
Published in Transactions on Machine Learning Research (09/2024)

Fairness Under Demographic Scarce Regime

Patrik Joslin Kenfack patrik-joslin.kenfack.1@ens.etsmtl.ca
ÉTS Montréal, Mila

Samira Ebrahimi Kahou Samira.Ebrahimi.Kahou@gmail.com
University of Calgary, Mila
Canada CIFAR AI Chair

Ulrich Aïvodji Ulrich.Aivodji@etsmtl.ca
ÉTS Montréal, Mila

Reviewed on OpenReview: https: // openreview. net/ forum? id= TB18G0w6Ld

Abstract

Most existing works on fairness assume the model has full access to demographic information.
However, there exist scenarios where demographic information is partially available because
a record was not maintained throughout data collection or for privacy reasons. This setting
is known as demographic scarce regime. Prior research has shown that training an attribute
classifier to replace the missing sensitive attributes (proxy) can still improve fairness. However,
using proxy-sensitive attributes worsens fairness-accuracy tradeoffs compared to true sensitive
attributes. To address this limitation, we propose a framework to build attribute classifiers
that achieve better fairness-accuracy tradeoffs. Our method introduces uncertainty awareness
in the attribute classifier and enforces fairness on samples with demographic information
inferred with the lowest uncertainty. We show empirically that enforcing fairness constraints
on samples with uncertain sensitive attributes can negatively impact the fairness-accuracy
tradeoff. Our experiments on five datasets showed that the proposed framework yields
models with significantly better fairness-accuracy tradeoffs than classic attribute classifiers.
Surprisingly, our framework can outperform models trained with fairness constraints on the
true sensitive attributes in most benchmarks. We also show that these findings are consistent
with other uncertainty measures such as conformal prediction. The source code is available
at https://github.com/patrikken/fair-dsr.

1 Introduction

Mitigating machine learning bias against certain demographic groups becomes challenging when demographic
information is wholly or partially missing. Demographic information can be missing for various reasons,
e.g., due to legal restrictions, prohibiting the collection of sensitive information of individuals, or voluntary
disclosure of such information. As people are more concerned about privacy, reluctant users will not provide
sensitive information. As such, demographic information is available only for a few users. A demographic
scarce regime was the term used by Awasthi et al. (2021) to describe this particular setting. The data in this
setting can be divided into two sets: D1 and D2. The dataset D1 does not contain demographic information,
while D2 contains both sensitive and non-sensitive information. The goal is to train a fair classifier with
respect to different (unobserved) demographic groups in D1. Without demographic information in D1, it
is more challenging to enforce group fairness notions such as statistical parity (Dwork et al., 2012) and
equalized odds (Hardt et al., 2016). Algorithms to enforce these notions require access to sensitive attributes
to quantify and mitigate the model’s disparities across different groups (Hardt et al., 2016; Agarwal et al.,
2018). However, having access to another dataset where sensitive attributes are available gives room to
train a sensitive attribute classifier that can serve as a proxy for the missing ones. We are interested in
understanding what level of fairness/accuracy one can achieve if proxy-sensitive attributes are used to replace
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the true sensitive attributes and properties of the sensitive attribute classifier and the data distribution that
influences the fairness-accuracy tradeoff.

In their study, Awasthi et al. (2021) demonstrated a counter-intuitive finding: when using proxy-sensitive
attributes, neither the highest accuracy nor an equal error rate of the sensitive attribute classifier has an
impact on the accuracy of the bias estimation. Although Gupta et al. (2018) showed that improving fairness
for the proxy demographic group can improve fairness with respect to the true demographic group; it remains
unclear how existing fairness mechanisms would perform in the presence of proxy-sensitive attributes and
how the fairness-accuracy tradeoff is impacted. We show that existing fairness-enhancing methods (Hardt
et al., 2016; Agarwal et al., 2018) can be robust to noise introduced in the sensitive attribute space by the
proxy attribute classifier, i.e., unfairness can be mitigated when proxy attributes are used instead of the
sensitive attribute. However, the fairness-accuracy tradeoff worsens when fairness constraints are imposed
on these proxy-sensitive attributes. We aim to provide insights into the distribution of sensitive attributes
that can yield better fairness and accuracy performances. We hypothesize that the uncertainty of the
sensitive attribute classifier plays a critical role in improving fairness-accuracy tradeoffs on downstream tasks.
Specifically, we argue that samples with reliable demographic information should be used to fit fairness
constraints, backed up by the intuition that these samples are easier to discriminate against, while samples
with uncertain demographic information are already hard to discriminate against. Validating this hypothesis
requires effective uncertainty estimation in the sensitive attribute space.

In this paper, we propose a framework to handle Fairness under Demographic Scarce Regime (FairDSR).
FairDSR consists of two phases. In the first phase, we construct an uncertainty-aware Deep Neural Network
(DNN) model to predict demographic information. The training is semi-supervised using self-ensembling (Tar-
vainen & Valpola, 2017), and the uncertainty of the predictions is measured and improved during the training
using Monte Carlo dropout (Gal & Ghahramani, 2016). The first phase outputs for each data point, the
predicted sensitive attribute, and the uncertainty of the prediction. In the second phase, the classifier for the
target task is trained with fairness constraints w.r.t to the predicted sensitive attributes. However, fairness
constraints are imposed only on samples whose sensitive attribute values are predicted with low uncertainty.
Our results rely heavily on dropout regularization and the effectiveness of the uncertainty measure. Existing
uncertainty measures compute prediction uncertainty using the model in a certain epoch, e.g., in the last
training epoch. However, the uncertainty measure can vary for different models in different training epochs
due to different perturbations, such as network dropout, input noise, and data ordering. Hence, we adopt self-
ensembling to compute more consistent uncertainty by considering the training dynamic. In self-ensembling
learning, the model ensemble is obtained using an exponential running average of model snapshots. In the
semi-supervised setup, an unsupervised loss term ensures the model’s output remains consistent with different
perturbations. For example, given a set of labeled or unlabeled samples, the unsupervised loss enforces the
model’s output at the current epoch to be similar to the output aggregated from previous training epochs
under different perturbations. The aggregated outputs can be obtained using the moving average of the
model’s output Laine & Aila (2017) or the model’s weights Tarvainen & Valpola (2017) throughout the
training. In the first phase of FairDSR, we use a similar approach to train the attribute classifier with a
reliable uncertainty measure in the data without demographic information. In addition to supervised loss, we
add an unsupervised loss term that ensures the model’s uncertainty remains consistent within epochs.

On the other hand, considering the other aspect of our hypothesis, the uncertainty estimated by our method
is used to derive a subset of the dataset having higher uncertainty in the demographic information prediction.
We demonstrate that using this subset to train a model without fairness constraints can yield fairer outcomes.
Furthermore, we show how other uncertainty measures such as conformal prediction (Angelopoulos et al.,
2023) can be integrated with our framework while achieving similar performance gains regarding tradeoffs in
fairness and accuracy. Our main contributions are summarized as follows:

• We show that the fairness-accuracy tradeoff is suboptimal when using proxy-sensitive attributes
instead of true-sensitive attributes. Specifically, when the sensitive attribute is partially available,
replacing missing values using data imputation techniques based on k-nearest neighbor (KNN) or
DNN models can yield a reasonably fair model but a worse fairness-accuracy tradeoff.
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• We propose a simple yet effective framework to improve the tradeoff by exploiting the uncertainty of
the sensitive attribute predictions, which we show can play an important role in achieving better
accuracy-fairness tradeoffs. We hypothesize that a better fairness-accuracy tradeoff can be achieved
when fairness constraints are imposed on samples whose sensitive attribute values can be predicted
with low uncertainty. We also show that a model trained without fairness constraints but using data
with higher uncertainty in the predictions of sensitive attributes tends to be fairer across different
fairness metrics.

• We perform extensive experiments on a wide range of real-world datasets to demonstrate the
effectiveness of the proposed framework compared to existing methods. Our results also show that the
FairDSR can significantly outperform a model trained with fairness constraints on observed sensitive
attributes. Applying our method in settings where demographic information is fully available can
yield better fairness-accuracy tradeoffs.

2 Related Work.

Various metrics have been proposed in the literature to measure unfairness in classification, as well as numerous
methods to enforce fairness as per these metrics. The most popular fairness metrics include demographic
parity (Dwork et al., 2012), equalized odds, and equal opportunity (Hardt et al., 2016). Demographic parity
enforces the models’ positive outcome to be independent of the sensitive attributes, while equalized odds aim
at equalizing models’ true positive and false positive rates across different demographic groups. Fairness-
enhancing methods are categorized into three groups: pre-processing (Zemel et al., 2013; Kamiran & Calders,
2012), in-processing (Agarwal et al., 2018; Zhang et al., 2018), and post-processing (Hardt et al., 2016),
depending on whether the fairness constraint is enforced before, during, or after model training respectively.
However, enforcing these fairness notions often requires access to demographic information. There are fairness
notions that do not require demographic information to be achieved, such as the Rawlsian Max-Min fairness
notion (Rawls, 2020), which aims at maximizing the utility of the worst-case (unknown) group (Hashimoto
et al., 2018; Lahoti et al., 2020; Liu et al., 2021; Levy et al., 2020). Specifically, these methods focus on
maximizing the accuracy of the unknown worst-case group. However, they often fall short in effectively
targeting the specific disadvantaged demographic groups or improving group fairness metrics (Franke, 2021;
Lahoti et al., 2020). In contrast, we aim to achieve group fairness through proxy-attributes using limited
demographic information. Recent efforts have explored bias mitigation when demographic information is
noisy (Wang et al., 2020; Chen et al., 2022a). Noise can be introduced in the sensitive feature space due to
human annotation, privacy mechanisms, or inference (Chen et al., 2022b). Chen et al. (2022a) aims to correct
the noise in the sensitive attribute space before using them in fairness-enhancing algorithms. Another line of
work focuses on alleviating privacy issues in collecting and using sensitive attributes. This group of methods
aims to train fair models under privacy-preservation of the sensitive attributes. They design fair models
using privacy-preserving mechanisms such as trusted third party (Veale & Binns, 2017), secure multiparty
computation (Kilbertus et al., 2018), and differential privacy (Jagielski et al., 2019).

The most related work includes methods relying on proxy-sensitive attributes to enforce fairness when
partial demographic information is available. Gupta et al. (2018) used non-protected features to infer proxy
demographic information to replace the unobserved real ones. They showed empirically that enforcing fairness
with respect to proxy groups generalizes well to the real protected groups and can be effective in practice.
While they focus on post-processing techniques, we are interested in in-processing methods. Coston et al.
(2019); Liang et al. (2023) assumed sensitive attribute is available either in a source domain or the target
domain and used domain adaptation-like techniques to enforce fairness in the domain with missing sensitive
attributes. Moreover, while these methods can improve fairness regarding true sensitive attributes, they
result in a worse trade-off fairness accuracy than the method using the true sensitive attributes. Diana et al.
(2022) showed that training proxy classifier under multi-accuracy constraints can be a good substitute for the
ground truth sensitive attributes when the latter is missing; however, the resulting proxy sensitive attributes
also yield worse fairness-accuracy tradeoff. Liang et al. (2023) also considers the uncertainty in sensitive
space and proposes to replace uncertain predictions with random sampling from the empirical conditional
distribution of the sensitive attributes given the non-sensitive attributes P (A|X, Y ). However, the random
sampling of sensitive attributes is sensitive to noise in the empirical distribution, which can negatively impact
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the fairness accuracy tradeoff. Moreover, this work provides a comprehensible analysis of the impact of
uncertainty in sensitive attribute space over the fairness-accuracy tradeoff. On the other hand, Awasthi et al.
(2021) proposed an active sampling approach to improve bias assessment using predicted sensitive attributes.
While their method focuses on bias assessment using proxy attributes, we want to improve the tradeoff
between fairness and accuracy, and bias assessment under missing sensitive attributes is out of the scope
of the paper. In sum, related work relying on proxy-sensitive attributes mostly focuses on assessing what
level of fairness can be achieved when proxy-sensitive attributes are used (Coston et al., 2019), properties
of the sensitive attribute classifier (Diana et al., 2022; Coston et al., 2019), and bias assessment via proxy
sensitive features (Awasthi et al., 2021). Our proposed method focuses on reducing the accuracy-fairness
tradeoff when proxy attributes are used.

3 Problem Setting and Preliminaries.

Problem formulation. We consider a dataset D1 = {X , Y} where X = {xi}M
i=1 represents the non-

sensitive input feature space and Y = {0, 1} represents the target variable. The goal is to build a classifier,
f : X → Y, that can predict Y while ensuring fair outcomes for samples from different demographic groups.
However, demographic information of samples in D1 is unknown. We assume the existance of another dataset
D2 = {X , A} sharing the same input feature space as D1 and for which demographic information is available,
i.e., A = {0, 1}. We assume binary demographic groups for simplicity. Therefore, the dataset D1 contains
label information and D2 contains demographic information. Our goal is to leverage D2 to train an attribute
classifier h : X → A that can serve as a proxy to the sensitive attributes for samples in D1, for which a
fairness metric can be enforced in a way to improve fairness with respect to the true sensitive attributes.
Attribute classifiers have been used in health (Brown et al., 2016; Fremont et al., 2005) and finance (Zhang,
2018; Silva et al., 2019) to infer missing sensitive attributes, in particular when users or patients self-report
their protected information. To be able to estimate the true disparities in the label classifier f , we assume
there exists a small set of samples drawn from the joint distribution X × Y × A, i.e., samples that jointly
have label and demographic information. If this subset is not available, one can consider using the active
sampling technique proposed by Awasthi et al. (2021) to approximate bias with respect to the predicted
sensitive attributes. This estimation is beyond the scope of this work. We aim to effectively assess fairness
without being overly concerned about bias overestimation or underestimation.

Reducing the tradeoff between fairness and accuracy is a significant challenge within the fair machine-learning
community (Dutta et al., 2020; Kenfack et al., 2021). Our primary goal is to design a method that effectively
leverages proxy features to achieve similar or better fairness-accuracy tradeoffs compared to settings where
the true sensitive attributes are available. To this end, we considered a different range of fairness metrics and
fairness-enhancing techniques.

Fairness Metrics. In this work, we consider three popular group fairness metrics: demographic par-
ity (Dwork et al., 2012), equalized odds, and equal opportunity (Hardt et al., 2016). These metrics aim to
equalize the model’s performance across different demographic groups; we provide more details in Appendix B.

Fairness Mechanism. We focus on in-processing techniques to improve the models’ fairness. These
methods introduce constraints in the classification problem to satisfy a given fairness metric. Our study
focuses on state-of-the-art techniques in this category, i.e., exponentiated gradient (Agarwal et al., 2018) and
adversarial debiasing (Zhang et al., 2018). We considered these methods as they allow better control over
fairness and accuracy. In general, the optimization problem contains a parameter λ that controls the balance
between fairness and accuracy, i.e., a higher value of λ would force the model to achieve higher fairness
(respectively lower accuracy) while a smaller yields higher accuracy (respectively lower fairness). We aim to
design a sensitive attribute predictor that achieves a better fairness-accuracy tradeoff, i.e., for the same value
of λ build a model that provides higher accuracy and lower unfairness.
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Figure 1: Overview of FairDSR. Our framework consists of two steps. In the first step (left), the dataset
D2 is used to train the attribute classifier for the student-teacher framework. The first step produces
proxy-sensitive attributes (h(X) = Â) and the uncertainty of their predictions (U). In the second step (right),
the fair model is trained using only samples with reliable proxy-sensitive attributes. These samples are
selected based on a defined threshold of their uncertainties.

4 Method

This section presents the methodology and all components involved in the framework FairDSR. Figure 1
presents an overview of the stages in our framework and the interactions between and within each stage.
The first stage consists of training the attribute classifier with uncertainty awareness. This step outputs for
each sample with missing sensitive attribute, its predicted sensitive attribute (proxy), and the prediction’s
uncertainty. In the second stage, the label classifier is trained with fairness constraints enforced using the
predicted sensitive attributes. To validate our hypothesis, fairness is enforced only on samples with the lowest
uncertainty in the sensitive attribute prediction, i.e., samples with an uncertainty lower than a predefined
uncertainty threshold H.

4.1 Uncertainty-Aware Attribute Prediction

We build the sensitive attribute classifier using a semi-supervised learning approach that accounts for the
uncertainty of the predictions of samples with missing sensitive attributes, similar to Yu et al. (2019);
Tarvainen & Valpola (2017); Laine & Aila (2017). Motivated by the uncertainty estimation in Bayesian
networks, we estimate the uncertainty with the Monte Carlo Dropout (Gal & Ghahramani, 2016). However,
measuring the uncertainty of the predictions using the model in a given training step (e.g., the last epoch)
might result in an unreliable uncertainty measure due to different perturbations, such as network dropout,
input noise, and data ordering (He et al., 2023). In addition, we are interested in designing an attribute
classifier that minimizes the uncertainty of the predictions in the data with missing sensitive attributes.

To overcome this challenge, we adopt self-ensemble learning to ensure consistent uncertainty measurement by
maintaining the moving average of the attribute classifier’s weights during the training (Tarvainen & Valpola,
2017). More specifically, the model maintains a moving average of itself during the training to provide a
stable learning signal. We refer to the model at the current training epoch as the student model and its
moving average (self-ensembling) from previous epochs as the teacher model.

Student Model. The student model is implemented as a neural network and is trained on D2 (samples
with sensitive attributes) to predict sensitive attributes. Under a semi-supervised setup, the attribute classifier
is optimized to minimize a double loss: the classification loss (Ls), i.e., the cross-entropy loss, and the
consistency loss (Lc) (Yu et al., 2019). The consistency loss (or unsupervised loss) forces the student model
to focus on samples with low uncertainty in the sensitive attributes guided by the uncertainty estimation
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from the teacher model. This loss is defined as the mean squared difference between the teacher’s and student
outputs (logits) on samples whose uncertainty does not exceed a threshold R.

Overall, the attribute classifier is trained to minimize the following loss:

min
f∈F

E
(x,a)∼D2×A

Ls(f(x), a) + λ E
x∼D1+D2

Lc(f(x), h(x)) (1)

where f(·) is the student model, h(·) the teacher model, and λ a parameter controlling the consistency loss.
The empirical loss minimized is defined by the following equations for classification (Ls) and consistency loss
Lc:

Ls = 1
|D2|

∑
x,a∈D2,A

a · log(f(x)) + (1 − a) · log(1 − f(x)) (2)

Lc = 1
|D2| + |D1|

∑
x|ux≤R

∥ f(x) − h(x) ∥2 (3)

The consistency loss is applied only on samples, x, whose uncertainty, ux, is lower than the threshold R.
Following Srivastava et al. (2014); Baldi & Sadowski (2013), R and λ are updated using a Gaussian warmup
function to prevent the model from diverging at the beginning of the training. The motivation behind the
consistency loss is the focus on our primary goal for the attribute classifier, which is to find the missing
sensitive attributes in D1 with low uncertainty. In the experiments (Section 5.2.3), we show that training the
model without consistency loss results in worse fairness-accuracy tradeoffs.

Teacher Model. The teacher model maintains the moving average of the student’s weights and is used for
uncertainty estimation. Specifically, the teacher weights are updated within each training epoch, t, using the
exponential moving average (EMA) of student weights as follows:

ωt = αωt−1 + (1 − α)θ, (4)

where θ and ω denote the respective weights of student and teacher and α controls the moving decay. The
use of EMA to update the teacher model is motivated by previous studies (Laine & Aila, 2017; Yu et al.,
2019) that have shown that averaging model parameters at different training epochs can provide more reliable
predictions than using the most recent model weights in the last epoch. The teacher model gets as input
both labeled and unlabeled samples (D1 and D2) and computes the uncertainty of their predictions using
Monte Carlo (MC) dropout (Gal & Ghahramani, 2016).

Uncertainty Estimation. MC dropout is an approximation of a Bayesian neural network widely used to
interpret the parameters of neural networks (Abdar et al., 2021). MC dropout can effectively capture various
sources of uncertainties (Aleatoric and Epistemic uncertainty). It uses dropout at test time to compute
prediction uncertainty from different sub-networks that can be derived from the whole original neural network.
Dropout is generally used to improve the generalization of DNNs. During training, the dropout layer randomly
removes a unit with probability p. Therefore, each forward and backpropagation pass is done on a different
model (sub-network), forming an ensemble of models that are aggregated together to form a final model with
lower variance (Srivastava et al., 2014; Baldi & Sadowski, 2013). The uncertainty of each sample is computed
using T stochastic forward passes on the teacher model to output T independent and identically distributed
predictions, i.e., {h1(x), h2(x), · · · , hT (x)}. The softmax probability of the output set is calculated. The
uncertainty of the prediction (ux) is quantified using the resulting entropy: ux = −

∑
a pa(x) log(pa(x)), where

pa(x) is the probability that sample x belongs to demographic group a estimated over T stochastic forward
passes, i.e., pa(x) = 1

T

∑T
t=1 ha

t (x). In the experiments (Section 5.2.3), we compare with another uncertainty
measure based on the confidence interval of the prediction probability and show the limitation of this measure
in identifying highly uncertain samples. Furthermore, we also show that using reliable uncertainty measures
such as conformal prediction (Angelopoulos et al., 2023) can also improve the fairness-accuracy tradeoff.
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4.2 Enforcing Fairness w.r.t Reliable Proxy Sensitive Attributes

After the first phase, the attribute classifier can produce for every sample in D1, i.e., samples with missing
sensitive attributes, their predicted sensitive attribute (proxy) Â = {h(xi)xi∈D1}, and the uncertainty of the
prediction U = {uxi}xi∈D1 . To validate our hypothesis, we define a confidence threshold H for samples used
to train the label classifier with fairness constraints, i.e., the label classifier with fairness constraints is trained
on a subset D′

1 ⊂ D1 defined as follows:

D′
1 = {(x, y, f(x))|ux ≤ H} (5)

Note that the threshold R in the previous step is only used to train the attributes classifier while ensuring the
student and teacher remain consistent for samples with uncertainty lower than R. The threshold H in this
step is used at test time to select samples with low uncertainty, and its value can be tuned over a validation
set. The hypothesis of enforcing fairness on samples whose sensitive attributes are reliably predicted stems
from the fact that the model can confidently distinguish these samples based on their sensitive attributes in
the latent space. In contrast, the label classifier is inherently fairer if an attribute classifier cannot reliably
predict sensitive attributes from training data (Kenfack et al., 2023). We further support this in section 5.2 by
comparing the sensitive attribute uncertainty in the New Adult dataset (Ding et al., 2021) and the old version
of the dataset (Asuncion & Newman, 2007). The fairness constraints on samples with unreliable sensitive
attributes could push the model’s decision boundary in ways that penalize accuracy and/or fairness. We
support these arguments in the experiments. In addition to this method, we considered two other approaches
built around our hypothesis: the weighted approach— FairDSR (weighted) and the uncertain approach—
FairDSR (uncertain)

FairDSR (weighted). Given that downsampling can reduce accuracy when uncertainty is low, instead
of pruning out samples based on the uncertainty of their sensitive attributes, we considered a training
process in the second step that enforces fairness constraints on all samples but weighted proportionally to the
uncertainty of their sensitive attributes, i.e., samples with less uncertainty receive higher weights. We show
in the experiments that this weighted approach can better preserve accuracy.

FairDSR (uncertain). Considering the ethical risks of inferring missing sensitive information, we also
considered a variant in the second step where the model is trained without fairness constraints, i.e., without
using sensitive information. Instead, we train the model using samples with higher uncertainty in their
sensitive attributes for a given uncertainty threshold. We show in the experiments that this variant can
significantly improve fairness, although no fairness constraints are applied.

5 Experiments

In this section, we demonstrate the effectiveness of our framework on five datasets and compare it to different
baselines.

5.1 Experimental Setup

Datasets. We validate our method on five real-world benchmarks widely used for bias assessment: Adult
Income (Asuncion & Newman, 2007)1, Compas (Jeff et al., 2016), Law school (LSAC), CelebA (Liu et al.,
2018) (Wightman, 1998), and the New Adult (Ding et al., 2021) dataset. We use 20% of each dataset as the
group-labeled dataset (D2) and 80% as the dataset without sensitive attributes (D1). Supplementary C.1
shows that our results hold even with a smaller group-labeled ratio, e.g., 5%. More details about the datasets
appear in Supplementary B.2.

Attribute classifier. The student and teacher models were implemented as feed-forward Multi-layer
Perceptrons (MLPs) with Pytorch (Paszke et al., 2019), and the loss function 1 is minimized using the Adam
optimizer (Kingma & Ba, 2014) with learning rate 0.001 and batch size 256. Following Yu et al. (2019); Laine
& Aila (2017), we used α = 0.99 for the EMA parameter for updating the teacher weights using the student’s

1https://archive.ics.uci.edu/ml/datasets/Adult
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weights across epochs. The uncertainty threshold is finetuned over the interval [0.1, 0.7] using 10% of the
training data. The best-performing threshold is used for the second step’s threshold to obtain D′

1. The
uncertainty threshold that achieved the best results are 0.30, 0.60, 0.66, and 0.45 for the Adult, Compas,
LSAC, and CelebA datasets, respectively.

Baselines. For fairness-enhancing mechanisms, we considered the Fairlean (Bird et al., 2020) implementation
of the exponentiated gradient (Agarwal et al., 2018). We considered the three variants of our approach
described in section 4.2: FairDSR (weighted), FairDSR (uncertain), and our base method, FairDSR (certain).

For comparison, we considered methods aiming to improve fairness without (full) demographic information.
We compare with the following methods:

• FairRF (Zhao et al., 2022): This method assumes that non-sensitive features correlating with sensitive
attributes are known. It leverages these related features to improve fairness w.r.t the unknown
sensitive attributes.

• FairDA (Liang et al., 2023): Similar to our setting, this method assumes the sensitive information is
available in a source domain (dataset D2 in our setting). It uses a domain adaptation-based approach
to transfer demographic information from the source domain to improve fairness in the target using
an adversarial approach.

• CGL (Jung et al., 2022): With partial access to sensitive attributes, this method also uses an attribute
classifier and replaces uncertain predictions with random sampling from the empirical conditional
distribution of the sensitive attributes given the non-sensitive attributes P (A|X, Y ).

• ARL (Lahoti et al., 2020): The method uses an adversarial approach to upweight samples in regions
hard to learn, i.e., regions where the model makes the most mistakes.

• Distributionally Robust Optimization (DRO) (Hashimoto et al., 2018): It optimizes for the worst-case
distribution around the empirical distribution. Similar to ARL, the goal is to improve the accuracy
of the worst-case group.

• CVarDRO (Levy et al., 2020): It is an improved variant of DRO.
• KSMOTE (Yan et al., 2020) performs clustering to obtain pseudo groups and use them as substitutes

to oversample the minority groups.

For each method considered for comparison, we used the code provided by the authors2 along with the
recommended hyperparameters. We considered two vanilla baselines: a baseline where the model is trained
without fairness constraints (Vanilla (without fairness)) and a baseline model trained with fairness constraints
over the true sensitive attributes (Vanilla (with fairness)). We also considered baselines trained with fairness
constraints directly using predicted sensitive attributes obtained by data imputation using our student
network (Proxy-DNN) and imputation using K-nearest neighbor (Proxy-KNN).

For comparison, in addition to the accuracy, we consider the three fairness metrics described in the appendix B,
i.e., equalized odds (∆EOD), equal opportunity (∆EOP), and demographic parity (∆DP). All the baselines are
trained on 70% of D1, and fairness and accuracy are evaluated on the 30% as the test set. We assume the
sensitive attribute is observed in the test set to report the true fairness violation. We trained each baseline 7
times and averaged the results. We use logistic regression3 as the base classifier for all the baselines and train
each baseline to achieve minimal fairness violation.

5.2 Results and Discussion

5.2.1 Uncertainty of the sensitive attribute and fairness.

We first analyze the relation between the sensitive attribute’s uncertainty and the fairness of downstream
models. Table 1 showcases the average uncertainty of the sensitive attribute prediction estimated by our

2We implemented FairDA and reproduced using the instructions in the paper (Liang et al., 2023).
3Appendix C.2 shows a comparison with an MLP model.
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Dataset Mean uncertainty (↓) Accuracy sensitive attribute (↑) ∆DP ∆EOD ∆EOP

Adult 0.15 85% 0.18 0.20 0.13
New Adult 0.42 68% 0.06 0.05 0.04
Compas 0.39 72% 0.28 0.32 0.32
CelebA 0.21 83% 0.17 0.19 0.19
LSAC 0.66 55% 0.014 0.005 0.049

Table 1: Average uncertainty of the attribute classifier and fairness of a label classifier on the dataset with
missing sensitive attributes.

Method Accuracy ∆DP ∆EOP ∆EOD

Vanilla (without fairness) 0.851 ± 0.008 0.171 ± 0.004 0.088 ± 0.033 0.091 ± 0.030
Vanilla (with fairness) 0.829 ± 0.002 0.005 ± 0.004 0.021 ± 0.014 0.017 ± 0.007
Proxy-DNN 0.829 ± 0.002 0.009 ± 0.005 0.024 ± 0.014 0.019 ± 0.017
FairRF 0.838 ± 0.002 0.162 ± 0.015 0.063 ± 0.027 0.072 ± 0.019
FairDA 0.809 ± 0.009 0.087 ± 0.028 0.071 ± 0.046 0.078 ± 0.039
CGL 0.834 ± 0.002 0.009 ± 0.006 0.027 ± 0.020 0.026 ± 0.016
ARL 0.850 ± 0.002 0.173 ± 0.013 0.028 ± 0.090 0.097 ± 0.031
CVarDRO 0.820 ± 0.012 0.200 ± 0.005 0.160 ± 0.030 0.100 ± 0.027
KSMOTE 0.814 ± 0.003 0.302 ± 0.007 0.160 ± 0.021 0.196 ± 0.003
DRO 0.823 ± 0.003 0.184 ± 0.042 0.092 ± 0.041 0.105 ± 0.041
FairDSR (weighted) 0.846 ± 0.003 0.032 ± 0.013 0.050 ± 0.033 0.027 ± 0.019
FairDSR (uncertain) 0.825 ± 0.013 0.106 ± 0.036 0.065 ± 0.047 0.068 ± 0.032
FairDSR (certain) 0.830 ± 0.004 0.007 ± 0.005 0.015 ± 0.010 0.018 ± 0.016

Table 2: Results on the Adult dataset. Bolded values represent the best-performing baselines among
the fairness-enhancing methods without (full) demographic information. All the baselines are trained on the
dataset without the sensitive attributes (D1). Each experiment is conducted 7 times, and the fairness and
accuracy are averaged.

method and different fairness measures of a logistic regression model trained without fairness constraints
on the dataset D1. These results show the correlation between the uncertainty of the sensitive attribute
prediction and the fairness of the model. For example, we observe that the uncertainty in the Adult dataset
is lower than in the New Adult dataset, while the unfairness in the Adult dataset is higher. On the other
hand, the LSAC dataset has the highest uncertainty of the sensitive attribute (0.66), and the model without
fairness constraints has the smallest fairness violation across all fairness metrics. In sum, we can observe
that unfairness is higher for datasets with a lower uncertainty in the sensitive attributes, e.g., the Adult
and CelebA datasets. These results support our hypothesis that a model can hardly discriminate against
samples with uncertain demographic information. Furthermore, we investigate the relation between the level
of uncertainty of the sensitive attributes in the training data and the fairness of downstream classifiers trained
without fairness constraints. Our study reveals that a model without fairness constraints tends to be fairer as
the uncertainty of the sensitive attribute in the training data increases.

Specifically, we trained different classifiers (Logistic Regression and Random Forest) without fairness con-
straints but using training data with higher uncertainty in the sensitive attributes. For different uncertainty
thresholds H ∈ {0.0, 0.1, ..., 0.6}, we prune out samples whose uncertainty is lower than H and train the
model without fairness constraints using the remaining training data, i.e., {(x, y) ∈ D1|ux ≥ H}, where ux is
the estimated uncertainty provided by our method. In particular, when H = 0, all the data points are used
for the training, and in other cases, we only maintain samples with uncertainty higher than H, i.e., the model
is trained on samples with more uncertain sensitive attributes. We train the model seven times with different
random seeds for each uncertainty threshold and report fairness and accuracy in the testing set containing
sensitive attributes.
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Method Accuracy ∆DP ∆EOP ∆EOD

Vanilla (without fairness) 0.681 ± 0.011 0.285 ± 0.026 0.325 ± 0.029 0.325 ± 0.029
Vanilla (with fairness) 0.634 ± 0.009 0.032 ± 0.011 0.039 ± 0.024 0.041 ± 0.016
Proxy-DNN 0.634 ± 0.005 0.049 ± 0.008 0.099 ± 0.036 0.080 ± 0.022
FairRF 0.669 ± 0.001 0.289 ± 0.003 0.319 ± 0.004 0.319 ± 0.004
FairDA 0.668 ± 0.019 0.229 ± 0.018 0.265 ± 0.024 0.265 ± 0.024
CGL 0.612 ± 0.019 0.032 ± 0.014 0.065 ± 0.019 0.065 ± 0.027
ARL 0.672 ± 0.009 0.290 ± 0.016 0.310 ± 0.010 0.320 ± 0.010
CVarDRO 0.668 ± 0.008 0.279 ± 0.018 0.300 ± 0.010 0.287 ± 0.015
KSMOTE 0.670 ± 0.012 0.286 ± 0.028 0.321 ± 0.028 0.321 ± 0.028
DRO 0.672 ± 0.010 0.282 ± 0.026 0.296 ± 0.017 0.296 ± 0.017
FairDSR (weighted) 0.672 ± 0.009 0.027 ± 0.016 0.069 ± 0.038 0.083 ± 0.035
FairDSR (uncertain) 0.671 ± 0.009 0.272 ± 0.016 0.300 ± 0.039 0.300 ± 0.034
FairDSR (certain) 0.676 ± 0.009 0.085 ± 0.016 0.067 ± 0.039 0.074 ± 0.034

Table 3: Results on the Compas dataset.
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Figure 2: Training Random Forest classifiers without fairness constraints using samples with high uncertainty
of sensitive attribute predictions. For each uncertainty threshold H, the model is trained on samples with
uncertainty ≥ H. The training is done seven times, and the average fairness (first row) and accuracy (second
row) are reported. Shaded represents the standard deviation.

Figure 2 shows the fairness and accuracy of a Random Forest classifier trained without fairness constraints.
In the figure, each column represents the results on each dataset, and the first and the second rows provide
the plots of fairness and accuracy for different uncertainty thresholds, respectively. Across different datasets,
the results show that unfairness decreases as the uncertainty threshold increases. We observe that the
improvement in fairness is consistent for different fairness metrics considered, i.e., demographic parity, equal
opportunity, and equalized odd. We also observe a decrease in the accuracy, which is justified by reduced
dataset size and improved fairness (tradeoff). On the LSAC dataset, fairness and accuracy remain almost
constant as the average uncertainty in predicting the sensitive attribute on this dataset is 0.66, i.e., most
of the samples already have the highest uncertainty. We observed similar results for a Logistic Regression
classifier presented in the Supplementary (Figure 8). However, this method incurs a higher drop in accuracy
and does not necessarily guarantee that an adversary cannot reconstruct the sensitive attributes from the
trained model (Ferry et al., 2023).

5.2.2 Fairness-accuracy tradeoffs.

Table 2, and 3 show the effectiveness of the FairDSR compared to other baselines on the Adult and Compas
datasets, respectively. Results for the CelebA and LSAC appear in Appendix (Table 6 and 7, respectively).
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(a) Compas dataset
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(b) Adult dataset
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Figure 3: Accuracy-fairness tradeoffs for various fairness metrics (∆DP, ∆EOP, ∆EOD) and proxy sensitive
attributes. The top-left is the best (highest accuracy with the lowest unfairness). Curves are created by
sweeping a range of fairness coefficients λ, taking the median of 7 runs per λ, and computing the Pareto
front. The exponentiated gradient is the fairness mechanism with Random Forests as the base classifier. The
standard deviations are shaded in the figures.

It is important to note that methods aiming to improve worst-case group accuracy (ARL, DRO, CVarDRO)
do not necessarily improve fairness in terms of demographic party or equalized odds. In particular, results
across different datasets show that ARL can improve the Equal Opportunity metric but fails to improve
demographic parity. It also yields the most accurate classifier as this method does not have a tradeoff with
accuracy. On the other hand, FairDA (Liang et al., 2023) and CGL (Jung et al., 2022), which also exploit
limited demographic information, show an improvement in fairness compared to other baselines. However,
it incurs a higher drop in accuracy while our method using fairness constraints on samples with reliable
sensitive attributes significantly outperforms them across all datasets. In other words, the results show that
our method with fairness constraints on samples with reliable sensitive attributes provides Pareto dominant
points in terms of fairness and accuracy.

On the other hand, the variant using a model trained without fairness constraints (without using sensitive
attributes) provides better fairness-accuracy tradeoffs compared to other baselines on the Adult and the
CelebA datasets while providing comparable results on datasets with higher uncertainty (LSAC and Compas).
For example, the LSAC dataset has an average uncertainty of 0.66, meaning most samples already have
uncertain sensitive information, and the unfairness is already low. As no fairness constraints are enforced in
FairDSR (uncertain), it less impacts fairness and accuracy as most data samples are preserved due to high
overall uncertainty. On the other hand, we observe that FairDSR (weighted) can outperform other baselines
and provide better accuracy than FairDSR (certain) at the cost of higher unfairness. The improved accuracy
is explained by the use of all data points in the weighted approach. At the same time, FairDSR (certain)
can strengthen fairness when only samples with reliable sensitive attributes are used. FairDSR (certain)
also provides better Pareto dominant points than CGL and FairDA. While CGL, which also accounts for
the uncertainty of the sensitive attributes, can outperform other baselines, especially those directly using
predicted proxy-sensitive attributes. These results support our hypothesis that using data points with certain
sensitive attributes is more beneficial to fairness and accuracy. Figure 3 shows that imputation methods can
yield reasonably good fairness-accuracy tradeoffs on the Adult and Compas datasets but are suboptimal
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Figure 4: The impact of the uncertainty threshold H on the fairness-accuracy tradeoff for (a) Adult and (b)
Compas datasets.

compared to the model using the true sensitive attributes. We observed similar results with different base
classifiers (logistic regression and gradient-boosted trees) and fairness mechanisms. These results appear
Appendix C.3.

5.2.3 Ablation experiments

Impact of the uncertainty threshold. Figure 4 showcases the impact of the uncertainty threshold
on the fairness-accuracy threshold. When the feature space encodes much information about the sensitive
attribute as in the Adult dataset (Figure 4a) with 85% accuracy of predicting the sensitive attributes, the
results show that the more we enforce fairness w.r.t. samples with the lower uncertainty, the better the
fairness-accuracy tradeoffs. In this regime, enforcing unfairness helps the model maintain a better accuracy
level (Figure 4a). In contrast, in a low bias regime, i.e., when the feature space does not encode enough
information about the sensitive attributes, such as on the Compas and the New Adult dataset, the model
achieves better fairness-accuracy tradeoffs when a higher uncertainty threshold is used. In this regime, most
of the samples have higher uncertainty in the sensitive attribute prediction, and fairness violation is smaller
(see Table 1), as can be observed in Figure 4b, the use of a lower uncertainty threshold leads to a decrease
in accuracy while fairness is improved. We observe similar results in the New Adult, CelebA, and LSAC
datasets (Fig 13 in Supplementary). The accuracy drops since more and more samples were pruned out
from the datasets, and this suggests that the feature space is more informative for the target task than the
demographic information. In the appendix (D), we show that while under-represented demographic groups
can have higher uncertainty on average than well-represented groups, minority groups are still consistently
represented when a lower threshold is used.

Importance of the consistency loss. In the proposed framework, we use trained attribute classifier
with a double loss: the cross-entropy loss (supervised loss) and the consistency loss (unsupervised loss).
The parameter λ controlling the consistency loss is updated using a Gaussian ramp-up function starting
from zero at the beginning of the training. The consistency loss pushes the student to focus on data points
with highly certain sensitive attributes. Without this second loss term, the student model minimizes the
classification error without explicit consideration of the uncertainty in the dataset without sensitive attributes.
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Figure 5: Consistency loss study on the Adult dataset. The predicted sensitive attributes are obtained
using our student model with and without consistency loss.

To demonstrate the importance of consistency loss (and thus the importance of self-ensembling with the
teacher), we experiment with the student model trained without the consistency loss, i.e., we set λ = 0 in
Equation 1. We applied the same procedure of the second step of FairDSR (certain) to derive data points
with sensitive attributes predicted with low uncertainty.

Figure 5 showcases the Pareto front of our FairDSR trained without (w/) and without (w/o) the consistency
loss. The base classifier is Random Forest with exponentiated gradient as the fairness mechanism. The Figure
also shows the Pareto front of the model trained with the ground truth sensitive attribute and the predicted
sensitive attribute (Proxy-DNN). We observe that training the model with the consistency loss provides
Pareto dominant points across different fairness metrics. This demonstrates the benefit of the consistency
loss in effectively identifying samples with sensitive attributes predicted with low uncertainty in the dataset
without demographics. We also observed that the mean uncertainty for the model without the consistency
loss is around 0.19 ± 0.08, while the model that uses the consistency loss is 0.15 ± 0.12. This suggests that the
consistency loss effectively enforces the student model focus on data points with low uncertainty. Moreover,
we also observe that the model without the consistency loss still outperforms the model that directly uses the
sensitive attributes (Proxy-DNN) and the model that uses true sensitive attributes. This demonstrates that
our hypothesis still holds even if the uncertainty measure is less effective, and a better uncertainty measure
can provide even better results.

Experiment with uncertainty measure based on confidence intervals. We adopted Monte Carlo
dropout because it efficiently captures various sources of uncertainty, both in the data and the model. Another
classic approach to measuring uncertainty is the model’s prediction confidence. In this experiment, we
evaluate the effect of using confidence intervals as the uncertainty measure on fairness-accuracy tradeoffs.
Given a trained attribute classifier, recall we obtain the predicted group label by thresholding the prediction
probability, i.e., f(x) = 1(P (Â = a|X = x) ≥ 0.5).

We construct the confidence interval using a threshold τ ∈ [0.5, 1], such that samples with higher uncertainty
have their prediction probability closer to 0.5. A given data point x is in the high uncertainty set if
1 − τ < P (Â = a|X = x) < τ , while x is in the low uncertainty set otherwise. More specifically, in this
experiment, we derive the subset of data points with low uncertainty of the sensitive attribute prediction as
follows :

(x, y, f(x)) ∈ D′
1 if


P (Â = a|X = x) ∈ [0, 1 − τ ],

or ∀a ∈ {0, 1}
P (Â = a|X = x) ∈ [τ, 1],

(6)

We experiment with different confidence thresholds τ on the Adult dataset. Specifically, for each confidence
threshold τ ∈ {0.6, 0.7, 0.8, 0.9}, we trained the Random Forest model using data points with high confidence.
Setting the confidence threshold to 0.5 is similar to using all data points to train the model. As shown
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Figure 6: Study of uncertainty measure based on confidence interval.
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Figure 7: Study of uncertainty measure based on conformal predictions.

in Figure 6, models trained using confidence intervals as uncertainty measures yield worse Pareto points.
Specifically, we observe a significant drop in accuracy while fairness performances significantly improve. We
also observe that a higher confidence threshold tends to provide better fairness for a similar level of accuracy.
While this observation also supports our hypothesis, the drop in accuracy suggests that the confidence
interval is less effective in identifying data points with low uncertainty in sensitive attributes. We suspect
this results from the unreliability of the model probability due to overconfidence or underconfidence in wrong
predictions (Guo et al., 2017). As the confidence interval is obtained using a single model, low-confidence
prediction could be solely caused by poor calibration or randomness in the algorithm. We validate this in
the next ablation study by calibrating the attribute classifier and using conformal prediction to measure
uncertainty.

Ablation on uncertainty measure based on conformal predictions. In this experiment, we inves-
tigate the validity of our hypothesis under different and reliable uncertainty measures, such as conformal
prediction (Shafer & Vovk, 2008). Conformal prediction, a machine learning framework, constructs prediction
sets containing possible labels. These sets are guaranteed to include the true label with a probability of 1 − ϵ,
where ϵ ∈ [0, 1] is a user-defined error rate. For instance, setting ϵ = 0.1 ensures the prediction set has at
least a 90% chance of containing the correct label. The size of the set reflects the model’s confidence in its
prediction. Ideally, the set would contain only one label, indicating high confidence. Larger sets suggest
greater uncertainty about the predicted label. To construct the prediction set of the sensitive attribute, with
the 1 − ϵ guarantee, we implement split conformal prediction as described by Angelopoulos et al. (2023),
which is the widely-used version of conformal prediction. Split conformal prediction takes the pretrained
attribute classifier and calibration set to compute the conformal prediction threshold4 used to include labels
in the prediction set of the test set. We employ the Model Agnostic Prediction Interval Estimator (MAPIE)
library to train a conformal classifier and measure the uncertainties in the attribute classier (Cordier et al.,
2023). The classifier wraps the original attribute classifier and produces conformal prediction sets with

4See Angelopoulos et al. (2023) for more details on how prediction sets are constructed
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Sensitive attributes Coverage ϵ Accuracy ∆DP ∆EOP ∆EOD

Uncertain + Certain N/A 0.82 0.08 0.07 0.07

Certain
0.05 0.84 0.123 0.089 0.118
0.1 0.83 0.109 0.119 0.100
0.2 0.83 0.110 0.081 0.109

Uncertain
0.05 0.77 0.009 0.012 0.007
0.1 0.77 0.006 0.017 0.009
0.2 0.76 0.003 0.005 0.008

Table 4: Study of models without fairness constraints using different levels of uncertainty measured with
conformal predictions.

the guaranteed marginal coverage rate 1 − ϵ. We used 10% of the dataset with sensitive attributes as the
calibration set and to train the calibrated attribute classifier.

In the second step of our framework, we generate prediction sets of the sensitive attributes in the dataset
where demographic information is missing (D1). Since the sensitive attributes are binary, there are four
possible prediction sets for each data point: {0}, {0, 1}, {1}, and the empty set {∅}. This means each
prediction set for every sample consists of either a single attribute value, both values or no value at all (Gupta
et al., 2020). Samples with prediction sets containing exactly one attribute value are grouped into subsets of
samples with low uncertainty (D′

1). On the other hand, samples with empty prediction sets or sets containing
both attribute values indicate higher uncertainty regarding the sensitive attributes. As we used a score-based
method to compute non-conformity scores, the prediction set for uncertainty predictions might be empty if a
set size smaller than 1 is necessary to ensure 1 − ϵ coverage (Cordier et al., 2023).

In our experiments on the Adult dataset, we varied ϵ across values {0.05, 0.1, 0.2}. This means for ϵ = 0.05,
ϵ = 0.1, and ϵ = 0.2, the prediction sets are guaranteed to include the true sensitive attribute with probabilities
of 95%, 90% and 80%, respectively. Our model training incorporated fairness constraints specifically on
data points where the prediction set contained a single attribute value, indicating higher confidence in the
prediction for smaller values of ϵ. Following the previous evaluation, we trained the Random Forest classifier
for each ϵ and sweeping range of fairness coefficients λ, taking the median of 7 runs and computing the Pareto
front. Figure 7 showcases the Pareto front of different models with fairness constraints on samples with
greater certainty of the sensitive attributes (samples with single-valued prediction sets) for different values of
ϵ. As can be seen in Fig 7, all models trained using samples with low uncertainty in the sensitive attributes
achieve better Pareto front than the model using all the predicted sensitive values (Proxy-DNN) and even
ground truth sensitive attributes (clean). This demonstrates the benefit of applying fairness constraints
over data points with low uncertainty in the sensitive on-fairness accuracy tradeoff. Moreover, the figure
shows that smaller values of ϵ result in better Pareto dominant points, i.e., better fairness-accuracy tradeoff.
This is justified by the fact that smaller values of ϵ increase the certainty of samples with a single value in
their prediction set. Specifically for ϵ = 0.05, the Pareto front is closer to our baseline method using the
dropout-based uncertainty measure. We observed a similar trend on other datasets and with different base
classifiers. These results also support our hypothesis that imposing fairness constraints on the sample with
low uncertainty in the sensitive attribute can better improve fairness and accuracy.

On the other hand, using conformal predictions to measure uncertainty, we also evaluated the variant of our
hypothesis where the model is trained without fairness constraints using samples with greater uncertainty in
the predicted sensitive attributes. This means we trained the model without fairness constraints but using
samples whose prediction sets are empty or contain two values. We also trained models without fairness
constraints using samples with greater certainty of the sensitive attributes, i.e., samples with single values
in their prediction sets. Table 4 shows the fairness and accuracy of Random Forest models trained without
fairness constraints using data with different uncertainty levels on the Adult dataset. More specifically, we
considered three cases:
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• Certain + Uncertain: The model is trained using all data points, i.e., the data contain samples with
certain and uncertain sensitive attributes.

• Certain: The model is trained using only samples with greater certainty of the sensitive attribute.
This means the training data contains only samples with a single in the prediction sets.

• Uncertain: The model is trained using only samples with greater uncertainty of the sensitive attribute.
This means the training data contains only samples whose prediction sets are empty or contain two
values.

The results depicted in Table 4 show that, without fairness constraints, the models using samples with greater
certainty of sensitive attributes have better accuracy but tend to exacerbate unfairness, while models using
data with lower uncertainty significantly improve fairness at the expense of accuracy. More specifically,
for ϵ = 0.05, the model using only data with uncertain sensitive attributes achieves fairness in terms of
demographic parity of 0.009 compared to 0.12 for the model using data with certain sensitive attributes.
This corresponds to a 92% improvement in fairness with a smaller drop of 8% for accuracy. This shows
models hardly discriminate against samples with uncertain sensitive attributes, and the fairness-accuracy
tradeoffs can be controlled by uncertainty in sensitive attribute space. This also supports our hypothesis
under different and reliable uncertainty measures.

6 Conclusion

In this work, we introduced FairDSR, a framework to improve the fairness-accuracy tradeoff when only
limited demographic information is available. Our method introduces uncertainty awareness in the sensitive
attributes classifier. We showed that uncertainty in the attribute classifier plays an important role in the
fairness-accuracy tradeoffs achieved in the downstream model with fairness constraints. We showed that
enforcing fairness on samples whose sensitive attributes are predicted with low uncertainty can yield models
with better fairness-accuracy tradeoffs. Subsequently, we considered different variations around our hypothesis
and demonstrated the benefit of uncertainty quantification in the sensitive attribute space for designing fair
models under unknown demographic information.

Impact Statement

The proposed framework shows evidence that models can hardly discriminate against samples with high
uncertainty in sensitive attribute prediction. However, our base model relies on the predicted missing sensitive
information. Inferring sensitive information can raise ethical concerns and face legal restrictions, especially
when individuals do not choose to disclose their sensitive information. The line of methods relying upon
proxy attributes or inferring sensitive attributes faces this limitation (Diana et al., 2022; Awasthi et al.,
2021; Coston et al., 2019; Liang et al., 2023). For this reason, we proposed a variant of our model (FairDSR
(uncertain), Sec. 4.2) that derives a dataset with higher uncertainty in sensitive attributes without using
predicted information.In addition, verifying that no group of users is left out when training the model due to
the lower uncertainty of their sensitive attributes is important. While we analyzed group representation and
showed that groups are still relatively well represented even with a higher uncertainty threshold (Fig. 16 in
Supplementary), there are still a risks of disparate impact.

We emphasize that the inference of the sensitive attributes using our proposed method should not be used for
any purpose other than bias assessment and mitigation.
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Supplementary Material

A Limitations

Our method is evaluated mainly on one fairness-enhancing algorithm (i.e., Exponentiated Gradient). It will
be interesting to explore if our hypothesis applies to pre-processing and post-processing techniques and with
different fairness-enhancing algorithms. Finally, our assumption that the true sensitive attributes are available
in the test dataset for fairness evaluation might not be true in several practical scenarios. This might require
evaluation using proxy-sensitive attributes. These proxies are likely noisy and might require evaluations using
bias assessment methods that effectively quantify fairness violation w.r.t to true sensitive attribute (Chen
et al., 2019; Awasthi et al., 2021). On the other hand, it will be interesting to back our empirical findings
with theoretical results by characterizing fairness violation bounds based on the uncertainty quantification of
the sensitive attribute predictions.

B Fairness Metrics & Datasets

In the main paper, we considered the three popular group fairness metrics: demographic parity, equalized
odds, and equal opportunity. These metrics aim to equalize different models’ performances across different
demographic groups. Samples belong to the same demographic group if they share the same demographic
information, A, e.g., gender and race.

B.1 Fairness Metrics

Demographic Parity Also known as statistical parity, this measure requires that the positive prediction
(f(X) = 1) of the model be the same regardless of the demographic group to which the user belongs (Dwork
et al., 2012). More formally the classifier f achieves demographic parity if P (f(X) = 1|A = a) = P (f(X) = 1)
In other words, the model’s outcome should be independent of sensitive attributes. In practice, this metric is
measured as follows:

∆DP(f) =
∣∣∣∣ E
x|A=0

[I{f(x) = 1}] − E
x|A=1

[I{f(x) = 1}]
∣∣∣∣ (7)

Where I(·) is the indicator function.

Equalized Odds This metric enforces the True Positive Rate (TPR) and False Positive Rate (FPR) for
different demographic groups to be the same P (f(X) = 1|A = 0, Y = y) = P (f(X) = 1|A = 1, Y = y), :; ∀y ∈
{0, 1}. The metric is measured as follows:

∆EOD = α0 + α1 (8)

Where,

αj =
∣∣∣∣ E
x|A=0,Y =j

[I{f(x) = 1}] − E
x|A=1,Y =j

[I{f(x) = 1}]
∣∣∣∣ (9)

Equal Opportunity In certain situations, bias in positive outcomes can be more harmful. Therefore, the
Equal Opportunity metric enforces the same TPR across demographic (Hardt et al., 2016) and is measured
using α1 (Eq. 9).

B.2 Datasets

In the Adult dataset, the task is to predict if an individual’s annual income is greater or less than $50k per
year. We also considered the recent version of the Adult dataset (New Adult) for 2018 across different states
in US (Ding et al., 2021). For the Compas dataset, the task is to predict whether a defendant will recidivate
within two years. The LSAC dataset contains admission records to law school. The task is to predict whether
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Dataset Size #features Domain Sensitive
attribute

Adult Income 48,842 15 Finance Gender
Compas 6,000 11 Criminal justice Race
LSAC 20,798 12 Education Gender
New Adult 1.6M 10 Finance Gender
CelebA 202,600 40 Image Gender

Table 5: Datasets

a candidate will pass the bar exam. The CelebA5 dataset contains 40 facial attributes of humaine annotated
images. We consider the task of predicting attractiveness using gender as a sensitive attribute. We randomly
sample 20% of the data to train the sensitive attribute classifier (D2). All the input features are used to train
the attribute classifier except for the target variable. Table 5 provides more details about each dataset and
sensitive attributes used.
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Figure 8: Training Logistic Regression without fairness constraints using samples with high uncertainty of
sensitive attribute predictions. For each uncertainty threshold H, the model is trained on samples with
uncertainty ≥ H. The training is done seven times, and the average fairness (first row) and accuracy (second
row) are reported. Shaded represents the standard deviation.

C Additional Results

C.1 Impact of the group-labeled ratio.

In all the previous experiments, we considered the ratio of the group-labeled dataset (D2) as 20% of the
original dataset. In many real-world scenarios, data labeling is costly, especially given the rising concerns
surrounding privacy. As these concerns intensify, fewer users may be inclined to disclose their sensitive
attributes. It is, therefore, important to study the impact of the group-labeled ratio on the performance of
our method. In this ablation study, we consider the attribute classifier trained with different ratios of D2, i.e.,
3%, 5%, 10%, 15%, and 20% of the original dataset. We experiment on the Adult, wherein 3% represents
around 1,465 data points among the 48,842 data points available.

5http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Figure 9: Study of group-labeled ratio. The sensitive attribute classifier is trained using different ratios
of the dataset with sensitive attributes (D2).

Figure 9 shows the Pareto front for different group-labeled ratios. Our findings remain consistent even in
the most demographic scare regime. While we observe a slight drop in accuracy for smaller group-labeled
ratios, the fairness performances are maintained. The Pareto fronts still dominate the model directly using
the predicted sensitive attributes. These results suggest that our hypothesis holds even when very limited
demographic information is available, as long as the dataset is predictive for sensitive attributes. On the other
hand, even if the dataset is not predictive enough for the sensitive attributes, our results show that training a
model without fairness constraints will exhibit less disparities across the unknown demographic groups.

C.2 Results on Nonlinear Classifier.

Table 6 compares with other baselines on the CelebA dataset with logistic regression as the base classifier. In
the main paper, we compared existing methods using Logistic Regression as the base classifier. We performed
experiments with a more complex non-linear model to analyze its impact on the performance of different
methods. We considered a Multi-Layer Perceptron (MLP) with one hidden layer of 32 units and Relu as
the activation function for all the baselines. On the Adult dataset, Table 8 shows that when using a more
complex model, our method (FairDSR (certain)) still provides Pareto dominants points in terms of fairness
and accuracy compared to other baselines. At the same time, we observed an improvement in the accuracy of
other methods due to the increased model capacity.

Method Accuracy ∆DP ∆EOP ∆EOD

Vanilla (without fairness) 0.803 ± 0.002 0.176 ± 0.010 0.183 ± 0.015 0.183 ± 0.015
Vanilla (with fairness) 0.782 ± 0.001 0.008 ± 0.005 0.018 ± 0.014 0.017 ± 0.014
Proxy-DNN 0.800 ± 0.001 0.008 ± 0.036 0.011 ± 0.022 0.036 ± 0.011
FairDA 0.802 ± 0.002 0.155 ± 0.010 0.165 ± 0.018 0.165 ± 0.018
CGL 0.782 ± 0.002 0.008 ± 0.005 0.019 ± 0.011 0.020 ± 0.009
ARL 0.803 ± 0.002 0.157 ± 0.010 0.157 ± 0.010 0.166 ± 0.016
CVarDRO 0.781 ± 0.002 0.155 ± 0.010 0.162 ± 0.016 0.162 ± 0.016
KSMOTE 0.773 ± 0.008 0.020 ± 0.067 0.110 ± 0.082 0.144 ± 0.068
DRO 0.796 ± 0.006 0.142 ± 0.020 0.152 ± 0.020 0.129 ± 0.028
FairDSR (weighted) 0.799 ± 0.004 0.038 ± 0.010 0.020 ± 0.012 0.033 ± 0.013
FairDSR (uncertain) 0.782 ± 0.004 0.071 ± 0.046 0.107 ± 0.033 0.107 ± 0.033
FairDSR (certain) 0.793 ± 0.000 0.003 ± 0.000 0.001 ± 0.001 0.007 ± 0.002

Table 6: Results on the CelebA dataset.
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Method Accuracy ∆DP ∆EOP ∆EOD

Vanilla (without fairness) 0.793 ± 0.007 0.014 ± 0.005 0.005 ± 0.005 0.049 ± 0.026
Vanilla (with fairness) 0.796 ± 0.009 0.004 ± 0.004 0.002 ± 0.001 0.025 ± 0.016
Proxy-DNN 0.792 ± 0.009 0.018 ± 0.009 0.004 ± 0.001 0.040 ± 0.005
FairRF 0.753 ± 0.120 0.021 ± 0.013 0.016 ± 0.017 0.044 ± 0.015
FairDA 0.716 ± 0.210 0.001 ± 0.000 0.000± 0.005 0.003 ± 0.004
CGL 0.765 ± 0.022 0.005 ± 0.004 0.003 ± 0.001 0.035 ± 0.017
ARL 0.807 ± 0.024 0.014 ± 0.015 0.009 ± 0.014 0.037 ± 0.022
CVarDRO 0.776 ± 0.052 0.024 ± 0.010 0.019 ± 0.014 0.045 ± 0.015
KSMOTE 0.655 ± 0.055 0.022 ± 0.034 0.030 ± 0.022 0.060 ± 0.018
DRO 0.580 ± 0.220 0.023 ± 0.014 0.021 ± 0.017 0.038 ± 0.020
FairDSR (weighted) 0.806 ± 0.001 0.008 ± 0.005 0.004 ± 0.002 0.035 ± 0.018
FairDSR (uncertain) 0.794 ± 0.001 0.015 ± 0.002 0.006 ± 0.001 0.055 ± 0.000
FairDSR (certain) 0.805 ± 0.001 0.001 ± 0.002 0.000 ± 0.001 0.002 ± 0.000

Table 7: Results on the LSAC dataset.

Method Accuracy ∆DP ∆EOP ∆EOD

Vanilla (without fairness) 0.853 ± 0.004 0.183 ± 0.019 0.100 ± 0.025 0.102 ± 0.023
Vanilla (with fairness) 0.801 ± 0.009 0.006 ± 0.004 0.049 ± 0.011 0.017 ± 0.007
Proxy-DNN 0.795 ± 0.009 0.029 ± 0.004 0.067 ± 0.020 0.042 ± 0.011
FairRF 0.853 ± 0.002 0.164 ± 0.009 0.077 ± 0.026 0.091 ± 0.013
FairDA 0.813 ± 0.014 0.118 ± 0.023 0.091 ± 0.050 0.099 ± 0.037
CGL 0.800 ± 0.014 0.009 ± 0.002 0.017 ± 0.021 0.032 ± 0.010
ARL 0.851 ± 0.003 0.166 ± 0.015 0.087 ± 0.019 0.090 ± 0.016
CVarDRO 0.850 ± 0.003 0.183 ± 0.018 0.095 ± 0.027 0.101 ± 0.026
KSMOTE 0.814 ± 0.020 0.201 ± 0.055 0.120 ± 0.021 0.130 ± 0.023
DRO 0.837 ± 0.016 0.232 ± 0.057 0.110 ± 0.057 0.140 ± 0.045
FairDSR (weighted) 0.849 ± 0.027 0.018 ± 0.010 0.061 ± 0.034 0.047 ± 0.032
FairDSR (uncertain) 0.801 ± 0.027 0.110 ± 0.022 0.067 ± 0.027 0.059 ± 0.024
FairDSR (certain) 0.818 ± 0.004 0.009 ± 0.008 0.028 ± 0.020 0.027 ± 0.017

Table 8: Results on the Adult dataset using an MLP with a hidden layer of 34 units as base classifier.

C.3 Comparison with Other Baselines

To assess the effect of the attribute classifier over the performances of downstream classifiers with fairness
constraints w.r.t the proxy, we also performed extensive comparisons with different methods of obtaining the
missing sensitive attributes:

• Ground truth sensitive attribute. We considered the case where the sensitive attribute is fully
available and trained the model with fairness constraints w.r.t the ground truth. This represents
the ideal situation where all the assumptions about the availability of demographic information are
satisfied. This baseline is expected to achieve the best trade-offs.

• Proxy-KNN. Here the missing sensitive attributes are handled by data imputation using the
k-nearest neighbors (KNN) of samples with missing sensitive attributes.

• Proxy-DNN. For this baseline, an MLP is trained on D2 to predict the sensitive attributes without
uncertainty awareness. The network architecture and the hyperparameter are the same as for the
student in our model.
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• CGL (Jung et al., 2022): Similar to our setup, this method also uses an attribute classifier and
replaces uncertain predictions with random sampling from the empirical conditional distribution of
the sensitive attributes given the non-sensitive attributes P (A|X, Y ).

(a) Compas

0.1 0.2
DP

0.62

0.64

0.66

0.68

A
cc

ur
ac

y

0.05 0.10 0.15 0.20 0.25
EOP

0.62

0.64

0.66

0.68

A
cc

ur
ac

y
0.05 0.10 0.15 0.20 0.25

EOD

0.64

0.66

0.68

A
cc

ur
ac

y

Unfair Ground truth Proxy-DNN Proxy-KNN CGL FairDSR (ours)

(b) Adult

0.00 0.05 0.10
DP

0.80

0.82

0.84

A
cc

ur
ac

y

0.025 0.050 0.075 0.100
EOP

0.82

0.83

0.84

A
cc

ur
ac

y

0.02 0.04 0.06 0.08 0.10
EOD

0.83

0.84

A
cc

ur
ac

y
(c) LSAC

0.00 0.01 0.02
DP

0.86

0.87

A
cc

ur
ac

y

0.002 0.004 0.006 0.008
EOP

0.860

0.865

0.870

0.875

A
cc

ur
ac

y

0.02 0.03 0.04
EOD

0.865

0.870

0.875

A
cc

ur
ac

y

(d) CelebA

0.00 0.05 0.10 0.15
DP

0.795

0.800

0.805

0.810

A
cc

ur
ac

y

0.05 0.10
EOP

0.804

0.806

0.808

0.810

A
cc

ur
ac

y

0.05 0.10
EOD

0.795

0.800

0.805

0.810

A
cc

ur
ac

y

Figure 10: Accuracy-fairness trade-offs for various fairness metrics (∆DP, ∆EOP, ∆EOD) and proxy sensitive
attributes. The top-left is the best (highest accuracy with the lowest unfairness). Curves are created by
sweeping a range of fairness coefficients λ, taking the median of 7 runs per λ, and computing the Pareto
front. The exponentiated gradient is the fairness mechanism with Random Forests as the base classifier. The
standard deviations are shaded in the figures.

For fairness-enhancing mechanisms, we considered the Fairlean (Bird et al., 2020) implementation of the
exponentiated gradient (Agarwal et al., 2018) and adversarial debiasing (Zhang et al., 2018) (Section 3). We
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used various base classifiers for the exponentiated gradient, including logistic regression, random forest, and
gradient-boosted trees. Random forest was initialized with a maximum depth of 5 and minimum sample leaf
of 10, and default parameters were used for logistic regression without hyperparameter tuning. The same
models and hyperparameters were used across all the datasets. Adversarial debiasing works for demographic
parity and equalized odds. The architecture of the classifier, the adversary, and other hyperparameters used
is the same as recommended by the original paper (Zhang et al., 2018). We evaluate the fairness-accuracy
trade-off of every baseline by analyzing the accuracy achieved in different fairness regimes, i.e., by varying
the parameter ϵ ∈ [0, 1], controlling the balance between fairness and accuracy. For a value of ϵ close to 0,
the label classifier is enforced to achieve higher accuracy, while for a value close to 1, it is encouraged to
achieve lower unfairness. For each value of ϵ, we trained each baseline 7 times on a random subset of D1
(70%) using their predicted sensitive attributes, and the accuracy and fairness are measured on the remaining
subset (30%), where we assumed that the joint distribution (X, Y, A) is available for fairness evaluation. The
results are averaged, and the Pareto front is computed.

Figure 10 shows the Pareto front of the exponentiated gradient method on the Adult, Compas, and LSAC
datasets using Random Forests as the base classifier. The figure shows the trade-off between fairness
and accuracy for the different methods of inferring the missing sensitive attributes. From the results, we
observe on all datasets and across all fairness metrics that data imputation can be an effective strategy for
handling missing sensitive attributes, i.e., this fairness mechanism can efficiently improve the model’s fairness
with respect to the true sensitive attributes, although fairness constraints were enforced on proxy-sensitive
attributes. However, we observe a difference in the fairness-accuracy trade-off for each attribute classifier.
The KNN-based attribute classifier has the worst fairness-accuracy trade-off on all datasets and fairness
metrics. This shows that assigning sensitive attributes based on the nearest neighbors does not produce
sensitive attributes useful for achieving a trade-off close to the ground truth. While the DNN-based attribute
classifier produces a better trade-off, it is still suboptimal compared to the ground truth-sensitive attributes.
We observed similar results with different baseline models, such as logistic regression and gradient-booted
trees, and for adversarial debiasing as the fairness mechanism. In contrast, our method consistently achieves
a better trade-off on all datasets and the fairness metrics considered. Similar results are obtained on the
exponentiated gradient with logistic regression and gradient-boosted trees as base classifiers and adversarial
debiasing (see Section 6). The uncertainty threshold’s choice depends on the dataset’s bias level, i.e., the
level of information about the sensitive attribute encoded in the feature space.

Figures 11(d), 10(d), and 12(d), depict the Pareto front of various baselines on the CelebA dataset. It shows
that models trained with imputed sensitive attributes via KNN consistently achieve comparable tradeoffs to
models trained with fairness constraints based on the true sensitive attribute. This could be explained by the
fact that gender clusters are perfectly defined in the latent space. We observed that KNN-based imputation
achieved 95% accuracy in predicting gender. Conversely, the figures illustrate that our method outperforms
baselines using ground truth-sensitive attributes and imputation methods, yielding more Pareto-dominant
points. This highlights the advantages of applying fairness constraints to samples with low uncertainty in the
sensitive attributes. Furthermore, Figure 14 (c) shows decreasing the uncertainty threshold further improves
fairness while preserving the accuracy. We note the CelebA dataset can raise ethical concerns and is used only
for evaluation purposes. For instance, predicting the attractiveness of a photo using other facial attributes as
sensitive attributes can still harm individuals even if the model predicting attractiveness is not biased.

Exponentiated gradient with different baseline classifiers Figure 11 and 12 show fairness-accuracy
trade-offs achieved by the exponentiated gradient with logistic regression and gradient-boosted trees, re-
spectively. Similar to the results presented in the main paper, our method achieves better fairness-accuracy
trade-offs.

Figure 14 shows the accuracy-fairness trade-off Exponentiated gradient using gradient-boosted trees as the
base classifier for various uncertainty thresholds, the true sensitive attributes, and the predicted sensitive
attributes with DNN. The results obtained are similar to random forests as the base classifier. The smaller
uncertainty threshold produced the best trade-off in a high-bias regime like the Adult dataset. On datasets
that do not encode much information about the sensitive attributes (most samples have high uncertainty),
such as the New Adult and LSAC datasets, the accuracy decreases as the uncertainty threshold reduces
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Figure 11: Accuracy-fairness trade-offs for various fairness metrics (∆DP, ∆EOP, ∆EOD) and proxy-sensitive
attributes. Top-left is the best (Highest accuracy with the lowest unfairness). The fairness mechanism is the
Exponentiated gradient with logistic regression as the base classifier on the Compas (a), Adult (b), LSAC (c),
and CelebA (c)datasets. The standard deviation is shaded in the figure.

while fairness is improved or maintained. On the LSAC dataset (Figure 14(d)), we observe that increasing
the uncertainty threshold results in a much higher drop in accuracy. This is explained by the high average
uncertainty (0.66), and using a smaller threshold removes most of the data.

Experiments with adversarial debaising Figure 15 shows the trade-offs for adversarial debiasing. Our
methods achieve a better trade-off on the Adult datasets, while for the Compas dataset, the ground-truth
sensitive achieves a better trade-off. It is worth noting that adversarial debiasing is unstable to train.
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Figure 12: Accuracy-fairness tradeoffs for various fairness metrics (∆DP, ∆EOP, ∆EOD) and proxy sensitive
attributes. The fairness mechanism used is the Exponentiated gradient with gradient-boosted trees as the
base classifier on the Compas (a) Adult (b), (c) LSAC, and (d) CelebA datasets. The standard deviation is
shaded in the figure.

D Uncertainty Estimation of Different Demographic Groups

In the main paper, we showed that when the dataset does not encode enough information about the sensitive
attributes, the attribute classifier has, on average, greater uncertainty in the predictions of sensitive attributes.
This encourages a choice of a higher uncertainty threshold to keep enough samples to maintain the accuracy,
i.e., to prune out only the most uncertain samples. Figure 16 shows that the gap between demographic groups
can increase as a smaller uncertainty threshold is used. This is explained by the fact that the model is more
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confident about samples from well-represented groups than samples from under-represented groups. While
this gap between demographic groups can increase, our results show there are still enough samples from the
disadvantaged group with reliable sensitive attributes. Thus, tuning the uncertainty threshold can result in a
model that achieves a better trade-off between accuracy and various fairness metrics. Note that we observed
the same trend for the LSAC dataset. The average uncertainty is 0.66, and the minimum uncertainty is
0.62. We also observed that group representation remains consistent (35% difference) when using the average
uncertainty value.
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Figure 13: The impact of the uncertainty threshold H on the fairness-accuracy trade-off. For the exponentiated
gradient with Random Forest as the base classifier for the (a) Adult, (b) Compas, (c) New Adult, (c) CelebA
dataset, and (d) LSAC datasets.
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Figure 14: Exponentiated gradient with gradient-boosted trees as the base classifier. The impact of the
uncertainty threshold H on the fairness-accuracy trade-off for the (a) Adult, (b) Compas, (c) New Adult, (c)
CelebA dataset, and (d) LSAC datasets.
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Figure 15: Adversarial debiasing. Accuracy-fairness trade-offs for various fairness metrics (∆DP, ∆EOP) and
proxy-sensitive attributes.
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Figure 16: Demographic group representation in each dataset for different uncertainty thresholds. The gap
between groups increases as the threshold becomes smaller. The plot reveals there are samples from the
minority group that exhibit lower uncertainty in the prediction of their sensitive attributes.
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