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ABSTRACT

Recently, there has been a growing interest in using neural networks to approx-
imate the solutions of partial differential equations (PDEs). Physics-informed
neural networks (PINNs) have emerged as a promising framework for parame-
terizing PDE solutions using deep neural networks. However, PINNs often rely
on memory-intensive optimizers to attain reasonable accuracy and can encounter
training difficulties due to issues such as stiffness in the gradient flow of the loss.
To address these challenges, we propose a novel network architecture that com-
bines neural ordinary differential equations (ODEs) with physics-informed con-
straints in the loss function. In this approach, the dynamics within a neural ODE
are expanded to include a system of ODEs whose solution provides the partial
derivatives governing our PDE system. We call this architecture PINECONEs:
physics-informed neurally constructed ODE networks. We evaluate the approach
using simple but canonical PDEs from the literature to illustrate its potential. Our
results show that training requires fewer iterations than previous approaches to
achieve higher accuracy when using first-order optimization methods.

1 INTRODUCTION

Partial differential equations (PDEs) play a vital role in mathematical modelling and simulation,
but most PDEs lack analytical solutions and must be numerically approximated. Although many
tools exist for numerically solving a variety of PDEs, many problems of scientific interest remain
computationally intractable or require significant simplification.

The fields of machine learning and scientific computing have recently undergone a synergistic in-
terplay. This newly emerging area has been coined "scientific machine learning." Neural networks,
while expensive and time-consuming to train, are incredibly fast to evaluate, making them ideal for
applications where simulations are infeasible or computationally costly. Hybrid modelling frame-
works that incorporate neural networks into scientific modelling problems have yielded impressive
results Karniadakis et al. (2021b).

One successful approach is Physics Informed Neural Networks (PINNs) (Raissi et al., 2019a), which
have been used to model multi-scale and multi-physics phenomena, solve high-dimensional systems
of PDEs, and combine incomplete mechanistic understanding with data (Karniadakis et al., 2021a).
However, certain types of problems remain open challenges for PINNs. For instance, PINNs may
struggle to train for multi-scale problems or problems that exhibit multiple frequencies in their so-
lutions. To achieve reasonable accuracy, PINNs are often trained using the LBFGS optimizer (Zhu
et al., 1997), a quasi-Newton method which is more computationally costly and memory intensive
than first-order methods.

In this work, we adapt neural ODEs so that they may be used in a PINN. We demonstrate that, on
some simple PDE benchmark problems, our method is able to attain lower error with less training
than the original PINN approach when using a first-order optimizer.
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1.1 BACKGROUND

Consider a system of partial differential equations (PDEs),

Fu = f in Ω (1)
Bu = g in ∂Ω

where F(·) is a differential operator, B(·) is a boundary value operator, Ω ⊂ Rn, ∂Ω is an appro-
priately defined boundary, and f and g are known functions in suitable function spaces; u is the
unknown solution we aim to approximate. Note that g ∈ ∂Ω will include initial conditions for
time-dependent systems. Finding u is equivalent to finding the root of the residual operator

R(u) = ‖Fu− f‖p + ‖Bu− g‖p (2)

for suitable norms with p > 0.

One approach for approximating solutions to Eq. (1) is to use a collocation method. In a collocation
method, a candidate solution is sought among a class of functions in some finite dimensional space
to best satisfy the differential equation at a set of chosen points referred to as the collocation points.
For example, in pseudo-spectral methods (Shen et al., 2011), the family of candidate solutions is
trigonometric polynomials of some fixed order, parameterized by their coefficients. The goal is to
find the coefficients that best satisfy the differential equation on some collocation points. Another
space of functions that can be used to generate a family of candidate solutions to Eq. (1) is the set
of neural networks with a given architecture. For readability, the class of neural networks under
consideration in this paper is briefly described below.

Feedforward Neural Networks A feedforward fully connected neural network is a mapping that
takes input x through a composition of affine maps with nonlinear functions applied component-
wise, referred to as activation functions. Such a mapping can be written as

Fθ(x) = CL ◦ σL ◦ CL−1 ◦ · · · ◦ σ1 ◦ C1(x) where Ck(z) = Wkz + bk, (3)
Wk is a nk × nk−1 matrix, bk ∈ Rnk , and θ = {Wk, bk : 1 ≤ k ≤ L}.

At each k, σk(Ck(·)) is referred to as a layer, and the number of layers L is called the neural
network’s depth. The size of layer nk is referred to as the width of the network at layer k, with n0

the dimension of the input x. We will stick to the class of neural networks where the scalar nonlinear
activation functions are smooth and the same for each layer, σk = σ ∀k.

1.2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

In Neural Ordinary Differential Equations (Neural ODEs), a neural network parameterizes the vector
field of an initial value problem (IVP) for a system of ordinary differential equations (Chen et al.,
2018). Concretely, consider the IVP:

Neural Ordinary Differential Equation
dz(τ,z0)

dτ

∣∣∣∣
(τ,z0)

= Fθ(z(τ, z0), τ)

z(0, z0) = z0
(4)

z0 Rm

z(τ, z0) R× Rm → Rm

Fθ(z(τ, z0), τ) Rm × R → Rm

where the vector field Fθ is described by a neural network Eq. (3)). The aim is to optimize pa-
rameters θ so that the solution to Eq. (4) best describes the mapping x 7→ u where z0 = x and
z(1, z0) ≈ u. Given any scalar-valued loss function L (e.g. mean squared error), this is achieved by
minimization of the loss

L
(
z(1, z0),u

)
= L

([
z(0, z0) +

∫ 1

0

Fθ (z(s, z0), s) ds

]
,u

)
= L

(
ODESolve(z(0, z0),Fθ, 0, 1, θ),u

)
.
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Augmented Neural ODEs Dupont et al. (2019) showed that because the flows of Neural ODEs are
homeomorphisms, there are functions that they cannot represent. To address this, they proposed Aug-
mented Neural ODEs (ANODEs). In an ANODE, the dimension of the Neural ODE is augmented by
appending zeros to the input space. For example, if the original ODE in a Neural ODE system has di-
mension dp with input data (x1, . . . ,xdp

), simply augment with zeros (x1, . . . ,xdp
,0, . . . ,0dp+da

),
to get a da-augmented ANODE. Augmenting the dimension allows the Neural ODE to represent a
larger class of functions and often improves computational efficiency by reducing the number of
function evaluations used by the numerical ODE solver during training. In this work, we elect to use
ANODEs for all the Neural ODE implementations due to their increased representational range.

1.3 PHYSICS INFORMED NEURAL NETWORKS

In a PINN, a fully connected feedforward neural network approximates u ≈ Fθ(x) from Eq. (3)
(Raissi et al., 2019a). This network, which we denote as uθ = Fθ, is parameterized by θ ∈ Rm.
Substituting u with uθ in Eq. (2), the objective is to find the optimal θ values that minimize R(uθ) on
a set of collocation points sampled via a Monte Carlo approach or chosen with other criteria. Deriva-
tives of uθ can be readily found via automatic differentiation. In practice, the norms in (Eq. (2)) are
replaced by Euclidean norms or an appropriately defined quadrature approximation of the integral.

1.4 MAIN CONTRIBUTION AND BROADER IMPACT

We extend the class of neural networks that can be used with a physics-informed loss to include
Neural ODEs. We call our approach Physics Informed Neurally Constructed ODE Networks
(PINECONEs). Neural ODEs have properties that are useful for physics-informed applications,
such as the ability to handle irregularly sampled time-series data. Furthermore, the diverse adapta-
tions of the Neural ODE framework, such as Hamiltonian neural networks, stochastic neural ODEs,
and others, open up new avenues for physics-informed machine learning. Conversely, our approach
provides a method for computing the sensitivity of a Neural ODE to input data in a memory-efficient
manner, which may be of broader interest for a range of tasks involving Neural ODEs.

Our results show that training requires fewer iterations than ordinary PINNs to achieve higher accu-
racy when using first-order optimization methods. This is particularly important when incorporating
real-world data into the PINN framework, where optimizers like LBFGS may not scale well with
larger data sets. Similarly, first-order optimizers are more suitable for problems involving high-
dimensional PDEs.

1.5 RELATED WORK

• Many works address the accuracy and training difficulties in PINNs; see (Müller & Zeinhofer,
2023) for an overview. Wu et al. (2023) study strategies for sampling the collocation points used
in training to improve training. van der Meer et al. (2022) focus on adaptively weighing different
components of the PINN loss. Wang et al. (2022a) forces a PINN to respect causality by modi-
fying the PINN loss to enforce temporal order in time-dependent problems. Wang et al. (2021)
suggests a specialized architecture to improve training. All of these approaches are independent
of the work in this proposal. Indeed, a PINECONE may be combined with any of the strategies
listed above.

• Various optimization strategies have been suggested for PINN training (Zeng et al., 2022; Davi
& Braga-Neto, 2022; Müller & Zeinhofer, 2023). However, these can also be combined with
PINECONEs by using any of them for training. Moreover, in this work, rather than replacing
first-order optimization methods, we embrace them due to their scalability.

• In both Lee & Parish and Rackauckas et al. (2021), PDEs are transformed into an ODE system
and solved with Neural ODEs. In Rackauckas et al. (2021), a PDE is analytically transformed
into a system of ODEs and then solved with a Neural ODE, while in Lee & Parish, the PDE
is discretized in space and a left continuous in time, then a Neural ODE is used on the resulting
ODE system. These approaches most closely resemble PINECONEs. However, PINECONEs are
unique in that they provide a continuous solution and use an ODE to approximate a PDE rather
than reducing a PDE problem to an ODE problem. Another novel feature of PINECONEs is the
use of forward sensitivity equations to compute derivatives.
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2 PINECONES

In a Neural ODE, the neural network must satisfy a dynamical system by construction. This obser-
vation motivates using Neural ODEs as a family of candidate functions for the numerical solution
of Eq. (1) via a Physics informed collocation approach. A Neural ODE z(1, z0) is mapped to the
correct dimension for the PDE problem via a linear transformation A and substituted into Eq. (2).
A suitable discretization of R(Az) is minimized at the set of collocation points z0 = x. See Sec-
tion 2.3 for details on A.

The difficulty in using Neural ODEs to approximate u lies in how to best go about taking derivatives
of z(1, z0) = uθ ≈ u with respect to z0. In a Neural ODE, the training data is a set of initial con-
ditions. For a Physics informed training task performed with a Neural ODE, these initial conditions
represent the set of spatial/temporal coordinates of the PDE. Naively using auto-differentiation on z
requires differentiating through all the operations of the ODE solver employed in the forward pass.
For example, consider backpropagation using the simple first-order one-dimensional differential op-
erator F = ∂

∂x + ∂
∂t . Derivatives of the loss are

∂L
∂θ

=
∂

∂θ

(
L
(
F
(
A

[
z(0, z0) +

∫ 1

0

Fθ (z(s, z0), s) ds

])))

=

∂

∂θ

(
L

(
∂

∂x

(
A

[
ODESolve

(
z(0, z0),Fθ, 0, 1, θ

)])

+
∂

∂t

(
A

[
ODESolve

(
z(0, z0),Fθ, 0, 1, θ

)])))
.

For a large set of training data, or for an ODE solve that requires small time steps, this operation
becomes memory intensive and costly. To avoid this issue, it is possible to solve an extended system
of ODEs that returns not just z(1, z0), but also its partial derivatives with respect to the input data
z0.

2.1 FIRST-ORDER PINECONE

Introducing S1(τ,z0):=∇
∣∣
(τ,z0)

z(τ,z0)∈Rm×Rm we can extend the original formulation of a Neu-
ral ODE. We call the extended coupled system a first-order PINECONE.

1st order PINECONE
dz
dτ

∣∣
(τ,z0)

= Fθ(z, τ)
dS1

dτ

∣∣
(τ,z0)

=∇
∣∣
(τ,z0)

Fθ(z,τ)S1

z(0, z0) = z0
S1(0, z0) = I

(5)

z0 Rm

I Rm × Rm

z(τ, z0) R× Rm → Rm

S1(τ, z0) Rm × Rm

Fθ(z(τ, z0), τ) Rm × R → Rm

∇
∣∣
(τ,z0)

Fθ(z(τ,z0),τ) Rm × Rm

Solutions for a first-order PINECONE system are the original Neural ODE solution z together with
the Jacobian of z with respect to the Neural ODE input data z0. In other words, in solving this
new Neural ODE system, we can access the Neural ODE approximation to the solution and any
first-order partial derivative of the Neural ODE approximation.

2.2 SECOND-ORDER PINECONE

Setting S2(τ,z0):=∇
∣∣
(τ,z0)

S1∈Rm×Rm×Rm gives a second order PINECONE:
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2nd order PINECONE

dz
dτ

∣∣
(τ,z0)

=Fθ(z,τ)

dS1
dτ

∣∣
(τ,z0)

=∇
∣∣
(τ,z0)

Fθ(z,τ)S1

dS2
dτ

∣∣
(τ,z0)

=∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Fθ(z,τ)
)
⊗S1

+∇
∣∣
(τ,z0)

Fθ(z,τ)⊗S2

z(0, z0) = z0

S1(0, z0) = I

S2(0, z0) = 0

(6)

z0 Rm

I Rm × Rm

0 Rm × Rm × Rm

z(τ,z0) R×Rm→Rm

S1(τ,z0) Rm×Rm

S2(τ,z0) Rm×Rm×Rm

Fθ(z(τ,z0),τ) Rm×R→Rm

∇
∣∣
(τ,z0)

Fθ(z(τ,z0),τ) Rm×Rm

∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Fθ(z(τ,z0),τ)
)

Rm×Rm×Rm

whose solutions are z and all first and second-order derivatives of z with respect to z0. The ODE
system may be extended as many times as desired by repeating the process outlined above. Details
of the derivations of first and second-order PINECONEs can be found in Appendix B.

A Note on the tensor product: The ijk-th entry of the product is given by[
dS2

dτ

∣∣
(τ,z0)

]
ijk

=

([
∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Fθ(z, τ)
)]

[i,:,:]
· [S1][:,k]

)
· [S1][:,j]

+ [S2][:,j,k]

[
∇
∣∣
(τ,z0)

Fθ(z, τ)
]
[i,:]

.

This can be verified by computing the vector-valued Hessian of z component-wise.

2.3 DIMENSION REDUCTION:

Because a Neural ODE is an ODE system, the input dimensions must match the output dimensions.
Using a simple affine transformation of z, w(z) := Az(τ, z0) + b, we can use a Neural ODE to
approximate any mapping from Rm to Rn with m 6= n. In all the experiments in this paper, the
output layer of the PINECONE is mapped to the appropriate size using the linear transformation
A = 1

dp+da
1 ∈ R × Rdp+da , (with b = 0). This transformation averages the outputs of the neural

ODE to map them to the appropriate space. To illustrate, given a one-dimensional PDE on a space-
time domain and any fixed (x, t), a two-augmented PINECONE approximates u via the relationship

u(x, t) ≈
(
A

[
z(0, z0) +

∫ 1

0

Fθ (z(s, z0), s) ds

])
=

1

4
[1 1 1 1]

[
[x t 0 0]T +

∫ 1

0

Fθ

(
z
(
s, [x t 0 0]T

)
, s
)
ds

]
.

3 EXPERIMENTAL RESULTS

The code for all experiments will be made available at the time of publication. The performance of
PINECONEs is evaluated on two canonical one-dimensional test problems: the transport equation
and Burger’s equation. These are benchmarks that have been studied in previous PINN literature
(Raissi et al., 2019b; Krishnapriyan et al., 2021; Lee & Parish). The transport equation models
transport phenomena and is foundational for a variety of applications, while Burger’s equation is the
canonical prototype for shock-forming conservation laws, which typical numerical methods strug-
gle with. PINECONEs are compared against a standard PINN approximation on these two test
problems.

To ensure a fair comparison, the neural networks used in the PINN and PINECONE approximations
have been made as similar as possible. In all experiments, both networks have the same number
of layers and identical widths, use the same activation function and are initialized in the same way.
We use Swish activations and either He or Orthogonal initialization (He et al., 2015; Saxe et al.,
2014).Additionally, the same optimization scheme with the same learning rate is used in training.
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The only difference between them is the size of the input data and that of the output layer. In a
PINN, the size of the input data corresponds to the dimension of the domain of the PDE, which we
denote dp. The output layer is the size of the PDE dimension; in our examples, this equals one. In
an ANODE, the input dimension is of size dp + da and must match the size of the output layer. A
linear transformation averages the contributions of the output layer (see section Section 2.3), taking
them to the PDE’s dimension.

Implementation Details All of the code is implemented in Python using the Jax library (Brad-
bury et al., 2018). The neural networks are built using the Equinox library (Kidger & Garcia, 2021).
The PINECONEs use the Diffrax library in both the ODE solve for the forward pass and the ODE
solve of the adjoint system used in backpropagation (Kidger, 2021). The Optax library is used for
the optimization (Babuschkin et al., 2020). All experiments were run with Google Colaboratory
using an NVIDIA T4 GPU. The Jacobian-matrix product in Eq. (5) and the tensor product in Eq. (6)
are computed as vectorized Jacobian-vector and Hessian-vector products, respectively, for compu-
tational efficiency. The code was verified on an artificial problem to ensure the accuracy of the
implementation; details of this process are reported in Appendix A.

3.1 THE TRANSPORT EQUATION

As a first test problem, we consider the one-dimensional transport equation with periodic boundary
conditions and a sine initial condition,

∂u

∂t
+ c

∂u

∂x
= 0, for (x, t) ∈ Ω = [0, 2π]× [0, 1], (7)

u(0, t) = u(2π, t), for x ∈ ∂Ω = {0, 2π},
u(x, 0) = sin(x).

The constant c represents the speed at which the initial condition is transported. The analytical
solution to this problem is u(x, t) = sin(x− ct). Krishnapriyan et al. (2021) varied the parameter c
on a fixed time window and showed that increasing c leads to increased training difficulty for a PINN.
However, because increasing c corresponds to a change in the time scale, these training difficulties
should disappear under an appropriate rescaling; thus, we take c = 1 and compare the performance
of a PINN to that of a PINECONE.

For each method, the neural network has eight hidden layers, all with width twenty. The
PINECONE’s training data is augmented with three zeros, as described in Section 1.2. The net-
works are trained for 60,000 iterations utilizing the ADAM optimizer (Kingma & Ba, 2017). The
learning rate begins at 1e−4 and is reduced to 1e−5 after 7,000 iterations. We stick to the default hy-
perparameters for ADAM provided by Optax. For clarity, we briefly describe the physics informed
loss function for Eq. (7):

L(θ) = R(uθ) =

∥∥∥∥∂uθ

∂t
+

∂uθ

∂x

∥∥∥∥2
2

+

∥∥∥∥uθ|t=0 − sin(x)

∥∥∥∥2
2

+

∥∥∥∥uθ|x=0 − uθ|x=2π

∥∥∥∥2
2

(8)

where ‖·‖2 is the averaged l2 norm, i.e. root mean squared error (RMSE). The loss is trained on
a set of 956 collocation points: 256 points for the initial condition, 100 points for each boundary,
and 500 points for the interior of the domain where the differential operator is minimized. The
initial condition and boundary points are selected to be evenly spaced grids and don’t change during
training. The interior points are randomly sampled from the domain at each iteration of training.
This differs from the typical approach in the PINN literature, where full-batch training is often
used. However, we are interested in testing the performance of our approach when using first-order
optimization methods, which are known to perform better on small stochastic batches of training
data.

We compare the relative errors for each method in Fig. 1. The relative error is computed on a fine
grid rather than on the set of collocation points. The PINECONE reaches the minimum error of
the PINN at around iteration 1,200. The PINN takes over 22 times as many iterations to reach the
same error. We report the minimum, mean, and maximum relative errors for iterations after the
PINECONE achieves the PINN’s smallest loss in Table 1. The PINECONE outperforms the PINN
on each of these metrics.
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Figure 1: Training iterations v.s. the relative error for a PINECONe (solid blue line) and a PINN
(dashed red line) for Eq. (7), evaluated on a fine grid of testing data. The minimum error reached by
the PINN approximation is shown as a horizontal line in grey with a dash-dot pattern.

∥uθ−u∥2

∥u∥2
Min Mean Max

PINN 1.636e−3 1.947e−3 3.717e−3

PINECONE 5.273e−4 7.278e−4 1.067e−3

Table 1: Relative errors for a PINECONE v.s. a PINN for Eq. (7), evaluated on the testing data.
Errors are computed only for the iterations after the PINECONE has reached the PINN’s minimum
training error (see Fig. 1).

3.2 BURGER’S EQUATION

We next consider one-dimensional Burger’s equation with very small viscosity,

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0, for (x, t) ∈ Ω = [−1, 1]× [0, 1],

u(−1, t) = u(1, t) = 0, for x ∈ ∂Ω = {−1,−1},
u(x, 0) = − sin(πx).

(9)

The performance of PINECONEs is compared to that of a standard PINN for this new problem.
The networks both have four hidden layers, all with width 40. Both networks were optimized using
AMSGRAD (Reddi et al., 2023) instead of ADAM as the former outperformed ADAM in trials
comparing both methods. The learning rate is initially set to 1e−02 and lowered to 1e−4 after 2,500
iterations, then again to 1e−5 at 5,000 iterations. The networks are trained for 30,000 iterations. To
facilitate training, the input layer of the network is wrapped in a sine function. This simple change
was inspired by the idea of Fourier feature embeddings described by (Dong & Ni, 2021; Wang
et al., 2022a). Although considerably simpler than a full Fourier embedding, we observed that it
nonetheless provided some acceleration to the training for both network architectures. Note that
while the loss function is the same, the residual, boundary, and initial conditions shown in Eq. (8),
are replaced with the corresponding counterparts from Eq. (9).

In both test problems considered in this paper, PINECONEs demonstrate significantly more rapid
initial progress toward learning solutions than PINNs and achieve lower error throughout the opti-
mization process. It is clear from Fig. 2 that by iteration 3,000 the PINECONE has already captured
the salient features of the PDE solution for Eq. (9), by iteration 3,000 the PINECONE already re-
sembles the true solution; it has captured the shape and salient features of the PDE. The PINN, on
the other hand, has not yet begun to capture the shock. After an initial period of rapid progress,
training for the PINECONE slows dramatically. The PINN never achieved error below 1e − 01,
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Figure 2: A snap shot that shows differences in training for PINECONEs (top) and PINNs (bottom)
at iteration 3,000. Comparison of the approximate v.s. exact solutions are given at four temporal
snapshots. The approximations are depicted by the red dashed vertical lines, while the exact solution
is shown in solid blue.

Figure 3: A snap shot that shows differences in training for PINECONEs (top) and PINNs (bottom)
at iteration 28,000. Comparison of the approximate v.s. exact solutions are given at four temporal
snapshots. The approximations are depicted by the red dashed vertical lines, while the exact solution
is shown in solid blue.

while the PINECONE never achieved relative errors below the order of 1e − 02 in the experiments
we performed in this preliminary work. Fig. 3 shows a snapshot near the end of training where
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differences between the quality of the approximations continue to be notable. The PINECONE has
fully resolved the shock formation but struggles to finish learning the initial condition.

3.3 DISCUSSION

Although PINECONEs outperform PINNs in our experiments, training stalls and cannot achieve
high accuracy. Studies of PINNs have noted the need to employ L-BFGS to achieve lower error
(Raissi et al., 2019a; He et al., 2020; Krishnapriyan et al., 2021), which aligns with observations of
stiffness in the gradient flow dynamics for PINNs (Wang et al., 2022b). Future work should compare
the training dynamics of PINNs and PINECONES. While there is a possibility that PINECONEs
can alleviate stiffness, it is also possible that the expressive architecture of a PINECONE plays a
significant role in its performance. The observed differences in performance may be due to the
adaptive depth provided by adaptive time-stepping in a Neural ODE, or to the requirement that the
approximate solution satisfy an ODE in τ for each collocation point rather than indicating lower
stiffness.

4 CONCLUSION

We develop a formulation that allows the integration of a Neural ODE into a Physics Informed Neu-
ral Network task. This expands what PINNs can do by for example, allowing for seamless integra-
tion of irregularly sampled time-series data into Physics Informed Learning tasks. We demonstrate
that for first-order optimization methods, PINECONEs outperform standard PINNs on two prelimi-
nary test problems. Many avenues for improvement remain to be explored by combining active and
ongoing research into PINNs with the PINECONE architecture.
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A THE VERIFICATION PROBLEM

In numerical simulations, to test that a numerical solver is free of programming errors that impact
the accuracy of the solution, it is common to use the method of manufactured solutions (Roache,
2001). Because analytical solutions are unavailable, the performance of the code is verified on an
artificial problem with known solutions. In a similar spirit, we verify that the PINECONE ODE
system returns accurate partial derivatives for z with respect to z0 by testing against a carefully
chosen ODE with known solutions.

We choose the non-linear ODE

dz

dτ
=

{
dz(1)

dτ = −(z(1)z
(2))2 z(1)(0) = x

dz(2)

dτ = −(z(2))3 z(2)(0) = t
. (10)

The dependence of the analytical solution z =
[

2x
ln(2t2τ+1)x+2 ,±

t√
2t2τ+1

]T
on the initial condition

z0 = [x, t]T , ensures that, at any order, the partial derivatives of z with respect to x and t are not all
zero. Additionally, the system is chosen so that the Jacobian and vector-valued Hessian of z, with
respect to z0, are not diagonal. These two conditions are necessary otherwise, terms in the matrix
and tensor products on the right-hand side of Eq. (6) vanish and cannot be checked.

We verify the derivation in Section 2, for a second order PINECONE. Instead of parameterizing Fθ

with a neural network, for which analytical partial derivatives are infeasible, we set the vector field
of z equal to right hand side of Eq. (10). We then compute dS1

dτ and dS2

dτ analytically and verify that
the equalities in Eq. (6) hold.

The numerical implementation of Eq. (6) is also checked. We randomly generate a set of (x, t)
points. The system is solved numerically for each randomly generated initial condition (x, t), using
the Dopri8 method from the Diffrax library, a highly accurate Runge-Kutta method. These numerical
solutions are compared to their known analytical counterparts, z, S1, and S2 evaluated at the given
(x, t). The accuracy of solutions depends on the ODE solver used and the error tolerances chosen.
The order of the error for z, S1, and S2 for different choices of ODE solvers with the absolute
tolerance fixed at 1e− 06 and the relative tolerance set at either 1e− 03 or 1e− 06 are shown in ??.

Errors for verification problem
z S1 S2

Tolerance 1e− 03 1e− 06 1e− 03 1e− 06 1e− 03 1e− 06
Heun 1e− 06 1e− 09 1e− 05 1e− 08 1e− 04 1e− 07
Tsit5 1e− 07 1e− 09 1e− 06 1e− 08 1e− 04 1e− 07
Dopri8 1e− 12 1e− 12 1e− 10 1e− 10 1e− 08 1e− 09

11



Under review as a conference paper at ICLR 2024

B PINECONE DERIVATION

First-order PINECONE: Introducing a new variable S1(τ,z0):=∇
∣∣
(τ,z0)

z∈Rm×Rm and taking
the derivative with respect to τ of S1 we get:

d

dτ

∣∣∣∣
(τ,z0)

S1(τ, z0) =
d

dτ

∣∣∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

z(τ, z0)
)

= ∇
∣∣
(τ,z0)

(
d

dτ

∣∣∣∣
(τ,z0)

z(τ, z0)

)
by Clairout’s theorem

= ∇
∣∣
(τ,z0)

Fθ(z(τ, z0), τ)∇
∣∣
(τ,z0)

z(τ, z0) by the chain rule

= ∇
∣∣
(τ,z0)

Fθ(z(τ, z0), τ)S1(τ, z0). (11)

We can extend the ODE system as many times as desired by iteratively repeating the trick in Eq. (11).
To illustrate, let’s derive the second-order PINECONE system.

Second-order PINECONE: Set S2(τ,z0):=∇
∣∣
(τ,z0)

S1∈Rm×Rm×Rm. Taking the derivative
with respect to τ we get:

d

dτ

∣∣∣∣
(τ,z0)

S2(τ, z0) =
d

dτ

∣∣∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

S1(τ, z0)
)

= ∇
∣∣
(τ,z0)

(
d

dτ

∣∣∣∣
(τ,z0)

S1

)
by Clairout’s Theorem.

= ∇
∣∣
(τ,z0)

(
d

dτ

∣∣∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

z
))

= ∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

(
d

dτ

∣∣∣∣
(τ,z0)

z

))
= ∇

∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Fθ(z, τ) · ∇
∣∣
(τ,z0)

z
)

= ∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Fθ(z, τ)S1

)
= ∇

∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Fθ(z, τ)
)
⊗ S1 +∇

∣∣
(τ,z0)

Fθ(z, τ)⊗ S2 by the product rule

=
(
∇2
∣∣
(τ,z0)

Fθ(z, τ)
)
⊗ S2

1 + S2 ⊗∇
∣∣
(τ,z0)

Fθ (12)

Combining Eq. (4), Eq. (11), and Eq. (12) gives a second order PINECONE whose solutions are the
Neural ODE together with all first and second-order derivatives of the Neural ODE with respect to
the inputs z0.

Dimension reduction The dimension of the Neural ODE solution is mapped to the appropriate
PDE dimension using a simple affine transformation of z, w(z) := Az(τ, z0) + b. Finding the
Jacobians for w involves some straightforward calculations.

∇
∣∣
(τ,z0)

w(z) = ∇
∣∣
(τ,z0)

(Az+ b) · ∇
∣∣
(τ,z0)

z = ATS1.

Similarly, ∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

w(z)
)
= ∇

∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

(Az+ b) · ∇
∣∣
(τ,z0)

z
)

=
(
∇
∣∣
(τ,z0)

(
∇
∣∣
(τ,z0)

Az+ b
))

⊗ S1 +∇
∣∣
(τ,z0)

(Az+ b)⊗ S2

= ∇
∣∣
(τ,z0)

(
AT
)
· S1 +ATS2

= ATS2.
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