \frac{d}{d\epsilon} \nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(\epsilon)) = \Gamma \Delta \bar{\Sigma},$$

1060 establishing equation A.12. Equivalently, $d^2 \mathcal{L}[\Delta, \Delta] = \text{tr}(\Delta^\top \Gamma \Delta \bar{\Sigma}) = \|\Gamma^{1/2} \Delta \bar{\Sigma}^{1/2}\|_F^2 \geq 0$. \square

1061 **Lemma A.10** (PL inequality on $\mathbf{1}^\perp$). Under mixture exploration (Lemma A.1) so that Lemma A.7
 1062 holds, the population Fisher-weighted quadratic

$$1064 \mathcal{L}(\bar{\mathbf{W}}) = \frac{1}{2} \text{tr}(\Gamma \bar{\mathbf{W}} \bar{\Sigma} \bar{\mathbf{W}}^\top) - \text{tr}(\Gamma \Sigma_{y\bar{z}} \bar{\mathbf{W}}^\top) + \text{const}$$

1065 satisfies, for any global minimizer $\bar{\mathbf{W}}^*$,

$$1067 \mathcal{L}(\bar{\mathbf{W}}) - \mathcal{L}(\bar{\mathbf{W}}^*) \leq \frac{1}{2\mu} \|\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}})\|_F^2, \quad \mu := \lambda_{\min}^+(\Gamma|_{\mathbf{1}^\perp}) \lambda_{\min}^+(\bar{\Sigma}|_S), \quad (\text{A.13})$$

1069 where $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$. Moreover, by Lemma A.1 and Lemma A.7,

$$1070 \lambda_{\min}^+(\Gamma|_{\mathbf{1}^\perp}) \geq \frac{\gamma}{K}, \quad \lambda_{\min}^+(\bar{\Sigma}|_S) \geq \underline{\sigma} > 0, \quad \Rightarrow \quad \mu \geq \frac{\gamma}{K} \cdot \underline{\sigma}. \quad (\text{A.14})$$

1072 *Proof.* Let $\Delta := \bar{\mathbf{W}} - \bar{\mathbf{W}}^*$ and define $\mathbf{X} := \Gamma^{1/2} \Delta \bar{\Sigma}^{1/2}$. By Lemma A.9,

$$1073 \nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}) = \Gamma \Delta \bar{\Sigma} = \Gamma^{1/2} \mathbf{X} \bar{\Sigma}^{1/2}, \quad \mathcal{L}(\bar{\mathbf{W}}) - \mathcal{L}(\bar{\mathbf{W}}^*) = \frac{1}{2} \text{tr}(\Gamma \Delta \bar{\Sigma} \Delta^\top) = \frac{1}{2} \|\mathbf{X}\|_F^2.$$

1075 For any PSD \mathbf{A}, \mathbf{B} and any matrix \mathbf{X} , $\|\mathbf{A}^{1/2} \mathbf{X} \mathbf{B}^{1/2}\|_F^2 = \text{tr}(\mathbf{X}^\top \mathbf{A} \mathbf{X} \mathbf{B}) \geq$
 1076 $\lambda_{\min}(\mathbf{A}) \lambda_{\min}(\mathbf{B}) \|\mathbf{X}\|_F^2$. Applying this with $\mathbf{A} = \Gamma|_{\mathbf{1}^\perp}$ and $\mathbf{B} = \bar{\Sigma}|_S$, we obtain

$$1078 \|\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}})\|_F^2 = \|\Gamma^{1/2} \mathbf{X} \bar{\Sigma}^{1/2}\|_F^2 \geq \lambda_{\min}^+(\Gamma|_{\mathbf{1}^\perp}) \lambda_{\min}^+(\bar{\Sigma}|_S) \|\mathbf{X}\|_F^2 = 2\mu (\mathcal{L}(\bar{\mathbf{W}}) - \mathcal{L}(\bar{\mathbf{W}}^*)),$$

1079 which is equivalent to the PL inequality equation A.13. The bound equation A.14 follows from
 Lemma A.1 (giving $\Gamma|_{\mathbf{1}^\perp} \succeq (\gamma/K)I$) and Lemma A.7 (giving $\bar{\Sigma}|_S \succeq \underline{\sigma} I$). \square

1080 A.2 REWARD-SHOCK ROBUSTNESS
1081

1082 *Proof of Theorem 4.8.* Under the s -CRN coupling (Def. 4.7), the baseline and perturbed runs share
1083 the same task \mathbf{w} , the same uniforms $\{U_t\}$ for sampling, and the same noise sequence $\{\epsilon_t\}$; they differ
1084 only by feeding a shocked reward $\tilde{r}_s = r_s + \delta_r$ at round s . Define

1085 $\Delta \mathbf{p}_{t+1} := \tilde{\mathbf{p}}_{t+1} - \mathbf{p}_{t+1}$, $\Delta \mathbf{n}_t := \tilde{\mathbf{n}}_t - \mathbf{n}_t$, $\Delta \mathbf{g}_t := \tilde{\mathbf{g}}_t - \mathbf{g}_t$, $a_{t+1} := \mathbb{E}[\|\Delta \mathbf{p}_{t+1}\| \mid \mathcal{F}_{s-1}]$,

1086 and the normalized accumulators $\bar{\mathbf{n}}_t := \mathbf{n}_t/t$, $\bar{\mathbf{g}}_t := \mathbf{g}_t/t$ (and their deltas analogously).

1087 Pathwise relations for counts and rewards. With $\mathbf{x}_t = \mathbf{e}_{A_t}$ and $r_t = \langle \mathbf{w}, \mathbf{x}_t \rangle + \epsilon_t$,

$$1089 \mathbf{n}_t = \sum_{u=1}^t \mathbf{x}_u, \quad \mathbf{g}_t = \sum_{u=1}^t r_u \mathbf{x}_u = \text{Diag}(\mathbf{n}_t) \mathbf{w} + \sum_{u=1}^t \epsilon_u \mathbf{x}_u.$$

1092 Let $h_t := \sum_{u=1}^t \epsilon_u \mathbf{x}_u$ and $\tilde{h}_t := \sum_{u=1}^t \epsilon_u \tilde{\mathbf{x}}_u$. For the perturbed run, only round s changes in the
1093 fed reward, hence

$$1094 \tilde{\mathbf{g}}_t = \text{Diag}(\tilde{\mathbf{n}}_t) \mathbf{w} + \tilde{h}_t + \mathbf{1}\{t \geq s\} \delta_r \tilde{\mathbf{x}}_s.$$

1095 Therefore, for $t \geq s$,

$$1097 \Delta \bar{\mathbf{g}}_t = \frac{1}{t} \text{Diag}(\mathbf{w}) \Delta \mathbf{n}_t + \frac{1}{t} \Delta h_t + \frac{1}{t} \delta_r \tilde{\mathbf{x}}_s, \quad \Delta h_t := \tilde{h}_t - h_t. \quad (\text{A.15})$$

1099 Two-channel linearization of projected logits. Using the (population-optimal) one-step normal form
1100 aligned with equation 3.2 and projecting away the softmax gauge,

$$1101 \Delta \mathbf{y}_{t+1} := \text{Proj}\left(\tilde{\mathbf{s}}_{t+1}^{(\text{pert})} - \tilde{\mathbf{s}}_{t+1}^{(\text{base})}\right) = \frac{c}{t} \left(\mathbf{V} \Delta \mathbf{n}_t + \mathbf{U} \Delta \mathbf{g}_t\right) = c \left(\mathbf{V} \Delta \bar{\mathbf{n}}_t + \mathbf{U} \Delta \bar{\mathbf{g}}_t\right). \quad (\text{A.16})$$

1103 Softmax is $1/2$ -Lipschitz on $\mathbf{1}^\perp$, and the γ -mixture equation 3.3 scales the sensitivity by $(1 - \gamma)$,
1104 hence

$$1105 \|\Delta \mathbf{p}_{t+1}\| \leq (1 - \gamma) \frac{1}{2} \|\Delta \mathbf{y}_{t+1}\|. \quad (\text{A.17})$$

1107 Combining equation A.15–equation A.17 and conditioning on \mathcal{F}_{s-1} yields

$$1109 a_{t+1} \leq \frac{c(1 - \gamma)}{2} \mathbb{E} \left[\left\| (\mathbf{V} + \mathbf{U} \text{Diag}(\mathbf{w})) \Delta \bar{\mathbf{n}}_t + \mathbf{U} \Delta \bar{h}_t + \mathbf{U} \frac{\delta_r}{t} \tilde{\mathbf{x}}_s \right\| \mid \mathcal{F}_{s-1} \right] \\ 1111 \leq \frac{c(1 - \gamma)}{2t} \left(\|\mathbf{V} + \mathbf{U} \text{Diag}(\mathbf{w})\|_{\text{op}} \mathbb{E}[\|\Delta \mathbf{n}_t\| \mid \mathcal{F}_{s-1}] \right. \\ 1113 \left. + \|\mathbf{U}\|_{\text{op}} \mathbb{E}[\|\Delta h_t\| \mid \mathcal{F}_{s-1}] + \|\mathbf{U}\|_{\text{op}} |\delta_r| \right). \quad (\text{A.18})$$

1115 **CRN coupling controls $\mathbb{E}[\|\Delta \mathbf{n}_t\|]$ and $\mathbb{E}[\|\Delta h_t\|]$.** By inverse-CDF coupling,

$$1116 \mathbb{P}(\tilde{A}_u \neq A_u \mid \mathcal{F}_{u-1}) = \frac{1}{2} \|\Delta \mathbf{p}_u\|_1 \leq \frac{\sqrt{K}}{2} \|\Delta \mathbf{p}_u\|.$$

1118 Since $\|\Delta \mathbf{x}_u\| \leq \sqrt{2}$,

$$1119 \mathbb{E}[\|\Delta \mathbf{x}_u\| \mid \mathcal{F}_{u-1}] \leq \sqrt{\frac{K}{2}} \|\Delta \mathbf{p}_u\|. \quad (\text{A.19})$$

1121 Summing equation A.19 from $u = s$ to t and conditioning on \mathcal{F}_{s-1} ,

$$1123 \mathbb{E}[\|\Delta \mathbf{n}_t\| \mid \mathcal{F}_{s-1}] \leq \sqrt{\frac{K}{2}} \sum_{u=s}^t a_u. \quad (\text{A.20})$$

1125 For the noise accumulator, using the zero-mean σ_ϵ -sub-Gaussian assumption (hence $\mathbb{E}[|\epsilon_u| \mid \mathcal{F}_{u-1}] \leq$
1126 $C_\epsilon := \sqrt{2/\pi} \sigma_\epsilon$) gives

$$1128 \mathbb{E}[\|\Delta h_t\| \mid \mathcal{F}_{s-1}] \leq C_\epsilon \sqrt{\frac{K}{2}} \sum_{u=s}^t a_u. \quad (\text{A.21})$$

1130 **A Grönwall-type recursion and its solution.** Plugging equation A.20–equation A.21 into equa-
1131 tion A.18, define

$$1133 a := \frac{c(1 - \gamma)}{2} \|\mathbf{U}\|_{\text{op}}, \quad b := \frac{c(1 - \gamma)}{2} \sqrt{\frac{K}{2}} \left(\|\mathbf{V} + \mathbf{U} \text{Diag}(\mathbf{w})\|_{\text{op}} + C_\epsilon \|\mathbf{U}\|_{\text{op}} \right),$$

1134 and obtain, for $t \geq s$,

$$1135 \quad 1136 \quad 1137 \quad a_{t+1} \leq \frac{a}{t} |\delta_r| + \frac{b}{t} \sum_{u=s}^t a_u. \quad (\text{A.22})$$

1138 Let $S_t := \sum_{u=s}^t a_u$ with $S_{s-1} = 0$. Then

$$1140 \quad 1141 \quad S_{t+1} \leq \left(1 + \frac{b}{t}\right) S_t + \frac{a}{t} |\delta_r|. \quad (\text{A.23})$$

1142 Unrolling equation A.23 and using the standard Gamma-ratio bound yields a constant $C_b > 0$
1143 (depending only on b) such that

$$1144 \quad 1145 \quad 1146 \quad S_t \leq a C_b |\delta_r| \sum_{u=s}^{t-1} \frac{1}{u} \left(\frac{t}{u}\right)^b \leq \frac{a C_b}{b} \left(\frac{t}{s}\right)^b |\delta_r|.$$

1147 Returning to equation A.22,

$$1149 \quad 1150 \quad a_{t+1} \leq \frac{a}{t} |\delta_r| + \frac{b}{t} S_t \leq \frac{a}{t} |\delta_r| + \frac{a C_b}{t} \left(\frac{t}{s}\right)^b |\delta_r| = \frac{a(1+C_b)}{s} \left(\frac{t}{s}\right)^{b-1} |\delta_r|.$$

1151 Therefore, for any $1 \leq s \leq t$,

$$1153 \quad \mathbb{E} \left[\|\Delta \hat{\mathbf{p}}_{t+1}^s\|_2 \mid \mathcal{F}_{s-1} \right] \leq \frac{a(1+C_b)}{s} \left(\frac{t}{s}\right)^{b-1} |\delta_r|. \quad (\text{A.24})$$

1155 In particular, if the learning-rate constant c is small enough so that $b < 1$, then $\left(\frac{t}{s}\right)^{b-1} \rightarrow 0$ as $t \rightarrow \infty$,
1156 and the one-shot impact decays to zero:

$$1158 \quad \lim_{t \rightarrow \infty} \mathbb{E} \left[\|\Delta \hat{\mathbf{p}}_{t+1}^s\|_2 \mid \mathcal{F}_{s-1} \right] = 0.$$

1159 This completes the proof. \square

A.3 KL DIVERGENCE VS. FISHER-WEIGHTED DUADRATIC

1161 *Proof of Theorem 4.1.* Recall that N denotes the trajectory length in the dataset construction of
1162 Sec. 4, and expectations below average over (τ, t) with $t \in \{1, \dots, N-1\}$ and $\tau \in \mathcal{D}$. Let
1163 $\tilde{\mathbf{p}}(\mathbf{s}) := \text{softmax}(\mathbf{s})$ and define the projected logit error
1164

$$1166 \quad \Delta_{t+1} := \text{Proj}(\hat{\mathbf{s}}_{t+1} - \mathbf{s}_{t+1}^{\text{PO}}) \in \mathbf{1}^\perp, \quad \text{Proj} := \mathbf{I} - \frac{1}{K} \mathbf{1} \mathbf{1}^\top.$$

1167 Write the (softmax) Fisher matrix as $\mathbf{F}(\mathbf{p}) := \text{Diag}(\mathbf{p}) - \mathbf{p} \mathbf{p}^\top$ and recall from Eq. equation 4.1 that

$$1169 \quad 1170 \quad 1171 \quad \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} \Delta_{t+1}^\top \boldsymbol{\Gamma} \Delta_{t+1} \right], \quad \boldsymbol{\Gamma} := \frac{1}{N-1} \mathbb{E} \left[\sum_{t=1}^{N-1} \mathbf{F}(\mathbf{p}_t^{\text{PO}}) \right].$$

1172 By Lemma A.1 (mixture curvature), along the teacher’s γ -mixture policy we have the spectral
1173 sandwich on $\mathbf{1}^\perp$:

$$1174 \quad 1175 \quad \frac{\gamma}{K} \mathbf{I} \preceq \mathbf{F}(\mathbf{p}_t^{\text{PO}}) \Big|_{\mathbf{1}^\perp} \preceq \frac{1}{2} \mathbf{I}. \quad (\text{A.25})$$

1176 By convexity of the PSD cone, the same bounds transfer to $\boldsymbol{\Gamma}$ on $\mathbf{1}^\perp$.

1177 **Upper bound.** Mixing with the uniform distribution is a Markov kernel; by data processing for
1178 f -divergences,

$$1179 \quad D_{\text{KL}}(\mathbf{p}_{t+1}^{\text{PO}} \parallel \hat{\mathbf{p}}_{t+1}) \leq D_{\text{KL}}(\tilde{\mathbf{p}}(\mathbf{s}_{t+1}^{\text{PO}}) \parallel \tilde{\mathbf{p}}(\hat{\mathbf{s}}_{t+1})) = D_{\text{KL}}(\tilde{\mathbf{p}}(\mathbf{s}_{t+1}^{\text{PO}}) \parallel \tilde{\mathbf{p}}(\mathbf{s}_{t+1}^{\text{PO}} + \Delta_{t+1})).$$

1180 Let $\phi(\mathbf{s}) := \log \sum_i e^{s_i}$; then $\nabla \phi = \text{softmax}$ and $\nabla^2 \phi(\mathbf{s}) = \mathbf{F}(\tilde{\mathbf{p}}(\mathbf{s}))$. The Bregman integral form
1181 of KL yields, for any $\Delta \in \mathbf{1}^\perp$,

$$1183 \quad 1184 \quad 1185 \quad D_{\text{KL}}(\tilde{\mathbf{p}}(\mathbf{s}) \parallel \tilde{\mathbf{p}}(\mathbf{s} + \Delta)) = \int_0^1 (1 - \tau) \Delta^\top \mathbf{F}(\tilde{\mathbf{p}}(\mathbf{s} + \tau \Delta)) \Delta d\tau. \quad (\text{A.26})$$

1186 Using $\|\mathbf{F}(\cdot)\|_{\mathbf{1}^\perp} \leq \frac{1}{2}$ and $\int_0^1 (1 - \tau) d\tau = \frac{1}{2}$,

$$1187 \quad D_{\text{KL}}(\mathbf{p}_{t+1}^{\text{PO}} \parallel \hat{\mathbf{p}}_{t+1}) \leq \frac{1}{4} \|\Delta_{t+1}\|_2^2.$$

From equation A.25, $\Delta_{t+1}^\top \Gamma \Delta_{t+1} \geq \frac{\gamma}{K} \|\Delta_{t+1}\|_2^2$, hence $\|\Delta_{t+1}\|_2^2 \leq \frac{K}{\gamma} \Delta_{t+1}^\top \Gamma \Delta_{t+1}$. Averaging over t and taking expectation,

$$\mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} D_{\text{KL}}(\mathbf{p}_{t+1}^{\text{PO}} \parallel \hat{\mathbf{p}}_{t+1}) \right] \leq \frac{K}{4\gamma} \mathcal{L}(\boldsymbol{\theta}).$$

Lower bound. Pinsker's inequality implies $D_{\text{KL}}(\mathbf{p} \parallel \mathbf{q}) \geq \frac{1}{2} \|\mathbf{p} - \mathbf{q}\|_1^2 \geq \frac{1}{2} \|\mathbf{p} - \mathbf{q}\|_2^2$. Let $f(\mathbf{s}) := (1 - \gamma) \tilde{\mathbf{p}}(\mathbf{s}) + \gamma \mathbf{1}/K$ so that $\mathbf{p}_{t+1}^{\text{PO}} = f(\mathbf{s}_{t+1}^{\text{PO}})$ and $\hat{\mathbf{p}}_{t+1} = f(\hat{\mathbf{s}}_{t+1})$. By the mean-value integral,

$$\mathbf{p}_{t+1}^{\text{PO}} - \hat{\mathbf{p}}_{t+1} = \int_0^1 \nabla f(\mathbf{s}_{t+1}^{\text{PO}} + \tau \Delta_{t+1}) \Delta_{t+1} d\tau = (1 - \gamma) \int_0^1 \mathbf{F}(\tilde{\mathbf{p}}(\mathbf{s}_{t+1}^{\text{PO}} + \tau \Delta_{t+1})) \Delta_{t+1} d\tau,$$

whence $\|\mathbf{p}_{t+1}^{\text{PO}} - \hat{\mathbf{p}}_{t+1}\|_2 \leq (1 - \gamma) \cdot \frac{1}{2} \|\Delta_{t+1}\|_2$ and thus

$$\|\Delta_{t+1}\|_2^2 \geq \frac{4}{(1 - \gamma)^2} \|\mathbf{p}_{t+1}^{\text{PO}} - \hat{\mathbf{p}}_{t+1}\|_2^2.$$

Using the upper side of equation A.25, $\Delta_{t+1}^\top \Gamma \Delta_{t+1} \leq \frac{1}{2} \|\Delta_{t+1}\|_2^2$, we obtain

$$\mathcal{L}(\boldsymbol{\theta}) \leq \frac{1}{2} \mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} \|\Delta_{t+1}\|_2^2 \right] \leq \frac{2}{(1 - \gamma)^2} \mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} \|\mathbf{p}_{t+1}^{\text{PO}} - \hat{\mathbf{p}}_{t+1}\|_2^2 \right].$$

Finally, combining with Pinsker yields

$$\mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} D_{\text{KL}}(\mathbf{p}_{t+1}^{\text{PO}} \parallel \hat{\mathbf{p}}_{t+1}) \right] \geq \frac{1}{2} \mathbb{E} \left[\frac{1}{N-1} \sum_{t=1}^{N-1} \|\mathbf{p}_{t+1}^{\text{PO}} - \hat{\mathbf{p}}_{t+1}\|_2^2 \right] \geq \frac{(1 - \gamma)^2}{4} \mathcal{L}(\boldsymbol{\theta}).$$

This proves the two-sided bound. \square

A.4 CLOSED-LOOP IMITATION OF POLICY OPTIMIZATION

Proof of Theorem 4.2. By Lemma A.4, the *projected* student logits are linear in the normalized statistics:

$$\text{Proj } \hat{\mathbf{s}}_{t+1} = \bar{\mathbf{W}} \bar{\mathbf{z}}_t, \quad \bar{\mathbf{W}} := [\mathbf{W}_n \ \mathbf{W}_g] \in \mathbb{R}^{K \times 2K}, \quad \bar{\mathbf{z}}_t := \begin{pmatrix} \bar{\mathbf{n}}_t \\ \bar{\mathbf{g}}_t \end{pmatrix} \in \mathbb{R}^{2K}.$$

For the teacher generated by equation 3.2 with $\eta_t = c/t$, we likewise have

$$\mathbf{y}_{t+1} := \text{Proj } \mathbf{s}_{t+1}^{\text{PO}} = \frac{c}{t} \text{Proj}(\mathbf{V} \mathbf{n}_t + \mathbf{U} \mathbf{g}_t) = \bar{\mathbf{W}}_* \bar{\mathbf{z}}_t, \quad \bar{\mathbf{W}}_* := \text{Proj} [\mathbf{V} \ \mathbf{U}] \in \mathbb{R}^{K \times 2K},$$

so the *labels are realizable* by the same two-channel structure.

Lemma A.5 gives the population Fisher-weighted quadratic form

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \text{tr}(\boldsymbol{\Gamma} \bar{\mathbf{W}} \bar{\boldsymbol{\Sigma}} \bar{\mathbf{W}}^\top) - \text{tr}(\boldsymbol{\Gamma} \boldsymbol{\Sigma}_{y\bar{z}} \bar{\mathbf{W}}^\top) + \text{const}, \quad \boldsymbol{\Gamma} := \mathbb{E}[\mathbf{F}(\mathbf{p}_{t+1}^{\text{PO}})], \quad \bar{\boldsymbol{\Sigma}} := \mathbb{E}[\bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top].$$

Using realizability $\mathbf{y}_{t+1} = \bar{\mathbf{W}}_* \bar{\mathbf{z}}_t$, we have $\boldsymbol{\Sigma}_{y\bar{z}} = \mathbb{E}[\mathbf{y}_{t+1} \bar{\mathbf{z}}_t^\top] = \mathbb{E}[\bar{\mathbf{W}}_* \bar{\mathbf{z}}_t \bar{\mathbf{z}}_t^\top] = \bar{\mathbf{W}}_* \bar{\boldsymbol{\Sigma}}$. Substituting gives the *completed-square* form

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2} \text{tr} \left(\boldsymbol{\Gamma} (\bar{\mathbf{W}} - \bar{\mathbf{W}}_*) \bar{\boldsymbol{\Sigma}} (\bar{\mathbf{W}} - \bar{\mathbf{W}}_*)^\top \right) + \text{const}.$$

By Lemma A.1 (mixture curvature), $\boldsymbol{\Gamma}|_{\mathbf{1}^\perp} \succeq (\gamma/K) I$; by Lemma A.7, $\bar{\boldsymbol{\Sigma}}|_S \succeq \underline{\sigma} I$ on $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$ under Assumption 3.1. Hence the quadratic is *strongly convex* in $\bar{\mathbf{W}}$ on S and has the unique minimizer $\bar{\mathbf{W}} = \bar{\mathbf{W}}_*$. Therefore, for any history prefix \mathcal{H}_t ,

$$\text{Proj } \hat{\mathbf{s}}_{t+1}(\mathcal{H}_t; \boldsymbol{\theta}^*) = \bar{\mathbf{W}}_* \bar{\mathbf{z}}_t = \text{Proj } \mathbf{s}_{t+1}^{\text{PO}}(\mathcal{H}_t).$$

Since softmax is invariant to additive constants (the projected logits remove exactly the span $\{\mathbf{1}\}$ gauge), the induced policies coincide: $\hat{\mathbf{p}}_{t+1}(\mathcal{H}_t; \boldsymbol{\theta}^*) = \mathbf{p}_{t+1}^{\text{PO}}(\mathcal{H}_t)$. \square

1242 *Proof of Theorem 4.3.* By Lemma A.4, the projected student logits are linear in the normalized
 1243 statistics: $\text{Proj } \hat{s}_{t+1} = \bar{\mathbf{W}} \bar{\mathbf{z}}_t$ with $\bar{\mathbf{W}} = [\mathbf{W}_n \mathbf{W}_g]$ and $\bar{\mathbf{z}}_t = (\bar{\mathbf{n}}_t^\top, \bar{\mathbf{g}}_t^\top)^\top$. Let $\mathbf{y}_{t+1} := \text{Proj}(\mathbf{s}_{t+1}^{\text{PO}})$.
 1244 Lemma A.5 and Lemma A.6 give the population and empirical Fisher-weighted quadratic forms, and
 1245 Theorem 4.2 (under Assumption 3.1) guarantees realizability: there exists a unique $\bar{\mathbf{W}}_*$ such that
 1246 $\mathbf{y}_{t+1} = \bar{\mathbf{W}}_* \bar{\mathbf{z}}_t$ for all prefixes. Moreover, Lemma A.1 implies $\Gamma|_{\mathbf{1}^\perp} \succeq (\gamma/K)I$, and Lemma A.7
 1247 implies $\bar{\Sigma}|_S \succeq \underline{\sigma}I$ with $\underline{\sigma} \asymp c_\lambda/t$ on $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$, so the population quadratic in $\bar{\mathbf{W}}$ is strongly
 1248 convex on S with unique minimizer $\bar{\mathbf{W}}_*$. For the empirical problem, Lemma A.8 yields (for i.i.d.
 1249 rollouts)

$$1250 \quad \|\hat{\Sigma} - \bar{\Sigma}\|_{\text{op}} \leq C_1 L^2 \left(\sqrt{\frac{2K + \log(1/\delta)}{M}} + \frac{2K + \log(1/\delta)}{M} \right).$$

1252 Taking $M \geq C t^2 (2K + \log(1/\delta))/c_\lambda^2$ (for a large enough absolute C depending on C_1, L) guarantees
 1253 $\hat{\Sigma}|_S \succeq \frac{1}{2} \underline{\sigma}I$, while $\hat{\Gamma}|_{\mathbf{1}^\perp} \succeq (\gamma/K)I$ by mixture curvature. Plugging the realizable labels $\mathbf{y}_{t+1} =$
 1254 $\bar{\mathbf{W}}_* \bar{\mathbf{z}}_t$ into Lemma A.6 gives

$$1256 \quad \hat{\mathcal{L}}(\bar{\mathbf{W}}) = \frac{1}{2} \text{tr}(\hat{\Gamma}(\bar{\mathbf{W}} - \bar{\mathbf{W}}_*) \hat{\Sigma}(\bar{\mathbf{W}} - \bar{\mathbf{W}}_*)^\top) + \text{const},$$

1258 so the empirical minimizer satisfies $\bar{\mathbf{W}} = \bar{\mathbf{W}}_*$ whenever $\hat{\Sigma}|_S \succ 0$ (which holds with probability
 1259 $\geq 1 - \delta$). Thus $\text{Proj } \hat{s}_{t+1} = \text{Proj } \mathbf{s}_{t+1}^{\text{PO}}$ and consequently $\hat{\mathbf{p}}_{t+1}(\mathcal{H}_t; \hat{\theta}) = \mathbf{p}_{t+1}^{\text{PO}}(\mathcal{H}_t)$ for the fixed
 1260 test history \mathcal{H}_t . For the expected mismatch, on the high-probability event the error is 0, and on its
 1261 complement a crude bound together with the $(1 - \gamma)$ mixture factor yields $\|\hat{\mathbf{p}}_{t+1} - \mathbf{p}_{t+1}^{\text{PO}}\|_2^2 \leq 2(1 - \gamma)^2$,
 1262 hence

$$1263 \quad \mathbb{E}_{\text{train}} [\|\hat{\mathbf{p}}_{t+1} - \mathbf{p}_{t+1}^{\text{PO}}\|_2^2] \leq 0 \cdot (1 - \delta) + 2(1 - \gamma)^2 \cdot \delta = 2(1 - \gamma)^2 \delta.$$

1264 This proves the theorem. \square

1266 A.5 CONVERGENCE OF THE FISHER-TRAINED TWO-CHANNEL LSA

1268 We analyze the continuous-time gradient flow on the two-channel operator $\bar{\mathbf{W}}$ for the Fisher-weighted
 1269 quadratic objective in equation A.10.

1270 **Theorem A.11** (Exponential convergence of the $\bar{\mathbf{W}}$ -flow). Assume mixture exploration and that
 1271 Assumption 3.1, Lemma A.1, and Lemma A.7 hold. Consider the gradient flow for the *population*
 1272 Fisher-weighted quadratic \mathcal{L} :

$$1273 \quad \dot{\bar{\mathbf{W}}}(t) = -\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(t)) = -\Gamma(\bar{\mathbf{W}}(t) \bar{\Sigma} - \Sigma_{y\bar{z}}), \quad (\text{A.27})$$

1275 initialized at any $\bar{\mathbf{W}}(0)$. Let $\bar{\mathbf{W}}^*$ be a global minimizer of \mathcal{L} . Then $\mathcal{L}(\bar{\mathbf{W}}(t))$ is strictly decreasing
 1276 along the flow and

$$1278 \quad \mathcal{L}(\bar{\mathbf{W}}(t)) - \mathcal{L}(\bar{\mathbf{W}}^*) \leq \exp(-2\mu t) (\mathcal{L}(\bar{\mathbf{W}}(0)) - \mathcal{L}(\bar{\mathbf{W}}^*)), \quad (\text{A.28})$$

1279 with

$$1280 \quad \mu := \lambda_{\min}^+(\Gamma|_{\mathbf{1}^\perp}) \lambda_{\min}^+(\bar{\Sigma}|_S), \quad S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp,$$

1281 and, by Lemma A.1 and Lemma A.7,

$$1283 \quad \lambda_{\min}^+(\Gamma|_{\mathbf{1}^\perp}) \geq \frac{\gamma}{K}, \quad \lambda_{\min}^+(\bar{\Sigma}|_S) \geq \underline{\sigma} > 0, \quad \Rightarrow \quad \mu \geq \frac{\gamma}{K} \cdot \underline{\sigma}.$$

1285 *Proof of Theorem A.11.* By Lemma A.9, we have

$$1287 \quad \nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}) = \Gamma(\bar{\mathbf{W}} \bar{\Sigma} - \Sigma_{y\bar{z}}),$$

1288 so the gradient flow $\dot{\bar{\mathbf{W}}}(t) = -\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(t))$ is well-defined. Along the trajectory,

$$1290 \quad \frac{d}{dt} \mathcal{L}(\bar{\mathbf{W}}(t)) = \langle \nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(t)), \dot{\bar{\mathbf{W}}}(t) \rangle = -\|\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(t))\|_F^2 \leq 0,$$

1293 hence $\mathcal{L}(\bar{\mathbf{W}}(t))$ is nonincreasing and strictly decreasing whenever $\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(t)) \neq \mathbf{0}$.

1294 Next, apply the Polyak-Łojasiewicz (PL) inequality on the restricted subspace $S := \mathbf{1}^\perp \oplus \mathbf{1}^\perp$
 1295 (Lemma A.10). Let

$$\mu := \lambda_{\min}^+(\Gamma|_{\mathbf{1}^\perp}) \lambda_{\min}^+(\bar{\Sigma}|_S).$$

1296 Then for any global minimizer $\bar{\mathbf{W}}^*$,
 1297

$$1298 \quad \mathcal{L}(\bar{\mathbf{W}}) - \mathcal{L}(\bar{\mathbf{W}}^*) \leq \frac{1}{2\mu} \|\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}})\|_F^2.$$

1300 Combining this with the energy decay identity gives, for all $t \geq 0$,
 1301

$$1302 \quad \frac{d}{dt} (\mathcal{L}(\bar{\mathbf{W}}(t)) - \mathcal{L}(\bar{\mathbf{W}}^*)) = - \|\nabla_{\bar{\mathbf{W}}} \mathcal{L}(\bar{\mathbf{W}}(t))\|_F^2 \leq -2\mu (\mathcal{L}(\bar{\mathbf{W}}(t)) - \mathcal{L}(\bar{\mathbf{W}}^*)).$$

1304 By Grönwall's inequality,
 1305

$$1306 \quad \mathcal{L}(\bar{\mathbf{W}}(t)) - \mathcal{L}(\bar{\mathbf{W}}^*) \leq \exp(-2\mu t) (\mathcal{L}(\bar{\mathbf{W}}(0)) - \mathcal{L}(\bar{\mathbf{W}}^*)).$$

1307 Finally, by mixture exploration (Lemma A.1) and the lower bound on the population second moment
 1308 on S (Lemma A.7),
 1309

$$1310 \quad \lambda_{\min}^+(\mathbf{T}|_{\mathbf{1}^\perp}) \geq \frac{\gamma}{K}, \quad \lambda_{\min}^+(\bar{\Sigma}|_S) \geq \underline{\sigma} > 0,$$

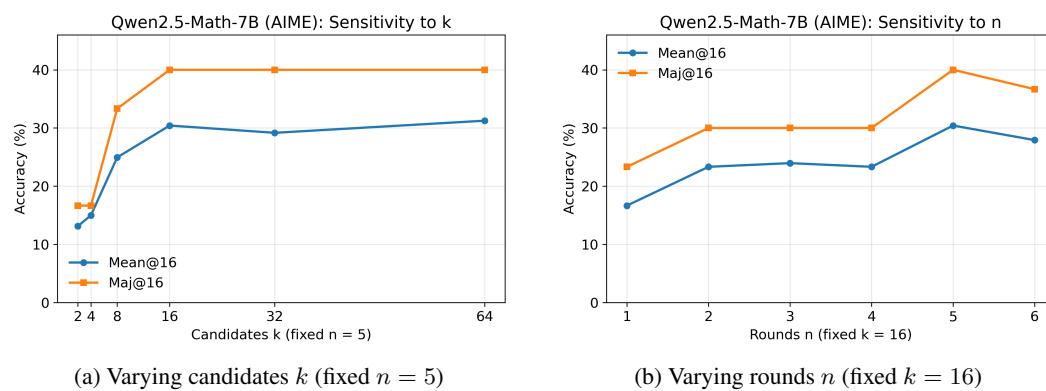
1311 which implies $\mu \geq (\gamma/K) \underline{\sigma}$. Strict decrease of the loss holds except at stationary points; by
 1312 Lemma A.9 together with the restricted positive definiteness, these coincide with the global minimiz-
 1313 ers on $\mathbf{1}^\perp$. \square

1315 B EXPERIMENTAL DETAILS

1316 This section provides additional details regarding the experimental setup, including specific hyperpa-
 1317 rameters for our method and the baselines, as well as the hardware and software environment used for
 1318 all experiments. We also present supplementary experimental results that complement the main text.

1319 B.1 HYPERPARAMETER SENSITIVITY.

1320 Figure 4 shows the impact of varying the number of in-context optimization rounds (n) and candidates
 1321 per round (k) on AIME 2024. As shown in Figure 4a, performance improves substantially as the
 1322 number of candidates (k) increases from 2 to 64, with Maj@16 accuracy more than doubling, then
 1323 saturates beyond this point. Increasing the number of rounds (n) is broadly beneficial up to a peak
 1324 near $n = 5$. A complementary grid and the corresponding latency/VRAM measures are reported in
 1325 Appendix C.2 (Tables 8).
 1326



1338 (a) Varying candidates k (fixed $n = 5$)

1339 (b) Varying rounds n (fixed $k = 16$)

1340 Figure 4: Hyperparameter sensitivity of ME-ICPO on AIME 2024 with Qwen2.5-Math-7B.

1341 B.2 HYPERPARAMETER AND IMPLEMENTATION DETAILS

1342 **ME-ICPO (Our Method).** For our method, we use the primary settings described in the main text
 1343 ($n = 5$ rounds of optimization, $k = 16$ candidates per round). Candidate chains-of-thought are
 1344 sampled using a temperature of 0.6 and a top-p value of 0.95. The summarization step, which is a
 1345 crucial component for managing context length, uses greedy decoding and is prompted to produce
 1346 a concise summary of approximately 100 tokens, with a hard limit of 500 tokens, focusing on the
 1347 reasoning strategy. The predictive answer distribution, used for the entropy calculation, is also
 1348 estimated with a temperature of 0.6. The full text for all system and summarization prompts is
 1349 provided in Appendix D.

1350 B.3 HARDWARE AND ENVIRONMENT CONFIGURATION
1351

1352 All experiments were conducted on a single server node equipped with 8 NVIDIA L40S GPUs,
1353 each with 48GB of HBM2e memory. Our implementation uses PyTorch 2.2, vLLM 0.10.0, and
1354 Transformers 4.55.0. The operating system is Red Hat Enterprise Linux 9.6, and the environment is
1355 managed via Conda with Python 3.11.7 and CUDA 12.9.

1356 B.4 SUPPLEMENTARY EXPERIMENTAL RESULTS
1357

1358 This section contains supplementary results and comparisons added during the rebuttal phase to
1359 address specific computational and scalability questions.

1360 B.4.1 COMPUTATIONAL COST AND BASELINE COMPARISON
1361

1362 To assess efficiency, we compare ME-ICPO against standard prompt-style test-time search base-
1363 lines—Tree of Thoughts (ToT) (Yao et al., 2023a) and Monte-Carlo Tree Refinement (MCTR) (Zhang
1364 et al., 2024a)—and the training-based test-time scaling method TTRL (Zuo et al., 2025). For fair-
1365 ness, ME-ICPO uses a fixed configuration of $N=5$ refinement rounds and $k=16$ samples per round,
1366 averaged over 5 seeds. We report average inference time (seconds per question) on AIME 2024.
1367 Because ToT/MCTR employ different search depths and branching factors, their runs are not strictly
1368 time-matched; for TTRL, we control the experiment to use a similar GPU hours as ME-ICPO. As
1369 shown in Table 3 and Table 4, ME-ICPO achieves top-tier accuracy and Mean@16 at a competitive
1370 compute budget, reflecting principled gains from the underlying Policy Optimization mechanism.
1371 Shallow-search prompt methods (ToT/MCTR) can be faster when search depth is limited but lag
1372 notably in accuracy, while under matched wall-clock budgets ME-ICPO attains higher Acc/Mean@16
1373 than TTRL, demonstrating more efficient scaling; importantly, ICPO provides a mechanistic account
1374 of test-time self-refinement as policy optimization rather than a heuristic leaderboard tweak.

1375 B.4.2 FRONTIER MODEL SCALABILITY
1376

1377 To demonstrate the versatility of our framework, we evaluate ME-ICPO on recent frontier models,
1378 including Qwen3-4B-Instruct (Yang et al., 2024b) (a long-CoT specialized model), and the Gemini-
1379 2.5 series (Pro and Flash) (Comanici et al., 2025). Tables 5 show that ME-ICPO consistently enhances
1380 performance across these diverse architectures, confirming its scalability.

1381 B.4.3 HARDER TASK GENERALIZATION
1382

1383 We further evaluate performance on exceptionally difficult, high-school/collegiate level math com-
1384 petition tasks, specifically the Harvard-MIT Mathematics Tournament (HMMT) (Balunović et al.,
1385 2025) and the APEX-shortlist dataset (Balunović et al., 2025). Results in Table 6 and Table 7 indicate
1386 that ME-ICPO provides robustness even on tasks with low baseline solve rates.

1387 Table 3: Computational Cost and Performance Comparison (Mean@16, Qwen2.5-Math-7B) against
1388 Inference and Training Baselines.

Method	AIME-2024	AMC	MATH(Avg)	Time(s/question)
ToT (self eval)	4.38	16.19	12.51	708
ToT (Maj vote)	19.58	29.37	35.63	363
MCTR	4.60	1.20	17.20	1758
TTRL	27.20	45.18	46.83	1253
ME-ICPO (ours)	30.42	47.06	54.71	1152

1389 Table 4: Computational Performance Comparison (Accuracy, Qwen2.5-Math-7B).

Method	AIME-2024	AMC	MATH(Avg)
ToT (self-eval)	4.40	18.10	10.74
ToT (Maj-vote)	19.30	29.40	35.91
MCTR	23.30	2.40	33.82
TTRL	30.00	43.37	45.11
ME-ICPO (ours)	30.05	47.20	47.30

Table 5: Results on frontier/long-CoT models on AIME 2024.

Model	Method	Mean@16 (%)	Acc (%)
Qwen3-4B-Instruct	Base	20.62	20.59
Qwen3-4B-Instruct	ME-ICPO (ours)	57.71	57.67
Gemini-2.5-Pro	Base	58.54	56.60
Gemini-2.5-Pro	ME-ICPO (ours)	79.17	80.00
Gemini-2.5-Flash	Base	35.21	35.42
Gemini-2.5-Flash	ME-ICPO (ours)	76.46	76.47

Table 6: Results on Harder Benchmarks (HMMT / APEX) using Qwen2.5-Math-7B.

Method	HMMT	HMMT	APEX	APEX
	Mean@16 (%)	Acc(%)	Mean@16 (%)	Acc(%)
Base	1.04	0.67	2.55	2.61
ME-ICPO (ours)	0.42	1.33	4.59	4.57

Table 7: Results on Harder Benchmarks (HMMT / APEX) using Gemini-2.5-Flash.

Method	HMMT	HMMT	APEX	APEX
	Mean@16 (%)	Acc(%)	Mean@16 (%)	Acc(%)
Base	14.79	14.76	14.68	18.33
ME-ICPO (ours)	43.12	43.14	17.18	20.00

C DETAILED COMPLEXITY ANALYSIS

C.1 THEORETICAL TIME AND VRAM COMPLEXITY DERIVATIONS

We formalize the compute model for a decoder-only Transformer and provide exact asymptotic derivations for ME-ICPO (forward-only, summary-aware history) and TTTRL (Zuo et al., 2025) (backprop-based test-time RL). The statements and proofs below match the main text analyses verbatim; we only add brief connective narration.

Setup and primitive costs. We analyze a decoder-only transformer with L layers and width d (parameter count $|\theta| \asymp Ld^2$). For a single test instance, the initial prompt length (problem statement + template) is s_0 . Each sampled chain-of-thought (CoT) has average length ℓ . Per round we sample k candidates; the total number of rounds is n . Let $\beta := \ell + r$ denote the number of tokens appended per (\mathbf{x}, r) pair (the reward stub r is $O(1)$, so $\beta \asymp \ell$). The prompt at the beginning of round t therefore has length $T_{t-1} := s_0 + \beta(t-1)$. We use $\kappa \in [2, 3]$ for the backward/forward FLOPs ratio (one backward costs κ times one forward) and g for the number of policy-optimization steps per round in TTTRL. Primitive costs (suppressing constants) are:

full-sequence forward at length T : $C_{\text{fwd}}(T) = \Theta(L(T^2d + Td^2))$,

autoregressive decoding of ℓ tokens from prefix T : $C_{\text{dec}}(T, \ell) = \Theta(L((T\ell + \ell^2)d + \ell d^2))$,

one training step (teacher-forcing fwd + bwd) at length T : $C_{\text{train}}(T) = (1 + \kappa)C_{\text{fwd}}(T)$.

For ME-ICPO, the one-step lookahead score is computed *on the just-generated branch* by appending a constant number of tokens, so its cost is an incremental forward

$$C_{\text{score}}^{\text{inc}}(T, \ell) = \Theta(L((T + \ell)d + d^2)),$$

rather than a full recomputation at length $T + \ell$.

C.1.1 ME-ICPO

Theorem C.1 (Time Complexity of ME-ICPO). With one shared prefill at length T_{t-1} per round, k candidate decodes from that prefix, and incremental on-branch scoring for each candidate, the total time over n rounds satisfies

$$T_{\text{ME}} = \Theta(Ld\beta^2 n^3 + kLd\beta^2 n^2 + Ld^2\beta n^2 + kLd^2\beta n),$$

1458 and, using $\beta \asymp \ell$,

$$1459 \quad T_{\text{ME}} = \Theta(Ld\ell^2n^3 + kLd\ell^2n^2) + \Theta(Ld^2(\ell n^2 + k\ell n)).$$

1460
1461 *Proof.* The total time complexity, T_{ME} , is the sum of the costs for prefilling the context (S_{fwd}),
1462 decoding the candidates (S_{dec}), and scoring each candidate (S_{score}) over all n rounds.
1463

$$1464 \quad T_{\text{ME}} = \sum_{t=1}^n C_{\text{fwd}}(T_{t-1}) + \sum_{t=1}^n k C_{\text{dec}}(T_{t-1}, \ell) + \sum_{t=1}^n k C_{\text{score}}^{\text{inc}}(T_{t-1}, \ell) =: S_{\text{fwd}} + S_{\text{dec}} + S_{\text{score}}.$$

1465
1466 We analyze each component by first summing over the rounds and then identifying the leading-order
1467 terms in n . The prompt length at round t is $T_{t-1} = s_0 + \beta(t-1)$, and we use the standard sums
1468 $\sum_{r=0}^{n-1} r = \frac{n(n-1)}{2} = \Theta(n^2)$ and $\sum_{r=0}^{n-1} r^2 = \frac{(n-1)n(2n-1)}{6} = \Theta(n^3)$.
1469

1470 The prefill cost, S_{fwd} , is given by:

$$1471 \quad S_{\text{fwd}} = \sum_{t=1}^n C_{\text{fwd}}(T_{t-1})$$

$$1472 \quad \stackrel{(a)}{=} \Theta\left(Ld \sum_{t=1}^n T_{t-1}^2 + Ld^2 \sum_{t=1}^n T_{t-1}\right)$$

$$1473 \quad \stackrel{(b)}{=} \Theta\left(Ld\left(ns_0^2 + s_0\beta n(n-1) + \beta^2 \frac{(n-1)n(2n-1)}{6}\right) + Ld^2\left(ns_0 + \beta \frac{n(n-1)}{2}\right)\right)$$

$$1474 \quad \stackrel{(c)}{=} \Theta(Ld\beta^2n^3) + \Theta(Ld^2\beta n^2).$$

1475
1476 where (a) substitutes the definition of $C_{\text{fwd}}(T) = \Theta(L(T^2d + Td^2))$ and pulls constants out of
1477 the sum; (b) substitutes the exact formulas for the sum of linear and quadratic sequences; and (c)
1478 identifies the highest-order terms in n for each part of the expression.

1479 The decoding cost, S_{dec} , is given by:

$$1480 \quad S_{\text{dec}} = \sum_{t=1}^n k C_{\text{dec}}(T_{t-1}, \ell)$$

$$1481 \quad \stackrel{(d)}{=} \Theta\left(kLd\left(\ell \sum_{t=1}^n T_{t-1} + n\ell^2\right) + kLd^2(n\ell)\right)$$

$$1482 \quad \stackrel{(e)}{=} \Theta\left(kLd\left(\ell\left(ns_0 + \beta \frac{n(n-1)}{2}\right) + n\ell^2\right) + kLd^2n\ell\right)$$

$$1483 \quad \stackrel{(f)}{=} \Theta(kLd\beta\ell n^2) + \Theta(kLd^2\ell n).$$

1484
1485 where (d) substitutes the definition of $C_{\text{dec}}(T, \ell) = \Theta(L((T\ell + \ell^2)d + \ell d^2))$; (e) substitutes the
1486 sum for T_{t-1} ; and (f) identifies the dominant term in n for the Ld component as the quadratic term
1487 $\Theta(kLd\beta\ell n^2)$.

1488 The incremental scoring cost, S_{score} , is given by:

$$1489 \quad S_{\text{score}} = \sum_{t=1}^n k C_{\text{score}}^{\text{inc}}(T_{t-1}, \ell)$$

$$1490 \quad \stackrel{(g)}{=} \Theta\left(kLd\left(\sum_{t=1}^n T_{t-1} + n\ell\right) + kLd^2n\right)$$

$$1491 \quad \stackrel{(h)}{=} \Theta(kLd\beta n^2) + \Theta(kLd^2n).$$

1492
1493 where (g) substitutes the definition of $C_{\text{score}}^{\text{inc}}(T, \ell) = \Theta(L((T + \ell)d + d^2))$; and (h) identifies the
1494 dominant term as $\Theta(kLd\beta n^2)$.

1495 Combining the leading-order terms for the three components, we have:

$$1496 \quad T_{\text{ME}} = S_{\text{fwd}} + S_{\text{dec}} + S_{\text{score}}$$

$$1497 \quad = \Theta(Ld\beta^2n^3 + Ld^2\beta n^2) + \Theta(kLd\beta\ell n^2 + kLd^2\ell n) + \Theta(kLd\beta n^2 + kLd^2n).$$

1512 Grouping the terms by their dependence on d and d^2 , and noting that the scoring cost terms are
 1513 dominated by or are asymptotically equal to the decoding cost terms (since $\ell \geq 1$), the total complexity
 1514 simplifies to:

$$1515 \quad T_{\text{ME}} = \underbrace{\Theta(Ld\beta^2n^3)}_{\text{from } S_{\text{fwd}}} + \underbrace{\Theta(kLd\beta\ell n^2)}_{\text{from } S_{\text{dec}}} + \underbrace{\Theta(Ld^2\beta n^2)}_{\text{from } S_{\text{fwd}}} + \underbrace{\Theta(kLd^2\ell n)}_{\text{from } S_{\text{dec}}}.$$

1518 Using the approximation $\beta = \Theta(\ell)$, we arrive at the final expression stated in the theorem. This
 1519 completes the proof. \square
 1520

1521 **Theorem C.2** (VRAM Complexity of ME-ICPO). If candidates are decoded sequentially (no k -way
 1522 parallelism), the peak memory over n rounds satisfies

$$1523 \quad M_{\text{ME}} = \Theta(|\theta|) + \Theta(Ld(s_0 + \beta n)) = \Theta(|\theta|) + \Theta(Ld(s_0 + \ell n)).$$

1524 If $b \leq k$ candidates are decoded concurrently, the second term is multiplied by b .
 1525

1526 *Proof.* The peak VRAM complexity is the sum of the static memory for model parameters and the
 1527 maximum dynamic memory for the attention KV cache. As ME-ICPO is a forward-only method,
 1528 it requires no memory for gradients or optimizer states. The model weights occupy $\Theta(|\theta|)$ space.
 1529 For a decoder-only transformer with L layers and width d , the KV cache for a sequence of length T
 1530 requires $M_{\text{KV}}(T) = \Theta(LdT)$ memory.

1531 The context length at the beginning of round t is $T_{t-1} = s_0 + \beta(t-1)$. During the decoding
 1532 of a candidate of length ℓ , the sequence grows to a maximum of $T_{t-1} + \ell$. Since this length is
 1533 monotonically increasing with t , the global peak occurs during the final round ($t = n$), giving a
 1534 maximum sequence length of $T_{n-1} + \ell = s_0 + \beta(n-1) + \ell = \Theta(s_0 + \beta n)$.

1535 Therefore, the total peak memory for sequential decoding is the sum of the static and maximum
 1536 dynamic components:

$$1537 \quad M_{\text{ME}} = \Theta(|\theta|) + M_{\text{KV}}(\Theta(s_0 + \beta n)) = \Theta(|\theta|) + \Theta(Ld(s_0 + \beta n)).$$

1539 Using the approximation $\beta = \Theta(\ell)$ yields the equivalent form. If $b \leq k$ candidates are processed
 1540 concurrently, each parallel branch maintains its own KV cache, so the activation memory term scales
 1541 linearly with b . \square

1542 C.1.2 TTTRL

1544 **Theorem C.3** (Time Complexity of TTTRL). In each round, TTTRL (i) samples k candidates from
 1545 prefix s_0 , and (ii) performs g policy-optimization steps using teacher-forcing on sequences of length
 1546 $s_0 + \ell$. The total time over n rounds is

$$1547 \quad T_{\text{TTTRL}} = \Theta\left(n g k (1 + \kappa) L((s_0 + \ell)^2 d + (s_0 + \ell) d^2)\right)$$

1549 and the per-round prefill and sampling costs, $\Theta(L(s_0^2 d + s_0 d^2))$ and $\Theta(kL((s_0 \ell + \ell^2) d + \ell d^2))$, are
 1550 lower-order whenever $g \geq 1$.
 1551

1552 *Proof.* The total time complexity, T_{TTTRL} , is the sum of costs over n rounds. In each round, the
 1553 process performs one shared prefill of the prefix s_0 , followed by k candidate sampling operations, and
 1554 finally g training steps for each of the k candidates. The cost for a single round is thus $C_{\text{fwd}}(s_0) +$
 1555 $k C_{\text{dec}}(s_0, \ell) + gk C_{\text{train}}(s_0 + \ell)$. The total cost over n rounds is:

$$1556 \quad T_{\text{TTTRL}} = n \cdot \left(C_{\text{fwd}}(s_0) + k C_{\text{dec}}(s_0, \ell) + gk C_{\text{train}}(s_0 + \ell) \right).$$

1558 We substitute the standard complexity formulas for a decoder-only Transformer, using $C_{\text{train}}(T) =$
 1559 $(1 + \kappa)C_{\text{fwd}}(T)$, where κ is the backward/forward FLOPs ratio. This yields three terms:

$$1561 \quad T_{\text{TTTRL}} = \underbrace{\Theta\left(nL(s_0^2 d + s_0 d^2)\right)}_{\text{Prefill Cost}} + \underbrace{\Theta\left(nkL((s_0 \ell + \ell^2) d + \ell d^2)\right)}_{\text{Sampling Cost}} \\ 1562 \\ 1563 \\ 1564 \\ 1565 \quad + \underbrace{\Theta\left(ngk(1 + \kappa) L((s_0 + \ell)^2 d + (s_0 + \ell) d^2)\right)}_{\text{Training Cost}}.$$

To determine the tight asymptotic bound, we identify the dominant term. The training cost term scales with the number of optimization steps g and the backpropagation factor $(1 + \kappa)$. Furthermore, its self-attention cost is quadratic in the longer sequence length, $s_0 + \ell$. In contrast, the sampling cost's attention component is only linear in the prefix length, $\Theta(s_0\ell)$, and the prefill cost is computed on the shorter prefix s_0 and lacks the multiplicative factors of g and k .

Consequently, for any $g \geq 1$, the training cost term is of a higher order than both the prefill and sampling costs. Therefore, the lower-order terms are absorbed into the Θ -notation, giving the final tight bound:

$$T_{\text{TTRL}} = \Theta\left(n g k (1 + \kappa) L((s_0 + \ell)^2 d + (s_0 + \ell)d^2)\right). \quad \square$$

Theorem C.4 (Vram Complexity of TTRL). During training at sequence length $T = s_0 + \ell$, a TTRL step must hold (at least) model weights, gradients, optimizer states (e.g., SGD momentum or Adam's first/second moments), and backward activations. Consequently, for effective batch size batch, the peak memory obeys

$$\begin{aligned} M_{\text{TTRL}} &= \underbrace{\Theta(|\theta|)}_{\text{weights}} + \underbrace{\Theta(|\theta|)}_{\text{gradients}} + \underbrace{\Theta(|\theta|) - \Theta(2|\theta|)}_{\text{optimizer states}} + \underbrace{\Theta(L d T \cdot \text{batch})}_{\text{backward activations}} \\ &= \Theta(|\theta|) + \Theta(L d (s_0 + \ell) \cdot \text{batch}). \end{aligned}$$

Proof. The peak VRAM complexity of a TTRL training step is the sum of two primary components: parameter-resident memory and activation-resident memory. The parameter-resident portion consists of the model weights, their corresponding gradients, and the optimizer states (e.g., first and second moments for Adam). Since each of these scales linearly with the number of parameters, $|\theta|$, their combined memory requirement is compactly expressed as $M_{\text{param}} = \Theta(|\theta|)$.

The activation-resident memory is required for the backward pass. For a training sequence of length $T = s_0 + \ell$ and a decoder-only Transformer with L layers and width d , a standard (non-checkpointed) backpropagation pass must cache activations (such as hidden states and MLP intermediates) of size $\Theta(d)$ for every token in the sequence. Aggregating this over L layers and an effective batch size of batch, the activation memory scales as $M_{\text{act}} = \Theta(L \cdot d \cdot T \cdot \text{batch})$.

The total peak memory is the sum of these two components, $M_{\text{TTRL}} = M_{\text{param}} + M_{\text{act}}$. Substituting the derived complexities yields the final expression stated in the theorem:

$$M_{\text{TTRL}} = \Theta(|\theta|) + \Theta(L d (s_0 + \ell) \cdot \text{batch}). \quad \square$$

C.1.3 COMPARISON WITH TTRL (ZUO ET AL., 2025)

Proposition C.5 (Time Complexity Threshold). ME-ICPO is computationally faster than TTRL when the number of in-context optimization rounds, n , is below a threshold n^* . This threshold is given by:

$$n^* = \begin{cases} \frac{s_0 + \ell}{\ell} \sqrt{gk(1 + \kappa)} & \text{if } k \leq n \\ g(1 + \kappa) \frac{(s_0 + \ell)^2}{\ell^2} & \text{if } k > n \end{cases}$$

In practical settings with a small number of rounds (e.g., $n \leq 10$), this condition is typically met, making ME-ICPO the more time-efficient approach.

Proof. The threshold n^* is found by equating the leading-order terms of the time complexities derived in Theorem C.1 and Theorem C.3. We consider two regimes based on the dominant term in the complexity of ME-ICPO.

Case 1 ($k \leq n$): The dominant term for ME-ICPO is the prefill cost, $T_{\text{ME}} \asymp Ld\ell^2n^3$. The TTRL cost is $T_{\text{TTRL}} \asymp ngk(1 + \kappa) L(s_0 + \ell)^2 d$. Equating them and solving for n yields:

$$\begin{aligned} Ld\ell^2n^3 &= ngk(1 + \kappa) L(s_0 + \ell)^2 d \implies n^2 = \frac{gk(1 + \kappa)(s_0 + \ell)^2}{\ell^2}, \\ n^* &= \frac{s_0 + \ell}{\ell} \sqrt{gk(1 + \kappa)}. \end{aligned}$$

Case 2 ($k > n$): The dominant term for ME-ICPO is the decoding cost, $T_{\text{ME}} \asymp kLd\ell^2n^2$. Equating this with the TTRL cost gives:

$$kLd\ell^2n^2 = ngk(1 + \kappa) L(s_0 + \ell)^2 d \implies \ell^2 n = g(1 + \kappa)(s_0 + \ell)^2,$$

$$n^* = g(1 + \kappa) \frac{(s_0 + \ell)^2}{\ell^2}.$$

In both cases, for $n < n^*$, the complexity of ME-ICPO is lower. \square

Proposition C.6 (Memory Complexity Comparison). Let b_{ME} be the number of concurrently decoded candidates in ME-ICPO, and b be the TTRL training batch size. ME-ICPO achieves a lower peak VRAM than TTRL if the number of rounds n is below a threshold. A sufficient condition is:

$$n < \frac{b(s_0 + \ell) - b_{\text{ME}} s_0}{b_{\text{ME}} \ell} + \frac{\Delta_{\text{param}} |\theta|}{b_{\text{ME}} c_{\text{kv}} L d \ell},$$

where $\Delta_{\text{param}} > 0$ represents the additional parameter-resident memory (gradients, optimizer states) required by TTRL, and c_{kv} is a constant. Given that TTRL requires strictly more parameter-side memory and typically uses a larger batch size b , this condition holds for all practical values of n .

Proof. We establish the condition by comparing the upper bound on ME-ICPO memory from Theorem C.2 with the lower bound on TTRL memory from Theorem C.4. We seek the condition on n for which $M_{\text{ME}} < M_{\text{TTRL}}$:

$$\underbrace{c_{\text{w}}^{\text{ME}} |\theta| + c_{\text{kv}} b_{\text{ME}} L d (s_0 + \ell n)}_{M_{\text{ME}}} < \underbrace{(c_{\text{w}}^{\text{T}} + c_{\text{g}}^{\text{T}} + c_{\text{opt}}^{\text{T}}) |\theta| + c_{\text{kv}} b L d (s_0 + \ell)}_{M_{\text{TTRL}}}.$$

Let $\Delta_{\text{param}} := (c_{\text{w}}^{\text{T}} + c_{\text{g}}^{\text{T}} + c_{\text{opt}}^{\text{T}} - c_{\text{w}}^{\text{ME}}) > 0$ be the constant factor for the additional parameter-sized tensors (gradients, optimizer states) that TTRL requires. Rearranging the inequality to solve for n :

$$\begin{aligned} c_{\text{kv}} b_{\text{ME}} L d \ell n &< c_{\text{kv}} b L d (s_0 + \ell) - c_{\text{kv}} b_{\text{ME}} L d s_0 + \Delta_{\text{param}} |\theta| \\ n &< \frac{b(s_0 + \ell) - b_{\text{ME}} s_0}{b_{\text{ME}} \ell} + \frac{\Delta_{\text{param}} |\theta|}{c_{\text{kv}} b_{\text{ME}} L d \ell}. \end{aligned}$$

Since $\Delta_{\text{param}} > 0$, the second term is strictly positive, providing a further margin. For typical use-cases like sequential decoding ($b_{\text{ME}} = 1$) and $b \geq 1$, the first term is large and positive, making the condition true for any practical number of rounds n . \square

C.2 EMPIRICAL COST

We complement our derivations with a controlled latency and memory study on **AIME 2024** using **Qwen2.5-Math-7B**. We vary the number of rounds n and the number of candidates per round k for ME-ICPO to examine its computational characteristics and to validate the asymptotic trends predicted by Theorem C.1. We sweep $n \in \{1, 3, 5, 7\}$ and $k \in \{4, 8, 16, 32\}$. Unless otherwise noted, ME-ICPO uses our main protocol: temperature 0.6, top- $p = 0.95$, summary cap of 500 tokens, and entropy lookahead with $m=16$ short samples. All runs are performed on 2×L40S (48GB) GPUs using bf16 precision, with candidates decoded sequentially ($b_{\text{ME}}=1$).

metrics. (1) **wall time** per question (s), averaged over the test set; (2) **token usage** per question (generated tokens, in thousands); (3) **peak vram** (GB) from `v11m` memory statistics.

results. Table 8 reports wall time, token usage, and peak VRAM across the (n, k) grid. Two trends emerge. (i) For fixed k , wall time increases superlinearly with n and is well described by a prefill-dominated scaling close to $O(n^3)$, consistent with Theorem C.1. (ii) For large k , the cost transitions toward $O(k n^2)$ as candidate evaluation/selection becomes the bottleneck. Token usage grows with both n and k (longer multi-round traces and more candidates), and peak VRAM remains stable in the 81–82.3 GB range across settings, indicating that memory is primarily governed by the base model residency and KV-cache size under sequential decoding.

D PROMPT TEMPLATES AND QUALITATIVE EXAMPLES

D.1 DATASET-SPECIFIC SYSTEM PROMPTS

These system prompts define the semantics of the reward tag and are placed once at the beginning of the context.

1674
1675Table 8: Empirical cost vs. (n, k) on **AIME 2024** with **Qwen2.5-Math-7B**.

<i>n</i>	<i>k</i>	Wall Time (s/question)	Tokens (k/question)	Peak VRAM (GB)
1	4	197.52	99.59	81.50
1	8	228.89	112.25	81.43
1	16	286.74	379.82	82.24
1	32	468.36	852.47	82.27
3	4	406.65	247.76	81.43
3	8	469.79	272.56	81.43
3	16	715.85	1070.98	82.18
3	32	1163.51	2111.85	82.30
5	4	609.75	372.18	81.42
5	8	713.25	506.68	81.43
5	16	1152.67	1613.49	82.24
5	32	1726.70	3412.94	82.30
7	4	820.60	559.20	81.43
7	8	1156.62	566.82	82.30
7	16	1371.78	1753.71	82.27
7	32	2643.74	5123.67	82.29

1692

1693
1694

System Prompt: AIME / AMC (Numeric Answer)

1695
1696
1697
1698

You are an AI mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or reward 0 (incorrect). Use the question and these ideas to deduce the correct numeric answer.

Finish all your reasoning, then on a NEW line output exactly one number (the answer) and nothing else.

1699
1700
1701

Your final output MUST be in the format `boxed{<number>}`, where `<number>` is the final numeric answer only (no expressions, variables, or additional text). The content inside `boxed{<number>}` must be a decimal number, not a fraction or any other form.

1702

1703
1704

System Prompt: GPQA (Multiple Choice)

1705
1706
1707
1708
1709

You are an AI mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or reward 0 (incorrect). Use the question and these ideas to deduce the correct choice.

Finish all your reasoning, then on a NEW line output exactly one letter (the answer) and nothing else.

Your final output MUST be in the format `boxed{<letter>}`, where `<letter>` is exactly one of A, B, C, D.

1710

1711
1712

System Prompt: MATH (Free-form Answer)

1713
1714
1715
1716

You are an AI mathematician. All content you output MUST be in English.

Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or reward 0 (incorrect). Use the question and these ideas to deduce the correct answer.

Finish all your reasoning, then on a NEW line output exactly one answer (the answer) and nothing else.

Your final output MUST be in the format `boxed{<answer>}`.

1717
1718
1719
1720

It gives an explicit, task-level meaning to the reward tags ($r \in \{0, 1\}$), telling the model to learn from high-reward ideas and discount low-reward ones—so the model can *use* feedback without any gradient updates in test time.

1721

D.2 SUMMARIZATION PROMPTS

1722
1723

These prompts compress a full CoT into a short summary that retains the high-level strategy.

1724

1725
1726
1727

Summarization Prompt: AIME / AMC

Provide a concise summary of the reasoning in the answer below. Do NOT add any introductory phrases or extra explanations. Omit all numerical calculations. The summary must be self-contained, no more than 100 tokens.

1728 If there is a final numeric result, include it at the end in the format `boxed{<number>}` (decimal only, no
 1729 fractions, variables, or extra text). If there is no numeric answer, do not output `boxed{}`.
 1730 [Answer start] {... raw model answer ...} [Answer end]
 1731 Summary:

1732
 1733 Summarization Prompt: GPQA
 1734
 1735 Provide a concise summary of the reasoning in the answer below. Do NOT add any introductory phrases or
 1736 extra explanations. Omit all numerical calculations. The summary must be self-contained, no more than 100
 1737 tokens.
 1738 If there is a final answer choice, include it at the end in the format `boxed{<letter>}` (must be exactly
 1739 one of A, B, C, D, no extra text). If there is no final answer, do not output `boxed{}`.
 1740 [Answer start] {... raw model answer ...} [Answer end]
 1741 Summary:

1742
 1743 Summarization Prompt: MATH
 1744
 1745 Provide a concise summary of the reasoning in the answer below. Do NOT add any introductory phrases or
 1746 extra explanations. Omit all calculations unless essential to understanding. The summary must be
 1747 self-contained, no more than 100 tokens.
 1748 If there is a final answer, include it at the end in the format `boxed{<answer>}`.
 1749 [Answer start] {... raw model answer ...} [Answer end]
 1750 Summary:

1751 They replace long CoTs with short strategy summaries, keeping only decision-relevant logic while
 1752 dropping arithmetic details, so the history fits in-context and remains useful across rounds.

D.3 QUALITATIVE CASE STUDIES

1753 Total Prompt
 1754
 1755 You are an AI mathematician. All content you output **MUST** be in English.
 1756 Below are compressed solution ideas from previous attempts; each idea is tagged with reward 1 (correct) or
 1757 reward 0 (incorrect). Use the question and these ideas to deduce the correct numeric answer.
 1758 **Finish all your reasoning, then on a NEW line output exactly one number (the answer) and nothing
 1759 else.**
 1760 Your final output **MUST** be in the format `boxed{<number>}`, where `<number>` is the final numeric
 1761 answer only (no expressions, variables, or additional text). The content inside `boxed{<number>}` must
 1762 be a decimal number, not a fraction or any other form.
 1763 Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she walks
 1764 at a constant speed of s kilometers per hour, the walk takes her 4 hours, including t minutes spent in the
 1765 coffee shop. When she walks $s + 2$ kilometers per hour, the walk takes her 2 hours and 24 minutes, including
 1766 t minutes spent in the coffee shop. Suppose Aya walks at $s + \frac{1}{2}$ kilometers per hour. Find the number of
 1767 minutes the walk takes her, including the t minutes spent in the coffee shop.
 1768 bad ideas (reward 0):
 1769 [0]- When Aya walks at $s + \frac{1}{2}$ kilometers per hour, the total time taken, including the t minutes spent in the
 1770 coffee shop, is approximately 348 minutes.
 1771 Thus, the answer is `348.0`
 1772 good ideas (reward 1):
 1773 [0]- To determine how long it would take Aya to walk from her house to the park and back, including the time
 1774 spent in the coffee shop, we set up two equations based on the given information. By solving these equations,
 1775 we found the speed s and the time t spent in the coffee shop. Then, we calculated the time required when
 1776 Aya walks at $s + \frac{1}{2}$ km/h, which turned out to be 204 minutes.
 1777 Thus, the answer is `204.0`
 1778 [1]- By analyzing the given conditions and using algebraic manipulation, we deduced that the value of x is $\frac{3}{5}$,
 1779 which when multiplied by 340 gives us the final answer of 204.
 1780 Thus, the answer is `204.0`
 1781 [2]- We solved the system of equations to find the walking speed s and the time t spent in the coffee shop.
 1782 Then, we calculated the total time required when Aya walks at a speed of $s + \frac{1}{2}$ km/h, including the time
 1783 spent in the coffee shop. The final answer is `204.0` minutes.
 1784 Thus, the answer is `204.0`

1782 **Blue** marks the *system instructions* that enforce output schema and reward semantics. **Orange** marks
 1783 the *problem statement*. **Red** marks *reward-0 (incorrect) ideas* retained as counterexamples. **Green**
 1784 marks *reward-1 (correct) ideas* that ICPO prioritizes during selection.

1785 **How ICPO appears in this example.** ICPO samples multiple CoTs, summarizes them, and assigns
 1786 rewards based on self-consistency. The **green** items represent low-entropy agreement on the solution
 1787 path that eliminates the fixed coffee time t and yields the evaluation at $s + \frac{1}{2}$ as **204.0** minutes.
 1788 Entropy-based filtering downweights the **red** outlier (≈ 348 minutes) that improperly scales total
 1789 time and ignores the fixed offset. The final evaluator, conditioned on the **schema** and the curated
 1790 ideas, outputs the correct numeric answer, **204.0**.
 1791

1792 USE OF LARGE LANGUAGE MODELS

1793 We used LLMs solely as a writing assistant for minor grammar and phrasing corrections during
 1794 manuscript preparation. LLMs were not involved in research ideation, experiment design, data
 1795 analysis, or result interpretation.

1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835